# Sum multiples of 3 and 5

Sum multiples of 3 and 5
You are encouraged to solve this task according to the task description, using any language you may know.

The objective is to write a function that finds the sum of all positive multiples of 3 or 5 below n.

Show output for n = 1000.

Extra credit: do this efficiently for n = 1e20 or higher.

## 360 Assembly

*        Sum multiples of 3 and 5
SUM35 CSECT
USING SUM35,R13 base register
B 72(R15) skip savearea
DC 17F'0' savearea
STM R14,R12,12(R13) save previous context
LA R9,1 n=1
LA R7,7 do j=7 to 1 step -1
LOOPJ MH R9,=H'10' n=n*10
LR R10,R9 n
BCTR R10,0 n-1
ZAP SUM,=PL8'0' sum=0
LA R6,3 i=3
DO WHILE=(CR,R6,LE,R10) do i=3 to n-1
LR R4,R6 i
SRDA R4,32
D R4,=F'3' i/3
LTR R4,R4 if mod(i,3)=0
BZ CVD
LR R4,R6 i
SRDA R4,32
D R4,=F'5' i/5
LTR R4,R4 if mod(i,5)=0
BNZ ITERI
CVD CVD R6,IP ip=p
AP SUM,IP sum=sum+i
ITERI LA R6,1(R6) i++
ENDDO , enddo i
XDECO R9,PG n
ED PG+15(16),SUM packed dec (PL8) to char (CL16)
XPRNT PG,L'PG print
BCT R7,LOOPJ enddo j
L R13,4(0,R13) restore previous savearea pointer
LM R14,R12,12(R13) restore previous context
XR R15,R15 rc=0
BR R14 exit
SUM DS PL8
IP DS PL8
EM16 DC X'40202020202020202020202020202120' mask CL16 15num
PG DC CL80'123456789012 : 1234567890123456'
YREGS
END SUM35
Output:
10 :               23
100 :             2318
1000 :           233168
10000 :         23331668
100000 :       2333316668
1000000 :     233333166668
10000000 :   23333331666668

## ALGOL 68

Works with: ALGOL 68G version Any - tested with release 2.8.3.win32

Uses Algol 68G's LONG LONG INT to handle large numbers.

# returns the sum of the multiples of 3 and 5 below n #
PROC sum of multiples of 3 and 5 below = ( LONG LONG INT n )LONG LONG INT:
BEGIN
# calculate the sum of the multiples of 3 below n #
LONG LONG INT multiples of 3 = ( n - 1 ) OVER 3;
LONG LONG INT multiples of 5 = ( n - 1 ) OVER 5;
LONG LONG INT multiples of 15 = ( n - 1 ) OVER 15;
( # twice the sum of multiples of 3 #
( 3 * multiples of 3 * ( multiples of 3 + 1 ) )
# plus twice the sum of multiples of 5 #
+ ( 5 * multiples of 5 * ( multiples of 5 + 1 ) )
# less twice the sum of multiples of 15 #
- ( 15 * multiples of 15 * ( multiples of 15 + 1 ) )
) OVER 2
END # sum of multiples of 3 and 5 below # ;

print( ( "Sum of multiples of 3 and 5 below 1000: "
, whole( sum of multiples of 3 and 5 below( 1000 ), 0 )
, newline
)
);
print( ( "Sum of multiples of 3 and 5 below 1e20: "
, whole( sum of multiples of 3 and 5 below( 100 000 000 000 000 000 000 ), 0 )
, newline
)
)
Output:
Sum of multiples of 3 and 5 below 1000: 233168
Sum of multiples of 3 and 5 below 1e20: 2333333333333333333316666666666666666668

## APL

⎕IO←0
{+/((0=3|a)∨0=5|a)/a←⍳⍵} 1000
run
Output:
233168

## AppleScript

Translation of: JavaScript
-- SUM MULTIPLES OF 3 AND 5 --------------------------------------------------

-- sums of all multiples of 3 or 5 below or equal to N
-- for N = 10 to N = 10E8 (limit of AS integers)

-- sum35Result :: String -> Int -> Int -> String
script sum35Result

-- sum35 :: Int -> Int
on sum35(n)
sumMults(n, 3) + sumMults(n, 5) - sumMults(n, 15)
end sum35

-- Area under straight line between first multiple and last:

-- sumMults :: Int -> Int -> Int
on sumMults(n, f)
set n1 to (n - 1) div f

f * n1 * (n1 + 1) div 2
end sumMults

on |λ|(a, x, i)
a & "10<sup>" & i & "</sup> -> " & ¬
sum35(10 ^ x) & "<br>"
end |λ|
end script

-- TEST ----------------------------------------------------------------------
on run

foldl(sum35Result, "", enumFromTo(1, 8))

end run

-- GENERIC FUNCTIONS ---------------------------------------------------------

-- enumFromTo :: Int -> Int -> [Int]
on enumFromTo(m, n)
if m > n then
set d to -1
else
set d to 1
end if
set lst to {}
repeat with i from m to n by d
set end of lst to i
end repeat
return lst
end enumFromTo

-- foldl :: (a -> b -> a) -> a -> [b] -> a
on foldl(f, startValue, xs)
tell mReturn(f)
set v to startValue
set lng to length of xs
repeat with i from 1 to lng
set v to |λ|(v, item i of xs, i, xs)
end repeat
return v
end tell
end foldl

-- Lift 2nd class handler function into 1st class script wrapper
-- mReturn :: Handler -> Script
on mReturn(f)
if class of f is script then
f
else
script
property |λ| : f
end script
end if
end mReturn
Output:

101 -> 23
102 -> 2318
103 -> 233168
104 -> 23331668
105 -> 2.333316668E+9
106 -> 2.33333166668E+11
107 -> 2.333333166667E+13
108 -> 2.333333316667E+15

## AutoHotkey

n := 1000

msgbox % "Sum is " . Sum3_5(n) . " for n = " . n
msgbox % "Sum is " . Sum3_5_b(n) . " for n = " . n

;Standard simple Implementation.
Sum3_5(n) {
sum := 0
loop % n-1 {
if (!Mod(a_index,3) || !Mod(a_index,5))
sum:=sum+A_index
}
return sum
}

;Translated from the C++ version.
Sum3_5_b( i ) {
sum := 0, a := 0
while (a < 28)
{
if (!Mod(a,3) || !Mod(a,5))
{
sum += a
s := 30
while (s < i)
{
if (a+s < i)
sum += (a+s)
s+=30
}
}
a+=1
}
return sum
}
Output:
Sum is 233168 for n = 1000
Sum is 233168 for n = 1000

## AWK

Save this into file "sum_multiples_of3and5.awk"

#!/usr/bin/awk -f
{
n = \$1-1;
print sum(n,3)+sum(n,5)-sum(n,15);
}
function sum(n,d) {
m = int(n/d);
return (d*m*(m+1)/2);
}
Output:
\$ echo 1000 |awk -f sum_multiples_of3and5.awk
233168

### Extra credit

Works with: Gawk version 4.1

In Awk, all numbers are represented internally as double precision floating-point numbers. Thus the result for the extra credit is unprecise. Since version 4.1, GNU Awk supports high precision arithmetic (using GNU MPFR and GMP) which is turned on with the -M / --bignum option. The variable PREC sets the working precision for arithmetic operations (here 80 bits):

\$ echo -e "1000\n1e20" | gawk -M -v PREC=80 -f sum_multiples_of3and5.awk
233168
2333333333333333333316666666666666666668

## BASIC

Works with: FreeBASIC
Declare function mulsum35(n as integer) as integer
Function mulsum35(n as integer) as integer
Dim s as integer
For i as integer = 1 to n - 1
If (i mod 3 = 0) or (i mod 5 = 0) then
s += i
End if
Next i
Return s
End Function
Print mulsum35(1000)
Sleep
End
Output:
233168

### IS-BASIC

100 PRINT MULTSUM35(1000)
110 DEF MULTSUM35(N)
120 LET S=0
130 FOR I=1 TO N-1
140 IF MOD(I,3)=0 OR MOD(I,5)=0 THEN LET S=S+I
150 NEXT
160 LET MULTSUM35=S
170 END DEF

### Sinclair ZX81 BASIC

Works with 1k of RAM.

The ZX81 doesn't offer enough numeric precision to try for the extra credit. This program is pretty unsophisticated; the only optimization is that we skip testing whether ${\displaystyle i}$ is divisible by 5 if we already know it's divisible by 3. (ZX81 BASIC doesn't do this automatically: both sides of an OR are evaluated, even if we don't need the second one.) Even so, with ${\displaystyle n}$ = 1000 the performance is pretty acceptable.

10 INPUT N
20 FAST
30 LET SUM=0
40 FOR I=3 TO N-1
50 IF I/3=INT (I/3) THEN GOTO 70
60 IF I/5<>INT (I/5) THEN GOTO 80
70 LET SUM=SUM+I
80 NEXT I
90 SLOW
100 PRINT SUM
Input:
1000
Output:
233168

## bc

Translation of: Groovy
define t(n, f) {
auto m

m = (n - 1) / f
return(f * m * (m + 1) / 2)
}

define s(l) {
return(t(l, 3) + t(l, 5) - t(l, 15))
}

s(1000)
s(10 ^ 20)
Output:
233168
2333333333333333333316666666666666666668

## Befunge

Slow (iterative) version:

&1-:!#v_:3%#v_     >:>#
>+\:v >:5%#v_^
@.\$_^#! < > ^
Output:
233168

Fast (analytic) version:

&1-::3/:1+*3*2/\5/:1+*5*2/+\96+/:1+*96+*2/[email protected]
Output:
233168

## C

### Simple version

#include <stdio.h>
#include <stdlib.h>

unsigned long long sum35(unsigned long long limit)
{
unsigned long long sum = 0;
for (unsigned long long i = 0; i < limit; i++)
if (!(i % 3) || !(i % 5))
sum += i;
return sum;
}

int main(int argc, char **argv)
{
unsigned long long limit;

if (argc == 2)
limit = strtoull(argv[1], NULL, 10);
else
limit = 1000;

printf("%lld\n", sum35(limit));
return 0;
}
Output:
\$ ./a.out
233168
\$ ./a.out 12345
35553600

### Fast version with arbitrary precision

Library: GMP
#include <stdio.h>
#include <gmp.h>

void sum_multiples(mpz_t result, const mpz_t limit, const unsigned f)
{
mpz_t m;
mpz_init(m);
mpz_sub_ui(m, limit, 1);
mpz_fdiv_q_ui(m, m, f);

mpz_init_set(result, m);
mpz_mul(result, result, m);
mpz_mul_ui(result, result, f);
mpz_fdiv_q_2exp(result, result, 1);

mpz_clear(m);
}

int main(int argc, char **argv)
{
mpf_t temp;
mpz_t limit;

if (argc == 2)
{
mpf_init_set_str(temp, argv[1], 10);
mpz_init(limit);
mpz_set_f(limit, temp);
mpf_clear(temp);
}
else
mpz_init_set_str(limit, "1000000000000000000000", 10);

mpz_t temp_sum;
mpz_t sum35;

mpz_init(temp_sum);
sum_multiples(temp_sum, limit, 3);
mpz_init_set(sum35, temp_sum);
sum_multiples(temp_sum, limit, 5);
sum_multiples(temp_sum, limit, 15);
mpz_sub(sum35, sum35, temp_sum);

mpz_out_str(stdout, 10, sum35);
puts("");

mpz_clear(temp_sum);
mpz_clear(sum35);
mpz_clear(limit);
return 0;
}
Output:
\$ ./a.out
233333333333333333333166666666666666666668
\$ ./a.out 23e45
123433333333333333333333333333333333333333333314166666666666666666666666666666666666666666668

## C#

The following C# 5 / .Net 4 code is an efficient solution in that it does not iterate through the numbers 1 ... n - 1 in order to calculate the answer. On the other hand, the System.Numerics.BigInteger class (.Net 4 and upwards) is not itself efficient because calculations take place in software instead of hardware. Consequently, it may be faster to conduct the calculation for smaller values with native ("primitive") types using a 'brute force' iteration approach.

using System;
using System.Collections.Generic;
using System.Numerics;

namespace RosettaCode
{
class Program
{
static void Main()
{
List<BigInteger> candidates = new List<BigInteger>(new BigInteger[] { 1000, 100000, 10000000, 10000000000, 1000000000000000 });

foreach (BigInteger candidate in candidates)
{
BigInteger c = candidate - 1;

Console.WriteLine("The sum of numbers divisible by 3 or 5 between 1 and {0} is {1}", c, answer3 + answer5 - answer15);
}

}

private static BigInteger GetSumOfNumbersDivisibleByN(BigInteger candidate, uint n)
{
BigInteger largest = candidate;
while (largest % n > 0)
largest--;
BigInteger totalCount = (largest / n);
BigInteger pairCount = totalCount / 2;
bool unpairedNumberOnFoldLine = (totalCount % 2 == 1);
BigInteger pairSum = largest + n;
return pairCount * pairSum + (unpairedNumberOnFoldLine ? pairSum / 2 : 0);
}

}
}

Output:

The sum of numbers divisible by 3 or 5 between 1 and 999 is 233168

The sum of numbers divisible by 3 or 5 between 1 and 99999 is 2333316668

The sum of numbers divisible by 3 or 5 between 1 and 9999999 is 23333331666668

The sum of numbers divisible by 3 or 5 between 1 and 9999999999 is 23333333331666666668

