# Zero to the zero power

Zero to the zero power
You are encouraged to solve this task according to the task description, using any language you may know.

Some programming languages are not exactly consistent   (with other programming languages)   when   raising zero to the zeroth power:     00

Show the results of raising   zero   to the   zeroth   power.

If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like:

x = 0
y = 0
z = x**y
say  'z='  z

Show the result here.
And of course use any symbols or notation that is supported in your computer language for exponentiation.

0 0 ^ .

Output:

1

## AutoHotkey

MsgBox % 0 ** 0
Output:
1

procedure Test5 is

I  : Integer  := 0;
LI  : Long_Integer  := 0;
LLI  : Long_Long_Integer := 0;
F  : Float  := 0.0;
LF  : Long_Float  := 0.0;
LLF  : Long_Long_Float  := 0.0;
Zero : Natural  := 0;

begin
Put ("Integer 0^0 = ");
Put (I ** Zero, 2); New_Line;
Put ("Long Integer 0^0 = ");
Put (LI ** Zero, 2); New_Line;
Put ("Long Long Integer 0^0 = ");
Put (LLI ** Zero, 2); New_Line;
Put ("Float 0.0^0 = ");
Put (F ** Zero); New_Line;
Put ("Long Float 0.0^0 = ");
Put (LF ** Zero); New_Line;
Put ("Long Long Float 0.0^0 = ");
Put (LLF ** Zero); New_Line;
end Test5;

Output:
Integer           0^0 =  1
Long Integer      0^0 =  1
Long Long Integer 0^0 =  1
Float           0.0^0 =  1.00000E+00
Long Float      0.0^0 =  1.00000000000000E+00
Long Long Float 0.0^0 =  1.00000000000000000E+00

## ALGOL 68

Works with: ALGOL 68G version Any - tested with release 2.6.win32
print( ( 0 ^ 0, newline ) )

Output:
+1

0*0
1

]? 0^0
1

## AWK

# syntax: GAWK -f ZERO_TO_THE_ZERO_POWER.AWK
BEGIN {
print(0 ^ 0)
exit(0)
}

Output:
1

## BaCon

PRINT POW(0, 0)
Output:
prompt\$ ./zerotothezero
1

0 ^ 0

Output:

1

## Befunge

Befunge-93 doesn't have explicit support for exponentiation, but there are a couple of fingerprint extensions for Befunge-98 which add that functionality. The example below makes use of the FPDP fingerprint (double precision floating point).

Note that the result is potentially dependent on the underlying language of the interpreter, but all those tested so far have returned 1. Interpreters that don't support Befunge-98, or don't support this fingerprint, should just terminate (possibly with a warning).

"PDPF"4#@(0F0FYP)@
Output:
1.000000

0^0
Output:
1

blsq ) 0.0 0.0?^
1.0
blsq ) 0 0?^
1

PRINT 0^0
Output:
1

## C

Works with: C99

This example uses the standard pow function in the math library. 0^0 is given as 1.

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main()
{
printf("0 ^ 0 = %f\n", pow(0,0));
double complex c = cpow(0,0);
printf("0+0i ^ 0+0i = %f+%fi\n", creal(c), cimag(c));
return 0;
}
Output:
0 ^ 0 = 1.000000
0+0i ^ 0+0i = nan+nani

## C++

#include <iostream>
#include <cmath>
#include <complex>

int main()
{
std::cout << "0 ^ 0 = " << std::pow(0,0) << std::endl;
std::cout << "0+0i ^ 0+0i = " <<
std::pow(std::complex<double>(0),std::complex<double>(0)) << std::endl;
return 0;
}
Output:
0 ^ 0 = 1
0+0i ^ 0+0i = (nan,nan)

## C#

using System;

namespace ZeroToTheZeroeth
{
class Program
{
static void Main(string[] args)
{
double k = Math.Pow(0, 0);
Console.Write("0^0 is {0}", k);
}
}
}
Output:
0^0 is 1

## Clojure

user=> (use 'clojure.math.numeric-tower)
user=> (expt 0 0)
1

; alternative java-interop route:
user=> (Math/pow 0 0)
1.0

## COBOL

identification division.
program-id. zero-power-zero-program.
data division.
working-storage section.
77 n pic 9.
procedure division.
compute n = 0**0.
display n upon console.
stop run.
Output:
1

