Loops/Increment loop index within loop body

From Rosetta Code
Revision as of 11:41, 22 May 2020 by M2000 (talk | contribs) (→‎{{header|M2000 Interpreter}}: now is ok for indexes above 39)
Task
Loops/Increment loop index within loop body
You are encouraged to solve this task according to the task description, using any language you may know.

Sometimes, one may need   (or want)   a loop which its   iterator   (the index variable)   is modified within the
loop body   in addition to the normal incrementation by the   (do)   loop structure index.


Goal

Demonstrate the best way to accomplish this.


Task

Write a loop which:

  •   starts the index (variable) at   42
  •   (at iteration time)   increments the index by unity
  •   if the index is prime:
  •   displays the count of primes found (so far) and the prime   (to the terminal)
  •   increments the index such that the new index is now the (old) index plus that prime
  •   terminates the loop when   42   primes are shown


Extra credit:   because of the primes get rather large, use commas within the displayed primes to ease comprehension.


Show all output here.


Note

Not all programming languages allow the modification of a loop's index.   If that is the case, then use whatever method that is appropriate or idiomatic for that language.   Please add a note if the loop's index isn't modifiable.


Related tasks



360 Assembly

Assembler 360 provides 3 instructions to create loops: BCT, BXH and BXLE, the register which contains the loop index can be modified at any time. Nothing exceptional for an assembly, banning to modify the loop index begins with high level languages.
This task is a good example of the use of ED instruction to format a number. For macro use (IF,DO,...), see Structured Macros. <lang 360asm>* Loops/Increment loop index within loop body - 16/07/2018 LOOPILWB PROLOG

        SR     R6,R6              i=0
        ZAP    N,=P'42'           n=42
      DO WHILE=(C,R6,LT,IMAX)     do while(i<imax)
        BAL    R14,ISPRIME          call isprime(n)
      IF C,R0,EQ,=F'1' THEN         if n is prime then
        LA     R6,1(R6)               i=i+1
        XDECO  R6,XDEC                edit i
        MVC    PG+2(2),XDEC+10        output i
        MVC    ZN,EM                  load edit mask
        ED     ZN,N                   edit n
        MVC    PG+7(L'ZN),ZN          output n
        XPRNT  PG,L'PG                print buffer
        ZAP    WP,N                   n
        AP     WP,N                   +n
        SP     WP,=P'1'               +1
        ZAP    N,WP                   n=n+n-1
      ENDIF    ,                    endif                  
        ZAP    WP,N                 n
        AP     WP,=P'1'             +1
        ZAP    N,WP                 n=n+1
      ENDDO    ,                  enddo
        EPILOG

ISPRIME EQU * isprime(n) -----------------------

        CP     N,=P'2'            if n=2
        BE     RETURN1            then return(1)
        CP     N,=P'3'            if n=3
        BE     RETURN1            then return(1)
        ZAP    WDP,N              n
        DP     WDP,=PL8'2'        /2
        CP     WDP+8(8),=P'0'     if mod(n,2)=0
        BE     RETURN0            then return(0)
        ZAP    WDP,N              n
        DP     WDP,=PL8'3'        /3
        CP     WDP+8(8),=P'0'     if mod(n,3)=0
        BE     RETURN0            then return(0)
        ZAP    J,=P'5'            j=5

LWHILE ZAP WP,J j

        MP     WP,J               *j
        CP     WP,N               while(j*j<=n)
        BH     EWHILE             ~
        ZAP    WDP,N                n
        DP     WDP,J                /j
        CP     WDP+8(8),=P'0'       if mod(n,j)=0
        BE     RETURN0              then return(0)
        ZAP    WP,J                 j
        AP     WP,=P'2'             +2
        ZAP    WDP,N                n
        DP     WDP,WP               n/(j+2)
        CP     WDP+8(8),=P'0'       if mod(n,j+2)=0
        BE     RETURN0              then return(0)
        ZAP    WP,J                 j
        AP     WP,=P'6'             +6
        ZAP    J,WP                 j=j+6
        B      LWHILE             loopwhile

EWHILE B RETURN1 return(1) RETURN0 LA R0,0 rc=0

        B      RETURNX

RETURN1 LA R0,1 rc=1 RETURNX BR R14 return to caller ----------------- IMAX DC F'42' limit EM DC XL20'402020206B2020206B2020206B2020206B202120' mask N DS PL8 n J DS PL8 j PG DC CL80'i=00 : 000,000,000,000,000' buffer XDEC DS CL12 temp for XDECO WP DS PL8 temp for AP,SP,MP WDP DS PL16 temp for DP CW DS CL16 temp for UNPK ZN DS CL20

        REGEQU
        END    LOOPILWB</lang>
Output:
i= 1 :                   43
i= 2 :                   89
i= 3 :                  179
i= 4 :                  359
i= 5 :                  719
i= 6 :                1,439
i= 7 :                2,879
i= 8 :                5,779
i= 9 :               11,579
i=10 :               23,159
i=11 :               46,327
i=12 :               92,657
i=13 :              185,323
i=14 :              370,661
i=15 :              741,337
i=16 :            1,482,707
i=17 :            2,965,421
i=18 :            5,930,887
i=19 :           11,861,791
i=20 :           23,723,597
i=21 :           47,447,201
i=22 :           94,894,427
i=23 :          189,788,857
i=24 :          379,577,741
i=25 :          759,155,483
i=26 :        1,518,310,967
i=27 :        3,036,621,941
i=28 :        6,073,243,889
i=29 :       12,146,487,779
i=30 :       24,292,975,649
i=31 :       48,585,951,311
i=32 :       97,171,902,629
i=33 :      194,343,805,267
i=34 :      388,687,610,539
i=35 :      777,375,221,081
i=36 :    1,554,750,442,183
i=37 :    3,109,500,884,389
i=38 :    6,219,001,768,781
i=39 :   12,438,003,537,571
i=40 :   24,876,007,075,181
i=41 :   49,752,014,150,467
i=42 :   99,504,028,301,131

AArch64 Assembly

Works with: as version Raspberry Pi 3B version Buster 64 bits

<lang AArch64 Assembly> /* ARM assembly AARCH64 Raspberry PI 3B */ /* program loopinc64.s */

/*******************************************/ /* Constantes file */ /*******************************************/ /* for this file see task include a file in language AArch64 assembly*/ .include "../includeConstantesARM64.inc"

/*********************************/ /* Initialized data */ /*********************************/ .data szMessOverflow: .asciz "Error: overflow !!!!" sMessResult: .asciz "Index  : @ Value  : @ \n" szCarriageReturn: .asciz "\n"

/*********************************/ /* UnInitialized data */ /*********************************/ .bss sZoneConv: .skip 24 /*********************************/ /* code section */ /*********************************/ .text .global main main: // entry of program

   mov x20,0                     // counter
   mov x21,42                    // start index

1: // begin loop

   mov x0,x21
   bl isPrime                    // prime ?
   bcs 100f                      // error overflow ?
   cbnz x0,2f                    // is prime ?
   add x21,x21,1                 // no -> increment index
   b 1b                          // and loop

2: // display index and prime

   add x20,x20,1                 // increment counter
   mov x0,x20
   ldr x1,qAdrsZoneConv          // conversion index
   bl conversion10
   ldr x0,qAdrsMessResult
   ldr x1,qAdrsZoneConv 
   bl strInsertAtCharInc         // insert result at first @ character
   mov x10,x0
   mov x0,x21                    // conversion value
   ldr x1,qAdrsZoneConv 
   bl conversion10               // decimal conversion  ascii
   mov x0,x10
   ldr x1,qAdrsZoneConv
   bl strInsertAtCharInc         // insert result at second @ character
   bl affichageMess  

   add x21,x21,x21
   cmp x20,42                    // end ?
   blt 1b                        // no loop

100: // standard end of the program

   mov x0,0                      // return code
   mov x8,EXIT                   // request to exit program
   svc 0                         // perform the system call

qAdrsZoneConv: .quad sZoneConv qAdrszCarriageReturn: .quad szCarriageReturn qAdrsMessResult: .quad sMessResult /***************************************************/ /* Verification si un nombre est premier */ /***************************************************/ /* x0 contient le nombre à verifier */ /* x0 retourne 1 si premier 0 sinon */ isPrime:

   stp x1,lr,[sp,-16]!        // save  registres
   stp x2,x3,[sp,-16]!        // save  registres
   mov x2,x0
   sub x1,x0,#1
   cmp x2,0
   beq 99f                    // retourne zéro
   cmp x2,2                   // pour 1 et 2 retourne 1
   ble 2f
   mov x0,#2
   bl moduloPuR64
   bcs 100f                   // erreur overflow
   cmp x0,#1
   bne 99f                    // Pas premier
   cmp x2,3
   beq 2f
   mov x0,#3
   bl moduloPuR64
   blt 100f                   // erreur overflow
   cmp x0,#1
   bne 99f
   cmp x2,5
   beq 2f
   mov x0,#5
   bl moduloPuR64
   bcs 100f                   // erreur overflow
   cmp x0,#1
   bne 99f                    // Pas premier
   cmp x2,7
   beq 2f
   mov x0,#7
   bl moduloPuR64
   bcs 100f                   // erreur overflow
   cmp x0,#1
   bne 99f                    // Pas premier
   cmp x2,11
   beq 2f
   mov x0,#11
   bl moduloPuR64
   bcs 100f                   // erreur overflow
   cmp x0,#1
   bne 99f                    // Pas premier
   cmp x2,13
   beq 2f
   mov x0,#13
   bl moduloPuR64
   bcs 100f                   // erreur overflow
   cmp x0,#1
   bne 99f                    // Pas premier

2:

   cmn x0,0                   // carry à zero pas d'erreur
   mov x0,1                   // premier
   b 100f

99:

   cmn x0,0                   // carry à zero pas d'erreur
   mov x0,#0                  // Pas premier

100:

   ldp x2,x3,[sp],16          // restaur des  2 registres
   ldp x1,lr,[sp],16          // restaur des  2 registres
   ret                        // retour adresse lr x30

/********************************************************/ /* Calcul modulo de b puissance e modulo m */ /* Exemple 4 puissance 13 modulo 497 = 445 */ /********************************************************/ /* x0 nombre */ /* x1 exposant */ /* x2 modulo */ moduloPuR64:

   stp x1,lr,[sp,-16]!        // save  registres
   stp x3,x4,[sp,-16]!        // save  registres
   stp x5,x6,[sp,-16]!        // save  registres
   stp x7,x8,[sp,-16]!        // save  registres
   stp x9,x10,[sp,-16]!       // save  registres
   cbz x0,100f
   cbz x1,100f
   mov x8,x0
   mov x7,x1
   mov x6,1                   // resultat
   udiv x4,x8,x2
   msub x9,x4,x2,x8           // contient le reste

1:

   tst x7,1
   beq 2f
   mul x4,x9,x6
   umulh x5,x9,x6
   mov x6,x4
   mov x0,x6
   mov x1,x5
   bl divisionReg128U
   cbnz x1,99f                 // overflow
   mov x6,x3

2:

   mul x8,x9,x9
   umulh x5,x9,x9
   //cbnz x5,99f
   mov x0,x8
   mov x1,x5
   bl divisionReg128U
   cbnz x1,99f                 // overflow
   mov x9,x3
   lsr x7,x7,1
   cbnz x7,1b
   mov x0,x6                  // result
   cmn x0,0                   // carry à zero pas d'erreur
   b 100f

99:

   ldr x0,qAdrszMessOverflow
   bl   affichageMess
   cmp x0,0                   // carry à un car erreur
   mov x0,-1                  // code erreur

100:

   ldp x9,x10,[sp],16         // restaur des  2 registres
   ldp x7,x8,[sp],16          // restaur des  2 registres
   ldp x5,x6,[sp],16          // restaur des  2 registres
   ldp x3,x4,[sp],16          // restaur des  2 registres
   ldp x1,lr,[sp],16          // restaur des  2 registres
   ret                        // retour adresse lr x30

qAdrszMessOverflow: .quad szMessOverflow /***************************************************/ /* division d un nombre de 128 bits par un nombre de 64 bits */ /***************************************************/ /* x0 contient partie basse dividende */ /* x1 contient partie haute dividente */ /* x2 contient le diviseur */ /* x0 retourne partie basse quotient */ /* x1 retourne partie haute quotient */ /* x3 retourne le reste */ divisionReg128U:

   stp x6,lr,[sp,-16]!        // save  registres
   stp x4,x5,[sp,-16]!        // save  registres
   mov x5,#0                  // raz du reste R
   mov x3,#128                // compteur de boucle
   mov x4,#0                  // dernier bit

1:

   lsl x5,x5,#1               // on decale le reste de 1
   tst x1,1<<63               // test du bit le plus à gauche
   lsl x1,x1,#1               // on decale la partie haute du quotient de 1
   beq 2f
   orr  x5,x5,#1              // et on le pousse dans le reste R

2:

   tst x0,1<<63
   lsl x0,x0,#1               // puis on decale la partie basse 
   beq 3f
   orr x1,x1,#1               // et on pousse le bit de gauche dans la partie haute

3:

   orr x0,x0,x4               // position du dernier bit du quotient
   mov x4,#0                  // raz du bit
   cmp x5,x2
   blt 4f
   sub x5,x5,x2                // on enleve le diviseur du reste
   mov x4,#1                   // dernier bit à 1

4:

                              // et boucle
   subs x3,x3,#1
   bgt 1b    
   lsl x1,x1,#1               // on decale le quotient de 1
   tst x0,1<<63
   lsl x0,x0,#1               // puis on decale la partie basse 
   beq 5f
   orr x1,x1,#1

5:

   orr x0,x0,x4                  // position du dernier bit du quotient
   mov x3,x5

100:

   ldp x4,x5,[sp],16          // restaur des  2 registres
   ldp x6,lr,[sp],16          // restaur des  2 registres
   ret                        // retour adresse lr x30

/********************************************************/ /* File Include fonctions */ /********************************************************/ /* for this file see task include a file in language AArch64 assembly */ .include "../includeARM64.inc" </lang>

Output:
Index  : 1 Value  : 43
Index  : 2 Value  : 89
Index  : 3 Value  : 179
Index  : 4 Value  : 359
Index  : 5 Value  : 719
Index  : 6 Value  : 1439
Index  : 7 Value  : 2879
Index  : 8 Value  : 5779
Index  : 9 Value  : 11579
Index  : 10 Value  : 23159
Index  : 11 Value  : 46327
Index  : 12 Value  : 92657
Index  : 13 Value  : 185323
Index  : 14 Value  : 370661
Index  : 15 Value  : 741337
Index  : 16 Value  : 1482707
Index  : 17 Value  : 2965421
Index  : 18 Value  : 5930887
Index  : 19 Value  : 11861791
Index  : 20 Value  : 23723597
Index  : 21 Value  : 47447201
Index  : 22 Value  : 94894427
Index  : 23 Value  : 189788857
Index  : 24 Value  : 379577741
Index  : 25 Value  : 759155483
Index  : 26 Value  : 1518310967
Index  : 27 Value  : 3036621941
Index  : 28 Value  : 6073243889
Index  : 29 Value  : 12146487779
Index  : 30 Value  : 24292975649
Index  : 31 Value  : 48585951311
Index  : 32 Value  : 97171902629
Index  : 33 Value  : 194343805267
Index  : 34 Value  : 388687610539
Index  : 35 Value  : 777375221081
Index  : 36 Value  : 1554750442183
Index  : 37 Value  : 3109500884389
Index  : 38 Value  : 6219001768781
Index  : 39 Value  : 12438003537571
Index  : 40 Value  : 24876007075181
Index  : 41 Value  : 49752014150467
Index  : 42 Value  : 99504028301131