The sum of numbers divisible by 3 or 5 between 1 and 999999999999999 is 233333333333333166666666666668

The sum of numbers divisible by 3 or 5 between 1 and 99999999999999999999 is 2333333333333333333316666666666666666668

## C++

#include <iostream>

//--------------------------------------------------------------------------------------------------
typedef unsigned long long bigInt;

using namespace std;
//--------------------------------------------------------------------------------------------------
class m35
{
public:
void doIt( bigInt i )
{
bigInt sum = 0;
for( bigInt a = 1; a < i; a++ )
if( !( a % 3 ) || !( a % 5 ) ) sum += a;

cout << "Sum is " << sum << " for n = " << i << endl << endl;
}

// this method uses less than half iterations than the first one
void doIt_b( bigInt i )
{
bigInt sum = 0;
for( bigInt a = 0; a < 28; a++ )
{
if( !( a % 3 ) || !( a % 5 ) )
{
sum += a;
for( bigInt s = 30; s < i; s += 30 )
if( a + s < i ) sum += ( a + s );

}
}
cout << "Sum is " << sum << " for n = " << i << endl << endl;
}
};
//--------------------------------------------------------------------------------------------------
int main( int argc, char* argv[] )
{
m35 m; m.doIt( 1000 );
return system( "pause" );
}

Output:
Sum is 233168 for n = 1000

## Clojure

Quick, concise way:

(defn sum-mults [n & mults]
(let [pred (apply some-fn
(map #(fn [x] (zero? (mod x %))) mults))]
(->> (range n) (filter pred) (reduce +))))

(println (sum-mults 1000 3 5))

Or optimized (translated from Groovy):

(defn sum-mul [n f]
(let [n1 (/' (inc' n) f)]
(*' f n1 (inc' n1) 1/2)

(def sum-35 #(-> % (sum-mul 3) (+ (sum-mul % 5)) (- (sum-mul % 15))))
(println (sum-35 1000000000))

## COBOL

Using OpenCOBOL.

Identification division.
Program-id. three-five-sum.

Data division.
Working-storage section.
01 ws-the-limit pic 9(18) value 1000.
01 ws-the-number pic 9(18).
01 ws-the-sum pic 9(18).
01 ws-sum-out pic z(18).

Procedure division.
Main-program.
Perform Do-sum
varying ws-the-number from 1 by 1
until ws-the-number = ws-the-limit.
Move ws-the-sum to ws-sum-out.
Display "Sum = " ws-sum-out.
End-run.

Do-sum.
If function mod(ws-the-number, 3) = zero
or function mod(ws-the-number, 5) = zero

Output:

Sum =             233168

Using triangular numbers:

Identification division.
Program-id. three-five-sum-fast.

Data division.
Working-storage section.
01 ws-num pic 9(18) value 1000000000.
01 ws-n5 pic 9(18).
01 ws-n3 pic 9(18).
01 ws-n15 pic 9(18).
01 ws-sum pic 9(18).
01 ws-out.
02 ws-out-num pic z(18).
02 filler pic x(3) value " = ".
02 ws-out-sum pic z(18).

Procedure division.
Main-program.
Perform
call "tri-sum" using ws-num 3 by reference ws-n3
call "tri-sum" using ws-num 5 by reference ws-n5
call "tri-sum" using ws-num 15 by reference ws-n15
end-perform.
Compute ws-sum = ws-n3 + ws-n5 - ws-n15.
Move ws-sum to ws-out-sum.
Move ws-num to ws-out-num.
Display ws-out.

Identification division.
Program-id. tri-sum.

Data division.
Working-storage section.
01 ws-n1 pic 9(18).
01 ws-n2 pic 9(18).

77 ls-num pic 9(18).
77 ls-fac pic 9(18).
77 ls-ret pic 9(18).

Procedure division using ls-num, ls-fac, ls-ret.
Compute ws-n1 = (ls-num - 1) / ls-fac.
Compute ws-n2 = ws-n1 + 1.
Compute ls-ret = ls-fac * ws-n1 * ws-n2 / 2.
goback.

Output:

1000000000 = 233333333166666668

A brute-method using only comparisons and adds. Compiles and runs as is in GnuCOBOL 2.0 and Micro Focus Visual COBOL 2.3. Takes about 7.3 seconds to calculate 1,000,000,000 iterations (AMD A6 quadcore 64bit)

IDENTIFICATION DIVISION.
PROGRAM-ID. SUM35.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 THREE-COUNTER USAGE BINARY-CHAR value 1.
88 IS-THREE VALUE 3.
01 FIVE-COUNTER USAGE BINARY-CHAR value 1.
88 IS-FIVE VALUE 5.
01 SUMMER USAGE BINARY-DOUBLE value zero.
01 I USAGE BINARY-LONG.
01 N USAGE BINARY-LONG.

PROCEDURE DIVISION.
10-MAIN-PROCEDURE.
MOVE 1000000000 TO N.
MOVE 1 TO I.
PERFORM 20-INNER-LOOP WITH TEST AFTER UNTIL I >= N.
DISPLAY SUMMER.
STOP RUN.
20-INNER-LOOP.
IF IS-THREE OR IS-FIVE
IF IS-THREE
MOVE 1 TO THREE-COUNTER
ELSE
END-IF
IF IS-FIVE
MOVE 1 TO FIVE-COUNTER
ELSE
END-IF
ELSE
END-IF.
EXIT.
END PROGRAM SUM35.

Output

+00233333333166666668

## Common Lisp

Slow, naive version:

(defun sum-3-5-slow (limit)
(loop for x below limit
when (or (zerop (rem x 3)) (zerop (rem x 5)))
sum x))

Fast version (adapted translation of Tcl):

(defun sum-3-5-fast (limit)
(flet ((triangular (n) (truncate (* n (1+ n)) 2)))
(let ((n (1- limit))) ; Sum multiples *below* the limit
(- (+ (* 3 (triangular (truncate n 3)))
(* 5 (triangular (truncate n 5))))
(* 15 (triangular (truncate n 15)))))))
Output:
> (values (sum-3-5-slow 1000) (sum-3-5-fast 1000))
233168 ;
233168
> (sum-3-5-fast 1000000000000000000000)
233333333333333333333166666666666666666668

## Component Pascal

BlackBox Component Builder

MODULE Sum3_5;
IMPORT StdLog, Strings, Args;

PROCEDURE DoSum(n: INTEGER):INTEGER;
VAR
i,sum: INTEGER;
BEGIN
sum := 0;i := 0;
WHILE (i < n) DO
IF (i MOD 3 = 0) OR (i MOD 5 = 0) THEN INC(sum,i) END;
INC(i)
END;
RETURN sum
END DoSum;

PROCEDURE Compute*;
VAR
params: Args.Params;
i,n,res: INTEGER;
BEGIN
Args.Get(params);
Strings.StringToInt(params.args[0],n,res);
StdLog.String("Sum: ");StdLog.Int(DoSum(n)); StdLog.Ln
END Compute;

END Sum3_5.

Execute: ^Q Sum3_5.Compute 1000 ~
Output:

Sum:  233168

## Crystal

def sum_3_5_muliples(n)
(0...n)
.select { |i| i % 3 == 0 || i % 5 == 0 }
.reduce { |acc, i| acc + i }
end

puts sum_3_5_muliples(1000)
# => 233168

## D

import std.stdio, std.bigint;

BigInt sum35(in BigInt n) pure nothrow {
static BigInt sumMul(in BigInt n, in int f) pure nothrow {
immutable n1 = (f==n?n:(n - 1) ) / f;
return f * n1 * (n1 + 1) / 2;
}

return sumMul(n, 3) + sumMul(n, 5) - sumMul(n, 15);
}

void main() {
1.BigInt.sum35.writeln;
3.BigInt.sum35.writeln;
5.BigInt.sum35.writeln;
1000.BigInt.sum35.writeln;
(10.BigInt ^^ 20).sum35.writeln;
}
Output:
0
3
8
233168
2333333333333333333316666666666666666668

## Déjà Vu

sum-divisible n:
0
for i range 1 -- n:
if or = 0 % i 3 = 0 % i 5:
+ i

!. sum-divisible 1000
Output:
233168

## Delphi

program sum35;

{\$APPTYPE CONSOLE}

var
sum: integer;
i: integer;

begin
result := aNumber mod aDivisor = 0
end;

begin
sum := 0;
for i := 3 to 999 do
begin
if isMultipleOf(i, 3) or isMultipleOf(i, 5) then
sum := sum + i;
end;
writeln(sum);
end.
Output:
233168

## EchoLisp

(lib 'math) ;; divides?
(lib 'sequences) ;; sum/when

(define (task n (k 3) (p 5 ))
(when (!= (gcd k p) 1) (error "expected coprimes" (list k p)))
(-
(+ (sum/mults n k) (sum/mults n p)) ;; add multiples of k , multiples of p
(sum/mults n (* k p)))) ;; remove multiples of k * p

;; using sequences
;; sum of multiples of k < n

(define (sum/mults n k)
(sum/when (rcurry divides? k) [1 .. n]))

233168

;; using simple arithmetic - 🎩 young Gauss formula
;; sum of multiples of k < n =
;; k*m*(m+1)/2 where m = floor(n/k)
(lib 'bigint)

(define (sum/mults n k)
(set! n (quotient (1- n) k))
(/ (* k n (1+ n )) 2))

2333333333333333333316666666666666666668

❌ error: expected coprimes (42 666)

## Eiffel

class
APPLICATION

create
make

feature {NONE}

make
do
io.put_integer (sum_multiples (1000))
end

sum_multiples (n: INTEGER): INTEGER
-- Sum of all positive multiples of 3 or 5 below 'n'.
do
across
1 |..| (n - 1) as c
loop
if c.item \\ 3 = 0 or c.item \\ 5 = 0 then
Result := Result + c.item
end
end
end

end

Output:
233168

## Elixir

Simple (but slow)

iex(1)> Enum.filter(0..1000-1, fn x -> rem(x,3)==0 or rem(x,5)==0 end) |> Enum.sum
233168

Fast version:

Translation of: Ruby
defmodule RC do
def sumMul(n, f) do
n1 = div(n - 1, f)
div(f * n1 * (n1 + 1), 2)
end

def sum35(n) do
sumMul(n, 3) + sumMul(n, 5) - sumMul(n, 15)
end
end

Enum.each(1..20, fn i ->
n = round(:math.pow(10, i))
IO.puts RC.sum35(n)
end)
Output:
23
2318
233168
23331668
2333316668
233333166668
23333331666668
2333333316666668
233333333166666668
23333333331666666668
2333333333316666666668
233333333333166666666668
23333333333331666666666668
2333333333333316666666666668
233333333333333166666666666668
23333333333333331666666666666668
2333333333333333316666666666666668
233333333333333333166666666666666668
23333333333333333331666666666666666668
2333333333333333333316666666666666666668

## Emacs Lisp

### version 1

(defun sum-3-5 (ls)
(apply '+ (mapcar
'(lambda (x) (if (or (= 0 (% x 3) ) (= 0 (% x 5) ))
x 0) )
ls) ))

### version 2

(defun sum-3-5 (ls)
(apply '+ (seq-filter
'(lambda (x) (or (= 0 (% x 3) ) (= 0 (% x 5) )))
ls) ))

Eval:

(insert (format "%d" (sum-3-5 (number-sequence 1 100) )))

Output:

2418

## Erlang

sum_3_5(X) when is_number(X) -> sum_3_5(erlang:round(X)-1, 0).
sum_3_5(X, Total) when X < 3 -> Total;
sum_3_5(X, Total) when X rem 3 =:= 0 orelse X rem 5 =:= 0 ->
sum_3_5(X-1, Total+X);
sum_3_5(X, Total) ->
sum_3_5(X-1, Total).

io:format("~B~n", [sum_3_5(1000)]).
Output:
233168

## F#

let sum35 n = Seq.init n (id) |> Seq.reduce (fun sum i -> if i % 3 = 0 || i % 5 = 0 then sum + i else sum)

printfn "%d" (sum35 1000)
printfn "----------"

let sumUpTo (n : bigint) = n * (n + 1I) / 2I

let sumMultsBelow k n = k * (sumUpTo ((n-1I)/k))

let sum35fast n = (sumMultsBelow 3I n) + (sumMultsBelow 5I n) - (sumMultsBelow 15I n)

[for i = 0 to 30 do yield i]
|> List.iter (fun i -> printfn "%A" (sum35fast (bigint.Pow(10I, i))))
Output:
233168
----------
0
23
2318
233168
23331668
2333316668
233333166668
23333331666668
2333333316666668
233333333166666668
23333333331666666668
2333333333316666666668
233333333333166666666668
23333333333331666666666668
2333333333333316666666666668
233333333333333166666666666668
23333333333333331666666666666668
2333333333333333316666666666666668
233333333333333333166666666666666668
23333333333333333331666666666666666668
2333333333333333333316666666666666666668
233333333333333333333166666666666666666668
23333333333333333333331666666666666666666668
2333333333333333333333316666666666666666666668
233333333333333333333333166666666666666666666668
23333333333333333333333331666666666666666666666668
2333333333333333333333333316666666666666666666666668
233333333333333333333333333166666666666666666666666668
23333333333333333333333333331666666666666666666666666668
2333333333333333333333333333316666666666666666666666666668
233333333333333333333333333333166666666666666666666666666668

## Factor

USING: formatting kernel math math.functions sequences
tools.time ;
IN: rosetta-code.sum35

: {x+y-z} ( {x,y,z} -- x+y-z ) first3 [ + ] dip - ;

: range-length ( limit multiple -- len ) [ 1 - ] dip /i ;

: triangular ( limit multiple -- sum )
[ range-length ] [ nip over 1 + ] 2bi * * 2 / ;

: sum35 ( limit -- sum )
{ 3 5 15 } [ triangular ] with map {x+y-z} ;

: msg ( limit sum -- )
"The sum of multiples of 3 or 5 below %d is %d.\n" printf ;

: output ( limit -- ) dup sum35 msg ;

: main ( -- ) [ 1000 10 20 ^ [ output ] [email protected] ] time ;

MAIN: main
Output:
The sum of multiples of 3 or 5 below 1000 is 233168.
The sum of multiples of 3 or 5 below 100000000000000000000 is 2333333333333333333316666666666666666668.
Running time: 0.000923753 seconds

## FBSL

Derived from BASIC version

#APPTYPE CONSOLE

FUNCTION sumOfThreeFiveMultiples(n AS INTEGER)
DIM sum AS INTEGER
FOR DIM i = 1 TO n - 1
IF (NOT (i MOD 3)) OR (NOT (i MOD 5)) THEN
INCR(sum, i)
END IF
NEXT
RETURN sum
END FUNCTION

PRINT sumOfThreeFiveMultiples(1000)
PAUSE

Output

233168

Press any key to continue...