## ColdFusion

### Classic tag based CFML

<cfset zeroPowerTag = 0^0>
<cfoutput>"#zeroPowerTag#"</cfoutput>

Output:
"1"

### Script Based CFML

<cfscript>
zeroPower = 0^0;
writeOutput( zeroPower );
</cfscript>
Output:
1

> (expt 0 0)
1

## D

void main() {
import std.stdio, std.math, std.bigint, std.complex;

writeln("Int: ", 0 ^^ 0);
writeln("Ulong: ", 0UL ^^ 0UL);
writeln("Float: ", 0.0f ^^ 0.0f);
writeln("Double: ", 0.0 ^^ 0.0);
writeln("Real: ", 0.0L ^^ 0.0L);
writeln("pow: ", pow(0, 0));
writeln("BigInt: ", 0.BigInt ^^ 0);
writeln("Complex: ", complex(0.0, 0.0) ^^ 0);
}
Output:
Int:     1
Ulong:   1
Float:   1
Double:  1
Real:    1
pow:     1
BigInt:  1
Complex: 1+0i

0 0^p

Output:
1

## EchoLisp

;; trying the 16 combinations
;; all return the integer 1

(lib 'bigint)
(define zeroes '(integer: 0 inexact=float: 0.000 complex: 0+0i bignum: #0))
(for* ((z1 zeroes) (z2 zeroes)) (write (expt z1 z2)))
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

print (0^0)
Output:
1

## Elena

import extensions.

public program
[
console printLine("0^0 is ",0 power:0).
]
Output:
0^0 is 0

## Elixir

Elixir uses Erlang's :math for power operations and can handle zero to the zero power.

:math.pow(0,0)

Output:

1.0

.....
PRINT(0^0)
.....

Output:
1

## F#

In the REPL:

> let z = 0.**0.;;

val z : float = 1.0

## Factor

USING: math.functions.private ; ! ^complex
0 0 ^
C{ 0 0 } C{ 0 0 } ^complex
Output:
--- Data stack:
NAN: 8000000000000
C{ NAN: 8000000000000 NAN: 8000000000000 }

## Falcon

VBA/Python programmer's approach not sure if it's the most falconic way

/* created by Aykayayciti Earl Lamont Montgomery
April 9th, 2018 */

x = 0
y = 0
z = x**y
> "z=", z

Output:
z=1
[Finished in 0.2s]

## Forth

0e 0e f** f.
Output:
1.

Of course in an embedded program we would be tempted to "pre-calculate" the answer :-)

: ^0     DROP  1 ;
Output:
0 ^0 . 1 ok

## Fortran

program zero
double precision :: i, j
double complex :: z1, z2
i = 0.0D0
j = 0.0D0
z1 = (0.0D0,0.0D0)
z2 = (0.0D0,0.0D0)
write(*,*) 'When integers are used, we have 0^0 = ', 0**0
write(*,*) 'When double precision numbers are used, we have 0.0^0.0 = ', i**j
write(*,*) 'When complex numbers are used, we have (0.0+0.0i)^(0.0+0.0i) = ', z1**z2
end program

Output:
When integers are used, we have 0^0 =            1
When double precision numbers are used, we have 0.0^0.0 =    1.0000000000000000
When complex numbers are used, we have (0.0+0.0i)^(0.0+0.0i) =  (             NaN,             NaN)

## FreeBASIC

' FB 1.05.0 Win64

Print "0 ^ 0 ="; 0 ^ 0
Sleep
Output:
0 ^ 0 = 1

## Gambas

Public Sub Main()

Print 0 ^ 0

End

Output:

1

## Go

Go does not have an exponentiation operator but has functions in the standard library for three types, float64, complex128, and big.Int. As of Go 1.3, all are documented to return 1.

package main

import (
"fmt"
"math"
"math/big"
"math/cmplx"
)

func main() {
fmt.Println("float64: ", math.Pow(0, 0))
var b big.Int
fmt.Println("big integer:", b.Exp(&b, &b, nil))
fmt.Println("complex: ", cmplx.Pow(0, 0))
}
Output:
float64:     1
big integer: 1
complex:     (1+0i)

## FutureBasic

include "ConsoleWindow"

print 0^0

Output:

1

## Groovy

Translation of: Java

Test:

println 0**0
Output:
1

import Data.Complex

main = do
print \$ 0 ^ 0
print \$ 0.0 ^ 0
print \$ 0 ^^ 0
print \$ 0 ** 0
print \$ (0 :+ 0) ^ 0
print \$ (0 :+ 0) ** (0 :+ 0)
Output:
1
1.0
1.0
1.0
1.0 :+ 0.0
NaN :+ NaN

## HolyC

F64 a = 0 ` 0;
Print("0 ` 0 = %5.3f\n", a);
Output:
0 ` 0 = 1.000

## Icon and Unicon

"Works" in both languages:

procedure main()
write(0^0)
end
Output:
->z2z

Run-time error 204
File z2z.icn; Line 2
real overflow, underflow, or division by zero
Traceback:
main()
{0 ^ 0} from line 2 in z2z.icn
->

0 ^ 0
1

## Java

System.out.println(Math.pow(0, 0));
Output:
1.0

## JavaScript

### Math.pow

Works with: Node.js

In interactive mode:

> Math.pow(0, 0);
1

> 0**0
1

## jq

jq version 1.4 does not have a builtin "power" function. If it were to be defined using the exp and log builtins as 'log * y | exp', then 0 | power(0) would yield null, and therefore a definition that makes a special case of 0^0 should be considered, e.g. along the following lines:

def power(y): y as \$y | if \$y == 0 then 1 elif . == 0 then 0 else log * \$y | exp end;

This definition will however be unsatisfactory for many purposes because it does not maintain precision for integer values of the input (.) and y.

## Julia

Try all combinations of complex, float, rational, integer and boolean.

const types = (Complex, Float64, Rational, Int, Bool)

for Tb in types, Te in types
zb, ze = zero(Tb), zero(Te)
r = zb ^ ze
@printf("%10s ^ %-10s = %7s ^ %-7s = %-12s (%s)\n", Tb, Te, zb, ze, r, typeof(r))
end
Output:
Complex ^ Complex    = 0 + 0im ^ 0 + 0im = 1.0 + 0.0im  (Complex{Float64})
Complex ^ Float64    = 0 + 0im ^ 0.0     = 1.0 + 0.0im  (Complex{Float64})
Complex ^ Rational   = 0 + 0im ^ 0//1    = 1.0 + 0.0im  (Complex{Float64})
Complex ^ Int64      = 0 + 0im ^ 0       = 1 + 0im      (Complex{Int64})
Complex ^ Bool       = 0 + 0im ^ false   = 1 + 0im      (Complex{Int64})
Float64 ^ Complex    =     0.0 ^ 0 + 0im = 1.0 + 0.0im  (Complex{Float64})
Float64 ^ Float64    =     0.0 ^ 0.0     = 1.0          (Float64)
Float64 ^ Rational   =     0.0 ^ 0//1    = 1.0          (Float64)
Float64 ^ Int64      =     0.0 ^ 0       = 1.0          (Float64)
Float64 ^ Bool       =     0.0 ^ false   = 1.0          (Float64)
Rational ^ Complex    =    0//1 ^ 0 + 0im = 1.0 + 0.0im  (Complex{Float64})
Rational ^ Float64    =    0//1 ^ 0.0     = 1.0          (Float64)
Rational ^ Rational   =    0//1 ^ 0//1    = 1.0          (Float64)
Rational ^ Int64      =    0//1 ^ 0       = 1//1         (Rational{Int64})
Rational ^ Bool       =    0//1 ^ false   = 1//1         (Rational{Int64})
Int64 ^ Complex    =       0 ^ 0 + 0im = 1.0 + 0.0im  (Complex{Float64})
Int64 ^ Float64    =       0 ^ 0.0     = 1.0          (Float64)
Int64 ^ Rational   =       0 ^ 0//1    = 1.0          (Float64)
Int64 ^ Int64      =       0 ^ 0       = 1            (Int64)
Int64 ^ Bool       =       0 ^ false   = 1            (Int64)
Bool ^ Complex    =   false ^ 0 + 0im = 1.0 + 0.0im  (Complex{Float64})
Bool ^ Float64    =   false ^ 0.0     = 1.0          (Float64)
Bool ^ Rational   =   false ^ 0//1    = 1.0          (Float64)
Bool ^ Int64      =   false ^ 0       = true         (Bool)
Bool ^ Bool       =   false ^ false   = true         (Bool)