ALGOL 68

In Algol 68, the FOR loop counter cannot be modified in the loop. This uses a WHILE loop testing at the top but is otherwise largely a translation of the Kotlin entry. <lang algol68>BEGIN

   # returns TRUE if n is prime, FALSE otherwise #
   PROC is prime = ( LONG INT n )BOOL:
        IF   n MOD 2 = 0 THEN n = 2
        ELIF n MOD 3 = 0 THEN n = 3
        ELSE
           LONG INT d := 5;
           BOOL result := TRUE;
           WHILE IF   d * d > n   THEN FALSE
                 ELIF n MOD d = 0 THEN result := FALSE
                 ELIF d +:= 2;
                      n MOD d = 0 THEN result := FALSE
                 ELSE d +:= 4; TRUE
                 FI
           DO SKIP OD;
           result
        FI # is prime # ;
   LONG INT i := 42;
   LONG INT n := 0;
   WHILE n < 42 DO
       IF is prime( i ) THEN
           n +:= 1;
           print( ( "n = "
                  , whole( n,  -2 )
                  , "  "
                  , whole( i, -19 )
                  , newline
                  )
                );
           i +:= i - 1
       FI;
       i +:= 1
   OD

END</lang>

Output:
n =  1                   43
n =  2                   89
n =  3                  179
n =  4                  359
n =  5                  719
n =  6                 1439
n =  7                 2879
n =  8                 5779
n =  9                11579
n = 10                23159
n = 11                46327
n = 12                92657
n = 13               185323
n = 14               370661
n = 15               741337
n = 16              1482707
n = 17              2965421
n = 18              5930887
n = 19             11861791
n = 20             23723597
n = 21             47447201
n = 22             94894427
n = 23            189788857
n = 24            379577741
n = 25            759155483
n = 26           1518310967
n = 27           3036621941
n = 28           6073243889
n = 29          12146487779
n = 30          24292975649
n = 31          48585951311
n = 32          97171902629
n = 33         194343805267
n = 34         388687610539
n = 35         777375221081
n = 36        1554750442183
n = 37        3109500884389
n = 38        6219001768781
n = 39       12438003537571
n = 40       24876007075181
n = 41       49752014150467
n = 42       99504028301131

ARM Assembly

Works with: as version Raspberry Pi

<lang ARM Assembly> /* ARM assembly Raspberry PI */ /* program loopinc96.s */

/************************************/ /* Constantes */ /************************************/ .equ STDOUT, 1 @ Linux output console .equ EXIT, 1 @ Linux syscall .equ WRITE, 4 @ Linux syscall

/*********************************/ /* Initialized data */ /*********************************/ .data szMessMultOver: .asciz "Multiplication 64 : Dépassement de capacité.\n" sMessResult: .ascii "Index  : " sMessIndex: .fill 11, 1, ' ' @ size => 11

                   .ascii "Value  : "

sMessValeur: .fill 21, 1, ' ' @ size => 21 szCarriageReturn: .asciz "\n"

/*********************************/ /* UnInitialized data */ /*********************************/ .bss /*********************************/ /* code section */ /*********************************/ .text .global main main: @ entry of program

   mov r7,#0                                      @ counter
   mov r5,#42                                     @ start index low bits
   mov r6,#0                                      @ start index high bits

1: @ begin loop

   mov r0,r5
   mov r1,r6
   bl isPrime                                     @ prime ?
   bcs 100f                                       @ error overflow ?
   cmp r0,#1                                      @ is prime ?
   beq 2f                                         @ yes
   adds r5,#1                                     @ no -> increment index
   addcs r6,#1
   b 1b                                           @ and loop

2: @ display index and prime

   add r7,#1                                      @ increment counter
   mov r0,r7
   ldr r1,iAdrsMessIndex                          @ conversion index
   bl conversion10
   mov r0,r5
   mov r1,r6                                      @ conversion value
   ldr r2,iAdrsMessValeur
   bl conversionRegDoubleU                        @ conversion double -> ascii
   ldr r0,iAdrsMessResult
   bl affichageMess  
   
   adds r5,r5
   add r6,r6
   addcs r6,#1
   cmp r7,#42                                     @ end ?
   blt 1b                                         @ no loop

100: @ standard end of the program

   mov r0, #0                                     @ return code
   mov r7, #EXIT                                  @ request to exit program
   svc #0                                         @ perform the system call

iAdrsMessIndex: .int sMessIndex iAdrsMessValeur: .int sMessValeur iAdrszCarriageReturn: .int szCarriageReturn iAdrsMessResult: .int sMessResult


/******************************************************************/ /* display text with size calculation */ /******************************************************************/ /* r0 contains the address of the message */ affichageMess:

   push {r0,r1,r2,r7,lr}                          @ save  registres
   mov r2,#0                                      @ counter length 

1: @ loop length calculation

   ldrb r1,[r0,r2]                                @ read octet start position + index 
   cmp r1,#0                                      @ if 0 its over 
   addne r2,r2,#1                                 @ else add 1 in the length 
   bne 1b                                         @ and loop 
                                                  @ so here r2 contains the length of the message 
   mov r1,r0                                      @ address message in r1 
   mov r0,#STDOUT                                 @ code to write to the standard output Linux 
   mov r7, #WRITE                                 @ code call system "write" 
   svc #0                                         @ call systeme 
   pop {r0,r1,r2,r7,lr}                           @ restaur des  2 registres */ 
   bx lr                                          @ return  

/******************************************************************/ /* Converting a register to a decimal unsigned */ /******************************************************************/ /* r0 contains value and r1 address area */ /* r0 return size of result (no zero final in area) */ /* area size => 11 bytes */ .equ LGZONECAL, 10 conversion10:

   push {r1-r4,lr}                                   @ save registers 
   mov r3,r1
   mov r2,#LGZONECAL

1: @ start loop

   bl divisionpar10U                                 @ unsigned  r0 <- dividende. quotient ->r0 reste -> r1
   add r1,#48                                        @ digit
   strb r1,[r3,r2]                                   @ store digit on area
   cmp r0,#0                                         @ stop if quotient = 0 
   subne r2,#1                                       @ else previous position
   bne 1b                                            @ and loop
                                                     @ and move digit from left of area
   mov r4,#0

2:

   ldrb r1,[r3,r2]
   strb r1,[r3,r4]
   add r2,#1
   add r4,#1
   cmp r2,#LGZONECAL
   ble 2b
                                                     @ and move spaces in end on area
   mov r0,r4                                         @ result length 
   mov r1,#' '                                       @ space

3:

   strb r1,[r3,r4]                                   @ store space in area
   add r4,#1                                         @ next position
   cmp r4,#LGZONECAL
   ble 3b                                            @ loop if r4 <= area size

100:

   pop {r1-r4,lr}                                    @ restaur registres 
   bx lr                                             @return

/***************************************************/ /* division par 10 unsigned */ /***************************************************/ /* r0 dividende */ /* r0 quotient */ /* r1 remainder */ divisionpar10U:

   push {r2,r3,r4, lr}
   mov r4,r0                                          @ save value
   //mov r3,#0xCCCD                                   @ r3 <- magic_number lower  raspberry 3
   //movt r3,#0xCCCC                                  @ r3 <- magic_number higter raspberry 3
   ldr r3,iMagicNumber                                @ r3 <- magic_number    raspberry 1 2
   umull r1, r2, r3, r0                               @ r1<- Lower32Bits(r1*r0) r2<- Upper32Bits(r1*r0) 
   mov r0, r2, LSR #3                                 @ r2 <- r2 >> shift 3
   add r2,r0,r0, lsl #2                               @ r2 <- r0 * 5 
   sub r1,r4,r2, lsl #1                               @ r1 <- r4 - (r2 * 2)  = r4 - (r0 * 10)
   pop {r2,r3,r4,lr}
   bx lr                                              @ leave function 

iMagicNumber: .int 0xCCCCCCCD /***************************************************/ /* number is prime ? */ /***************************************************/ /* r0 contains low bytes of double */ /* r1 contains high bytes of double */ /* r0 returns 1 if prime else 0 */ @2147483647 @4294967297 @131071 isPrime:

   push {r1-r5,lr}                      @ save registers
   mov r4,r0                            @ save double
   mov r5,r1  
   subs r2,r0,#1                        @ exposant n - 1
   sbcs r3,r1,#0
   mov r0,#2                            @ base  2
   mov r1,#0
   bl moduloPuR96                       @ compute modulo
   bcs 100f                             @ overflow error
   cmp r0,#1                            @ modulo <> 1 -> no prime
   bne 90f 
   mov r0,#3                            @ base 3
   mov r1,#0
   bl moduloPuR96
   bcs 100f                             @ overflow error
   cmp r0,#1
   bne 90f

   mov r0,#5                            @ base 5
   mov r1,#0
   bl moduloPuR96
   bcs 100f                             @ overflow error
   cmp r0,#1
   bne 90f
   mov r0,#7                            @ base 7
   mov r1,#0
   bl moduloPuR96
   bcs 100f                             @ overflow error
   cmp r0,#1
   bne 90f
   mov r0,#11                           @ base 11
   mov r1,#0
   bl moduloPuR96
   bcs 100f                             @ overflow error
   cmp r0,#1
   bne 90f
   mov r0,#13                           @ base 13
   mov r1,#0
   bl moduloPuR96
   bcs 100f                             @ overflow error
   cmp r0,#1
   bne 90f
   mov r0,#17                           @ base 17
   mov r1,#0
   bl moduloPuR96
   bcs 100f                             @ overflow error
   cmp r0,#1
   bne 90f
   mov r0,#1                            @ is prime
   msr     cpsr_f, #0                   @ no error overflow zero -> flags
   b 100f

90:

   mov r0,#0                            @ no prime
   msr     cpsr_f, #0                   @ no error overflow zero -> flags

100: @ fin standard de la fonction

   pop {r1-r5,lr}                       @ restaur registers
   bx lr                                @ return 


/********************************************************/ /* compute b pow e modulo m */ /* */ /********************************************************/ /* r0 base double low bits */ /* r1 base double high bits */ /* r2 exposant low bitss */ /* r3 exposant high bits */ /* r4 modulo low bits */ /* r5 modulo high bits */ /* r0 returns result low bits */ /* r1 returns result high bits */ /* if overflow , flag carry is set else is clear */ moduloPuR96:

   push {r2-r12,lr}                       @ save registers  
   cmp r0,#0                              @ control low byte <> zero 
   bne 1f
   cmp r1,#0                              @ control high bytes <> zero
   beq 100f

1:

   mov r9,r4                              @ modulo PB
   mov r10,r5                             @ modulo PH
   mov r5,r2                              @ exposant **
   mov r6,r3                              @ exposant
   mov r7,r0                              @ base PB
   mov r8,r1                              @ base PH
   mov r2,#0
   mov r3,r9
   mov r4,r10
   mov r11,#1                             @ result PB
   mov r12,#0                             @ result PH

/* r0 contient partie basse dividende */ /* r1 contient partie moyenne dividende */ /* r2 contient partie haute du diviseur */ /* r3 contient partie basse diviseur */ /* r4 contient partie haute diviseur */ /* r0 retourne partie basse du quotient */ /* r1 retourne partie moyenne du quotient */ /* r2 retourne partie haute du quotient */ /* r3 retourne partie basse du reste */ /* r4 retourne partie haute du reste */

   bl divisionReg96DU
   mov r7,r3                               @ base <- remainder
   mov r8,r4

2:

   tst r5,#1                               @ test du bit 0
   beq 3f
   mov r0,r7
   mov r1,r8
   mov r2,r11
   mov r3,r12
   bl multiplicationR96U
   bcs 100f                                @ error overflow
   mov r3,r9
   mov r4,r10
   bl divisionReg96DU
   mov r11,r3                              @ result <- remainder
   mov r12,r4

3:

   mov r0,r7
   mov r1,r8
   mov r2,r7
   mov r3,r8
   bl multiplicationR96U
   bcs 100f                                @ error overflow
   mov r3,r9
   mov r4,r10
   bl divisionReg96DU
   mov r7,r3                               @ base <- remainder
   mov r8,r4
   lsr r5,#1   
   lsrs r6,#1
   orrcs r5,#0x80000000
   cmp r5,#0
   bne 2b
   cmp r6,#0
   bne 2b
   mov r0,r11
   mov r1,r12
   msr     cpsr_f, #0                       @ no error overflow zero -> flags

100: @ end function

  	pop {r2-r12,lr}                          @ restaur registers
   bx lr                                    @ return

/***************************************************/ /* multiplication 2 registers (64 bits) unsigned */ /* result in 3 registers 96 bits */ /***************************************************/ /* r0 low bits number 1 */ /* r1 high bits number 1 */ /* r2 low bits number 2 */ /* r3 high bits number 2 */ /* r0 returns low bits résult */ /* r1 returns median bits résult */ /* r2 returns high bits résult */ /* if overflow , flag carry is set else is clear */ multiplicationR96U:

   push {r3-r8,lr}           @ save registers
   umull r5,r6,r0,r2         @ mult low bits
   umull r4,r8,r0,r3         @ mult low bits 1 high bits 2
   mov r0,r5                 @ result low bits ok
   adds r4,r6                @ add results
   addcs  r8,#1              @ carry
   umull r6,r7,r1,r2         @ mult high bits 1 low bits 2
   adds r4,r6                @ add results
   addcs  r8,#1              @ carry 
   adds r8,r7                @ add results
   bcs 99f                   @ overflow ?
   umull r6,r7,r1,r3         @ mult high bits 1 high bits 2
   cmp r7,#0                 @ error overflow ?
   bne 99f   
   adds r8,r6                @ add results
   bcs 99f                   @ error overflow
   mov r1,r4                 @ return median bytes
   mov r2,r8                 @ return high bytes
   msr cpsr_f, #0            @ no error overflow zero -> flags
   b 100f

99: @ display message overflow ldr r0,iAdrszMessMultOver @ bl affichageMess

   mov r0,#0
   mov r1,#0 
   msr cpsr_f, #1<<29        @ maj flag carry à 1  et tous les autres à 0

100: @ end function

  	pop {r3-r8,lr}            @ restaur registers
   bx lr                     @ return 

iAdrszMessMultOver: .int szMessMultOver /***************************************************/ /* division number (3 registers) 92 bits by number (2 registers) 64 bits */ /* unsigned */ /***************************************************/ /* r0 low bits dividende */ /* r1 median bits dividende */ /* r2 high bits dividende */ /* r3 low bits divisor */ /* r4 high bits divis0r */ /* r0 returns low bits quotient */ /* r1 returns median bits quotient */ /* r2 returns high bits quotien */ /* r3 returns low bits remainder */ /* r4 returns high bits remainder */ /* remainder do not is 3 registers */ divisionReg96DU:

   push {r5-r10,lr}    @ save registers
   mov r7,r3           @ low bits divisor
   mov r8,r4           @ high bits divisor
   mov r4,r0           @ low bits dividende -> low bits quotient
   mov r5,r1           @ median bits dividende  -> median bits quotient
   mov r6,r2           @ high bits dividende -> high bits quotient
                       @ 
   mov r0,#0           @ low bits remainder
   mov r1,#0           @ median bits remainder
   mov r2,#0           @ high bits remainder (not useful)
   mov r9,#96          @ counter loop (32 bits * 3)
   mov r10,#0          @ last bit