## Forth

: main ( n -- )
0 swap
3 do
i 3 mod 0= if
i +
else i 5 mod 0= if
i +
then then
loop
. ;

1000 main \ 233168 ok

Another FORTH version using the Inclusion/Exclusion Principle. The result is a double precision integer (128 bits on a 64 bit computer) which lets us calculate up to 10^18 (the max precision of a single precision 64 bit integer) Since this is Project Euler problem 1, the name of the main function is named euler1tower.

: third  2 pick ;

: >dtriangular ( n -- d )
dup 1+ m* d2/ ;

: sumdiv ( n m -- d )
dup >r / >dtriangular r> 1 m*/ ;

: sumdiv_3,5 ( n -- n )
dup 3 sumdiv third 5 sumdiv d+ rot 15 sumdiv d- ;

: euler1 ( -- n )
999 sumdiv_3,5 drop ;

: euler1tower ( -- )
1 \ power of 10
19 0 DO
cr dup 19 .r space dup 1- sumdiv_3,5 d.
10 *
LOOP drop ;

euler1 . 233168 ok
euler1tower
1 0
10 23
100 2318
1000 233168
10000 23331668
100000 2333316668
1000000 233333166668
10000000 23333331666668
100000000 2333333316666668
1000000000 233333333166666668
10000000000 23333333331666666668
100000000000 2333333333316666666668
1000000000000 233333333333166666666668
10000000000000 23333333333331666666666668
100000000000000 2333333333333316666666666668
1000000000000000 233333333333333166666666666668
10000000000000000 23333333333333331666666666666668
100000000000000000 2333333333333333316666666666666668
1000000000000000000 233333333333333333166666666666666668 ok

## Fortran

The method here recalls the story of the young Gauss being set the problem of adding up all the integers from one to a hundred by a master who wanted some peace and quiet from his class. The trick here is to apply the formula for multiples of three and for five, then remember that multiples of fifteen will have been counted twice.

Early Fortrans did not offer such monsters as INTEGER*8 but the F95 compiler I have does so. Even so, the source is in the style of F77 which means that in the absence of the MODULE protocol, the types of the functions must be specified if they are not default types. F77 also does not accept the END FUNCTION name protocol that F90 does, but such documentation enables compiler checks and not using it makes me wince.

INTEGER*8 FUNCTION SUMI(N) !Sums the integers 1 to N inclusive.
Calculates as per the young Gauss: N*(N + 1)/2 = 1 + 2 + 3 + ... + N.
INTEGER*8 N !The number. Possibly large.
IF (MOD(N,2).EQ.0) THEN !So, I'm worried about overflow with N*(N + 1)
SUMI = N/2*(N + 1) !But since N is even, N/2 is good.
ELSE !Otherwise, if N is odd,
SUMI = (N + 1)/2*N !(N + 1) must be even.
END IF !Either way, the /2 reduces the result.
END FUNCTION SUMI !So overflow of intermediate results is avoided.

INTEGER*8 FUNCTION SUMF(N,F) !Sum of numbers up to N divisible by F.
INTEGER*8 N,F !The selection.
INTEGER*8 L !The last in range. N itself is excluded.
INTEGER*8 SUMI !Known type of the function.
L = (N - 1)/F !Truncates fractional parts.
SUMF = F*SUMI(L) !3 + 6 + 9 + ... = 3(1 + 2 + 3 + ...)
END FUNCTION SUMF !Could just put SUMF = F*SUMI((N - 1)/F).

INTEGER*8 FUNCTION SUMBFI(N) !Brute force and ignorance summation.
INTEGER*8 N !The number.
INTEGER*8 I,S !Stepper and counter.
S = 0 !So, here we go.
DO I = 3,N - 1 !N itself is not a candidate.
IF (MOD(I,3).EQ.0 .OR. MOD(I,5).EQ.0) S = S + I !Whee!
END DO !On to the next.
SUMBFI = S !The result.
END FUNCTION SUMBFI !Oh well, computers are fast these days.

INTEGER*8 SUMF,SUMBFI !Known type of the function.
INTEGER*8 N !The number.
WRITE (6,*) "Sum multiples of 3 and 5 up to N"
11 FORMAT ("Specify N: ",\$) !Obviously, the \$ says 'stay on this line'.
READ (5,*) N !If blank input is given, further input will be requested.
IF (N.LE.0) STOP !Good enough.
WRITE (6,*) "By Gauss:",SUMF(N,3) + SUMF(N,5) - SUMF(N,15)
WRITE (6,*) "BFI sum :",SUMBFI(N) !This could be a bit slow.
GO TO 10 !Have another go.
END !So much for that.

Sample output:

Sum multiples of 3 and 5 up to N
Specify N: 1000
By Gauss:                233168
BFI sum :                233168
Specify N: 1001
By Gauss:                234168
BFI sum :                234168
Specify N: 1002
By Gauss:                234168
BFI sum :                234168
Specify N: 1003
By Gauss:                235170
BFI sum :                235170
Specify N: 1000000000
By Gauss:    233333333166666668
BFI sum :    233333333166666668

The result for a thousand million took about a minute for the brute-force-and-ignorance calculation. For much larger values of N, it should be discarded! Integer overflow even for 64-bit integers impends. The calculations could be conducted in double precision (or better, quadruple precision), a trivial modification to the source. Precise results would require the introduction of multi-precision arithmetic.

## FreeBASIC

' FB 1.05.0 Win64

Function sum35 (n As UInteger) As UInteger
If n = 0 Then Return 0
Dim As UInteger i, sum = 0
For i = 1 To n
If (i Mod 3 = 0) OrElse (i Mod 5 = 0) Then sum += i
Next
Return sum
End Function

Print "Sum of positive integers below 1000 divisible by 3 or 5 is : "; sum35(999)
Print
Print "Press any key to quit"
Sleep
Output:
Sum of positive integers below 1000 divisible by 3 or 5 is : 233168

## Go

package main

import "fmt"

func main() {
fmt.Println(s35(1000))
}

func s35(n int) int {
n--
threes := n / 3
fives := n / 5
fifteen := n / 15

threes = 3 * threes * (threes + 1)
fives = 5 * fives * (fives + 1)
fifteen = 15 * fifteen * (fifteen + 1)

n = (threes + fives - fifteen) / 2

return n
}
Output:
233168

Extra credit:

package main

import (
"fmt"
"math/big"
)

var (
b1 = big.NewInt(1)
b3 = big.NewInt(3)
b5 = big.NewInt(5)
b10 = big.NewInt(10)
b15 = big.NewInt(15)
b20 = big.NewInt(20)
)

func main() {
fmt.Println(s35(new(big.Int).Exp(b10, b3, nil)))
fmt.Println(s35(new(big.Int).Exp(b10, b20, nil)))
}

func s35(i *big.Int) *big.Int {
j := new(big.Int).Sub(i, b1)
sum2 := func(d *big.Int) *big.Int {
n := new(big.Int).Quo(j, d)
return p.Mul(d, p.Mul(p, n))
}
s := sum2(b3)
}
Output:
233168
2333333333333333333316666666666666666668

## Groovy

def sumMul = { n, f -> BigInteger n1 = (n - 1) / f; f * n1 * (n1 + 1) / 2 }
def sum35 = { sumMul(it, 3) + sumMul(it, 5) - sumMul(it, 15) }

Test Code:

[(1000): 233168, (10e20): 233333333333333333333166666666666666666668].each { arg, value ->
println "Checking \$arg == \$value"
assert sum35(arg) == value
}
Output:
Checking 1000 == 233168
Checking 1.0E+21 == 233333333333333333333166666666666666666668

Also a method for calculating sum of multiples of any list of numbers.

import Data.List (nub)

sum35 :: Integral a => a -> a
sum35 n = sumMul n 3 + sumMul n 5 - sumMul n 15

sumMul :: Integral a => a -> a -> a
sumMul n f = f * n1 * (n1 + 1) `div` 2
where
n1 = (n - 1) `div` f

-- Functions below are for variable length inputs

pairLCM :: Integral a => [a] -> [a]
pairLCM [] = []
pairLCM (x:xs) = (lcm x <\$> xs) ++ pairLCM xs

sumMulS :: Integral a => a -> [a] -> a
sumMulS _ [] = 0
sumMulS n s = sum (sumMul n <\$> ss) - sumMulS n (pairLCM ss)
where
ss = nub s

main :: IO ()
main =
mapM_
print
[ sum35 1000
, sum35 100000000000000000000000000000000
, sumMulS 1000 [3, 5]
, sumMulS 10000000 [2, 3, 5, 7, 11, 13]
]
Output:
233168
2333333333333333333333333333333316666666666666666666666666666668
233168
41426953573049

## Icon and Unicon

The following works in both langauges.

procedure main(A)
n := (integer(A[1]) | 1000)-1
write(sum(n,3)+sum(n,5)-sum(n,15))
end

procedure sum(n,m)
return m*((n/m)*(n/m+1)/2)
end

Sample output:

->sm35
233168
->sm35 100000000000000000000
2333333333333333333316666666666666666668
->

## J

mp =: \$:~ :(+/ .*) NB. matrix product
f =: (mp 0 = [: */ 3 5 |/ ])@:i.
assert 233168 -: f 1000 NB. ****************** THIS IS THE ANSWER FOR 1000

For the efficient computation with large n, we start with observation that the sum of these multiples with the reversed list follows a pattern.

g =: #~ (0 = [: */ 3 5&(|/))
assert 0 3 5 6 9 10 12 15 18 20 21 24 25 27 30 33 35 36 39 40 42 45 48 -: g i. 50
assert 48 48 47 46 48 46 47 48 48 47 46 48 46 47 48 48 47 46 48 46 47 48 48 -: (+ |.)g i. 50 NB. the pattern

assert (f -: -:@:(+/)@:(+|.)@:[email protected]:i.) 50 NB. half sum of the pattern.

NB. continue...

Stealing the idea from the python implementation to use 3 simple patterns rather than 1 complicated pattern,

first =: 0&{
last =: first + skip * <[email protected]:(skip %~ <:@:(1&{) - first)
skip =: 2&{
terms =: >:@:<[email protected]:(skip %~ last - first)
sum_arithmetic_series =: -:@:(terms * first + last) NB. sum_arithmetic_series FIRST LAST SKIP
NB. interval is [FIRST, LAST)
NB. sum_arithmetic_series is more general than required.

(0,.10 10000 10000000000000000000x)(,"1 0"1 _)3 5 15x NB. demonstration: form input vectors for 10, ten thousand, and 1*10^(many)
0 10 3
0 10 5
0 10 15

0 10000 3
0 10000 5
0 10000 15

0 10000000000000000000 3
0 10000000000000000000 5
0 10000000000000000000 15

(0,.10 10000 10000000000000000000x)+`-/"1@:(sum_arithmetic_series"1@:(,"1 0"1 _))3 5 15x
23 23331668 23333333333333333331666666666666666668

## JavaScript

### ES5

JavaScript is better equipped for flexibility than for scale. The value of
Number.MAX_SAFE_INTEGER
is 9007199254740991, or 2^53 - 1 – resulting from an IEEE 754 double-precision floating point representation of numeric values).