0^0
1.0

## Kotlin

// version 1.0.6

fun main(args: Array<String>) {
println("0 ^ 0 = \${Math.pow(0.0, 0.0)}")
}
Output:
0 ^ 0 = 1.0

## Lua

No need to try different data types or with / without decimal points as all numbers in Lua are stored in double-precision floating-point format.

print(0^0)
Output:
1

## M2000 Interpreter

M2000 use ** and ^ for power.

Module Checkit {
x=0
y=0
Print x**y=1, x^y=1 ' True True
}
Checkit

## Maple

0^0
Output:
1

However, for consistency with IEEE-754 numerics, we also have a NaN result for the equivalent floating-point exponentiation:

0^0.0
Output:
Float(undefined)

0^0
Output:
Indeterminate

0^0
complex(0,0)^0
Output:
1
1

## Mercury

:- module zero_to_the_zero_power.
:- interface.

:- import_module io.

:- pred main(io::di, io::uo) is det.

:- implementation.

:- import_module float, int, integer, list, string.

main(!IO) :-
io.format(" int.pow(0, 0) = %d\n", [i(pow(0, 0))], !IO),
io.format("integer.pow(zero, zero) = %s\n",
[s(to_string(pow(zero, zero)))], !IO),
io.format(" float.pow(0.0, 0) = %.1f\n", [f(pow(0.0, 0))], !IO).

:- end_module zero_to_the_zero_power.
Output:
int.pow(0, 0) = 1
integer.pow(zero, zero) = 1
float.pow(0.0, 0) = 1.0

## Microsoft Small Basic

TextWindow.WriteLine(Math.Power(0,0))
Output:
1

## МК-61/52

Сx	^	x^y	С/П

The result is error message.

## Neko

Neko uses the C math library for exponentiation, Zero to the zero in math.pow(x, y) is treated as being 1.

/**
Zero to the zeroth power, in Neko
*/

\$print(math_pow(0, 0), "\n")
Output:
prompt\$ nekoc zero-to-the-zero.neko
prompt\$ neko zero-to-the-zero.n
1

## NetRexx

x=0
Say '0**0='||x**x
Output:
0**0=1

(pow 0 0)
Output:
1

## Nial

Create an exponentiation table for all type combinations (of integer 0, float 0.0 and boolean o):

0 0.0 o outer power 0 0.0 o
+--+--+--+
| 1|1.| 1|
+--+--+--+
|1.|1.|1.|
+--+--+--+
| 1|1.| 1|
+--+--+--+

import math

echo pow(0, 0)
Output:
1.0

## OCaml

In the interpreter:

# 0.0 ** 0.0;;
- : float = 1.
# Complex.pow Complex.zero Complex.zero;;
- : Complex.t = {Complex.re = nan; Complex.im = nan}
# open Num;;
# Int 0 **/ Int 0;;
- : Num.num = Int 1

0 0 pow println
Output:
1

## ooRexx

/**********************************************************************
* 21.04.2014 Walter Pachl
**********************************************************************/

Say 'rxCalcpower(0,0) ->' rxCalcpower(0,0)
Say '0**0 ->' 0**0
::requires rxmath library
Output:
rxCalcpower(0,0)  -> 1
0**0              -> 1

0^0
Output:
%1 = 1

## Pascal

Works with: Free Pascal
Library: math
program ZToZ;
uses
math;
begin
write('0.0 ^ 0 :',IntPower(0.0,0):4:2);
writeln(' 0.0 ^ 0.0 :',Power(0.0,0.0):4:2);
end.
output
0.0 ^ 0 :1.00   0.0 ^ 0.0 :1.00

## Perl

print 0 ** 0, "\n";

use Math::Complex;

print cplx(0,0) ** cplx(0,0), "\n";
Output:
1
1

## Perl 6

Works with: Rakudo version 2018.03
say '    type         n      n**n  exp(n,n)';
say '-------- -------- -------- --------';

for 0, 0.0, FatRat.new(0), 0e0, 0+0i {
printf "%8s  %8s  %8s  %8s\n", .^name, \$_, \$_**\$_, exp(\$_,\$_);
}
Output:
type         n      n**n  exp(n,n)
--------  --------  --------  --------
Int         0         1         1
Rat         0         1         1
FatRat         0         1         1
Num         0         1         1
Complex      0+0i      1+0i      1+0i