1:

   lsl   r2,#1         @ shift left high bits remainder
   lsls  r1,#1         @ shift left median bits remainder
   orrcs r2,#1         @ left bit median -> right bit high
   lsls r0,#1          @ shift left low bits remainder
   orrcs r1,#1         @ left bit low -> right bit median
   lsls r6,#1          @ shift left high bits quotient
   orrcs r0,#1         @ left bit high -> right bit low remainder
   lsls r5,#1          @ shift left median bits quotient
   orrcs r6,#1         @ left bit median -> right bit high
   lsls r4,#1          @ shift left low bits quotient
   orrcs r5,#1         @ left bit low -> right bit median
   orr r4,r10          @ last bit -> bit 0 quotient
   mov r10,#0          @ raz du bit
                       @ compare  remainder and divisor
   cmp r2,#0           @ high bit remainder
   bne 2f
   cmp r1,r8           @ compare median bits 
   blo 3f              @ lower
   bhi 2f              @ highter
   cmp r0,r7           @ equal -> compare low bits
   blo 3f              @ lower

2: @ remainder > divisor

   subs r0,r7          @ sub divisor of remainder
   sbcs r1,r8
   mov r10,#0          @ reuse ponctuelle  r10
   sbc r2,r2,r10       @ carry 
   mov r10,#1          @ last bit à 1

3:

   subs r9,#1          @ increment counter loop
   bgt 1b              @ and loop
   lsl r6,#1           @ shift left high bits quotient
   lsls r5,#1          @ shift left median bits quotient
   orrcs r6,#1         @ left bit median -> right bit high
   lsls r4,#1          @ shift left low bits quotient
   orrcs r5,#1         @ left bit low -> right bit median
   orr r4,r10          @ last bit -> bit 0 quotient
   mov r3,r0           @ low bits remainder
   mov r0,r4           @ low bits quotient
   mov r4,r1           @ high bits remainder
   mov r1,r5           @ median bits quotient
   //mov r5,r2
   mov r2,r6           @ high bits quotient

100: @ end function

  	pop {r5-r10,lr}     @ restaur registers
   bx lr               @ return 

/***************************************************/ /* Conversion double integer 64bits in ascii */ /***************************************************/ /* r0 contains low bits */ /* r1 contains high bits */ /* r2 contains address area */ conversionRegDoubleU:

   push {r0-r5,lr}         @ save registers
   mov r5,r2
   mov r4,#19              @ start location
   mov r2,#10              @ conversion decimale 

1: @ begin loop

   bl divisionReg64U       @ division by 10
   add r3,#48              @ -> digit ascii
   strb r3,[r5,r4]         @ store digit in area index r4
   sub r4,r4,#1            @ decrement index
   cmp r0,#0               @ low bits quotient = zero ?
   bne 1b	                @ no -> loop
   cmp r1,#0               @ high bits quotient = zero ? 
   bne 1b                  @ no -> loop
                           @ spaces -> begin area 
   mov r3,#' '             @ space

2:

   strb r3,[r5,r4]         @ store space in area 
   subs r4,r4,#1           @ decrement index
   bge 2b                  @ and loop if > zéro 

100: @ end fonction

  	pop {r0-r5,lr}          @ restaur registers
   bx lr                   @ return

/***************************************************/ /* division number 64 bits / number 32 bits */ /***************************************************/ /* r0 contains low bits dividende */ /* r1 contains high bits dividente */ /* r2 contains divisor */ /* r0 returns low bits quotient */ /* r1 returns high bits quotient */ /* r3 returns remainder */ divisionReg64U:

   push {r4,r5,lr}    @ save registers
   mov r5,#0          @ raz remainder R
   mov r3,#64         @ loop counter
   mov r4,#0          @ last bit

1:

   lsl r5,#1          @ shift left remainder one bit
   lsls r1,#1         @ shift left high bits quotient one bit
   orrcs r5,#1        @ and bit -> remainder
   lsls r0,#1         @ shift left low bits quotient one bit
   orrcs r1,#1        @ and left bit -> high bits 
   orr r0,r4          @ last bit  quotient
   mov r4,#0          @ raz last bit
   cmp r5,r2          @ compare remainder divisor
   subhs r5,r2        @ if highter sub divisor of remainder
   movhs r4,#1        @  and 1 -> last bit

3:

   subs r3,#1         @ decrement counter loop
   bgt 1b             @ and loop if not zero
   lsl r1,#1          @ else shift left higt bits quotient
   lsls r0,#1         @ and shift  left low bits  
   orrcs r1,#1
   orr r0,r4          @ last bit quotient
   mov r3,r5

100: @ end function

   pop {r4,r5,lr}     @ restaur registers
   bx lr              @ return

</lang>

Output:
pi@raspberrypi:~/asm/rosetta/ASS3 $ loopsinc96
Index  : 1          Value  :                   43
Index  : 2          Value  :                   89
Index  : 3          Value  :                  179
Index  : 4          Value  :                  359
Index  : 5          Value  :                  719
Index  : 6          Value  :                 1439
Index  : 7          Value  :                 2879
Index  : 8          Value  :                 5779
Index  : 9          Value  :                11579
Index  : 10         Value  :                23159
Index  : 11         Value  :                46327
Index  : 12         Value  :                92657
Index  : 13         Value  :               185323
Index  : 14         Value  :               370661
Index  : 15         Value  :               741337
Index  : 16         Value  :              1482707
Index  : 17         Value  :              2965421
Index  : 18         Value  :              5930887
Index  : 19         Value  :             11861791
Index  : 20         Value  :             23723597
Index  : 21         Value  :             47447201
Index  : 22         Value  :             94894427
Index  : 23         Value  :            189788857
Index  : 24         Value  :            379577741
Index  : 25         Value  :            759155483
Index  : 26         Value  :           1518310967
Index  : 27         Value  :           3036621941
Index  : 28         Value  :           6073243889
Index  : 29         Value  :          12146487779
Index  : 30         Value  :          24292975649
Index  : 31         Value  :          48585951311
Index  : 32         Value  :          97171902629
Index  : 33         Value  :         194343805267
Index  : 34         Value  :         388687610539
Index  : 35         Value  :         777375221081
Index  : 36         Value  :        1554750442183
Index  : 37         Value  :        3109500884389
Index  : 38         Value  :        6219001768781
Index  : 39         Value  :       12438003537571
Index  : 40         Value  :       24876007075181
Index  : 41         Value  :       49752014150467
Index  : 42         Value  :       99504028301131

Arturo

Translation of: Python

<lang arturo>i: 42 n: 0

loop n<42 {

   if [isPrime i] {
       n: n+1
       print "n = " + [padLeft [toString n] 2] + [padLeft [toString i] 20]
       i: 2*i-1
   }
   i: i+1

}</lang>

Output:
n =  1                  43
n =  2                  89
n =  3                 179
n =  4                 359
n =  5                 719
n =  6                1439
n =  7                2879
n =  8                5779
n =  9               11579
n = 10               23159
n = 11               46327
n = 12               92657
n = 13              185323
n = 14              370661
n = 15              741337
n = 16             1482707
n = 17             2965421
n = 18             5930887
n = 19            11861791
n = 20            23723597
n = 21            47447201
n = 22            94894427
n = 23           189788857
n = 24           379577741
n = 25           759155483
n = 26          1518310967
n = 27          3036621941
n = 28          6073243889
n = 29         12146487779
n = 30         24292975649
n = 31         48585951311
n = 32         97171902629
n = 33        194343805267
n = 34        388687610539
n = 35        777375221081
n = 36       1554750442183
n = 37       3109500884389
n = 38       6219001768781
n = 39      12438003537571
n = 40      24876007075181
n = 41      49752014150467
n = 42      99504028301131

AWK

<lang AWK>

  1. syntax: GAWK -f LOOPS_INCREMENT_LOOP_INDEX_WITHIN_LOOP_BODY.AWK

BEGIN {

   limit = 42
   n = 0
   for (i=limit; n<limit; i++) {
     if (is_prime(i)) {
       printf("%2d %19'd\n",++n,i)
       i += i - 1
     }
   }
   exit(0)

} function is_prime(n, d) {

   if (n % 2 == 0) { return(n == 2) }
   if (n % 3 == 0) { return(n == 3) }
   d = 5
   while (d*d <= n) {
     if (n % d == 0) { return(0) }
     d += 2
     if (n % d == 0) { return(0) }
     d += 4
   }
   return(1)

} </lang>

Output:
 1                  43
 2                  89
 3                 179
 4                 359
 5                 719
 6               1,439
 7               2,879
 8               5,779
 9              11,579
10              23,159
11              46,327
12              92,657
13             185,323
14             370,661
15             741,337
16           1,482,707
17           2,965,421
18           5,930,887
19          11,861,791
20          23,723,597
21          47,447,201
22          94,894,427
23         189,788,857
24         379,577,741
25         759,155,483
26       1,518,310,967
27       3,036,621,941
28       6,073,243,889
29      12,146,487,779
30      24,292,975,649
31      48,585,951,311
32      97,171,902,629
33     194,343,805,267
34     388,687,610,539
35     777,375,221,081
36   1,554,750,442,183
37   3,109,500,884,389
38   6,219,001,768,781
39  12,438,003,537,571
40  24,876,007,075,181
41  49,752,014,150,467
42  99,504,028,301,131

C

The following uses a 'for' rather than a 'do/while' loop but otherwise is similar to the Kotlin entry.

The 'thousands separator' aspect (using the ' flag in printf and setting the locale appropriately) works fine when compiled with gcc on Ubuntu 14.04 but may not work on some other systems as this is not a standard flag. <lang c>#include <stdio.h>

  1. include <locale.h>
  1. define LIMIT 42

int is_prime(long long n) {

   if (n % 2 == 0) return n == 2;
   if (n % 3 == 0) return n == 3;
   long long d = 5;
   while (d * d <= n) {
       if (n % d == 0) return 0;
       d += 2;
       if (n % d == 0) return 0;
       d += 4;
   }
   return 1;

}

int main() {

   long long i;
   int n;
   setlocale(LC_NUMERIC, "");
   for (i = LIMIT, n = 0; n < LIMIT; i++)
       if (is_prime(i)) {
           n++;
           printf("n = %-2d  %'19lld\n", n, i);
           i += i - 1;
       }
   return 0;

}</lang>

Output:
Same as Kotlin entry

C#

<lang csharp> using System; using System.Globalization;

namespace PrimeNumberLoopcs {

   class Program
   {
       static bool isPrime(double number)
       {
           for(double i = number - 1; i > 1; i--)
           {
               if (number % i == 0)
                   return false;
           }
           return true;
       }
       static void Main(string[] args)
       {
           NumberFormatInfo nfi = new CultureInfo("en-US", false).NumberFormat;
           nfi.NumberDecimalDigits = 0;
           double i = 42;
           int n = 0;
           while (n < 42)
           {
               if (isPrime(i))
               {
                   n++;
                   Console.WriteLine("n = {0,-20} {1,20}", n, i.ToString("N", nfi));
                   i += i - 1;
               }
               i++;
           }
       }
   }

}</lang>

Output:
n = 1                                      43
n = 2                                      89
n = 3                                     179
n = 4                                     359
n = 5                                     719
n = 6                                   1,439
n = 7                                   2,879
n = 8                                   5,779
n = 9                                  11,579
n = 10                                 23,159
n = 11                                 46,327
n = 12                                 92,657
n = 13                                185,323
n = 14                                370,661
n = 15                                741,337
n = 16                              1,482,707
n = 17                              2,965,421
n = 18                              5,930,887
n = 19                             11,861,791
n = 20                             23,723,597
n = 21                             47,447,201
n = 22                             94,894,427
n = 23                            189,788,857
n = 24                            379,577,741
n = 25                            759,155,483
n = 26                          1,518,310,967
n = 27                          3,036,621,941
n = 28                          6,073,243,889
n = 29                         12,146,487,779
n = 30                         24,292,975,649
n = 31                         48,585,951,311
n = 32                         97,171,902,629
n = 33                        194,343,805,267
n = 34                        388,687,610,539
n = 35                        777,375,221,081
n = 36                      1,554,750,442,183
n = 37                      3,109,500,884,389
n = 38                      6,219,001,768,781
n = 39                     12,438,003,537,571
n = 40                     24,876,007,075,181
n = 41                     49,752,014,150,467
n = 42                     99,504,028,301,131

C++

<lang cpp>

  1. include "stdafx.h"
  2. include <iostream>
  3. include <math.h>

using namespace std;

bool isPrime(double number) {

   for (double i = number - 1; i >= 2; i--) {
       if (fmod(number, i) == 0)

return false;

   }
   return true;

} int main() {

   double i = 42;
   int n = 0;
   while (n < 42)
   {
       if (isPrime(i))
       {
           n++;

cout.width(1); cout << left << "n = " << n;

           //Only for Text Alignment
           if (n < 10)

{ cout.width(40); cout << right << i << endl; } else { cout.width(39); cout << right << i << endl; }

           i += i - 1;

} i++;

   }
   return 0;

}</lang>

Common Lisp

<lang lisp> (defun primep (n)  ; https://stackoverflow.com/questions/15817350/

 (cond ((= 2 n) t)                          ; Hard-code "2 is a prime"
       ((= 3 n) t)                          ; Hard-code "3 is a prime"
       ((evenp n) nil)                      ; If we're looking at an even now, it's not a prime
       (t                                   ; If it is divisible by an odd number below its square root, it's not prime

(do* ((i 3 (incf i 2)))  ; Initialize to 3 and increment by 2 on every loop ((or (> i (isqrt n))  ; Break condition index exceeds its square root (zerop (mod n i)))  ; Break condition it is divisible (not (zerop (mod n i))))))))  ; Returns not divisible, aka prime

(do ((i 42)  ; Initialize index to 42

    (c 0))                                  ; Initialize count of primes to 0
   ((= c 42))                               ; Break condition when there are 42 primes
 (incf i)                                   ; Increments index by unity
 (if (primep i)(progn (incf c)              ; If prime increment count of primes

(format t "~&~5<~d~;->~>~20<~:d~>" c i) ; Display count of primes found and the prime (incf i (decf i)))))  ; Increment index to previous index plus the prime </lang>