As Number.MAX_SAFE_INTEGER < 1E20 evaluates to true, the most obvious JS attack on a solution for 1E20 might involve some string processing …

At more modest scales, however, we can generalise a little to allow for an arbitrary list of integer factors, and write a simple generate, filter and sum approach:

(function (lstFactors, intExponent) {

// [n] -> n -> n
function sumMultiplesBelow(lstIntegers, limit) {
return range(1, limit - 1).filter(function (x) {
return isMultiple(lstIntegers, x);
}).reduce(function (a, n) {
return a + n;
}, 0)
}

// [n] -> n -> bool
function isMultiple(lst, n) {
var i = lng;
while (i--)
if (n % (lst[i]) === 0) return true;
return false;
}

// [m..n]
function range(m, n) {
var a = Array(n - m + 1),
i = n + 1;
while (i--) a[i - 1] = i;
return a;
}

/* TESTING */

// [[a]] -> bool -> s -> s
return '{| class="wikitable" ' + (
strStyle ? 'style="' + strStyle + '"' : ''
) + lstRows.map(function (lstRow, iRow) {
var strDelim = ((blnHeaderRow && !iRow) ? '!' : '|');

return '\n|-\n' + strDelim + ' ' + lstRow.map(function (v) {
return typeof v === 'undefined' ? ' ' : v;
}).join(' ' + strDelim + strDelim + ' ');
}).join('') + '\n|}';
}

var lng = lstFactors.length,
lstSorted = lstFactors.slice(0).sort();

var lstTable = [['Below', 'Sum']].concat(
range(1, intExponent).map(function (x) {
var pwr = Math.pow(10, x);

return ['10^' + x, sumMultiplesBelow(lstSorted, pwr)];
})
);

return 'For ' + JSON.stringify(lstFactors) + ':\n\n' +
wikiTable(lstTable, true) + '\n\n' +
JSON.stringify(lstTable);

})([3, 5], 8);

For [3,5]:

Below Sum
10^1 23
10^2 2318
10^3 233168
10^4 23331668
10^5 2333316668
10^6 233333166668
10^7 23333331666668
10^8 2333333316666668
[["Below","Sum"],["10^1",23],["10^2",2318],["10^3",233168],
["10^4",23331668],["10^5",2333316668],["10^6",233333166668],
["10^7",23333331666668],["10^8",2333333316666668]]

#### With wheel increments

function sm35(n){
var s=0, inc=[3,2,1,3,1,2,3]
for (var j=6, i=0; i<n; j+=j==6?-j:1, i+=inc[j]) s+=i
return s
}

#### With triangular numbers

function sm35(n){
return tri(n,3) + tri(n,5) - tri(n,15)
function tri(n, f) {
n = Math.floor((n-1) / f)
return f * n * (n+1) / 2
}
}

This:

for (var i=1, n=10; i<9; n*=10, i+=1) {
document.write(10, '<sup>', i, '</sup> ', sm35(n), '<br>')
}
Output:
101 23
102 2318
103 233168
104 23331668
105 2333316668
106 233333166668
107 23333331666668
108 2333333316666668

### ES6

(() => {

// Area under straight line
// between first multiple and last.

// sumMults :: Int -> Int -> Int
const sumMults = (n, factor) => {
const n1 = quot(n - 1, factor);
return quot(factor * n1 * (n1 + 1), 2);
};

// sum35 :: Int -> Int
const sum35 = n => sumMults(n, 3) + sumMults(n, 5) - sumMults(n, 15);

// GENERIC ----------------------------------------------------------------

// enumFromTo :: Int -> Int -> [Int]
const enumFromTo = (m, n) =>
Array.from({
length: Math.floor(n - m) + 1
}, (_, i) => m + i);

// Integral a => a -> a -> a
const quot = (n, m) => Math.floor(n / m);

// TEST -------------------------------------------------------------------

// Sums for 10^1 thru 10^8
return enumFromTo(1, 8)
.map(n => Math.pow(10, n))
.reduce((a, x) => (
a[x.toString()] = sum35(x),
a
), {});
})();
Output:
{"10":23, "100":2318, "1000":233168, "10000":23331668,
"100000":2333316668, "1000000":233333166668, "10000000":23333331666668,
"100000000":2333333316666668}

## Java

class SumMultiples {
public static long getSum(long n) {
long sum = 0;
for (int i = 3; i < n; i++) {
if (i % 3 == 0 || i % 5 == 0) sum += i;
}
return sum;
}
public static void main(String[] args) {
System.out.println(getSum(1000));
}
}
Output:
233168

## jq

def sum_multiples(d):
((./d) | floor) | (d * . * (.+1))/2 ;

# Sum of multiples of a or b that are less than . (the input)
. - 1
| sum_multiples(a) + sum_multiples(b) - sum_multiples(a*b);
Examples:

jq does not (yet) support arbitrary-precision integer arithmetic but converts large integers to floats, so:

1000 | task(3;5) # => 233168

10e20 | task(3;5) # => 2.333333333333333e+41

## Julia

sum multiples of each, minus multiples of the least common multiple (lcm). Similar to MATLAB's version.

multsum(n, m, lim) = sum(0:n:lim-1) + sum(0:m:lim-1) - sum(0:lcm(n,m):lim-1)

Output:

julia> multsum(3, 5, 1000)
233168

julia> multsum(3, 5, BigInt(10)^20)
2333333333333333333316666666666666666668

julia> @time multsum(3, 5, BigInt(10)^20)
elapsed time: 5.8114e-5 seconds seconds (3968 bytes allocated)
2333333333333333333316666666666666666668

julia> [(BigInt(10)^n, multsum(3, 5, BigInt(10)^n)) for n=0:20]
21-element Array{(BigInt,BigInt),1}:
(1,0)
(10,23)
(100,2318)
(1000,233168)
(10000,23331668)
(100000,2333316668)
(1000000,233333166668)
(10000000,23333331666668)
(100000000,2333333316666668)
(1000000000,233333333166666668)
(10000000000,23333333331666666668)
(100000000000,2333333333316666666668)
(1000000000000,233333333333166666666668)
(10000000000000,23333333333331666666666668)
(100000000000000,2333333333333316666666666668)
(1000000000000000,233333333333333166666666666668)
(10000000000000000,23333333333333331666666666666668)
(100000000000000000,2333333333333333316666666666666668)
(1000000000000000000,233333333333333333166666666666666668)
(10000000000000000000,23333333333333333331666666666666666668)
(100000000000000000000,2333333333333333333316666666666666666668)

a slightly more efficient version

multsum(n, lim) = (occ = div(lim-1, n); div(n*occ*(occ+1), 2))
multsum(n, m, lim) = multsum(n, lim) + multsum(m, lim) - multsum(lcm(n,m), lim)

## Kotlin

// version 1.1.2

import java.math.BigInteger

val big2 = BigInteger.valueOf(2)
val big3 = BigInteger.valueOf(3)
val big5 = BigInteger.valueOf(5)
val big15 = big3 * big5

fun sum35(n: Int) = (3 until n).filter { it % 3 == 0 || it % 5 == 0}.sum()

fun sum35(n: BigInteger): BigInteger {
val nn = n - BigInteger.ONE
val num3 = nn / big3
val end3 = num3 * big3
val sum3 = (big3 + end3) * num3 / big2
val num5 = nn / big5
val end5 = num5 * big5
val sum5 = (big5 + end5) * num5 / big2
val num15 = nn / big15
val end15 = num15 * big15
val sum15 = (big15 + end15) * num15 / big2
return sum3 + sum5 - sum15
}

fun main(args: Array<String>) {
println("The sum of multiples of 3 or 5 below 1000 is \${sum35(1000)}")
val big100k = BigInteger.valueOf(100_000L)
val e20 = big100k * big100k * big100k * big100k
println("The sum of multiples of 3 or 5 below 1e20 is \${sum35(e20)}")
}
Output:
The sum of multiples of 3 or 5 below 1000 is 233168
The sum of multiples of 3 or 5 below 1e20 is 2333333333333333333316666666666666666668

## Lasso

local(limit = 1)
while(#limit <= 100000) => {^
local(s = 0)
loop(-from=3,-to=#limit-1) => {
not (loop_count % 3) || not (loop_count % 5) ? #s += loop_count
}
'The sum of multiples of 3 or 5 between 1 and '+(#limit-1)+' is: '+#s+'\r'
#limit = integer(#limit->asString + '0')
^}
Output:
The sum of multiples of 3 or 5 between 1 and 0 is: 0
The sum of multiples of 3 or 5 between 1 and 9 is: 23
The sum of multiples of 3 or 5 between 1 and 99 is: 2318
The sum of multiples of 3 or 5 between 1 and 999 is: 233168
The sum of multiples of 3 or 5 between 1 and 9999 is: 23331668
The sum of multiples of 3 or 5 between 1 and 99999 is: 2333316668

## Limbo

Uses the IPints library when the result will be very large.

implement Sum3and5;

include "sys.m"; sys: Sys;
include "draw.m";
include "ipints.m"; ipints: IPints;
IPint: import ipints;

Sum3and5: module {
init: fn(nil: ref Draw->Context, args: list of string);
};

ints: array of ref IPint;

init(nil: ref Draw->Context, args: list of string)
{

# We use 1, 2, 3, 5, and 15:
ints = array[16] of ref IPint;
for(i := 0; i < len ints; i++)
ints[i] = IPint.inttoip(i);

args = tl args;
while(args != nil) {
h := hd args;
args = tl args;
# If it's big enough that the result might not
# fit inside a big, we use the IPint version.
if(len h > 9) {
sys->print("%s\n", isum3to5(IPint.strtoip(h, 10)).iptostr(10));
} else {
sys->print("%bd\n", sum3to5(big h));
}
}
}

triangle(n: big): big
{
return((n * (n + big 1)) / big 2);
}

sum_multiples(n: big, limit: big): big
{
return(n * triangle((limit - big 1) / n));
}

sum3to5(limit: big): big
{
return(
sum_multiples(big 3, limit) +
sum_multiples(big 5, limit) -
sum_multiples(big 15, limit));
}

itriangle(n: ref IPint): ref IPint
{
}

isum_multiples(n: ref IPint, limit: ref IPint): ref IPint
{
return n.mul(itriangle(limit.sub(ints[1]).div(n).t0));
}

isum3to5(limit: ref IPint): ref IPint
{
return(
isum_multiples(ints[3], limit).
sub(isum_multiples(ints[15], limit)));
}

Output:
% sum3and5 1000 100000000000000000000
233168
2333333333333333333316666666666666666668

## Lingo

on sum35 (n)
res = 0
repeat with i = 0 to (n-1)
if i mod 3=0 OR i mod 5=0 then
res = res + i
end if
end repeat
return res
end
put sum35(1000)
-- 233168

## LiveCode

function sumUntil n
repeat with i = 0 to (n-1)
if i mod 3 = 0 or i mod 5 = 0 then
end if
end repeat
return m
end sumUntil

put sumUntil(1000) // 233168

## Lua

Translation of: Tcl

function tri (n) return n * (n + 1) / 2 end

function sum35 (n)
n = n - 1
return ( 3 * tri(math.floor(n / 3)) +
5 * tri(math.floor(n / 5)) -
15 * tri(math.floor(n / 15))
)
end

print(sum35(1000))
print(sum35(1e+20))

Output:
233168
2.3333333333333e+39

## Maple

By using symbolic function sum instead of numeric function add the program F will run O(1) rather than O(n).

F := unapply( sum(3*i,i=1..floor((n-1)/3))
+ sum(5*i,i=1..floor((n-1)/5))
- sum(15*i,i=1..floor((n-1)/15)), n);

F(1000);

F(10^20);

Output:

2                                      2
3      /1     2\    3      /1     2\   5      /1     4\
F := n -> - floor|- n + -|  - - floor|- n + -| + - floor|- n + -|
2      \3     3/    2      \3     3/   2      \5     5/

2
5      /1     4\   15      /1      14\    15      /1      14\
- - floor|- n + -| - -- floor|-- n + --|  + -- floor|-- n + --|
2      \5     5/   2       \15     15/    2       \15     15/

233168

2333333333333333333316666666666666666668

## Mathematica

sum35[n_] :=
Sum[k, {k, 3, n - 1, 3}] + Sum[k, {k, 5, n - 1, 5}] -
Sum[k, {k, 15, n - 1, 15}]

sum35[1000]
Output:
233168
sum35[10^20]
Output:
233333333333333333333166666666666666666668

Another alternative is

Union @@ Range[0, 999, {3, 5}] // Tr

## MATLAB / Octave

n=1:999; sum(n(mod(n,3)==0 | mod(n,5)==0))
ans =  233168

Another alternative is

n=1000; sum(0:3:n-1)+sum(0:5:n-1)-sum(0:15:n-1)

Of course, it's more efficient to use Gauss' approach of adding subsequent integers:

n=999;
n3=floor(n/3);
n5=floor(n/5);
n15=floor(n/15);
(3*n3*(n3+1) + 5*n5*(n5+1) - 15*n15*(n15+1))/2
ans =  233168

## Maxima

sumi(n, incr):= block([kmax: quotient(n, incr)],
''(ev(sum(incr*k, k, 1, kmax), simpsum)));

sum35(n):=sumi(n, 3) + sumi(n, 5) - sumi(n, 15);

sum35(1000);
sum35(10^20);

Output:

(%i16) sum35(1000);
(%o16)                              234168
(%i17) sum35(10^20);
(%o17)             2333333333333333333416666666666666666668

## МК-61/52

П1	0	П0	3	П4	ИП4	3	/	{x}	x#0
17 ИП4 5 / {x} x=0 21 ИП0 ИП4 +
П0 КИП4 ИП1 ИП4 - x=0 05 ИП0 С/П

Input: n.

Output for n = 1000: 233168.