## Phix

Fair enough, I have no strong opinions on this matter, so I have just removed the test/error that was present in previous versions. Should you for any reason want to change it back, just edit builtins/VM/pPower.e, search for the two mods dated 3/11/15 (32 and 64 bit, both are two lines, test eax/rax; jz :e102cr0tple0), save and rebuild (run "p -c p"), which should take less than 10 seconds.

?power(0,0)
Output:
1

## PHP

<?php
echo pow(0,0);
echo 0 ** 0; // PHP 5.6+ only
?>
Output:
1
1

(** 0 0)

Output:

1

## PL/I

zhz: Proc Options(Main);
Dcl a dec float(10) Init(1);
Dcl b dec float(10) Init(0);
Put skip list('1**0=',a**b);
Put skip list('0**1=',b**a);
Put skip list('0**0=',b**b);
End;
Output:
1**0=                    1.000000000E+0000
0**1=                    0.000000000E+0000
0**0=
IBM0682I  ONCODE=1553  X in EXPONENT(X) was invalid.
At offset +0000025B in procedure with entry ZHZ

[math]::pow(0,0)

## PureBasic

If OpenConsole()
PrintN("Zero to the zero power is " + Pow(0,0))
PrintN("")
PrintN("Press any key to close the console")
Repeat: Delay(10) : Until Inkey() <> ""
CloseConsole()
EndIf

Output:
Zero to the zero power is 1

## Python

### Python3

from decimal import Decimal
from fractions import Fraction
from itertools import product

zeroes = [0, 0.0, 0j, Decimal(0), Fraction(0, 1), -0.0, -0.0j, Decimal(-0.0)]
for i, j in product(zeroes, repeat=2):
try:
ans = i**j
except:
ans = '<Exception raised>'
print(f'{i!r:>15} ** {j!r:<15} = {ans!r}')
Output:
0 ** 0               = 1
0 ** 0.0             = 1.0
0 ** 0j              = (1+0j)
0 ** Decimal('0')    = '<Exception raised>'
0 ** Fraction(0, 1)  = 1
0 ** -0.0            = 1.0
0 ** (-0-0j)         = (1+0j)
0 ** Decimal('-0')   = '<Exception raised>'
0.0 ** 0               = 1.0
0.0 ** 0.0             = 1.0
0.0 ** 0j              = (1+0j)
0.0 ** Decimal('0')    = '<Exception raised>'
0.0 ** Fraction(0, 1)  = 1.0
0.0 ** -0.0            = 1.0
0.0 ** (-0-0j)         = (1+0j)
0.0 ** Decimal('-0')   = '<Exception raised>'
0j ** 0               = (1+0j)
0j ** 0.0             = (1+0j)
0j ** 0j              = (1+0j)
0j ** Decimal('0')    = '<Exception raised>'
0j ** Fraction(0, 1)  = (1+0j)
0j ** -0.0            = (1+0j)
0j ** (-0-0j)         = (1+0j)
0j ** Decimal('-0')   = '<Exception raised>'
Decimal('0') ** 0               = '<Exception raised>'
Decimal('0') ** 0.0             = '<Exception raised>'
Decimal('0') ** 0j              = '<Exception raised>'
Decimal('0') ** Decimal('0')    = '<Exception raised>'
Decimal('0') ** Fraction(0, 1)  = '<Exception raised>'
Decimal('0') ** -0.0            = '<Exception raised>'
Decimal('0') ** (-0-0j)         = '<Exception raised>'
Decimal('0') ** Decimal('-0')   = '<Exception raised>'
Fraction(0, 1) ** 0               = Fraction(1, 1)
Fraction(0, 1) ** 0.0             = 1.0
Fraction(0, 1) ** 0j              = (1+0j)
Fraction(0, 1) ** Decimal('0')    = '<Exception raised>'
Fraction(0, 1) ** Fraction(0, 1)  = Fraction(1, 1)
Fraction(0, 1) ** -0.0            = 1.0
Fraction(0, 1) ** (-0-0j)         = (1+0j)
Fraction(0, 1) ** Decimal('-0')   = '<Exception raised>'
-0.0 ** 0               = 1.0
-0.0 ** 0.0             = 1.0
-0.0 ** 0j              = (1+0j)
-0.0 ** Decimal('0')    = '<Exception raised>'
-0.0 ** Fraction(0, 1)  = 1.0
-0.0 ** -0.0            = 1.0
-0.0 ** (-0-0j)         = (1+0j)
-0.0 ** Decimal('-0')   = '<Exception raised>'
(-0-0j) ** 0               = (1+0j)
(-0-0j) ** 0.0             = (1+0j)
(-0-0j) ** 0j              = (1+0j)
(-0-0j) ** Decimal('0')    = '<Exception raised>'
(-0-0j) ** Fraction(0, 1)  = (1+0j)
(-0-0j) ** -0.0            = (1+0j)
(-0-0j) ** (-0-0j)         = (1+0j)
(-0-0j) ** Decimal('-0')   = '<Exception raised>'
Decimal('-0') ** 0               = '<Exception raised>'
Decimal('-0') ** 0.0             = '<Exception raised>'
Decimal('-0') ** 0j              = '<Exception raised>'
Decimal('-0') ** Decimal('0')    = '<Exception raised>'
Decimal('-0') ** Fraction(0, 1)  = '<Exception raised>'
Decimal('-0') ** -0.0            = '<Exception raised>'
Decimal('-0') ** (-0-0j)         = '<Exception raised>'
Decimal('-0') ** Decimal('-0')   = '<Exception raised>'