Output:
1  ->                  43
2  ->                  89
3  ->                 179
4  ->                 359
5  ->                 719
6  ->               1,439
7  ->               2,879
8  ->               5,779
9  ->              11,579
10 ->              23,159
11 ->              46,327
12 ->              92,657
13 ->             185,323
14 ->             370,661
15 ->             741,337
16 ->           1,482,707
17 ->           2,965,421
18 ->           5,930,887
19 ->          11,861,791
20 ->          23,723,597
21 ->          47,447,201
22 ->          94,894,427
23 ->         189,788,857
24 ->         379,577,741
25 ->         759,155,483
26 ->       1,518,310,967
27 ->       3,036,621,941
28 ->       6,073,243,889
29 ->      12,146,487,779
30 ->      24,292,975,649
31 ->      48,585,951,311
32 ->      97,171,902,629
33 ->     194,343,805,267
34 ->     388,687,610,539
35 ->     777,375,221,081
36 ->   1,554,750,442,183
37 ->   3,109,500,884,389
38 ->   6,219,001,768,781
39 ->  12,438,003,537,571
40 ->  24,876,007,075,181
41 ->  49,752,014,150,467
42 ->  99,504,028,301,131

Dyalect

<lang Dyalect>func isPrime(number) {

   if number <= 1 {
       return false
   }
   else if number % 2 == 0 {
       return number == 2
   }
   var i = 3
   while (i * i) < number {
       if number % i == 0 {
           return false
       }
       i += 2
   }
   return true

}

var i = 42 var n = 0

while n < 42 {

   if isPrime(i) {
       n += 1
       print("n = \(n)\t\(i)")
       i += i - 1
   }
   i += 1

}</lang>

Output:

n = 1   43
n = 2   89
n = 3   179
n = 4   359
n = 5   719
n = 6   1439
n = 7   2879
n = 8   5779
n = 9   11579
n = 10  23159
n = 11  46327
n = 12  92657
n = 13  185323
n = 14  370661
n = 15  741337
n = 16  1482707
n = 17  2965421
n = 18  5930887
n = 19  11861791
n = 20  23723597
n = 21  47447201
n = 22  94894427
n = 23  189788857
n = 24  379577741
n = 25  759155483
n = 26  1518310967
n = 27  3036621941
n = 28  6073243889
n = 29  12146487779
n = 30  24292975649
n = 31  48585951311
n = 32  97171902629
n = 33  194343805267
n = 34  388687610539
n = 35  777375221081
n = 36  1554750442183
n = 37  3109500884389
n = 38  6219001768781
n = 39  12438003537571
n = 40  24876007075181
n = 41  49752014150467
n = 42  99504028301131

F#

This task uses Extensible Prime Generator (F#) <lang fsharp> // Well I don't do loops. Nigel Galloway: March 17th., 2019. Let me try to explain where the loopy variables are, for the imperatively constrained. // cUL allows me to claim the rather trivial extra credit (commas in the numbers) let cUL=let g=System.Globalization.CultureInfo("en-GB") in (fun (n:uint64)->n.ToString("N0",g)) // fN is primality by trial division let fN g=pCache|>Seq.map uint64|>Seq.takeWhile(fun n->n*n<g)|>Seq.forall(fun n->g%n>0UL) // unfold is sort of a loop incremented by 1 in this case let fG n=Seq.unfold(fun n->Some(n,(n+1UL))) n|>Seq.find(fN) // unfold is sort of a loop with fG as an internal loop incremented by the exit value of the internal loop in this case. Seq.unfold(fun n->let n=fG n in Some(n,n+n)) 42UL|>Seq.take 42|>Seq.iteri(fun n g->printfn "%2d -> %s" (n+1) (cUL g)) </lang>

Output:
 1 -> 43
 2 -> 89
 3 -> 179
 4 -> 359
 5 -> 719
 6 -> 1,439
 7 -> 2,879
 8 -> 5,779
 9 -> 11,579
10 -> 23,159
11 -> 46,327
12 -> 92,657
13 -> 185,323
14 -> 370,661
15 -> 741,337
16 -> 1,482,707
17 -> 2,965,421
18 -> 5,930,887
19 -> 11,861,791
20 -> 23,723,597
21 -> 47,447,201
22 -> 94,894,427
23 -> 189,788,857
24 -> 379,577,741
25 -> 759,155,483
26 -> 1,518,310,967
27 -> 3,036,621,941
28 -> 6,073,243,889
29 -> 12,146,487,779
30 -> 24,292,975,649
31 -> 48,585,951,311
32 -> 97,171,902,629
33 -> 194,343,805,267
34 -> 388,687,610,539
35 -> 777,375,221,081
36 -> 1,554,750,442,183
37 -> 3,109,500,884,389
38 -> 6,219,001,768,781
39 -> 12,438,003,537,571
40 -> 24,876,007,075,181
41 -> 49,752,014,150,467
42 -> 99,504,028,301,131

Factor

Explicit loop indices are non-idiomatic, but Factor is certainly capable of using them. Factor has a for loop near-equivalent, <range> [ ] each, but since it doesn't mesh well with mutation, a while loop is used.

Using two numbers on the data stack

<lang factor>USING: formatting kernel math math.primes tools.memory.private ; IN: rosetta-code.loops-inc-body

42 0 [ dup 42 < ] [

   over prime? [
       1 + 2dup swap commas
       "n = %-2d  %19s\n" printf
       [ dup + 1 - ] dip
   ] when
   [ 1 + ] dip

] while 2drop</lang>

Using lexical variables

Factor provides lexical variables for situations where they improve readability. <lang factor>USING: formatting kernel math math.primes tools.memory.private ; IN: rosetta-code.loops-inc-body

[let

   42 :> i!
   0  :> n!
   [ n 42 < ] [
       i prime? [
           n 1 + n!
           n i commas "n = %-2d  %19s\n" printf
           i i + 1 - i!
       ] when
       i 1 + i!
   ] while

]</lang>

Output:
n = 1                    43
n = 2                    89
n = 3                   179
n = 4                   359
n = 5                   719
n = 6                 1,439
n = 7                 2,879
n = 8                 5,779
n = 9                11,579
n = 10               23,159
n = 11               46,327
n = 12               92,657
n = 13              185,323
n = 14              370,661
n = 15              741,337
n = 16            1,482,707
n = 17            2,965,421
n = 18            5,930,887
n = 19           11,861,791
n = 20           23,723,597
n = 21           47,447,201
n = 22           94,894,427
n = 23          189,788,857
n = 24          379,577,741
n = 25          759,155,483
n = 26        1,518,310,967
n = 27        3,036,621,941
n = 28        6,073,243,889
n = 29       12,146,487,779
n = 30       24,292,975,649
n = 31       48,585,951,311
n = 32       97,171,902,629
n = 33      194,343,805,267
n = 34      388,687,610,539
n = 35      777,375,221,081
n = 36    1,554,750,442,183
n = 37    3,109,500,884,389
n = 38    6,219,001,768,781
n = 39   12,438,003,537,571
n = 40   24,876,007,075,181
n = 41   49,752,014,150,467
n = 42   99,504,028,301,131

Fortran

Fortran does not allow to modify the index inside the loop. <lang fortran>do i=1,10

 write(*,*) i
 i=i+1

end do</lang>

Error - I is currently being used as a DO or implied DO control variable
Compilation failed.

Fortran 95

<lang fortran>! Loops Increment loop index within loop body - 17/07/2018

     integer*8 n
     imax=42
     i=0; n=42
     Do While(i<imax)
       If (isprime(n)==1) Then
         i=i+1
         Write (*,'(I2,1X,I20)') i,n
         n=n+n-1
       EndIf
       n=n+1
     EndDo
     End
     Function isprime(n)
       integer*8 n,i
       If (n==2 .OR. n==3) Then
         isprime=1
         return
       ElseIf (Mod(n,2)==0 .OR. Mod(n,3)==0) Then
         isprime=0
         return
       Else
         i=5
         Do While(i*i<=n)
           If (Mod(n,i)==0 .OR. Mod(n,i+2)==0) Then
             isprime=0
             return
           EndIf
           i=i+6
         EndDo
         isprime=1
         return
       EndIf
     EndFunction</lang>
Output:
 1                   43
 2                   89
 3                  179
 4                  359
 5                  719
 6                 1439
 7                 2879
 8                 5779
 9                11579
10                23159
11                46327
12                92657
13               185323
14               370661
15               741337
16              1482707
17              2965421
18              5930887
19             11861791
20             23723597
21             47447201
22             94894427
23            189788857
24            379577741
25            759155483
26           1518310967
27           3036621941
28           6073243889
29          12146487779
30          24292975649
31          48585951311
32          97171902629
33         194343805267
34         388687610539
35         777375221081
36        1554750442183
37        3109500884389
38        6219001768781
39       12438003537571
40       24876007075181
41       49752014150467
42       99504028301131

Fortran IV

The limit is set to 25 due to the size of integer in Fortran IV. <lang fortran>C LOOPS INCREMENT LOOP INDEX WITHIN LOOP BODY - 17/07/2018

     IMAX=25
     I=0
     N=42
 10  IF(I.GE.IMAX)GOTO 30
       IF(ISPRIME(N).NE.1)GOTO 20
         I=I+1
         WRITE(*,301) I,N
301      FORMAT(I2,1X,I10)
         N=N+N-1
 20    N=N+1
     GOTO 10
 30  CONTINUE
     END
     FUNCTION ISPRIME(M)
       IF(M.NE.2 .AND. M.NE.3)GOTO 10
         ISPRIME=1
         RETURN
 10    IF(MOD(M,2).NE.0 .AND. MOD(M,3).NE.0)GOTO 20
         ISPRIME=0
         RETURN
 20      I=5
 30      IF(I*I.GT.M)GOTO 50
           IF(MOD(M,I).NE.0 .AND. MOD(M,I+2).NE.0)GOTO 40
             ISPRIME=0
             RETURN
 40        I=I+6
         GOTO 30 
 50      ISPRIME=1
         RETURN
     END</lang>
Output:
 1         43
 2         89
 3        179
 4        359
 5        719
 6       1439
 7       2879
 8       5779
 9      11579
10      23159
11      46327
12      92657
13     185323
14     370661
15     741337
16    1482707
17    2965421
18    5930887
19   11861791
20   23723597
21   47447201
22   94894427
23  189788857
24  379577741
25  759155483

FreeBASIC

<lang freebasic>' version 18-01-2019 ' compile with: fbc -s console

Function isprime(number As ULongInt) As UInteger

   If number Mod 2 = 0 Then Return 0
   If number Mod 3 = 0 Then Return 0
   Dim As UInteger i, max = Sqr(number)
   For i = 5 To max Step 2
       If number Mod i = 0 Then Return 0
   Next
   Return 1

End Function

' ------=< MAIN >=------

Dim As UInteger counter Dim As ULongInt i

Print : Print counter = 0 For i = 42 To &HFFFFFFFFFFFFFFFF ' for next loop, loop maximum = 2^64-1

   If isprime(i) Then
       counter += 1
       Print Using "n =### ##################,"; counter; i
       If counter >= 42 Then Exit for
       i += i -1
   End If

Next

' empty keyboard buffer While InKey <> "" : Wend Print : Print "hit any key to end program" Sleep End</lang>

Output:
n =  1                  43
n =  2                  89
n =  3                 179
n =  4                 359
n =  5                 719
n =  6               1,439
n =  7               2,879
n =  8               5,779
n =  9              11,579
n = 10              23,159
n = 11              46,327
n = 12              92,657
n = 13             185,323
n = 14             370,661
n = 15             741,337
n = 16           1,482,707
n = 17           2,965,421
n = 18           5,930,887
n = 19          11,861,791
n = 20          23,723,597
n = 21          47,447,201
n = 22          94,894,427
n = 23         189,788,857
n = 24         379,577,741
n = 25         759,155,483
n = 26       1,518,310,967
n = 27       3,036,621,941
n = 28       6,073,243,889
n = 29      12,146,487,779
n = 30      24,292,975,649
n = 31      48,585,951,311
n = 32      97,171,902,629
n = 33     194,343,805,267
n = 34     388,687,610,539
n = 35     777,375,221,081
n = 36   1,554,750,442,183
n = 37   3,109,500,884,389
n = 38   6,219,001,768,781
n = 39  12,438,003,537,571
n = 40  24,876,007,075,181
n = 41  49,752,014,150,467
n = 42  99,504,028,301,131

Go

This uses Go's 'for' loop but is otherwise similar to the Kotlin entry.

The 'thousands separator' aspect is dealt with by a couple of external packages (in the 'import' declarations) which can be installed using 'go get'. <lang go>package main

import(

   "golang.org/x/text/language"
   "golang.org/x/text/message"

)

func isPrime(n uint64) bool {

   if n % 2 == 0 {
       return n == 2
   }
   if n % 3 == 0 {
       return n == 3
   }
   d := uint64(5)
   for d * d <= n {
       if n % d == 0 {
           return false
       }
       d += 2
       if n % d == 0 {
           return false
       } 
       d += 4
   }
   return true

}

const limit = 42

func main() {

   p := message.NewPrinter(language.English)
   for i, n := uint64(limit), 0; n < limit; i++ {
       if isPrime(i) {
           n++
           p.Printf("n = %-2d  %19d\n", n, i)
           i += i - 1
       }
   }

}</lang>

Output:
Same as Kotlin entry

Haskell

No index mutations or loops. Recursion is used. <lang haskell>import Data.List import Control.Monad (guard)

isPrime :: Int -> Bool isPrime n

 | n <= 3 = n > 1
 | n `mod` 2 == 0 || n `mod` 3 == 0 = False
 | otherwise = l2 5 n
 where l2 d n = x > n || l3 d n
         where x = d * d
               l3 d n
                 | n `mod` d == 0       = False
                 | n `mod` (d + 2) == 0 = False
                 | otherwise = l2 (d + 6) n

showPrime :: Int -> Int -> [(Int, Int)] showPrime i n = if isPrime i

               then (n, i) : showPrime (i+i) (n+1)
               else showPrime (i+1) n

digitGroup :: Int -> String digitGroup = intercalate "," . reverse . map show . unfoldr (\n -> guard (n /= 0) >> pure (n `mod` 1000, n `div` 1000))

display :: (Int, Int) -> String display (i, p) = show i ++ " " ++ digitGroup p

main = mapM_ (putStrLn . display) $ take 42 $ showPrime 42 1</lang>

Output:
1 43
2 89
3 179
4 359
5 719
6 1,439
7 2,879
8 5,779
9 11,579
10 23,159
11 46,327
12 92,657
13 185,323
14 370,661
15 741,337
16 1,482,707
17 2,965,421
18 5,930,887
19 11,861,791
20 23,723,597
21 47,447,201
22 94,894,427
23 189,788,857
24 379,577,741
25 759,155,483
26 1,518,310,967
27 3,36,621,941
28 6,73,243,889
29 12,146,487,779
30 24,292,975,649
31 48,585,951,311
32 97,171,902,629
33 194,343,805,267
34 388,687,610,539
35 777,375,221,81
36 1,554,750,442,183
37 3,109,500,884,389
38 6,219,1,768,781
39 12,438,3,537,571
40 24,876,7,75,181
41 49,752,14,150,467
42 99,504,28,301,131

And for minor variation, we could import isPrime from Data.Numbers.Primes, and define the comma-grouping of large integers in terms of chunksof:

<lang haskell>import Data.Numbers.Primes import Data.List (intercalate) import Data.List.Split (chunksOf)

series :: Integer -> Integer -> [(Integer, Integer)] series = go

 where
   go i n
     | isPrime i = (n, i) : go (i + i) (succ n)
     | otherwise = go (succ i) n

showPair :: (Integer, Integer) -> String showPair (i, n) = show i ++ " -> " ++ showInteger n

showInteger :: Integer -> String showInteger = reverse . intercalate "," . chunksOf 3 . reverse . show

main :: IO () main = mapM_ (putStrLn . showPair) (take 42 $ series 42 1)</lang>

Haxe

Haxe's for-loop does allow the index to be modified in the body of the loop, so a while-loop is used instead. <lang haxe>using StringTools; import haxe.Int64;

class PrimeNumberLoops {

 private static var limit = 42;
 
 static function isPrime(i:Int64):Bool {
   if (i == 2 || i == 3) {
     return true;
   } else if (i % 2 == 0 || i % 3 ==0) {
     return false;
   }
   var idx:haxe.Int64 = 5;
   while (idx * idx <= i) {
     if (i % idx == 0) return false;
     idx += 2;
     if (i % idx == 0) return false;
     idx += 4;
   }
   return true;
 }
 static function main() {
   var i:Int64 = 42;
   var n:Int64 = 0;
   while (n < limit) {
     if (isPrime(i)) {
       n++;
       Sys.println('n ${Int64.toStr(n).lpad(' ', 2)} ' +
                   '= ${Int64.toStr(i).lpad(' ', 19)}');
       i += i;
       continue;
     }
     i++;
   }
 }

}</lang>

Output:
n  1 =                  43
n  2 =                  89
n  3 =                 179
n  4 =                 359
n  5 =                 719
n  6 =                1439
n  7 =                2879
n  8 =                5779
n  9 =               11579
n 10 =               23159
n 11 =               46327
n 12 =               92657
n 13 =              185323
n 14 =              370661
n 15 =              741337
n 16 =             1482707
n 17 =             2965421
n 18 =             5930887
n 19 =            11861791
n 20 =            23723597
n 21 =            47447201
n 22 =            94894427
n 23 =           189788857
n 24 =           379577741
n 25 =           759155483
n 26 =          1518310967
n 27 =          3036621941
n 28 =          6073243889
n 29 =         12146487779
n 30 =         24292975649
n 31 =         48585951311
n 32 =         97171902629
n 33 =        194343805267
n 34 =        388687610539
n 35 =        777375221081
n 36 =       1554750442183
n 37 =       3109500884389
n 38 =       6219001768781
n 39 =      12438003537571
n 40 =      24876007075181
n 41 =      49752014150467
n 42 =      99504028301131

J

Fun with j. The verb tacit_loop implements the computation. <lang j> tacit_loop =: _1&(>:@:{`[`]})@:(, (1&p: # _1 2&p.)@:{:)@:]^:(0 ~: (>: #))^:_ x: </lang> Now derive it from the python solution. The monadic verb loop fairly straightforwardly matches the python solution except that loop returns the vector of computed values rather than displays them. <lang j> isPrime =: 1&p: assert 1 1 0 -: isPrime 2 3 4 NB. test and example

loop =: verb define

i =. x: y
n =. i. 0
while. y > # n do.
 if. isPrime i do.
  n =. n , i
  i =. _1 2 p. i
 end.
 i =. i + 1
end.
n 

) </lang> Store the vector of indexes using its tail as the current index, removing the `n' variable. In doing so the last item of `i' is not part of the solution, hence change less than to less or equal, and discard the tail value. Also extract the conversion to extended precision x: . <lang J> loop =: verb define@:x:

i =. y
while. y >: # i do.
 if. isPrime {: i do.
  i =. (, _1 2 p. {:) i
 end.
 i =. _1 (>:@:{)`[`]} i
end.
}: i

) </lang>

Replace the "if" statement with a computation. This one works by appending onto the solution vector isPrime copies of the proposed new index. <lang J> loop =: verb define@:x:

i =. y
while. y >: # i do.
 i =. (, (isPrime # _1 2&p.)@:{:) i
 i =. _1 (>:@:{)`[`]} i
end.
}: i

) </lang> Names are an issue brought forth in the j forums. Names have most meaning to the person who wrote them, so there's a bit of J philosophy that says "show the code". J doesn't enforce "code only", and definitions can encapsulate useful chunks of code. If the names I've chosen don't work in your experience or language you could replace them with `a' and `b'. <lang J> save_if_prime =: , (isPrime # _1 2&p.)@:{: increment_tail =: _1&(>:@:{`[`]})

loop =: verb define@:x:

i =. y
while. y >: # i do.
 i =. save_if_prime i
 i =. increment_tail i
end.
}: i

) </lang> Why make two assignments when j can increment at save? <lang J> loop =: verb define@:x:

i =. y
while. y >: # i do.
 i =. increment_tail@:save_if_prime i
end.
}: i

) </lang> Next replace the while loop with double application of J's generalized power conjunction. <lang J> While =: conjunction def 'u^:(0~:v)^:_'

loop =: verb define@:x:

i =. y
}: increment_tail@:save_if_prime While(y >: #) i

) </lang> By inspection the variable `i' doesn't contribute anything useful whatsoever. The verb's argument, y, remains. Finally, implemented as an hook verb trains with 'y' and `i' as left ([) and right (]) arguments the complete definitions for tacit_loop are <lang J> isPrime =: 1&p: save_if_prime =: , (isPrime # _1 2&p.)@:{: increment_tail =: _1&(>:@:{`[`]}) While =: conjunction def 'u^:(0~:v)^:_' tacit_loop =: [: }: (increment_tail@:save_if_prime@:]While(>: #) x:) </lang> Include the index numbers with demonstration: <lang J>

  9!:37 ] 0 2048 0 222  NB. output control permit lines of 2^11 columns
  (>:@:i. ,: tacit_loop) 42
1  2   3   4   5    6    7    8     9    10    11    12     13     14     15      16      17      18       19       20       21       22        23        24        25         26         27         28          29          30          31          32           33           34           35            36            37            38             39             40             41             42

43 89 179 359 719 1439 2879 5779 11579 23159 46327 92657 185323 370661 741337 1482707 2965421 5930887 11861791 23723597 47447201 94894427 189788857 379577741 759155483 1518310967 3036621941 6073243889 12146487779 24292975649 48585951311 97171902629 194343805267 388687610539 777375221081 1554750442183 3109500884389 6219001768781 12438003537571 24876007075181 49752014150467 99504028301131


  NB. fix the definition.  Here's the code.
  tacit_loop f.

[: }: (_1&(>:@:{`[`]})@:(, (1&p: # _1 2&p.)@:{:)@:]^:(0 ~: (>: #))^:_ x:)

</lang>

If the loop must require the output side effect, this save_if_prime definition does the trick. Without the output hook it is probably more efficient than the copying version because it evaluates the hook

(, _1 2&p.@:{:)

only when isPrime is true.

<lang J>

  extra_credit =: ([: }. ,@(',' ,.~ _3 [\ ])&.|.@:":)&>
  show =: [ ([: echo@:deb@:({. , ' ' , {:)@:extra_credit # , {:)
  save_if_prime =: (, _1 2&p.@:{:)@:show^:(isPrime@:{:)
  empty@:tacit_loop 42

1 43 2 89 3 179 4 359 5 719 6 1,439 7 2,879 8 5,779 9 11,579 10 23,159 11 46,327 12 92,657 13 185,323 14 370,661 15 741,337 16 1,482,707 17 2,965,421 18 5,930,887 19 11,861,791 20 23,723,597 21 47,447,201 22 94,894,427 23 189,788,857 24 379,577,741 25 759,155,483 26 1,518,310,967 27 3,036,621,941 28 6,073,243,889 29 12,146,487,779 30 24,292,975,649 31 48,585,951,311 32 97,171,902,629 33 194,343,805,267 34 388,687,610,539 35 777,375,221,081 36 1,554,750,442,183 37 3,109,500,884,389 38 6,219,001,768,781 39 12,438,003,537,571 40 24,876,007,075,181 41 49,752,014,150,467 42 99,504,028,301,131 </lang>

Java

The following uses a 'for' rather than a 'do/while' loop but otherwise is similar to the Kotlin entry. <lang java>public class LoopIncrementWithinBody {

   static final int LIMIT = 42;
   static boolean isPrime(long n) {
       if (n % 2 == 0) return n == 2;
       if (n % 3 == 0) return n == 3;
       long d = 5;
       while (d * d <= n) {
           if (n % d == 0) return false;
           d += 2;
           if (n % d == 0) return false;
           d += 4;
       }
       return true;
   }
   public static void main(String[] args) {
       long i;
       int n;
       for (i = LIMIT, n = 0; n < LIMIT; i++)
           if (isPrime(i)) {
               n++;
               System.out.printf("n = %-2d  %,19d\n", n, i);
               i += i - 1;
           }
   }

}</lang>

Output:
Same as Kotlin entry

Julia

Julia's for loop iterator is an iterator type which cannot be incremented as a simple variable would to change looping. <lang julia>using Primes, Formatting

function doublemyindex(n=42)

   shown = 0
   i = BigInt(n)
   while shown < n
       if isprime(i + 1)
           shown += 1
           println("The index is ", format(shown, commas=true), " and ", 
                                    format(i + 1, commas=true), " is prime.")
           i += i
       end
       i += 1
   end

end

doublemyindex()

</lang>

Output:

The index is 1 and 43 is prime. The index is 2 and 89 is prime. The index is 3 and 179 is prime. The index is 4 and 359 is prime. The index is 5 and 719 is prime. The index is 6 and 1,439 is prime. The index is 7 and 2,879 is prime. The index is 8 and 5,779 is prime. The index is 9 and 11,579 is prime. The index is 10 and 23,159 is prime. The index is 11 and 46,327 is prime. The index is 12 and 92,657 is prime. The index is 13 and 185,323 is prime. The index is 14 and 370,661 is prime. The index is 15 and 741,337 is prime. The index is 16 and 1,482,707 is prime. The index is 17 and 2,965,421 is prime. The index is 18 and 5,930,887 is prime. The index is 19 and 11,861,791 is prime. The index is 20 and 23,723,597 is prime. The index is 21 and 47,447,201 is prime. The index is 22 and 94,894,427 is prime. The index is 23 and 189,788,857 is prime. The index is 24 and 379,577,741 is prime. The index is 25 and 759,155,483 is prime. The index is 26 and 1,518,310,967 is prime. The index is 27 and 3,036,621,941 is prime. The index is 28 and 6,073,243,889 is prime. The index is 29 and 12,146,487,779 is prime. The index is 30 and 24,292,975,649 is prime. The index is 31 and 48,585,951,311 is prime. The index is 32 and 97,171,902,629 is prime. The index is 33 and 194,343,805,267 is prime. The index is 34 and 388,687,610,539 is prime. The index is 35 and 777,375,221,081 is prime. The index is 36 and 1,554,750,442,183 is prime. The index is 37 and 3,109,500,884,389 is prime. The index is 38 and 6,219,001,768,781 is prime. The index is 39 and 12,438,003,537,571 is prime. The index is 40 and 24,876,007,075,181 is prime. The index is 41 and 49,752,014,150,467 is prime. The index is 42 and 99,504,028,301,131 is prime.

Kotlin

Unlike many other C-family languages (notably Java), Kotlin's 'for' statement doesn't allow either the iteration variable or the step to be modified within the loop body.

So instead we use a do/while loop here which has no such restrictions. <lang scala>// version 1.2.60

fun isPrime(n: Long): Boolean {

   if (n % 2L == 0L) return n == 2L
   if (n % 3L == 0L) return n == 3L
   var d = 5L
   while (d * d <= n) {
       if (n % d == 0L) return false
       d += 2L
       if (n % d == 0L) return false
       d += 4L
   }
   return true

}

fun main(args: Array<String>) {

   var i = 42L
   var n = 0
   do {
       if (isPrime(i)) {
           n++
           System.out.printf("n = %-2d  %,19d\n", n, i)
           i += i - 1
       }
       i++
   }
   while (n < 42)

}</lang>

Output:
n = 1                    43
n = 2                    89
n = 3                   179
n = 4                   359
n = 5                   719
n = 6                 1,439
n = 7                 2,879
n = 8                 5,779
n = 9                11,579
n = 10               23,159
n = 11               46,327
n = 12               92,657
n = 13              185,323
n = 14              370,661
n = 15              741,337
n = 16            1,482,707
n = 17            2,965,421
n = 18            5,930,887
n = 19           11,861,791
n = 20           23,723,597
n = 21           47,447,201
n = 22           94,894,427
n = 23          189,788,857
n = 24          379,577,741
n = 25          759,155,483
n = 26        1,518,310,967
n = 27        3,036,621,941
n = 28        6,073,243,889
n = 29       12,146,487,779
n = 30       24,292,975,649
n = 31       48,585,951,311
n = 32       97,171,902,629
n = 33      194,343,805,267
n = 34      388,687,610,539
n = 35      777,375,221,081
n = 36    1,554,750,442,183
n = 37    3,109,500,884,389
n = 38    6,219,001,768,781
n = 39   12,438,003,537,571
n = 40   24,876,007,075,181
n = 41   49,752,014,150,467
n = 42   99,504,028,301,131

Although Kotlin is predominantly an object-oriented/procedural language, it does have some features which enable one to program in a functional style. These features include 'tail recursion' which, of course, is commonly used in place of loops in purely functional languages.

In such cases, the Kotlin compiler optimizes out the recursion, leaving behind a fast and efficient loop based version instead.

The following version uses a tail recursive function rather than a while loop to achieve the same effect:

<lang scala>// version 1.2.60

fun isPrime(n: Long): Boolean {

   if (n % 2L == 0L) return n == 2L
   if (n % 3L == 0L) return n == 3L
   var d = 5L
   while (d * d <= n) {
       if (n % d == 0L) return false
       d += 2L
       if (n % d == 0L) return false
       d += 4L
   }
   return true

}

tailrec fun loop(index: Long, numPrimes: Int) {

   if (numPrimes == 42) return
   var i = index
   var n = numPrimes 
   if (isPrime(i)) {
       n++
       System.out.printf("n = %-2d  %,19d\n", n, i)
       loop(2 * i - 1, n)
   }
   else loop(++i, n)

}

fun main(args: Array<String>) {

   loop(42, 0)

}</lang>

Output:
Same as 'while' loop version.