## NetRexx

Portions translation of Perl 6

/* NetRexx */
options replace format comments java crossref symbols nobinary
numeric digits 40

runSample(arg)
return

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
method summing(maxLimit = 1000) public static
mult = 0
loop mv = 0 while mv < maxLimit
if mv // 3 = 0 | mv // 5 = 0 then
mult = mult + mv
end mv
return mult

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- translation of perl 6
method sum_mults(first, limit) public static
last = limit - 1
last = last - last // first
sum = (last / first) * (first + last) % 2
return sum

method sum35(maxLimit) public static
return sum_mults(3, maxLimit) + sum_mults(5, maxLimit) - sum_mults(15, maxLimit)

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
method runSample(arg) private static

offset = 30
incr = 10

say 'Limit'.right(offset) || '|' || 'Sum'
say '-'.copies(offset) || '+' || '-'.copies(60)
timing = System.nanoTime
sum = summing()
timing = System.nanoTime - timing
say 1000.format.right(offset)'|'sum
say 'Elapsed time:' Rexx(timing * 1e-9).format(4, 6)'s'
say

say 'Limit'.right(offset) || '|' || 'Sum'
say '-'.copies(offset) || '+' || '-'.copies(60)
tmax = 1e+6
timing = System.nanoTime
mm = 1
loop while mm <= tmax
say mm.right(offset)'|'summing(mm)
mm = mm * incr
end
timing = System.nanoTime - timing
say 'Elapsed time:' Rexx(timing * 1e-9).format(4, 6)'s'
say

say 'Limit'.right(offset) || '|' || 'Sum'
say '-'.copies(offset) || '+' || '-'.copies(60)
timing = System.nanoTime
sum = sum35(1000)
timing = System.nanoTime - timing
say 1000.format.right(offset)'|'sum
say 'Elapsed time:' Rexx(timing * 1e-9).format(4, 6)'s'
say

say 'Limit'.right(offset) || '|' || 'Sum'
say '-'.copies(offset) || '+' || '-'.copies(60)
tmax = 1e+27
timing = System.nanoTime
mm = 1
loop while mm <= tmax
say mm.right(offset)'|'sum35(mm)
mm = mm * incr
end
timing = System.nanoTime - timing
say 'Elapsed time:' Rexx(timing * 1e-9).format(4, 6)'s'
say
return

Output:
Limit|Sum
------------------------------+------------------------------------------------------------
1000|233168
Elapsed time:    0.097668s

Limit|Sum
------------------------------+------------------------------------------------------------
1|0
10|23
100|2318
1000|233168
10000|23331668
100000|2333316668
1000000|233333166668
Elapsed time:   11.593837s

Limit|Sum
------------------------------+------------------------------------------------------------
1000|233168
Elapsed time:    0.000140s

Limit|Sum
------------------------------+------------------------------------------------------------
1|0
10|23
100|2318
1000|233168
10000|23331668
100000|2333316668
1000000|233333166668
10000000|23333331666668
100000000|2333333316666668
1000000000|233333333166666668
10000000000|23333333331666666668
100000000000|2333333333316666666668
1000000000000|233333333333166666666668
10000000000000|23333333333331666666666668
100000000000000|2333333333333316666666666668
1000000000000000|233333333333333166666666666668
10000000000000000|23333333333333331666666666666668
100000000000000000|2333333333333333316666666666666668
1000000000000000000|233333333333333333166666666666666668
10000000000000000000|23333333333333333331666666666666666668
100000000000000000000|2333333333333333333316666666666666666668
1000000000000000000000|233333333333333333333166666666666666666668
10000000000000000000000|23333333333333333333331666666666666666666668
100000000000000000000000|2333333333333333333333316666666666666666666668
1000000000000000000000000|233333333333333333333333166666666666666666666668
10000000000000000000000000|23333333333333333333333331666666666666666666666668
100000000000000000000000000|2333333333333333333333333316666666666666666666666668
1000000000000000000000000000|233333333333333333333333333166666666666666666666666668
Elapsed time:    0.005545s

## Nim

proc sum35(n: int): int =
for x in 0 .. <n:
if x mod 3 == 0 or x mod 5 == 0:
result += x

echo sum35(1000)

With BigInts:

Translation of: Perl 6
import bigints

proc sumMults(first: int32, limit: BigInt): BigInt =
var last = limit - 1
last -= last mod first
(last div first) * (last + first) div 2

proc sum35(n: BigInt): BigInt =
result = sumMults(3, n)
result += sumMults(5, n)
result -= sumMults(15, n)

var x = 1.initBigInt
while x < "1000000000000000000000000000000".initBigInt:
echo sum35 x
x *= 10

Output:

-0
23
2318
233168
23331668
2333316668
233333166668
23333331666668
2333333316666668
233333333166666668
23333333331666666668
2333333333316666666668
233333333333166666666668
23333333333331666666666668
2333333333333316666666666668
233333333333333166666666666668
23333333333333331666666666666668
2333333333333333316666666666666668
233333333333333333166666666666666668
23333333333333333331666666666666666668
2333333333333333333316666666666666666668
233333333333333333333166666666666666666668
23333333333333333333331666666666666666666668
2333333333333333333333316666666666666666666668
233333333333333333333333166666666666666666666668
23333333333333333333333331666666666666666666666668
2333333333333333333333333316666666666666666666666668
233333333333333333333333333166666666666666666666666668
23333333333333333333333333331666666666666666666666666668
2333333333333333333333333333316666666666666666666666666668

## Objeck

Translation of: Java
class SumMultiples {
function : native : GetSum(n : Int) ~ Int {
sum := 0;
for(i := 3; i < n; i++;) {
if(i % 3 = 0 | i % 5 = 0) {
sum += i;
};
};

return sum;
}

function : Main(args : String[]) ~ Nil {
GetSum(1000)->PrintLine();
}
}

Output:

233168

## OCaml

let sum_mults n =
let sum = ref 0 in
for i = 3 to (n - 1) do
if (i mod 3) = 0 || (i mod 5) = 0 then
sum := !sum + i;
done;
!sum;;

print_endline (string_of_int (sum_mults 1000));;

Output:
233168

## Oforth

999 seq filter(#[ dup 3 mod 0 == swap 5 mod 0 == or ]) sum println

Output:

233168

## Ol

(print
(fold (lambda (s x)
(+ s (if (or (zero? (remainder x 3)) (zero? (remainder x 5))) x 0)))
0 (iota 1000)))
; ==> 233168

## PARI/GP

ct(n,k)=n=n--\k;k*n*(n+1)/2;
a(n)=ct(n,3)+ct(n,5)-ct(n,15);
a(1000)
a(1e20)
Output:
%1 = 233168
%2 = 2333333333333333333316666666666666666668

## Pascal

Works with: Free Pascal version 2.6.2
program Sum3sAnd5s;

function Multiple(x, y: integer): Boolean;
{ Is X a multiple of Y? }
begin
Multiple := (X mod Y) = 0
end;

function SumMultiples(n: integer): longint;
{ Return the sum of all multiples of 3 or 5. }
var i: integer; sum: longint;
begin
sum := 0;
for i := 1 to pred(n) do
if Multiple(i, 3) or Multiple(i, 5) then
sum := sum + i;
SumMultiples := sum
end;

begin
{ Show sum of all multiples less than 1000. }
writeln(SumMultiples(1000))
end.

### alternative

using gauss summation formula, but subtract double counted. adapted translation of Tcl

program sum35;
//sum of all positive multiples of 3 or 5 below n

function cntSumdivisibleBelowN(n: Uint64;b:Uint64):Uint64;
var
cnt : Uint64;
Begin
cnt := (n-1) DIV b;
// Gauß summation formula * b
cntSumdivisibleBelowN := (cnt*(cnt+1) DIV 2 ) *b;
end;
const
n = 1000;

var
sum: Uint64;
begin
sum := cntSumdivisibleBelowN(n,3)+cntSumdivisibleBelowN(n,5);
//subtract double counted like 15
sum := sum-cntSumdivisibleBelowN(n,3*5);
writeln(sum);
end.

output

233168

## Perl

#!/usr/bin/perl
use strict ;
use warnings ;
use List::Util qw( sum ) ;

sub sum_3_5 {
my \$limit = shift ;
return sum grep { \$_ % 3 == 0 || \$_ % 5 == 0 } ( 1..\$limit - 1 ) ;
}

print "The sum is " . sum_3_5( 1000 ) . " !\n" ;
Output:
The sum is 233168 !
Translation of: Tcl

An alternative approach, using the analytical solution from the Tcl example.

use feature 'say';
sub tri
{
my \$n = shift;
return \$n*(\$n+1) / 2;
}

sub sum
{
my \$n = (shift) - 1;
(3 * tri( int(\$n/3) ) + 5 * tri( int(\$n/5) ) - 15 * tri( int(\$n/15) ) );
}

say sum(1e3);
use bigint; # Machine precision was sufficient for the first calculation
say sum(1e20);
Output:
233168
2333333333333333333316666666666666666668

Interestingly, the prime factorization of the second result produces a 35 digit prime number.

## Perl 6

sub sum35(\$n) { [+] grep * %% (3|5), ^\$n; }

say sum35 1000;
Output:
233168

Here's an analytical approach that scales much better for large values.

sub sum-mults(\$first, \$limit) {
(my \$last = \$limit - 1) -= \$last % \$first;
(\$last div \$first) * (\$first + \$last) div 2;
}

sub sum35(\n) {
sum-mults(3,n) + sum-mults(5,n) - sum-mults(15,n);
}

say sum35(\$_) for 1,10,100...10**30;
Output:
0
23
2318
233168
23331668
2333316668
233333166668
23333331666668
2333333316666668
233333333166666668
23333333331666666668
2333333333316666666668
233333333333166666666668
23333333333331666666666668
2333333333333316666666666668
233333333333333166666666666668
23333333333333331666666666666668
2333333333333333316666666666666668
233333333333333333166666666666666668
23333333333333333331666666666666666668
2333333333333333333316666666666666666668
233333333333333333333166666666666666666668
23333333333333333333331666666666666666666668
2333333333333333333333316666666666666666666668
233333333333333333333333166666666666666666666668
23333333333333333333333331666666666666666666666668
2333333333333333333333333316666666666666666666666668
233333333333333333333333333166666666666666666666666668
23333333333333333333333333331666666666666666666666666668
2333333333333333333333333333316666666666666666666666666668
233333333333333333333333333333166666666666666666666666666668

## Phix

Translation of: AWK
Library: bigatom

Fast analytical version with arbitrary precision

include bigatom.e

function s(bigatom n, integer d)
bigatom m = ba_idivide(n,d)
return ba_divide(ba_multiply(d,m),2)
end function

function sum35(bigatom n)
bigatom n1 = ba_sub(n,1)
end function

for i=0 to 20 do
string sp = repeat(' ',20-i)
printf(1,sp&"1"&repeat('0',i)&sp)
ba_printf(1," %B\n",sum35(ba_power(10,i)))
end for
Output:
1                     0
10                    23
100                   2318
1000                  233168
10000                 23331668
100000                2333316668
1000000               233333166668
10000000              23333331666668
100000000             2333333316666668
1000000000            233333333166666668
10000000000           23333333331666666668
100000000000          2333333333316666666668
1000000000000         233333333333166666666668
10000000000000        23333333333331666666666668
100000000000000       2333333333333316666666666668
1000000000000000      233333333333333166666666666668
10000000000000000     23333333333333331666666666666668
100000000000000000    2333333333333333316666666666666668
1000000000000000000   233333333333333333166666666666666668
10000000000000000000  23333333333333333331666666666666666668
100000000000000000000 2333333333333333333316666666666666666668

## PicoLisp

(de sumMul (N F)
(let N1 (/ (dec N) F)
(*/ F N1 (inc N1) 2) ) )

(for I 20
(let N (** 10 I)
(println
(-
(+ (sumMul N 3) (sumMul N 5))
(sumMul N 15) ) ) ) )

(bye)

## PL/I

threeor5: procedure options (main);      /* 8 June 2014 */
declare (i, n) fixed(10), sum fixed (31) static initial (0);

get (n);
put ('The number of multiples of 3 or 5 below ' || trim(n) || ' is');

do i = 1 to n-1;
if mod(i, 3) = 0 | mod(i, 5) = 0 then sum = sum + i;
end;

put edit ( trim(sum) ) (A);

end threeor5;

Outputs:

The number of multiples of 3 or 5 below 1000 is 233168
The number of multiples of 3 or 5 below 10000 is 23331668
The number of multiples of 3 or 5 below 100000 is 2333316668
The number of multiples of 3 or 5 below 1000000 is 233333166668
The number of multiples of 3 or 5 below 10000000 is 23333331666668
The number of multiples of 3 or 5 below 100000000 is 2333333316666668

## PowerShell

function SumMultiples ( [int]\$Base, [int]\$Upto )
{
\$X = ( \$Upto - ( \$Upto % \$Base ) ) / \$Base
\$Sum = ( \$X * \$X + \$X ) * \$Base / 2
Return \$Sum
}

# Calculate the sum of the multiples of 3 and 5 up to 1000
( SumMultiples -Base 3 -Upto 1000 ) + ( SumMultiples -Base 5 -Upto 1000 ) - ( SumMultiples -Base 15 -Upto 1000 )

Output:
234168

Simply change the variable type to handle really, really big number.

function SumMultiples ( [bigint]\$Base, [bigint]\$Upto )
{
\$X = ( \$Upto - ( \$Upto % \$Base ) ) / \$Base
\$Sum = ( \$X * \$X + \$X ) * \$Base / 2
Return \$Sum
}

# Calculate the sum of the multiples of 3 and 5 up to 10 ^ 210
\$Upto = [bigint]::Pow( 10, 210 )
( SumMultiples -Base 3 -Upto \$Upto ) + ( SumMultiples -Base 5 -Upto \$Upto ) - ( SumMultiples -Base 15 -Upto \$Upto )

Output:
233333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333334166666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666668

Here is a cmdlet that will provide the sum of unique multiples of any group of numbers below a given limit. I haven't attempted the extra credit here as the math is too complex for me at the moment.

function Get-SumOfMultiples
{
Param
(
[Parameter(
Position=0)]
\$Cap = 1000,

[Parameter(
ValueFromRemainingArguments=\$True)]
\$Multiplier = (3,5)
)

\$Multiples = @()
\$Sum = 0
\$multiplier |
ForEach-Object {
For(\$i = 1; \$i -lt \$Cap; \$i ++)
{
If(\$i % \$_ -eq 0)
{\$Multiples += \$i}
}
}

\$Multiples |
select -Unique |
ForEach-Object {
\$Sum += \$_
}
\$Sum
}
Output:
Get-SumOfMultiples
233168
Output:
Get-SumOfMultiples 1500 3 5 7 13
649444

## Prolog

### Slow version

sum_of_multiples_of_3_and_5_slow(N, TT) :-
sum_of_multiples_of_3_and_5(N, 1, 0, TT).

sum_of_multiples_of_3_and_5(N, K, S, S) :-
3 * K >= N.

sum_of_multiples_of_3_and_5(N, K, C, S) :-
T3 is 3 * K, T3 < N,
C3 is C + T3,
T5 is 5 * K,
( (T5 < N, K mod 3 =\= 0)
-> C5 is C3 + T5
; C5 = C3),
K1 is K+1,
sum_of_multiples_of_3_and_5(N, K1, C5, S).