### Python2

from decimal import Decimal
from fractions import Fraction
for n in (Decimal(0), Fraction(0, 1), complex(0), float(0), int(0)):
try:
n1 = n**n
except:
n1 = '<Raised exception>'
try:
n2 = pow(n, n)
except:
n2 = '<Raised exception>'
print('%8s: ** -> %r; pow -> %r' % (n.__class__.__name__, n1, n2))
Output:
Decimal: ** -> '<Raised exception>'; pow -> '<Raised exception>'
Fraction: ** -> Fraction(1, 1); pow -> Fraction(1, 1)
complex: ** -> (1+0j); pow -> (1+0j)
float: ** -> 1.0; pow -> 1.0
int: ** -> 1; pow -> 1

print(0^0)
Output:
1

## Racket

#lang racket
;; as many zeros as I can think of...
(define zeros (list
0  ; unspecified number type
0. ; hinted as float
#e0 ; explicitly exact
#i0 ; explicitly inexact
0+0i ; exact complex
0.+0.i ; float inexact
))
(for*((z zeros) (p zeros))
(printf "(~a)^(~a) = ~s~%" z p
(with-handlers [(exn:fail:contract:divide-by-zero? exn-message)]
(expt z p))))
Output:
(0)^(0) = 1
(0)^(0.0) = 1.0
(0)^(0) = 1
(0)^(0.0) = 1.0
(0)^(0) = 1
(0)^(0.0+0.0i) = "expt: undefined for 0 and 0.0+0.0i"
(0.0)^(0) = 1
(0.0)^(0.0) = 1.0
(0.0)^(0) = 1
(0.0)^(0.0) = 1.0
(0.0)^(0) = 1
(0.0)^(0.0+0.0i) = +nan.0+nan.0i
(0)^(0) = 1
(0)^(0.0) = 1.0
(0)^(0) = 1
(0)^(0.0) = 1.0
(0)^(0) = 1
(0)^(0.0+0.0i) = "expt: undefined for 0 and 0.0+0.0i"
(0.0)^(0) = 1
(0.0)^(0.0) = 1.0
(0.0)^(0) = 1
(0.0)^(0.0) = 1.0
(0.0)^(0) = 1
(0.0)^(0.0+0.0i) = +nan.0+nan.0i
(0)^(0) = 1
(0)^(0.0) = 1.0
(0)^(0) = 1
(0)^(0.0) = 1.0
(0)^(0) = 1
(0)^(0.0+0.0i) = "expt: undefined for 0 and 0.0+0.0i"
(0.0+0.0i)^(0) = 1
(0.0+0.0i)^(0.0) = 1.0+0.0i
(0.0+0.0i)^(0) = 1
(0.0+0.0i)^(0.0) = 1.0+0.0i
(0.0+0.0i)^(0) = 1
(0.0+0.0i)^(0.0+0.0i) = +nan.0+nan.0i