Lua

<lang lua>-- Returns boolean indicate whether x is prime function isPrime (x)

 if x < 2 then return false end
 if x < 4 then return true end
 if x % 2 == 0 then return false end
 for d = 3, math.sqrt(x), 2 do
   if x % d == 0 then return false end
 end
 return true

end

-- Main procedure local n, i = 0, 42 while n < 42 do

 if isPrime(i) then
   n = n + 1
   print("n = " .. n, i)
   i = 2 * i - 1
 end
 i = i + 1

end</lang>

Output:
n = 1   43
n = 2   89
n = 3   179
n = 4   359
n = 5   719
n = 6   1439
n = 7   2879
n = 8   5779
n = 9   11579
n = 10  23159
n = 11  46327
n = 12  92657
n = 13  185323
n = 14  370661
n = 15  741337
n = 16  1482707
n = 17  2965421
n = 18  5930887
n = 19  11861791
n = 20  23723597
n = 21  47447201
n = 22  94894427
n = 23  189788857
n = 24  379577741
n = 25  759155483
n = 26  1518310967
n = 27  3036621941
n = 28  6073243889
n = 29  12146487779
n = 30  24292975649
n = 31  48585951311
n = 32  97171902629
n = 33  194343805267
n = 34  388687610539
n = 35  777375221081
n = 36  1554750442183
n = 37  3109500884389
n = 38  6219001768781
n = 39  12438003537571
n = 40  24876007075181
n = 41  49752014150467
n = 42  99504028301131

M2000 Interpreter

<lang M2000 Interpreter> Module CheckIt {

     Function IsPrime (x) {
           if x<=5 OR frac(x) then {
                 if x = 2 OR x = 3 OR x = 5 then =true
                 Break
           }
           if x mod 2 else exit
           if x mod 3 else exit
           x1=sqrt(x): d=5@
           {if x mod d else exit
                 d += 2@: if d>x1 then =true : exit
                 if x mod d else exit
                 d += 4@: if d<= x1 else =true: exit
                 loop
            }
     }
     \\ For Next loops or For {} loops can't change iterator variable (variable has a copy of real iterator)
     \\ In those loops we have to use Continue to skip lines and repeat the loop.
     \\ so we have to use Block iterator, using Loop which set a flag current block to repeat itself once.
     def long Limit=42, n
     def decimal i
     i=Limit
     {
           if n<Limit Else exit
           if isPrime(i)  then n++ : Print format$("n={0::2}: {1:-20}", n, str$(i,"#,###")) : i+=i-1
           i++
           loop 
     }

} CheckIt </lang>

Output:
Same as Kotlin entry

Maple

A translation of Kotlin entry <lang Maple>i := 42: count := 0: while(count < 42) do i := i+1: if type(i,prime) then count := count + 1: printf("n=%-2d %19d\n", count,i): i := 2*i -1: end if: end do:</lang>

Output:
n=1                       43
n=2                       89
n=3                      179
n=4                      359
n=5                      719
n=6                     1439
n=7                     2879
n=8                     5779
n=9                    11579
n=10                   23159
n=11                   46327
n=12                   92657
n=13                  185323
n=14                  370661
n=15                  741337
n=16                 1482707
n=17                 2965421
n=18                 5930887
n=19                11861791
n=20                23723597
n=21                47447201
n=22                94894427
n=23               189788857
n=24               379577741
n=25               759155483
n=26              1518310967
n=27              3036621941
n=28              6073243889
n=29             12146487779
n=30             24292975649
n=31             48585951311
n=32             97171902629
n=33            194343805267
n=34            388687610539
n=35            777375221081
n=36           1554750442183
n=37           3109500884389
n=38           6219001768781
n=39          12438003537571
n=40          24876007075181
n=41          49752014150467
n=42          99504028301131

Microsoft Small Basic

Small Basic allows to modify the index inside the loop. <lang smallbasic>'Loops Increment loop index within loop body - 16/07/2018 imax=42 i=0 n=42 While i<imax

 isprime_n()
 If ret_isprime_n Then
   i=i+1
   format_i()
   format_n()
   TextWindow.WriteLine("i="+ret_format_i+" : "+ret_format_n)
   n=n+n-1
 EndIf
 n=n+1

EndWhile

Sub isprime_n

 If n=2 Or n=3 Then
   ret_isprime_n="True"
 ElseIf Math.Remainder(n,2)=0 Or Math.Remainder(n,3)=0 Then 
   ret_isprime_n="False"
 Else
   j=5
   While j*j<=n
     If Math.Remainder(n,j)=0 Or Math.Remainder(n,j+2)=0 Then 
       ret_isprime_n="False"
       Goto exitsub
     EndIf
     j=j+6
   EndWhile
   ret_isprime_n="True"
 EndIf

exitsub: EndSub 'isprime_n

Sub format_i

 ret_format_i=Text.GetSubText("   ",1,3-Text.GetLength(i))+i

EndSub 'format_i

Sub format_n

 nn="" 
 l=-1
 For k=Text.GetLength(n) To 1 Step -1
   l=l+1
   cc=Text.GetSubText(n,k,1)
   If l=3 Then
     cv=","
     l=0
   Else
     cv=""
   EndIf
   nn=Text.Append(cc,Text.Append(cv,nn))
 EndFor
 space="                    "
 nn=Text.GetSubText(space,1,Text.GetLength(space)-Text.GetLength(nn))+nn
 ret_format_n=nn

EndSub 'format_n</lang>

Output:
i= 1 :                   43
i= 2 :                   89
i= 3 :                  179
i= 4 :                  359
i= 5 :                  719
i= 6 :                1,439
i= 7 :                2,879
i= 8 :                5,779
i= 9 :               11,579
i=10 :               23,159
i=11 :               46,327
i=12 :               92,657
i=13 :              185,323
i=14 :              370,661
i=15 :              741,337
i=16 :            1,482,707
i=17 :            2,965,421
i=18 :            5,930,887
i=19 :           11,861,791
i=20 :           23,723,597
i=21 :           47,447,201
i=22 :           94,894,427
i=23 :          189,788,857
i=24 :          379,577,741
i=25 :          759,155,483
i=26 :        1,518,310,967
i=27 :        3,036,621,941
i=28 :        6,073,243,889
i=29 :       12,146,487,779
i=30 :       24,292,975,649
i=31 :       48,585,951,311
i=32 :       97,171,902,629
i=33 :      194,343,805,267
i=34 :      388,687,610,539
i=35 :      777,375,221,081
i=36 :    1,554,750,442,183
i=37 :    3,109,500,884,389
i=38 :    6,219,001,768,781
i=39 :   12,438,003,537,571
i=40 :   24,876,007,075,181
i=41 :   49,752,014,150,467
i=42 :   99,504,028,301,131

Nanoquery

Translation of: Java

<lang Nanoquery>limit = 42

def isPrime(n)

   if ((n % 2) = 0) or ((n % 3) = 0)
       return false
   end
   d = 5
   while (d * d) <= n
       if (n % d) = 0
           return false
       end
       d += 2
       if (n % d) = 0
           return false
       end
       d += 4
   end
   return true

end

i = limit for (n = 0) (n < limit) (i += 1)

   if isPrime(i)
       n += 1
       print format("n = %-2d  %,19d\n", n, i)
       i += i - 1
   end

end</lang>

Output:
n = 1                    43
n = 2                    89
n = 3                   179
n = 4                   359
n = 5                   719
n = 6                 1,439
n = 7                 2,879
n = 8                 5,779
n = 9                11,579
n = 10               23,159
n = 11               46,327
n = 12               92,657
n = 13              185,323
n = 14              370,661
n = 15              741,337
n = 16            1,482,707
n = 17            2,965,421
n = 18            5,930,887
n = 19           11,861,791
n = 20           23,723,597
n = 21           47,447,201
n = 22           94,894,427
n = 23          189,788,857
n = 24          379,577,741
n = 25          759,155,483
n = 26        1,518,310,967
n = 27        3,036,621,941
n = 28        6,073,243,889
n = 29       12,146,487,779
n = 30       24,292,975,649
n = 31       48,585,951,311
n = 32       97,171,902,629
n = 33      194,343,805,267
n = 34      388,687,610,539
n = 35      777,375,221,081
n = 36    1,554,750,442,183
n = 37    3,109,500,884,389
n = 38    6,219,001,768,781
n = 39   12,438,003,537,571
n = 40   24,876,007,075,181
n = 41   49,752,014,150,467
n = 42   99,504,028,301,131

NewLISP

<lang newlisp>

  1. ! /usr/local/bin/newlisp

(define (prime? n)

(and 
  (set 'lst (factor n))
  (= (length lst) 1)))

(define (thousands_separator i)

   (setq i (string i))
   (setq len (length i))
   (setq i (reverse (explode i)))
   (setq o "")
   (setq count3 0)
   (dolist (x i)
       (setq o (string o x))
       (inc count3)
       (if (and (= 3 count3) (< (+ $idx 1) len))
           (begin
           (setq o (string o "_"))
           (setq count3 0))))
           
   (reverse o))


- - - Main begins here

(setq i 42) (setq n 0) (while (< n 42)

   (if (prime? i)
       (begin
           (inc n)
           (println (string "n = " n " -> " (thousands_separator i)))
           (setq i (+ i i -1))))
   (inc i)        

)

(exit) </lang>

n = 1 -> 43
n = 2 -> 89
n = 3 -> 179
n = 4 -> 359
n = 5 -> 719
n = 6 -> 1_439
n = 7 -> 2_879
n = 8 -> 5_779
n = 9 -> 11_579
n = 10 -> 23_159
n = 11 -> 46_327
n = 12 -> 92_657
n = 13 -> 185_323
n = 14 -> 370_661
n = 15 -> 741_337
n = 16 -> 1_482_707
n = 17 -> 2_965_421
n = 18 -> 5_930_887
n = 19 -> 11_861_791
n = 20 -> 23_723_597
n = 21 -> 47_447_201
n = 22 -> 94_894_427
n = 23 -> 189_788_857
n = 24 -> 379_577_741
n = 25 -> 759_155_483
n = 26 -> 1_518_310_967
n = 27 -> 3_036_621_941
n = 28 -> 6_073_243_889
n = 29 -> 12_146_487_779
n = 30 -> 24_292_975_649
n = 31 -> 48_585_951_311
n = 32 -> 97_171_902_629
n = 33 -> 194_343_805_267
n = 34 -> 388_687_610_539
n = 35 -> 777_375_221_081
n = 36 -> 1_554_750_442_183
n = 37 -> 3_109_500_884_389
n = 38 -> 6_219_001_768_781
n = 39 -> 12_438_003_537_571
n = 40 -> 24_876_007_075_181
n = 41 -> 49_752_014_150_467
n = 42 -> 99_504_028_301_131

Nim

<lang nim> import strformat from strutils import insertSep

func isPrime(i: int): bool =

 if i == 2 or i == 3: return true
 elif i mod 2 == 0 or i mod 3 == 0: return false
 var idx = 5
 while idx*idx <= i:
   if i mod idx == 0: return false
   idx.inc 2
   if i mod idx == 0: return false
   idx.inc 4
 result = true

const limit = 42 proc main =

 var
   i = 42
   n = 0
 while n < limit:
   if i.isPrime:
     inc n
     echo &"""n {n:>2} = {($i).insertSep(sep=','):>19}"""
     i.inc i
     continue
   inc i

main() </lang>

Output:
n  1 =                  43
n  2 =                  89
n  3 =                 179
n  4 =                 359
n  5 =                 719
n  6 =               1,439
n  7 =               2,879
n  8 =               5,779
n  9 =              11,579
n 10 =              23,159
n 11 =              46,327
n 12 =              92,657
n 13 =             185,323
n 14 =             370,661
n 15 =             741,337
n 16 =           1,482,707
n 17 =           2,965,421
n 18 =           5,930,887
n 19 =          11,861,791
n 20 =          23,723,597
n 21 =          47,447,201
n 22 =          94,894,427
n 23 =         189,788,857
n 24 =         379,577,741
n 25 =         759,155,483
n 26 =       1,518,310,967
n 27 =       3,036,621,941
n 28 =       6,073,243,889
n 29 =      12,146,487,779
n 30 =      24,292,975,649
n 31 =      48,585,951,311
n 32 =      97,171,902,629
n 33 =     194,343,805,267
n 34 =     388,687,610,539
n 35 =     777,375,221,081
n 36 =   1,554,750,442,183
n 37 =   3,109,500,884,389
n 38 =   6,219,001,768,781
n 39 =  12,438,003,537,571
n 40 =  24,876,007,075,181
n 41 =  49,752,014,150,467
n 42 =  99,504,028,301,131

Perl

Messing with the loop iterator value doesn't go well in Perl, so use the while loop alternative. The ntheory module is used to test for primes.

Translation of: Kotlin
Library: ntheory

<lang perl>use ntheory qw(is_prime);

$i = 42; while ($n < 42) {

   if (is_prime($i)) {
       $n++;
       printf "%2d %21s\n", $n, commatize($i);
       $i += $i - 1;
   }
   $i++;

}

sub commatize {

   (my $s = reverse shift) =~ s/(.{3})/$1,/g;
   $s =~ s/,$//;
   $s = reverse $s;

}</lang>

Output:
 1                    43
 2                    89
 3                   179
 4                   359
 5                   719
 6                 1,439
 7                 2,879
 8                 5,779
 9                11,579
10                23,159
11                46,327
12                92,657
13               185,323
14               370,661
15               741,337
16             1,482,707
17             2,965,421
18             5,930,887
19            11,861,791
20            23,723,597
21            47,447,201
22            94,894,427
23           189,788,857
24           379,577,741
25           759,155,483
26         1,518,310,967
27         3,036,621,941
28         6,073,243,889
29        12,146,487,779
30        24,292,975,649
31        48,585,951,311
32        97,171,902,629
33       194,343,805,267
34       388,687,610,539
35       777,375,221,081
36     1,554,750,442,183
37     3,109,500,884,389
38     6,219,001,768,781
39    12,438,003,537,571
40    24,876,007,075,181
41    49,752,014,150,467
42    99,504,028,301,131

Phix

Phix does not allow for loop variables to be modified, so we must use a while loop and manual increment for this sort of thing. There is not, as yet, an is_prime() builtin. We can use prime_factors() returns {}, though it is probably a little bit slower as it builds the full list rather than yielding false asap - but at least we don't have to define an is_prime() function. <lang Phix>atom i=42, n=1 while n<=42 do

   if prime_factors(i)={} then
       printf(1,"n = %-2d  %,19d\n", {n, i})
       n += 1
       i += i-1
   end if
   i += 1

end while</lang>

Output:
n = 1                    43
n = 2                    89
n = 3                   179
n = 4                   359
n = 5                   719
n = 6                 1,439
n = 7                 2,879
n = 8                 5,779
n = 9                11,579
n = 10               23,159
n = 11               46,327
n = 12               92,657
n = 13              185,323
n = 14              370,661
n = 15              741,337
n = 16            1,482,707
n = 17            2,965,421
n = 18            5,930,887
n = 19           11,861,791
n = 20           23,723,597
n = 21           47,447,201
n = 22           94,894,427
n = 23          189,788,857
n = 24          379,577,741
n = 25          759,155,483
n = 26        1,518,310,967
n = 27        3,036,621,941
n = 28        6,073,243,889
n = 29       12,146,487,779
n = 30       24,292,975,649
n = 31       48,585,951,311
n = 32       97,171,902,629
n = 33      194,343,805,267
n = 34      388,687,610,539
n = 35      777,375,221,081
n = 36    1,554,750,442,183
n = 37    3,109,500,884,389
n = 38    6,219,001,768,781
n = 39   12,438,003,537,571
n = 40   24,876,007,075,181
n = 41   49,752,014,150,467
n = 42   99,504,028,301,131