### Fast version

sum_of_multiples_of_3_and_5_fast(N, TT):-
maplist(compute_sum(N), [3,5,15], [TT3, TT5, TT15]),
TT is TT3 + TT5 - TT15.

compute_sum(N, N1, Sum) :-
( N mod N1 =:= 0
-> N2 is N div N1 - 1
; N2 is N div N1),
Sum is N1 * N2 * (N2 + 1) / 2.

Output :

?- sum_of_multiples_of_3_and_5_slow(1000, TT).
TT = 233168 .

?- sum_of_multiples_of_3_and_5_fast(100000000000000000000, TT).
TT = 2333333333333333333316666666666666666668.

## PureBasic

EnableExplicit

Procedure.q SumMultiples(Limit.q)
If Limit < 0 : Limit = -Limit : EndIf; convert negative numbers to positive
Protected.q i, sum = 0
For i = 3 To Limit - 1
If i % 3 = 0 Or i % 5 = 0
sum + i
EndIf
Next
ProcedureReturn sum
EndProcedure

If OpenConsole()
PrintN("Sum of numbers below 1000 which are multiples of 3 or 5 is : " + SumMultiples(1000))
PrintN("")
PrintN("Press any key to close the console")
Repeat: Delay(10) : Until Inkey() <> ""
CloseConsole()
EndIf

Output:
Sum of numbers below 1000 which are multiples of 3 or 5 is : 233168

## Python

Three ways of performing the calculation are shown including direct calculation of the value without having to do explicit sums in sum35c()

def sum35a(n):
'Direct count'
# note: ranges go to n-1
return sum(x for x in range(n) if x%3==0 or x%5==0)

def sum35b(n):
"Count all the 3's; all the 5's; minus double-counted 3*5's"
# note: ranges go to n-1
return sum(range(3, n, 3)) + sum(range(5, n, 5)) - sum(range(15, n, 15))

def sum35c(n):
'Sum the arithmetic progressions: sum3 + sum5 - sum15'
consts = (3, 5, 15)
# Note: stop at n-1
divs = [(n-1) // c for c in consts]
sums = [d*c*(1+d)/2 for d,c in zip(divs, consts)]
return sums[0] + sums[1] - sums[2]

#test
for n in range(1001):
sa, sb, sc = sum35a(n), sum35b(n), sum35c(n)
assert sa == sb == sc # python tests aren't like those of c.

print('For n = %7i -> %i\n' % (n, sc))

# Pretty patterns
for p in range(7):
print('For n = %7i -> %i' % (10**p, sum35c(10**p)))

# Scalability
p = 20
print('\nFor n = %20i -> %i' % (10**p, sum35c(10**p)))
Output:
For n =    1000 -> 233168

For n =       1 -> 0
For n =      10 -> 23
For n =     100 -> 2318
For n =    1000 -> 233168
For n =   10000 -> 23331668
For n =  100000 -> 2333316668
For n = 1000000 -> 233333166668

For n = 100000000000000000000 -> 2333333333333333333316666666666666666668

Or, more generally – taking the area under the straight line between the first multiple and the last:

# sum35 :: Int -> Int
def sum35(n):
f = sumMults(n)
return f(3) + f(5) - f(15)

# TEST ----------------------------------------------------
def main():
for x in enumFromTo(1)(5) + enumFromTo(18)(25):
print(
'1e' + str(x) + '\t' + str(
sum35(10 ** x)
)
)

# sumMults :: Int -> Int -> Int
def sumMults(n):
"""Area under straight line between
first multiple and last"""

def go(n, m):
n1 = (n - 1) // m
return (m * n1 * (n1 + 1)) // 2
return lambda x: go(n, x)

# GENERIC -------------------------------------------------

# enumFromTo :: Int -> Int -> [Int]
def enumFromTo(m):
return lambda n: list(range(m, 1 + n))

if __name__ == '__main__':
main()
Output:
1e1    23
1e2    2318
1e3    233168
1e4    23331668
1e5    2333316668
1e18    233333333333333333166666666666666668
1e19    23333333333333333331666666666666666668
1e20    2333333333333333333316666666666666666668
1e21    233333333333333333333166666666666666666668
1e22    23333333333333333333331666666666666666666668
1e23    2333333333333333333333316666666666666666666668
1e24    233333333333333333333333166666666666666666666668
1e25    23333333333333333333333331666666666666666666666668

## R

m35 = function(n) sum(unique(c(
seq(3, n-1, by = 3), seq(5, n-1, by = 5))))
m35(1000) # 233168

## Racket

#lang racket
(require math)

;;; A naive solution
(define (naive k)
(for/sum ([n (expt 10 k)]
#:when (or (divides? 3 n) (divides? 5 n)))
n))

(for/list ([k 7]) (naive k))

;;; Using the formula for an arithmetic sum
(define (arithmetic-sum a1 n Δa)
; returns a1+a2+...+an
(define an (+ a1 (* (- n 1) Δa)))
(/ (* n (+ a1 an)) 2))

(define (analytical k)
(define 10^k (expt 10 k))
(define (n d) (quotient (- 10^k 1) d))
(+ (arithmetic-sum 3 (n 3) 3)
(arithmetic-sum 5 (n 5) 5)
(- (arithmetic-sum 15 (n 15) 15))))

(for/list ([k 20]) (analytical k))

Output:

'(0 23 2318 233168 23331668 2333316668 233333166668)
'(0
23
2318
233168
23331668
2333316668
233333166668
23333331666668
2333333316666668
233333333166666668
23333333331666666668
2333333333316666666668
233333333333166666666668
23333333333331666666666668
2333333333333316666666666668
233333333333333166666666666668
23333333333333331666666666666668
2333333333333333316666666666666668
233333333333333333166666666666666668
23333333333333333331666666666666666668)

## REXX

### version 1

/* REXX ***************************************************************
* 14.05.2013 Walter Pachl
**********************************************************************/

Say mul35()
exit
mul35:
s=0
Do i=1 To 999
If i//3=0 | i//5=0 Then
s=s+i
End
Return s

Output:

233168

### version 2

/* REXX ***************************************************************
* Translation from Perl6->NetRexx->REXX
* 15.05.2013 Walter Pachl
**********************************************************************/

Numeric Digits 100
call time 'R'
n=1
Do i=1 To 30
Say right(n,30) sum35(n)
n=n*10
End
Say time('E') 'seconds'
Exit

sum35: Procedure
Parse Arg maxLimit
return sum_mults(3, maxLimit) + sum_mults(5, maxLimit) - sum_mults(15, maxLimit)

sum_mults: Procedure
Parse Arg first, limit
last = limit - 1
last = last - last // first
sum = (last % first) * (first + last) % 2
return sum

Output:

1 0
10 23
100 2318
1000 233168
10000 23331668
100000 2333316668
1000000 233333166668
10000000 23333331666668
100000000 2333333316666668
1000000000 233333333166666668
10000000000 23333333331666666668
100000000000 2333333333316666666668
1000000000000 233333333333166666666668
10000000000000 23333333333331666666666668
100000000000000 2333333333333316666666666668
1000000000000000 233333333333333166666666666668
10000000000000000 23333333333333331666666666666668
100000000000000000 2333333333333333316666666666666668
1000000000000000000 233333333333333333166666666666666668
10000000000000000000 23333333333333333331666666666666666668
100000000000000000000 2333333333333333333316666666666666666668
1000000000000000000000 233333333333333333333166666666666666666668
10000000000000000000000 23333333333333333333331666666666666666666668
100000000000000000000000 2333333333333333333333316666666666666666666668
1000000000000000000000000 233333333333333333333333166666666666666666666668
10000000000000000000000000 23333333333333333333333331666666666666666666666668
100000000000000000000000000 2333333333333333333333333316666666666666666666666668
1000000000000000000000000000 233333333333333333333333333166666666666666666666666668
10000000000000000000000000000 23333333333333333333333333331666666666666666666666666668
100000000000000000000000000000 2333333333333333333333333333316666666666666666666666666668
0 milliseconds with rexx m35a > m35a.txt
46 millisecond with rexx m35a

### version 3

This version automatically adjusts the numeric digits. and a little extra code was added to format the output nicely.

The formula used is a form of the Gauss Summation formula.

/*REXX program counts all  integers  from  1 ──► N─1   that are multiples of  3  or  5. */
parse arg N t . /*obtain optional arguments from the CL*/
if N=='' | N=="," then N=1000 /*Not specified? Then use the default.*/
if t=='' | t=="," then t= 1 /* " " " " " " */
numeric digits 1000; w=2+length(t) /*W: used for formatting 'e' part of Y.*/
say 'The sum of all positive integers that are a multiple of 3 and 5 are:'
say /* [↓] change the format/look of nE+nn*/
do t; parse value format(N,2,1,,0) 'E0' with m 'E' _ . /*get the exponent.*/
y=right((m/1)'e' || (_+0), w)"-1" /*this fixes a bug in a certain REXX. */
z=n-1; if t==1 then y=z /*handle a special case of a one─timer.*/
say 'integers from 1 ──►' y " is " sumDiv(z,3) + sumDiv(z,5) - sumDiv(z,3*5)
N=N'0' /*fast *10 multiply for next iteration.*/
end /*t*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
sumDiv: procedure; parse arg x,d; \$=x % d; return d * \$ * (\$+1) % 2

output   when using the default input:

The sum of all positive integers that are a multiple of  3  and  5  are:

integers from 1 ──► 999  is  233168

output   when using the input of:   1   85

The sum of all positive integers that are a multiple of  3  and  5  are:

integers from 1 ──►  1e0-1  is  0
integers from 1 ──►  1e1-1  is  23
integers from 1 ──►  1e2-1  is  2318
integers from 1 ──►  1e3-1  is  233168
integers from 1 ──►  1e4-1  is  23331668
integers from 1 ──►  1e5-1  is  2333316668
integers from 1 ──►  1e6-1  is  233333166668
integers from 1 ──►  1e7-1  is  23333331666668
integers from 1 ──►  1e8-1  is  2333333316666668
integers from 1 ──►  1e9-1  is  233333333166666668
integers from 1 ──► 1e10-1  is  23333333331666666668
integers from 1 ──► 1e11-1  is  2333333333316666666668
integers from 1 ──► 1e12-1  is  233333333333166666666668
integers from 1 ──► 1e13-1  is  23333333333331666666666668
integers from 1 ──► 1e14-1  is  2333333333333316666666666668
integers from 1 ──► 1e15-1  is  233333333333333166666666666668
integers from 1 ──► 1e16-1  is  23333333333333331666666666666668
integers from 1 ──► 1e17-1  is  2333333333333333316666666666666668
integers from 1 ──► 1e18-1  is  233333333333333333166666666666666668
integers from 1 ──► 1e19-1  is  23333333333333333331666666666666666668
integers from 1 ──► 1e20-1  is  2333333333333333333316666666666666666668
integers from 1 ──► 1e21-1  is  233333333333333333333166666666666666666668
integers from 1 ──► 1e22-1  is  23333333333333333333331666666666666666666668
integers from 1 ──► 1e23-1  is  2333333333333333333333316666666666666666666668
integers from 1 ──► 1e24-1  is  233333333333333333333333166666666666666666666668
integers from 1 ──► 1e25-1  is  23333333333333333333333331666666666666666666666668
integers from 1 ──► 1e26-1  is  2333333333333333333333333316666666666666666666666668
integers from 1 ──► 1e27-1  is  233333333333333333333333333166666666666666666666666668
integers from 1 ──► 1e28-1  is  23333333333333333333333333331666666666666666666666666668
integers from 1 ──► 1e29-1  is  2333333333333333333333333333316666666666666666666666666668
integers from 1 ──► 1e30-1  is  233333333333333333333333333333166666666666666666666666666668
integers from 1 ──► 1e31-1  is  23333333333333333333333333333331666666666666666666666666666668
integers from 1 ──► 1e32-1  is  2333333333333333333333333333333316666666666666666666666666666668
integers from 1 ──► 1e33-1  is  233333333333333333333333333333333166666666666666666666666666666668
integers from 1 ──► 1e34-1  is  23333333333333333333333333333333331666666666666666666666666666666668
integers from 1 ──► 1e35-1  is  2333333333333333333333333333333333316666666666666666666666666666666668
integers from 1 ──► 1e36-1  is  233333333333333333333333333333333333166666666666666666666666666666666668
integers from 1 ──► 1e37-1  is  23333333333333333333333333333333333331666666666666666666666666666666666668
integers from 1 ──► 1e38-1  is  2333333333333333333333333333333333333316666666666666666666666666666666666668
integers from 1 ──► 1e39-1  is  233333333333333333333333333333333333333166666666666666666666666666666666666668
integers from 1 ──► 1e40-1  is  23333333333333333333333333333333333333331666666666666666666666666666666666666668
integers from 1 ──► 1e41-1  is  2333333333333333333333333333333333333333316666666666666666666666666666666666666668
integers from 1 ──► 1e42-1  is  233333333333333333333333333333333333333333166666666666666666666666666666666666666668
integers from 1 ──► 1e43-1  is  23333333333333333333333333333333333333333331666666666666666666666666666666666666666668
integers from 1 ──► 1e44-1  is  2333333333333333333333333333333333333333333316666666666666666666666666666666666666666668
integers from 1 ──► 1e45-1  is  233333333333333333333333333333333333333333333166666666666666666666666666666666666666666668
integers from 1 ──► 1e46-1  is  23333333333333333333333333333333333333333333331666666666666666666666666666666666666666666668
integers from 1 ──► 1e47-1  is  2333333333333333333333333333333333333333333333316666666666666666666666666666666666666666666668
integers from 1 ──► 1e48-1  is  233333333333333333333333333333333333333333333333166666666666666666666666666666666666666666666668
integers from 1 ──► 1e49-1  is  23333333333333333333333333333333333333333333333331666666666666666666666666666666666666666666666668
integers from 1 ──► 1e50-1  is  2333333333333333333333333333333333333333333333333316666666666666666666666666666666666666666666666668
integers from 1 ──► 1e51-1  is  233333333333333333333333333333333333333333333333333166666666666666666666666666666666666666666666666668
integers from 1 ──► 1e52-1  is  23333333333333333333333333333333333333333333333333331666666666666666666666666666666666666666666666666668
integers from 1 ──► 1e53-1  is  2333333333333333333333333333333333333333333333333333316666666666666666666666666666666666666666666666666668
integers from 1 ──► 1e54-1  is  233333333333333333333333333333333333333333333333333333166666666666666666666666666666666666666666666666666668
integers from 1 ──► 1e55-1  is  23333333333333333333333333333333333333333333333333333331666666666666666666666666666666666666666666666666666668
integers from 1 ──► 1e56-1  is  2333333333333333333333333333333333333333333333333333333316666666666666666666666666666666666666666666666666666668
integers from 1 ──► 1e57-1  is  233333333333333333333333333333333333333333333333333333333166666666666666666666666666666666666666666666666666666668
integers from 1 ──► 1e58-1  is  23333333333333333333333333333333333333333333333333333333331666666666666666666666666666666666666666666666666666666668
integers from 1 ──► 1e59-1  is  2333333333333333333333333333333333333333333333333333333333316666666666666666666666666666666666666666666666666666666668
integers from 1 ──► 1e60-1  is  233333333333333333333333333333333333333333333333333333333333166666666666666666666666666666666666666666666666666666666668
integers from 1 ──► 1e61-1  is  23333333333333333333333333333333333333333333333333333333333331666666666666666666666666666666666666666666666666666666666668
integers from 1 ──► 1e62-1  is  2333333333333333333333333333333333333333333333333333333333333316666666666666666666666666666666666666666666666666666666666668
integers from 1 ──► 1e63-1  is  233333333333333333333333333333333333333333333333333333333333333166666666666666666666666666666666666666666666666666666666666668
integers from 1 ──► 1e64-1  is  23333333333333333333333333333333333333333333333333333333333333331666666666666666666666666666666666666666666666666666666666666668
integers from 1 ──► 1e65-1  is  2333333333333333333333333333333333333333333333333333333333333333316666666666666666666666666666666666666666666666666666666666666668
integers from 1 ──► 1e66-1  is  233333333333333333333333333333333333333333333333333333333333333333166666666666666666666666666666666666666666666666666666666666666668
integers from 1 ──► 1e67-1  is  23333333333333333333333333333333333333333333333333333333333333333331666666666666666666666666666666666666666666666666666666666666666668
integers from 1 ──► 1e68-1  is  2333333333333333333333333333333333333333333333333333333333333333333316666666666666666666666666666666666666666666666666666666666666666668
integers from 1 ──► 1e69-1  is  233333333333333333333333333333333333333333333333333333333333333333333166666666666666666666666666666666666666666666666666666666666666666668
integers from 1 ──► 1e70-1  is  23333333333333333333333333333333333333333333333333333333333333333333331666666666666666666666666666666666666666666666666666666666666666666668
integers from 1 ──► 1e71-1  is  2333333333333333333333333333333333333333333333333333333333333333333333316666666666666666666666666666666666666666666666666666666666666666666668
integers from 1 ──► 1e72-1  is  233333333333333333333333333333333333333333333333333333333333333333333333166666666666666666666666666666666666666666666666666666666666666666666668
integers from 1 ──► 1e73-1  is  23333333333333333333333333333333333333333333333333333333333333333333333331666666666666666666666666666666666666666666666666666666666666666666666668
integers from 1 ──► 1e74-1  is  2333333333333333333333333333333333333333333333333333333333333333333333333316666666666666666666666666666666666666666666666666666666666666666666666668
integers from 1 ──► 1e75-1  is  233333333333333333333333333333333333333333333333333333333333333333333333333166666666666666666666666666666666666666666666666666666666666666666666666668
integers from 1 ──► 1e76-1  is  23333333333333333333333333333333333333333333333333333333333333333333333333331666666666666666666666666666666666666666666666666666666666666666666666666668
integers from 1 ──► 1e77-1  is  2333333333333333333333333333333333333333333333333333333333333333333333333333316666666666666666666666666666666666666666666666666666666666666666666666666668
integers from 1 ──► 1e78-1  is  233333333333333333333333333333333333333333333333333333333333333333333333333333166666666666666666666666666666666666666666666666666666666666666666666666666668
integers from 1 ──► 1e79-1  is  23333333333333333333333333333333333333333333333333333333333333333333333333333331666666666666666666666666666666666666666666666666666666666666666666666666666668
integers from 1 ──► 1e80-1  is  2333333333333333333333333333333333333333333333333333333333333333333333333333333316666666666666666666666666666666666666666666666666666666666666666666666666666668
integers from 1 ──► 1e81-1  is  233333333333333333333333333333333333333333333333333333333333333333333333333333333166666666666666666666666666666666666666666666666666666666666666666666666666666668
integers from 1 ──► 1e82-1  is  23333333333333333333333333333333333333333333333333333333333333333333333333333333331666666666666666666666666666666666666666666666666666666666666666666666666666666668
integers from 1 ──► 1e83-1  is  2333333333333333333333333333333333333333333333333333333333333333333333333333333333316666666666666666666666666666666666666666666666666666666666666666666666666666666668
integers from 1 ──► 1e84-1  is  233333333333333333333333333333333333333333333333333333333333333333333333333333333333166666666666666666666666666666666666666666666666666666666666666666666666666666666668

## Ring

see sum35(1000) + nl

func sum35 n
n = n - 1
return(3 * tri(floor(n / 3)) +
5 * tri(floor(n / 5)) -
15 * tri(floor(n / 15)))

func tri n
return n * (n + 1) / 2

## Ruby

Simple Version (Slow):

def sum35(n)
(1...n).select{|i|i%3==0 or i%5==0}.inject(:+)
end
puts sum35(1000) #=> 233168

Fast Version:

# Given two integers n1,n2 return sum of multiples upto n3
#
# Nigel_Galloway
# August 24th., 2013.
def g(n1, n2, n3)
g1 = n1*n2
(1..g1).select{|x| x%n1==0 or x%n2==0}.collect{|x| g2=(n3-x)/g1; (x+g1*g2+x)*(g2+1)}.inject{|sum,x| sum+x}/2
end

puts g(3,5,999)

# For extra credit
puts g(3,5,100000000000000000000-1)
Output:
233168
2333333333333333333316666666666666666668

Other way:

Translation of: D
def sumMul(n, f)
n1 = (n - 1) / f
f * n1 * (n1 + 1) / 2
end

def sum35(n)
sumMul(n, 3) + sumMul(n, 5) - sumMul(n, 15)
end

for i in 1..20
puts "%2d:%22d %s" % [i, 10**i, sum35(10**i)]
end
Output:
1:                    10 23
2:                   100 2318
3:                  1000 233168
4:                 10000 23331668
5:                100000 2333316668
6:               1000000 233333166668
7:              10000000 23333331666668
8:             100000000 2333333316666668
9:            1000000000 233333333166666668
10:           10000000000 23333333331666666668
11:          100000000000 2333333333316666666668
12:         1000000000000 233333333333166666666668
13:        10000000000000 23333333333331666666666668
14:       100000000000000 2333333333333316666666666668
15:      1000000000000000 233333333333333166666666666668
16:     10000000000000000 23333333333333331666666666666668
17:    100000000000000000 2333333333333333316666666666666668
18:   1000000000000000000 233333333333333333166666666666666668
19:  10000000000000000000 23333333333333333331666666666666666668
20: 100000000000000000000 2333333333333333333316666666666666666668

## Run BASIC

print multSum35(1000)
end
function multSum35(n)
for i = 1 to n - 1
If (i mod 3 = 0) or (i mod 5 = 0) then multSum35 = multSum35 + i
next i
end function
233168

## Scala

def sum35( max:BigInt ) : BigInt = max match {

// Simplest solution but limited to Ints only
case j if j < 100000 => (1 until j.toInt).filter( i => i % 3 == 0 || i % 5 == 0 ).sum

// Using a custom iterator that takes Longs
case j if j < 10e9.toLong => {
def stepBy( step:Long ) : Iterator[Long] = new Iterator[Long] { private var i = step; def hasNext = true; def next() : Long = { val result = i; i = i + step; result } }
stepBy(3).takeWhile( _< j ).sum + stepBy(5).takeWhile( _< j ).sum - stepBy(15).takeWhile( _< j ).sum
}

// Using the formula for a Triangular number
case j => {
def triangle( i:BigInt ) = i * (i+1) / BigInt(2)
3 * triangle( (j-1)/3 ) + 5 * triangle( (j-1)/5 ) - 15 * triangle( (j-1)/15 )
}
}

{
for( i <- (0 to 20); n = "1"+"0"*i ) println( (" " * (21 - i)) + n + " => " + (" " * (21 - i)) + sum35(BigInt(n)) )
}
Output:
1 =>                      0
10 =>                     23
100 =>                    2318
1000 =>                   233168
10000 =>                  23331668
100000 =>                 2333316668
1000000 =>                233333166668
10000000 =>               23333331666668
100000000 =>              2333333316666668
1000000000 =>             233333333166666668
10000000000 =>            23333333331666666668
100000000000 =>           2333333333316666666668
1000000000000 =>          233333333333166666666668
10000000000000 =>         23333333333331666666666668
100000000000000 =>        2333333333333316666666666668
1000000000000000 =>       233333333333333166666666666668
10000000000000000 =>      23333333333333331666666666666668
100000000000000000 =>     2333333333333333316666666666666668
1000000000000000000 =>    233333333333333333166666666666666668
10000000000000000000 =>   23333333333333333331666666666666666668
100000000000000000000 =>  2333333333333333333316666666666666666668

## Rust

extern crate rug;

use rug::Integer;
use rug::ops::Pow;

fn main() {
for i in [3, 20, 100, 1_000].iter() {
let ten = Integer::from(10);
let mut limit = Integer::from(Integer::from(&ten.pow(*i as u32)) - 1);
let mut aux_3_1 = &limit.mod_u(3u32);
let mut aux_3_2 = Integer::from(&limit - aux_3_1);
let mut aux_3_3 = Integer::from(&aux_3_2/3);
let mut aux_3_4 = Integer::from(3 + aux_3_2);
let mut aux_3_5 = Integer::from(&aux_3_3*&aux_3_4);
let mut aux_3_6 = Integer::from(&aux_3_5/2);

let mut aux_5_1 = &limit.mod_u(5u32);
let mut aux_5_2 = Integer::from(&limit - aux_5_1);
let mut aux_5_3 = Integer::from(&aux_5_2/5);
let mut aux_5_4 = Integer::from(5 + aux_5_2);
let mut aux_5_5 = Integer::from(&aux_5_3*&aux_5_4);
let mut aux_5_6 = Integer::from(&aux_5_5/2);

let mut aux_15_1 = &limit.mod_u(15u32);
let mut aux_15_2 = Integer::from(&limit - aux_15_1);
let mut aux_15_3 = Integer::from(&aux_15_2/15);
let mut aux_15_4 = Integer::from(15 + aux_15_2);
let mut aux_15_5 = Integer::from(&aux_15_3*&aux_15_4);
let mut aux_15_6 = Integer::from(&aux_15_5/2);

let mut result_aux_1 = Integer::from(&aux_3_6 + &aux_5_6);
let mut result = Integer::from(&result_aux_1 - &aux_15_6);

println!("Sum for 10^{} : {}",i,result);
}
}

Output :

Sum for 10^3 : 233168
Sum for 10^20 : 2333333333333333333316666666666666666668
Sum for 10^100 : 23333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333331666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666668
Sum for 10^1000 : 23333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333331666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666668

real	0m0.002s
user	0m0.002s
sys	0m0.000s

## Scheme

(fold (lambda (x tot) (+ tot (if (or (zero? (remainder x 3)) (zero? (remainder x 5))) x 0))) 0 (iota 1000))

Output:

233168

Or, more clearly by decomposition:

(define (fac35? x)
(or (zero? (remainder x 3))
(zero? (remainder x 5))))

(define (fac35filt x tot)
(+ tot (if (fac35? x) x 0)))

(fold fac35filt 0 (iota 1000))

Output:

233168

For larger numbers iota can take quite a while just to build the list -- forget about waiting for all the computation to finish!