## REXX

/*REXX program shows the results of  raising zero  to the  zeroth power.*/
say '0 ** 0 (zero to the zeroth power) ───► ' 0**0

using PC/REXX
using Personal REXX
using REGINA
using ooRexx

Output:
0 ** 0  (zero to the zeroth power) ───►  1

using R4

Output:
Error 26 : Invalid whole number (SYNTAX)
Information: 0 ** 0 is undefined
Error occurred in statement# 2
Statement source: say '0 ** 0  (zero to the zeroth power) ───► ' 0**0
Statement context: C:\ZERO_TO0.REX, procedure: ZERO_TO0

using ROO

Output:
Error 26 : Invalid whole number (SYNTAX)
Information: 0 ** 0 is undefined
Error occurred in statement# 2
Statement source: say '0 ** 0  (zero to the zeroth power) ───► ' 0**0
Statement context: C:\ZERO_TO0.REX, procedure: ZERO_TO0

## Ring

x = 0
y = 0
z = pow(x,y)
see "z=" + z + nl # z=1

## Ruby

require 'bigdecimal'

[0, 0.0, Complex(0), Rational(0), BigDecimal.new("0")].each do |n|
printf "%10s: ** -> %s\n" % [n.class, n**n]
end
Output:
Fixnum: ** -> 1
Float: ** -> 1.0
Complex: ** -> 1+0i
Rational: ** -> 1/1
BigDecimal: ** -> 0.1E1

## Rust

fn main() {
println!("{}",0u32.pow(0));
}
Output:
1

print(0^0);
Output:
1.0

## Scala

Library: Scala
assert(math.pow(0, 0) == 1, "Scala blunder, should go back to school !")

## Scheme

(display (expt 0 0)) (newline)
(display (expt 0.0 0.0)) (newline)
(display (expt 0+0i 0+0i)) (newline)
Output:
1
1.0
1.0

## Seed7

\$ include "seed7_05.s7i";
include "float.s7i";
include "complex.s7i";

const proc: main is func
begin
writeln("0 ** 0 = " <& 0 ** 0);
writeln("0.0 ** 0 = " <& 0.0 ** 0);
writeln("0.0 ** 0.0 = " <& 0.0 ** 0.0);
writeln("0.0+0i ** 0 = " <& complex(0.0) ** 0);
end func;

Output:
0      ** 0   = 1
0.0    ** 0   = 1.0
0.0    ** 0.0 = 1.0
0.0+0i ** 0   = 1.0+0.0i

## Sidef

[0, Complex(0, 0)].each {|n|
say n**n
}
Output:
1
1

Taking the 0'th root of a number and raising it back to the zero power, we also get a 1:

say 0.root(0).pow(0)       # => 1
say ((0**(1/0))**0) # => 1

PRINT 0**0
Output:
1

## Smalltalk

0 raisedTo: 0
0.0 raisedTo: 0.0

Output:
1
1.0

PRINT 0^0
Output:
1

## SQL

SQL> SELECT POWER(0,0) FROM dual;

Output:
POWER(0,0)
----------
1

## Standard ML

In the interpreter:

- Math.pow (0.0, 0.0);
val it = 1.0 : real

. display 0^0
1

## Swift

import Darwin
print(pow(0.0,0.0))
Output:
1.0

Interactively…

% expr 0**0
1
% expr 0.0**0.0
1.0

0^0
Output:
ERROR:DOMAIN

Print 0^0
Output:
1

0 OK, 0:9

## Ursa

Cygnus/X Ursa is written in Java, and as a result returns 1.0 when raising 0 to the 0.

> out (pow 0 0) endl console
1.0

## VBScript

WScript.Echo 0 ^ 0
Output:
1

## XLISP

XLISP 3.3, September 6, 2002 Copyright (c) 1984-2002, by David Betz
[1] (expt 0 0)

1
[2]

## zkl

(0.0).pow(0)  //--> 1.0
var BN=Import("zklBigNum"); // big ints
BN(0).pow(0) //--> 1