Python

Procedural

<lang Python>def isPrime(n):

   for x in 2, 3:
       if not n % x:
           return n == x
   d = 5
   while d * d <= n:
       for x in 2, 4:
           if not n % d:
               return False
           d += x
   return True

i = 42 n = 0 while n < 42:

   if isPrime(i):
       n += 1
       print('n = {:2} {:20,}'.format(n, i))
       i += i - 1
   i += 1</lang>
Output:
n =  1                   43
n =  2                   89
n =  3                  179
n =  4                  359
n =  5                  719
n =  6                1,439
n =  7                2,879
n =  8                5,779
n =  9               11,579
n = 10               23,159
n = 11               46,327
n = 12               92,657
n = 13              185,323
n = 14              370,661
n = 15              741,337
n = 16            1,482,707
n = 17            2,965,421
n = 18            5,930,887
n = 19           11,861,791
n = 20           23,723,597
n = 21           47,447,201
n = 22           94,894,427
n = 23          189,788,857
n = 24          379,577,741
n = 25          759,155,483
n = 26        1,518,310,967
n = 27        3,036,621,941
n = 28        6,073,243,889
n = 29       12,146,487,779
n = 30       24,292,975,649
n = 31       48,585,951,311
n = 32       97,171,902,629
n = 33      194,343,805,267
n = 34      388,687,610,539
n = 35      777,375,221,081
n = 36    1,554,750,442,183
n = 37    3,109,500,884,389
n = 38    6,219,001,768,781
n = 39   12,438,003,537,571
n = 40   24,876,007,075,181
n = 41   49,752,014,150,467
n = 42   99,504,028,301,131

Functional

This task is defined in terms of procedural 'loops', which can generally be understood in functional terms as implementations of folds or maps. An analogous functional construction here might be a non-finite generator, or the iterative application of a function (over a tuple of values) to a seed value, for example:

<lang python>Loops/Increment loop index within loop body.

from itertools import islice, takewhile from functools import reduce import operator


  1. main :: IO ()

def main():

   Defines a list value, while printing a stream
      of intermediate values during computation.
   
   gt = curry(operator.gt)
   fst = operator.itemgetter(0)
   list(takewhile(compose(gt(43), fst), series()))


  1. series :: (Int, Int) -> [(Int, Int)]

def series():

   Non finite series, defined as a generator
      with IO side-effects (to the print channel).
   
   def go(tpl):
       if isPrime(tpl[1]):
           # Side effect.
           print(showTuple(tpl))
           # Value.
           return splitArrow(succ)(dbl)(tpl)
       else:
           return secondArrow(succ)(tpl)
   return iterate(go)(
       (1, 42)
   )


  1. isPrime :: Int -> Bool

def isPrime(n):

   True if n is prime.
   if n in (2, 3):
       return True
   if 2 > n or 0 == n % 2:
       return False
   if 9 > n:
       return True
   if 0 == n % 3:
       return False
   def p(x):
       return 0 == n % x or 0 == n % (2 + x)
   return not any(map(p, range(5, 1 + int(n ** 0.5), 6)))


  1. showTuple :: (Int, Int) -> String

def showTuple(tpl):

   Second integer shown with comma-chunked digits.
   return '{:2} -> {:20,}'.format(*tpl)


  1. -------------------------GENERIC-------------------------
  1. compose :: ((a -> a), ...) -> (a -> a)

def compose(*fs):

   Composition, from right to left,
      of a series of functions.
   
   return lambda x: reduce(
       lambda a, f: f(a),
       fs[::-1], x
   )


  1. curry :: ((a, b) -> c) -> a -> b -> c

def curry(f):

   A curried function derived
      from an uncurried function.
   
   return lambda x: lambda y: f(x, y)


  1. dbl :: Int -> Int -> Int

def dbl(x):

   2 * x
   return x + x


  1. drop :: Int -> [a] -> [a]
  2. drop :: Int -> String -> String

def drop(n):

   The sublist of xs beginning at
      (zero-based) index n.
   
   def go(xs):
       take(n)(xs)
       return xs
   return go


  1. iterate :: (a -> a) -> a -> Gen [a]

def iterate(f):

   An infinite list of repeated
      applications of f to x.
   
   def go(x):
       v = x
       while True:
           yield v
           v = f(v)
   return go


  1. secondArrow :: (b -> c) -> (a, b...) -> (a, c ...)

def secondArrow(f):

   A simple function lifted to one which applies
      to a tuple, transforming only its second value.
   
   return lambda tpl: (tpl[0], f(tpl[1]))


  1. splitArrow (***) :: (a -> b) -> (c -> d) -> ((a, c) -> (b, d))

def splitArrow(f):

   A function from (x, y) to a tuple of (f(x), g(y))
   
   return lambda g: lambda tpl: (f(tpl[0]), g(tpl[1]))


  1. succ :: Enum a => a -> a

def succ(x):

   The successor of a value.
      For numeric types, (1 +).
   
   return 1 + x


  1. take :: Int -> [a] -> [a]
  2. take :: Int -> String -> String

def take(n):

   The prefix of xs of length n,
      or xs itself if n > length xs.
   
   return lambda xs: list(islice(xs, n))


  1. MAIN ---

if __name__ == '__main__':

   main()</lang>
Output:
 1 ->                   43
 2 ->                   89
 3 ->                  179
 4 ->                  359
 5 ->                  719
 6 ->                1,439
 7 ->                2,879
 8 ->                5,779
 9 ->               11,579
10 ->               23,159
11 ->               46,327
12 ->               92,657
13 ->              185,323
14 ->              370,661
15 ->              741,337
16 ->            1,482,707
17 ->            2,965,421
18 ->            5,930,887
19 ->           11,861,791
20 ->           23,723,597
21 ->           47,447,201
22 ->           94,894,427
23 ->          189,788,857
24 ->          379,577,741
25 ->          759,155,483
26 ->        1,518,310,967
27 ->        3,036,621,941
28 ->        6,073,243,889
29 ->       12,146,487,779
30 ->       24,292,975,649
31 ->       48,585,951,311
32 ->       97,171,902,629
33 ->      194,343,805,267
34 ->      388,687,610,539
35 ->      777,375,221,081
36 ->    1,554,750,442,183
37 ->    3,109,500,884,389
38 ->    6,219,001,768,781
39 ->   12,438,003,537,571
40 ->   24,876,007,075,181
41 ->   49,752,014,150,467
42 ->   99,504,028,301,131

Racket

Racket's for doesn't allow modification of index on the fly. The usual idiom for writing this kind of loop is to use named let, as shown here.

<lang racket>#lang racket

(require math/number-theory)

(define (comma x)

 (string-join
  (reverse
   (for/list ([digit (in-list (reverse (string->list (~a x))))] [i (in-naturals)])
     (cond
       [(and (= 0 (modulo i 3)) (> i 0)) (string digit #\,)]
       [else (string digit)])))
  ""))

(let loop ([x 42] [cnt 0])

 (cond
   [(= cnt 42) (void)]
   [(prime? x) (printf "~a: ~a\n" (add1 cnt) (comma x))
               (loop (* 2 x) (add1 cnt))]
   [else (loop (add1 x) cnt)]))</lang>
Output:
1: 43
2: 89
3: 179
4: 359
5: 719
6: 1,439
7: 2,879
8: 5,779
9: 11,579
10: 23,159
11: 46,327
12: 92,657
13: 185,323
14: 370,661
15: 741,337
16: 1,482,707
17: 2,965,421
18: 5,930,887
19: 11,861,791
20: 23,723,597
21: 47,447,201
22: 94,894,427
23: 189,788,857
24: 379,577,741
25: 759,155,483
26: 1,518,310,967
27: 3,036,621,941
28: 6,073,243,889
29: 12,146,487,779
30: 24,292,975,649
31: 48,585,951,311
32: 97,171,902,629
33: 194,343,805,267
34: 388,687,610,539
35: 777,375,221,081
36: 1,554,750,442,183
37: 3,109,500,884,389
38: 6,219,001,768,781
39: 12,438,003,537,571
40: 24,876,007,075,181
41: 49,752,014,150,467
42: 99,504,028,301,131

Raku

(formerly Perl 6) Hmm.

Demonstrate the best way to accomplish this.

The best way is probably to not use an explicit loop. Just calculate the sequence directly.

<lang perl6># the actual sequence logic my @seq = grep *.is-prime, (42, { .is-prime ?? $_+<1 !! $_+1 } … *);

  1. display code

say (1+$_).fmt("%-4s"), @seq[$_].flip.comb(3).join(',').flip.fmt("%20s") for ^42;</lang>

Output:
1                     43
2                     89
3                    179
4                    359
5                    719
6                  1,439
7                  2,879
8                  5,779
9                 11,579
10                23,159
11                46,327
12                92,657
13               185,323
14               370,661
15               741,337
16             1,482,707
17             2,965,421
18             5,930,887
19            11,861,791
20            23,723,597
21            47,447,201
22            94,894,427
23           189,788,857
24           379,577,741
25           759,155,483
26         1,518,310,967
27         3,036,621,941
28         6,073,243,889
29        12,146,487,779
30        24,292,975,649
31        48,585,951,311
32        97,171,902,629
33       194,343,805,267
34       388,687,610,539
35       777,375,221,081
36     1,554,750,442,183
37     3,109,500,884,389
38     6,219,001,768,781
39    12,438,003,537,571
40    24,876,007,075,181
41    49,752,014,150,467
42    99,504,028,301,131

REXX

<lang rexx>/*REXX pgm displays primes found: starting Z at 42, if Z is a prime, add Z, else add 1.*/ numeric digits 20; d=digits() /*ensure enough decimal digits for Z. */ parse arg limit . /*obtain optional arguments from the CL*/ if limit== | limit=="," then limit=42 /*Not specified? Then use the default.*/ n=0 /*the count of number of primes found. */

    do z=42  until n==limit                     /* ◄──this DO loop's index is modified.*/
    if isPrime(z)  then do;  n=n + 1            /*Z  a prime?  Them bump prime counter.*/
                             say right('n='n, 9)     right(commas(z), d)
                             z=z + z - 1        /*also, bump the  DO  loop index  Z.   */
                        end
    end   /*z*/                                 /* [↑] a small tribute to Douglas Adams*/

exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ commas: parse arg _; do j=length(_)-3 to 1 by -3; _=insert(',', _, j); end; return _ /*──────────────────────────────────────────────────────────────────────────────────────*/ isPrime: procedure; parse arg #; if wordpos(#, '2 3 5 7')\==0 then return 1

                                        if # // 2==0 | # // 3    ==0  then return 0
          do j=5  by 6  until j*j>#;    if # // j==0 | # // (J+2)==0  then return 0
          end   /*j*/                           /*           ___                       */
        return 1                                /*Exceeded  √ #  ?    Then # is prime. */</lang>
output:
      n=1                   43
      n=2                   89
      n=3                  179
      n=4                  359
      n=5                  719
      n=6                1,439
      n=7                2,879
      n=8                5,779
      n=9               11,579
     n=10               23,159
     n=11               46,327
     n=12               92,657
     n=13              185,323
     n=14              370,661
     n=15              741,337
     n=16            1,482,707
     n=17            2,965,421
     n=18            5,930,887
     n=19           11,861,791
     n=20           23,723,597
     n=21           47,447,201
     n=22           94,894,427
     n=23          189,788,857
     n=24          379,577,741
     n=25          759,155,483
     n=26        1,518,310,967
     n=27        3,036,621,941
     n=28        6,073,243,889
     n=29       12,146,487,779
     n=30       24,292,975,649
     n=31       48,585,951,311
     n=32       97,171,902,629
     n=33      194,343,805,267
     n=34      388,687,610,539
     n=35      777,375,221,081
     n=36    1,554,750,442,183
     n=37    3,109,500,884,389
     n=38    6,219,001,768,781
     n=39   12,438,003,537,571
     n=40   24,876,007,075,181
     n=41   49,752,014,150,467
     n=42   99,504,028,301,131

Ring

<lang ring>

  1. Project : Loops/Increment loop index within loop body

load "stdlib.ring" i = 42 n = 0 while n < 42

        if isprime(i) 
           n = n + 1
           see "n = " + n + "    " + i + nl
           i = i + i - 1
        ok
        i = i + 1

end </lang> Output:

n = 1                    43
n = 2                    89
n = 3                   179
n = 4                   359
n = 5                   719
n = 6                 1,439
n = 7                 2,879
n = 8                 5,779
n = 9                11,579
n = 10               23,159
n = 11               46,327
n = 12               92,657
n = 13              185,323
n = 14              370,661
n = 15              741,337
n = 16            1,482,707
n = 17            2,965,421
n = 18            5,930,887
n = 19           11,861,791
n = 20           23,723,597
n = 21           47,447,201
n = 22           94,894,427
n = 23          189,788,857
n = 24          379,577,741
n = 25          759,155,483
n = 26        1,518,310,967
n = 27        3,036,621,941
n = 28        6,073,243,889
n = 29       12,146,487,779
n = 30       24,292,975,649
n = 31       48,585,951,311
n = 32       97,171,902,629
n = 33      194,343,805,267
n = 34      388,687,610,539
n = 35      777,375,221,081
n = 36    1,554,750,442,183
n = 37    3,109,500,884,389
n = 38    6,219,001,768,781
n = 39   12,438,003,537,571
n = 40   24,876,007,075,181
n = 41   49,752,014,150,467
n = 42   99,504,028,301,131

Ruby

<lang Ruby> require 'prime'

limit = 42 i = 42 n = 0

while n < limit do

 if i.prime? then
   n += 1
   puts "n = #{n}".ljust(7) + ":" + "#{i.to_s.reverse.scan(/\d{3}|.+/).join(",").reverse}".rjust(19)
   i += i
 else
   i += 1
 end

end </lang> Output :

n = 1  :                 43
n = 2  :                 89
n = 3  :                179
n = 4  :                359
n = 5  :                719
n = 6  :              1,439
n = 7  :              2,879
n = 8  :              5,779
n = 9  :             11,579
n = 10 :             23,159
n = 11 :             46,327
n = 12 :             92,657
n = 13 :            185,323
n = 14 :            370,661
n = 15 :            741,337
n = 16 :          1,482,707
n = 17 :          2,965,421
n = 18 :          5,930,887
n = 19 :         11,861,791
n = 20 :         23,723,597
n = 21 :         47,447,201
n = 22 :         94,894,427
n = 23 :        189,788,857
n = 24 :        379,577,741
n = 25 :        759,155,483
n = 26 :      1,518,310,967
n = 27 :      3,036,621,941
n = 28 :      6,073,243,889
n = 29 :     12,146,487,779
n = 30 :     24,292,975,649
n = 31 :     48,585,951,311
n = 32 :     97,171,902,629
n = 33 :    194,343,805,267
n = 34 :    388,687,610,539
n = 35 :    777,375,221,081
n = 36 :  1,554,750,442,183
n = 37 :  3,109,500,884,389
n = 38 :  6,219,001,768,781
n = 39 : 12,438,003,537,571
n = 40 : 24,876,007,075,181
n = 41 : 49,752,014,150,467
n = 42 : 99,504,028,301,131

Scala

Like most other Block structured languages (apparently with the exception of Java), Scala's 'for' statement is for the sake of fallibility aka side effect or mutability, limited and doesn't allow either the iteration variable or the step to be modified within the loop body. Both are for serious reasons immutable.

Demonstrate the best way to accomplish this.

So instead we use tail recursion here which, with the use of immutable variables and no side effects, has no such restrictions, and we are save.

Output:

Best seen running in your browser either by ScalaFiddle (ES aka JavaScript, non JVM) or Scastie (remote JVM).