(define (trisum n fac)
(let* ((n1 (quotient (- n 1) fac))
(n2 (+ n1 1)))
(quotient (* fac n1 n2) 2)))

(define (fast35sum n)
(- (+ (trisum n 5) (trisum n 3)) (trisum n 15)))

(fast35sum 1000)
(fast35sum 100000000000000000000)

Output:

233168
2333333333333333333316666666666666666668

## Seed7

\$ include "seed7_05.s7i";
include "bigint.s7i";

const func bigInteger: sum35 (in bigInteger: n) is func
result
var bigInteger: sum35 is 0_;
local
const func bigInteger: sumMul (in bigInteger: n, in bigInteger: f) is func
result
var bigInteger: sumMul is 0_;
local
var bigInteger: n1 is 0_;
begin
n1 := pred(n) div f;
sumMul := f * n1 * succ(n1) div 2_;
end func;
begin
sum35 := sumMul(n, 3_) + sumMul(n, 5_) - sumMul(n, 15_);
end func;

const proc: main is func
begin
writeln(sum35(1000_));
writeln(sum35(10_ ** 20));
end func;
Output:
233168
2333333333333333333316666666666666666668

## Sidef

Translation of: Ruby
func sumMul(n, f) {
var m = int((n - 1) / f)
f * m * (m + 1) / 2
}

func sum35(n) {
sumMul(n, 3) + sumMul(n, 5) - sumMul(n, 15)
}

for i in (1..20) {
printf("%2s:%22s %s\n", i, 10**i, sum35(10**i))
}
Output:
1:                    10 23
2:                   100 2318
3:                  1000 233168
4:                 10000 23331668
5:                100000 2333316668
6:               1000000 233333166668
7:              10000000 23333331666668
8:             100000000 2333333316666668
9:            1000000000 233333333166666668
10:           10000000000 23333333331666666668
11:          100000000000 2333333333316666666668
12:         1000000000000 233333333333166666666668
13:        10000000000000 23333333333331666666666668
14:       100000000000000 2333333333333316666666666668
15:      1000000000000000 233333333333333166666666666668
16:     10000000000000000 23333333333333331666666666666668
17:    100000000000000000 2333333333333333316666666666666668
18:   1000000000000000000 233333333333333333166666666666666668
19:  10000000000000000000 23333333333333333331666666666666666668
20: 100000000000000000000 2333333333333333333316666666666666666668

## Simula

(referenced from Greatest common divisor)

! Find the sum of multiples of two factors below a limit -
! Project Euler problem 1: multiples of 3 or 5 below 1000 & 10**20;
BEGIN
INTEGER PROCEDURE GCD(a, b); INTEGER a, b;
GCD := IF b = 0 THEN a ELSE GCD(b, MOD(a, b));

! sum of multiples of n up to limit;
INTEGER PROCEDURE multiples(n, limit); INTEGER n, limit;
BEGIN
INTEGER m;
m := limit // n;
! moving //2 to sumMultiples() looked just too silly ;
multiples := n*((m*(m+1)) // 2) ! and risks overflow;
END
! sum of multiples of n or m below limit;
INTEGER PROCEDURE sumMultiples(n, m, limit);
INTEGER n, m, limit;
BEGIN
INTEGER LCM;
LCM:= (n // GCD(n, m)) * m;
limit := limit-1;
sumMultiples := multiples(n, limit) + multiples(m, limit)
- multiples(LCM, limit)
END sumMultiples;

! Extra creditable: math is about avoiding calculation tedium;
TEXT PROCEDURE repeat(c, n); CHARACTER c; INTEGER n; BEGIN
TEXT r; r :- BLANKS(n);
FOR n := n STEP -1 UNTIL 1 DO r.PUTCHAR(c);
repeat :- r;
END;
TEXT PROCEDURE sumOfMultiplesOf3or5below10toThePowerOf(e);
INTEGER e;
sumOfMultiplesOf3or5below10toThePowerOf :-
IF e < 1 THEN "0" ELSE IF e = 1 THEN "23"
ELSE "23" & repeat('3', e-2)
& "1" & repeat('6', e-2) & "8";

INTEGER factor, n;
FOR factor := 5 !, 2, 6;
DO BEGIN
OUTTEXT("sum of positive multiples of 3 and");
OUTINT(factor, 2); OUTCHAR(':');
FOR n := ! 1 STEP 1 UNTIL 15, 100,;
1000 DO BEGIN
OUTCHAR(' '); OUTINT(sumMultiples(3, factor, n), 0)
END;
OUTIMAGE
END;
FOR n := 0, 1, 3, 5, 10, 20, 40 DO BEGIN
OUTTEXT(sumOfMultiplesOf3or5below10toThePowerOf(n));
OUTIMAGE
END
END
Output:

sum of positive multiples of 3 and 5: 233168
0
23
233168
2333316668
23333333331666666668
2333333333333333333316666666666666666668
23333333333333333333333333333333333333331666666666666666666666666666666666666668

## Stata

### With a dataset

clear all
set obs 999
gen a=_n
tabstat a if mod(a,3)==0 | mod(a,5)==0, statistic(sum)

### With Mata

mata
a=1..999
sum(a:*(mod(a,3):==0 :| mod(a,5):==0))

## Swift

var n:Int=1000

func sum(x:Int)->Int{

var s:Int=0
for i in 0...x{
if i%3==0 || i%5==0
{
s=s+i
}

}
return s
}

var sumofmult:Int=sum(x:n)
print(sumofmult)

## Tcl

# Fairly simple version; only counts by 3 and 5, skipping intermediates
proc mul35sum {n} {
for {set total [set threes [set fives 0]]} {\$threes<\$n||\$fives<\$n} {} {
if {\$threes<\$fives} {
incr total \$threes
incr threes 3
} elseif {\$threes>\$fives} {
incr total \$fives
incr fives 5
} else {
incr total \$threes
incr threes 3
incr fives 5
}
}
return \$total
}

However, that's pretty dumb. We can do much better by observing that the sum of the multiples of ${\displaystyle k}$ below some ${\displaystyle n+1}$ is ${\displaystyle kT_{n/k}}$, where ${\displaystyle T_{i}}$ is the ${\displaystyle i}$'th triangular number, for which there exists a trivial formula. Then we simply use an overall formula of ${\displaystyle 3T_{n/3}+5T_{n/5}-15T_{n/15}}$ (that is, summing the multiples of three and the multiples of five, and then subtracting the multiples of 15 which were double-counted).

# Smart version; no iteration so very scalable!
proc tcl::mathfunc::triangle {n} {expr {
\$n * (\$n+1) / 2
}}
# Note that the rounding on integer division is exactly what we need here.
proc sum35 {n} {
incr n -1
expr {3*triangle(\$n/3) + 5*triangle(\$n/5) - 15*triangle(\$n/15)}
}

Demonstrating:

puts [mul35sum 1000],[sum35 1000]
puts [mul35sum 10000000],[sum35 10000000]
# Just the quick one; waiting for the other would get old quickly...
puts [sum35 100000000000000000000]
Output:
233168,233168
23333331666668,23333331666668
2333333333333333333316666666666666666668

## VBA

Translation of: VBScript
Private Function SumMult3and5VBScript(n As Double) As Double
Dim i As Double
For i = 1 To n - 1
If i Mod 3 = 0 Or i Mod 5 = 0 Then
SumMult3and5VBScript = SumMult3and5VBScript + i
End If
Next
End Function

Other way :

Private Function SumMult3and5(n As Double) As Double
Dim i As Double
For i = 3 To n - 1 Step 3
SumMult3and5 = SumMult3and5 + i
Next
For i = 5 To n - 1 Step 5
If i Mod 15 <> 0 Then SumMult3and5 = SumMult3and5 + i
Next
End Function

Better way :

Private Function SumMult3and5BETTER(n As Double) As Double
Dim i As Double
For i = 3 To n - 1 Step 3
SumMult3and5BETTER = SumMult3and5BETTER + i
Next
For i = 5 To n - 1 Step 5
SumMult3and5BETTER = SumMult3and5BETTER + i
Next
For i = 15 To n - 1 Step 15
SumMult3and5BETTER = SumMult3and5BETTER - i
Next
End Function

Call :

Option Explicit

Sub Main()
Dim T#
T = Timer
Debug.Print SumMult3and5VBScript(100000000) & " " & Format(Timer - T, "0.000 sec.")
T = Timer
Debug.Print SumMult3and5(100000000) & " " & Format(Timer - T, "0.000 sec.")
T = Timer
Debug.Print SumMult3and5BETTER(100000000) & " " & Format(Timer - T, "0.000 sec.")
Debug.Print "-------------------------"
Debug.Print SumMult3and5BETTER(1000)
End Sub
Output:
2,33333331666667E+15   9,059 sec.
2,33333331666667E+15   2,107 sec.
2,33333331666667E+15   1,799 sec.
-------------------------
233168

## VBScript

Translation of: Run BASIC

Function multsum35(n)
For i = 1 To n - 1
If i Mod 3 = 0 Or i Mod 5 = 0 Then
multsum35 = multsum35 + i
End If
Next
End Function

WScript.StdOut.Write multsum35(CLng(WScript.Arguments(0)))
WScript.StdOut.WriteLine

Output:
F:\>cscript /nologo multsum35.vbs 1000
233168

## Wortel

@let {
sum35 ^(@sum \[email protected](\~%%3 || \~%%5) @til)

!sum35 1000 ; returns 233168
}

## XPL0

include c:\cxpl\stdlib;

func Sum1; \Return sum the straightforward way
int N, S;
[S:= 0;
for N:= 1 to 999 do
if rem(N/3)=0 or rem(N/5)=0 then S:= S+N;
return S;
];

func Sum2(D); \Return sum of sequence using N*(N+1)/2
int D;
int Q;
[Q:= (1000-1)/D;
return Q*(Q+1)/2*D;
];

func Sum3(D); \Return sum of sequence for really big number
string 0; \don't terminate strings by setting most significant bit
int D; \divisor
int I;
char P(40), Q(40), R(40); \product, quotient, result
[StrNDiv("99999999999999999999", D, Q, 20); \Q:= (1E20-1)/D
for I:= 0 to 17 do R(I):= ^0; \R:= D
R(18):= D/10 +^0;
R(19):= rem(0) +^0;
StrNMul(Q, R, P, 20); \P:= Q*R = Q*D
StrNMul(P+20, Q, R, 20); \R:= P*Q = Q*D*(Q+1)
StrNDiv(R, 2, Q, 40); \Q:= P/2 = Q*D*(Q+1)/2
return Q; \(very temporary location)
];

char S(40), T;
[IntOut(0, Sum1); CrLf(0);
IntOut(0, Sum2(3) + Sum2(5) - Sum2(3*5)); CrLf(0);
StrNCopy(Sum3(3), S, 40);
T:= Sum3(3*5);
StrNSub(S, T, 40);
TextN(0, T, 40); CrLf(0);
]
Output:
233168
233168
2333333333333333333316666666666666666668

## zkl

Brute force:

[3..999,3].reduce('+,0) + [5..999,5].reduce('+,0) - [15..999,15].reduce('+,0)
233168
Translation of: Groovy

Using a formula, making sure the input will cast the result to the same type (ie if called with a BigNum, the result is a BigNum).

fcn sumMul(N,m){N=(N-1)/m; N*(N+1)*m/2}
fcn sum35(N){sumMul(N,3) + sumMul(N,5) - sumMul(N,15)}
Output:
zkl: sum35(1000)  // int-->int
233168

zkl: var BN=Import("zklBigNum");
zkl: sum35(BN("1"+"0"*21))  // 1 with 21 zeros, BigNum-->BigNum
233333333333333333333166666666666666666668
sum35(BN("1"+"0"*15)) : "%,d".fmt(_)// 1e15, BigNum don't like float format input
233,333,333,333,333,166,666,666,666,668