<lang Scala>import scala.annotation.tailrec

object LoopIncrementWithinBody extends App {

 private val (limit, offset) = (42L, 1)
 @tailrec
 private def loop(i: Long, n: Int): Unit = {
   def isPrime(n: Long) =
     n > 1 && ((n & 1) != 0 || n == 2) && (n % 3 != 0 || n == 3) &&
       ((5 to math.sqrt(n).toInt by 2).par forall (n % _ != 0))
   if (n < limit + offset)
     if (isPrime(i)) {
       printf("n = %-2d  %,19d%n".formatLocal(java.util.Locale.GERMANY, n, i))
       loop(i + i + 1, n + 1)
     } else loop(i + 1, n)
 }
 loop(limit, offset)

}</lang>

Seed7

<lang seed7>$ include "seed7_05.s7i";

const func boolean: isPrime (in integer: number) is func

 result
   var boolean: result is FALSE;
 local
   var integer: count is 2;
 begin
   if number = 2 then
     result := TRUE;
   elsif number > 2 then
     while number rem count <> 0 and count * count <= number do
       incr(count);
     end while;
     result := number rem count <> 0;
   end if;
 end func;

const proc: main is func

 local
   var integer: i is 42;
   var integer: n is 0;
 begin
   for i range 42 to integer.last until n >= 42 do
     if isPrime(i) then
       incr(n);
       writeln("n = " <& n lpad 2 <& i lpad 16);
       i +:= i - 1;
     end if;
   end for;
 end func;</lang>
Output:
n =  1              43
n =  2              89
n =  3             179
n =  4             359
n =  5             719
n =  6            1439
n =  7            2879
n =  8            5779
n =  9           11579
n = 10           23159
n = 11           46327
n = 12           92657
n = 13          185323
n = 14          370661
n = 15          741337
n = 16         1482707
n = 17         2965421
n = 18         5930887
n = 19        11861791
n = 20        23723597
n = 21        47447201
n = 22        94894427
n = 23       189788857
n = 24       379577741
n = 25       759155483
n = 26      1518310967
n = 27      3036621941
n = 28      6073243889
n = 29     12146487779
n = 30     24292975649
n = 31     48585951311
n = 32     97171902629
n = 33    194343805267
n = 34    388687610539
n = 35    777375221081
n = 36   1554750442183
n = 37   3109500884389
n = 38   6219001768781
n = 39  12438003537571
n = 40  24876007075181
n = 41  49752014150467
n = 42  99504028301131

Standard ML

<lang Standard ML> fun until done change dolast x =

   if done x
     then    dolast x
     else    until done change dolast (change x);       (* iteration/generic loop *)


val isprime = fn n :IntInf.int => let

fun butlast (_,t)   = t*t > n
fun divide (n,t)    = n mod t = 0 orelse t*t > n
fun trymore (n,t)   = (n,t + 2)

in

n mod 2 <> 0 andalso until divide trymore butlast (n,3)

end;

val loop = fn () => let

fun butthislast (_,p,_) = rev p 
fun wegot42 (n,_,_)     = n = 43
fun trymore (n,p,i)     = if isprime i 
                                  then ( n+1, (n,i)::p , i+i )
                                  else ( n ,  p, i+1)

in

 until wegot42 trymore butthislast  (1,[],42)

end ;

val printp = fn clist:(int*IntInf.int) list =>

List.app (fn i=>print ((Int.toString (#1 i) )^" : "^ (IntInf.toString (#2 i) )^"\n")) clist ; </lang>

call

 printp (loop ()) ;
1 : 43
2 : 89
3 : 179
4 : 359
5 : 719
6 : 1439
7 : 2879
8 : 5779
9 : 11579
10 : 23159
11 : 46327
12 : 92657
13 : 185323
14 : 370661
15 : 741337
16 : 1482707
17 : 2965421
18 : 5930887
19 : 11861791
20 : 23723597
21 : 47447201
22 : 94894427
23 : 189788857
24 : 379577741
25 : 759155483
26 : 1518310967
27 : 3036621941
28 : 6073243889
29 : 12146487779
30 : 24292975649
31 : 48585951311
32 : 97171902629
33 : 194343805267
34 : 388687610539
35 : 777375221081
36 : 1554750442183
37 : 3109500884389
38 : 6219001768781
39 : 12438003537571
40 : 24876007075181
41 : 49752014150467
42 : 99504028301131

Tcl

Inspired by Java and Kotlin variants.

Tcl allows modifying the loop variable. Everything can be implemented straightforward. <lang tcl>proc isPrime n {

 if {[expr $n % 2] == 0} {
   return [expr $n == 2]
 }
 if {[expr $n % 3] == 0} {
   return [expr $n == 3]
 }
 for {set d 5} {[expr $d * $d] <= $n} {incr d 4} {
   if {[expr $n % $d] == 0} {return 0}
   incr d 2
   if {[expr $n % $d] == 0} {return 0}
 }
 return 1

}

set LIMIT 42

for {set i $LIMIT; set n 0} {$n < $LIMIT} {incr i} {

 if [isPrime $i] {
   incr n
   puts "n=$n, i=$i"
   incr i [expr $i -1]
 }

}</lang>

Output:
n=1, i=43
n=2, i=89
n=3, i=179
n=4, i=359
n=5, i=719
n=6, i=1439
n=7, i=2879
n=8, i=5779
n=9, i=11579
n=10, i=23159
n=11, i=46327
n=12, i=92657
n=13, i=185323
n=14, i=370661
n=15, i=741337
n=16, i=1482707
n=17, i=2965421
n=18, i=5930887
n=19, i=11861791
n=20, i=23723597
n=21, i=47447201
n=22, i=94894427
n=23, i=189788857
n=24, i=379577741
n=25, i=759155483
n=26, i=1518310967
n=27, i=3036621941
n=28, i=6073243889
n=29, i=12146487779
n=30, i=24292975649
n=31, i=48585951311
n=32, i=97171902629
n=33, i=194343805267
n=34, i=388687610539
n=35, i=777375221081
n=36, i=1554750442183
n=37, i=3109500884389
n=38, i=6219001768781
n=39, i=12438003537571
n=40, i=24876007075181
n=41, i=49752014150467
n=42, i=99504028301131

VBA

Visual Basic for Application (VBA) allows to modify the index inside the loop.

Translation of: Visual Basic .NET
Works with: VBA version VBA Excel 2013

<lang vb> Sub Main()

       'Loops Increment loop index within loop body - 17/07/2018
       Dim imax, i As Integer
       Dim n As Currency
       imax = 42
       i = 0: n = 42
       Do While i < imax
           If IsPrime(n) Then
               i = i + 1
               Debug.Print ("i=" & RightX(i, 2) & " : " & RightX(Format(n, "#,##0"), 20))
               n = n + n - 1
           End If
           n = n + 1
       Loop
   End Sub 'Main
   Function IsPrime(n As Currency)
       Dim i As Currency
       If n = 2 Or n = 3 Then
           IsPrime = True
       ElseIf ModX(n, 2) = 0 Or ModX(n, 3) = 0 Then
           IsPrime = False
       Else
           i = 5
           Do While i * i <= n
               If ModX(n, i) = 0 Or ModX(n, i + 2) = 0 Then
                   IsPrime = False
                   Exit Function
               End If
               i = i + 6
           Loop
           IsPrime = True
       End If
   End Function 'IsPrime
   Function ModX(a As Currency, b As Currency) As Currency
       ModX = a - Int(a / b) * b
   End Function 'ModX
   
   Function RightX(c, n)
       RightX = Right(Space(n) & c, n)
   End Function 'RightX</lang>
Output:
i= 1 :                   43
i= 2 :                   89
i= 3 :                  179
i= 4 :                  359
i= 5 :                  719
i= 6 :                1,439
i= 7 :                2,879
i= 8 :                5,779
i= 9 :               11,579
i=10 :               23,159
i=11 :               46,327
i=12 :               92,657
i=13 :              185,323
i=14 :              370,661
i=15 :              741,337
i=16 :            1,482,707
i=17 :            2,965,421
i=18 :            5,930,887
i=19 :           11,861,791
i=20 :           23,723,597
i=21 :           47,447,201
i=22 :           94,894,427
i=23 :          189,788,857
i=24 :          379,577,741
i=25 :          759,155,483
i=26 :        1,518,310,967
i=27 :        3,036,621,941
i=28 :        6,073,243,889
i=29 :       12,146,487,779
i=30 :       24,292,975,649
i=31 :       48,585,951,311
i=32 :       97,171,902,629
i=33 :      194,343,805,267
i=34 :      388,687,610,539
i=35 :      777,375,221,081
i=36 :    1,554,750,442,183
i=37 :    3,109,500,884,389
i=38 :    6,219,001,768,781
i=39 :   12,438,003,537,571
i=40 :   24,876,007,075,181
i=41 :   49,752,014,150,467
i=42 :   99,504,028,301,131

Visual Basic .NET

Visual Basic .Net allows to modify the index inside the loop.

Translation of: Visual Basic
Works with: Visual Basic .NET version 2013

<lang vbnet>Module LoopsIliwlb

   Sub Main()
       'Loops Increment loop index within loop body - 17/07/2018
       Dim imax, i As Int32
       Dim n As Int64
       imax = 42
       i = 0 : n = 42
       While i < imax
           If IsPrime(n) Then
               i = i + 1
               Console.WriteLine("i=" & RightX(i, 2) & " : " & RightX(Format(n, "#,##0"), 20))
               n = n + n - 1
           End If
           n = n + 1
       End While
   End Sub
   Function IsPrime(n As Int64)
       Dim i As Int64
       If n = 2 Or n = 3 Then
           IsPrime = True
       ElseIf (n Mod 2) = 0 Or (n Mod 3) = 0 Then
           IsPrime = False
       Else
           i = 5
           While i * i <= n
               If (n Mod i) = 0 Or (n Mod (i + 2)) = 0 Then
                   IsPrime = False
                   Exit Function
               End If
               i = i + 6
           End While
           IsPrime = True
       End If
   End Function 'IsPrime
   Function RightX(c, n)
       RightX = Right(Space(n) & c, n)
   End Function

End Module</lang>

Output:
i= 1 :                   43
i= 2 :                   89
i= 3 :                  179
i= 4 :                  359
i= 5 :                  719
i= 6 :                1,439
i= 7 :                2,879
i= 8 :                5,779
i= 9 :               11,579
i=10 :               23,159
i=11 :               46,327
i=12 :               92,657
i=13 :              185,323
i=14 :              370,661
i=15 :              741,337
i=16 :            1,482,707
i=17 :            2,965,421
i=18 :            5,930,887
i=19 :           11,861,791
i=20 :           23,723,597
i=21 :           47,447,201
i=22 :           94,894,427
i=23 :          189,788,857
i=24 :          379,577,741
i=25 :          759,155,483
i=26 :        1,518,310,967
i=27 :        3,036,621,941
i=28 :        6,073,243,889
i=29 :       12,146,487,779
i=30 :       24,292,975,649
i=31 :       48,585,951,311
i=32 :       97,171,902,629
i=33 :      194,343,805,267
i=34 :      388,687,610,539
i=35 :      777,375,221,081
i=36 :    1,554,750,442,183
i=37 :    3,109,500,884,389
i=38 :    6,219,001,768,781
i=39 :   12,438,003,537,571
i=40 :   24,876,007,075,181
i=41 :   49,752,014,150,467
i=42 :   99,504,028,301,131

Wren

Library: fmt

Although it might appear as though one can change the index variable within a for loop, it does in fact change a local copy of the variable and the iteration is not affected at all. Consequently, the only way to complete this task in Wren is to use a while loop. <lang ecmascript>import "/fmt" for Fmt

var isPrime = Fn.new { |n|

   if (n < 2 || !n.isInteger) return false
   if (n%2 == 0) return n == 2
   if (n%3 == 0) return n == 3
   var d = 5
   while (d*d <= n) {
       if (n%d == 0) return false
       d = d + 2
       if (n%d == 0) return false
       d = d + 4
   }
   return true

}

var count = 0 var i = 42 while (count < 42) {

   if (isPrime.call(i)) {
       count = count + 1
       System.print("%(Fmt.d(2, count)): %(Fmt.dc(18, i))")
       i = 2 * i - 1        
   }
   i = i + 1

}</lang>

Output:
 1:                 43
 2:                 89
 3:                179
 4:                359
 5:                719
 6:              1,439
 7:              2,879
 8:              5,779
 9:             11,579
10:             23,159
11:             46,327
12:             92,657
13:            185,323
14:            370,661
15:            741,337
16:          1,482,707
17:          2,965,421
18:          5,930,887
19:         11,861,791
20:         23,723,597
21:         47,447,201
22:         94,894,427
23:        189,788,857
24:        379,577,741
25:        759,155,483
26:      1,518,310,967
27:      3,036,621,941
28:      6,073,243,889
29:     12,146,487,779
30:     24,292,975,649
31:     48,585,951,311
32:     97,171,902,629
33:    194,343,805,267
34:    388,687,610,539
35:    777,375,221,081
36:  1,554,750,442,183
37:  3,109,500,884,389
38:  6,219,001,768,781
39: 12,438,003,537,571
40: 24,876,007,075,181
41: 49,752,014,150,467
42: 99,504,028,301,131

zkl

Uses libGMP (GNU MP Bignum Library) for easy prime detection rather than write that bit of code and pollute this solution. <lang zkl>var [const] BN=Import("zklBigNum"); // libGMP n,p := 1,BN(42); do{

  if(p.probablyPrime()){ println("n = %2d %,20d".fmt(n,p)); p.add(p); n+=1; }
  p.add(1); 

}while(n<=42);</lang> zkl loop variables are iterators that don't allow direct manipulation of their underlying source. The compiler names these iterators __<index>Walker. However, by using the look ahead stack, we can keep the iterator from advancing through the source. <lang zkl>p:=BN(42); foreach n in ([1..42]){

  if(p.probablyPrime()){ println("n = %2d %,20d".fmt(n,p)); p.add(p); }
  else{ p.add(1); __nWalker.push(n); }  // p not prime, don't advance n

}</lang>

Output:
n =  1                   43
n =  2                   89
n =  3                  179
n =  4                  359
n =  5                  719
n =  6                1,439
n =  7                2,879
n =  8                5,779
n =  9               11,579
n = 10               23,159
n = 11               46,327
n = 12               92,657
n = 13              185,323
n = 14              370,661
n = 15              741,337
n = 16            1,482,707
n = 17            2,965,421
n = 18            5,930,887
n = 19           11,861,791
n = 20           23,723,597
n = 21           47,447,201
n = 22           94,894,427
n = 23          189,788,857
n = 24          379,577,741
n = 25          759,155,483
n = 26        1,518,310,967
n = 27        3,036,621,941
n = 28        6,073,243,889
n = 29       12,146,487,779
n = 30       24,292,975,649
n = 31       48,585,951,311
n = 32       97,171,902,629
n = 33      194,343,805,267
n = 34      388,687,610,539
n = 35      777,375,221,081
n = 36    1,554,750,442,183
n = 37    3,109,500,884,389
n = 38    6,219,001,768,781
n = 39   12,438,003,537,571
n = 40   24,876,007,075,181
n = 41   49,752,014,150,467
n = 42   99,504,028,301,131