I'm working on modernizing Rosetta Code's infrastructure. Starting with communications. Please accept this time-limited open invite to RC's Slack.. --Michael Mol (talk) 20:59, 30 May 2020 (UTC)

# Odd squarefree semiprimes

Odd squarefree semiprimes is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

Odd numbers of the form p*q where p and q are distinct primes, where p*q < 1000

## 11l

Translation of: C++
`F odd_square_free_semiprime(=n)   I n % 2 == 0      R 0B   V count = 0   V i = 3   L i * i <= n      L n % i == 0         I ++count > 1            R 0B         n I/= i      i += 2   R count == 1 print(‘Odd square-free semiprimes < 1000:’)V count = 0L(i) (1.<1000).step(2)   I odd_square_free_semiprime(i)      print(‘#4’.format(i), end' ‘’)      I ++count % 20 == 0         print() print("\nCount: "count)`
Output:
```Odd square-free semiprimes < 1000:
15  21  33  35  39  51  55  57  65  69  77  85  87  91  93  95 111 115 119 123
129 133 141 143 145 155 159 161 177 183 185 187 201 203 205 209 213 215 217 219
221 235 237 247 249 253 259 265 267 287 291 295 299 301 303 305 309 319 321 323
327 329 335 339 341 355 365 371 377 381 391 393 395 403 407 411 413 415 417 427
437 445 447 451 453 469 471 473 481 485 489 493 497 501 505 511 515 517 519 527
533 535 537 543 545 551 553 559 565 573 579 581 583 589 591 597 611 623 629 633
635 649 655 667 669 671 679 681 685 687 689 695 697 699 703 707 713 717 721 723
731 737 745 749 753 755 763 767 771 779 781 785 789 791 793 799 803 807 813 815
817 831 835 843 849 851 865 869 871 879 889 893 895 899 901 905 913 917 921 923
933 939 943 949 951 955 959 965 973 979 985 989 993 995
Count: 194
```

## Action!

`INCLUDE "D2:SORT.ACT" ;from the Action! Tool KitINCLUDE "H6:SIEVE.ACT" PROC Main()  DEFINE MAX="999"  BYTE ARRAY primes(MAX+1)  INT i,j,count,max2,limit  INT ARRAY res(300)   Put(125) PutE() ;clear the screen  Sieve(primes,MAX+1)  count=0 max2=MAX/2  FOR i=3 TO max2  DO    IF primes(i) THEN      limit=MAX/i      FOR j=i+1 TO limit      DO        IF primes(j) THEN          res(count)=i*j          count==+1        FI      OD    FI  OD   SortI(res,count,0)  FOR i=0 TO count-1  DO    PrintI(res(i)) Put(32)  OD  PrintF("%E%EThere are %I odd numbers",count)RETURN`
Output:
```15 21 33 35 39 51 55 57 65 69 77 85 87 91 93 95 111 115 119 123 129 133 141 143 145 155 159 161 177 183 185 187
201 203 205 209 213 215 217 219 221 235 237 247 249 253 259 265 267 287 291 295 299 301 303 305 309 319 321 323
327 329 335 339 341 355 365 371 377 381 391 393 395 403 407 411 413 415 417 427 437 445 447 451 453 469 471 473
481 485 489 493 497 501 505 511 515 517 519 527 533 535 537 543 545 551 553 559 565 573 579 581 583 589 591 597
611 623 629 633 635 649 655 667 669 671 679 681 685 687 689 695 697 699 703 707 713 717 721 723 731 737 745 749
753 755 763 767 771 779 781 785 789 791 793 799 803 807 813 815 817 831 835 843 849 851 865 869 871 879 889 893
895 899 901 905 913 917 921 923 933 939 943 949 951 955 959 965 973 979 985 989 993 995

There are 194 odd numbers
```

## ALGOL 68

`BEGIN # find some odd square free semi-primes                    #      # numbers of the form p*q where p =/= q and p, q are prime #    # reurns a list of primes up to n #    PROC prime list = ( INT n )[]INT:         BEGIN            # sieve the primes to n #            INT no = 0, yes = 1;            [ 1 : n ]INT p;            p[ 1 ] := no; p[ 2 ] := yes;            FOR i FROM 3 BY 2 TO n DO p[ i ] := yes OD;            FOR i FROM 4 BY 2 TO n DO p[ i ] := no  OD;            FOR i FROM 3 BY 2 TO ENTIER sqrt( n ) DO                IF p[ i ] = yes THEN FOR s FROM i * i BY i + i TO n DO p[ s ] := no OD FI            OD;            # replace the sieve with a list #            INT p pos := 0;            FOR i TO n DO IF p[ i ] = yes THEN p[ p pos +:= 1 ] := i FI OD;            p[ 1 : p pos ]         END # prime list # ;    # show odd square free semi-primes up to 1000 #    INT max number = 1000;    INT max prime  = 1 + ( max number OVER 3 ); # the smallest odd prime is 3, so this shuld be enough primes #    []INT prime    = prime list( max prime );    [ 1 : max number ]BOOL numbers; FOR i TO max number DO numbers[ i ] := FALSE OD;    FOR i FROM 2 TO UPB prime - 1 DO        FOR j FROM i + 1 TO UPB prime        WHILE INT pq = prime[ i ] * prime[ j ];              pq < max number        DO            numbers[ pq ] := TRUE        OD    OD;    INT n count   := 0;    FOR i TO max number DO        IF numbers[ i ] THEN            print( ( " ", whole( i, -4 ) ) );            n count +:= 1;            IF n count MOD 20 = 0 THEN print( ( newline ) ) FI        FI    ODEND`
Output:
```   15   21   33   35   39   51   55   57   65   69   77   85   87   91   93   95  111  115  119  123
129  133  141  143  145  155  159  161  177  183  185  187  201  203  205  209  213  215  217  219
221  235  237  247  249  253  259  265  267  287  291  295  299  301  303  305  309  319  321  323
327  329  335  339  341  355  365  371  377  381  391  393  395  403  407  411  413  415  417  427
437  445  447  451  453  469  471  473  481  485  489  493  497  501  505  511  515  517  519  527
533  535  537  543  545  551  553  559  565  573  579  581  583  589  591  597  611  623  629  633
635  649  655  667  669  671  679  681  685  687  689  695  697  699  703  707  713  717  721  723
731  737  745  749  753  755  763  767  771  779  781  785  789  791  793  799  803  807  813  815
817  831  835  843  849  851  865  869  871  879  889  893  895  899  901  905  913  917  921  923
933  939  943  949  951  955  959  965  973  979  985  989  993  995
```

## Arturo

`primes: select 0..1000 => prime?lst: sort unique flatten map primes 'p [    map select primes 'q -> all? @[odd? p*q p<>q 1000>p*q]=>[p*&]]loop split.every:10 lst 'a ->    print map a => [pad to :string & 4]`
Output:
```  15   21   33   35   39   51   55   57   65   69
77   85   87   91   93   95  111  115  119  123
129  133  141  143  145  155  159  161  177  183
185  187  201  203  205  209  213  215  217  219
221  235  237  247  249  253  259  265  267  287
291  295  299  301  303  305  309  319  321  323
327  329  335  339  341  355  365  371  377  381
391  393  395  403  407  411  413  415  417  427
437  445  447  451  453  469  471  473  481  485
489  493  497  501  505  511  515  517  519  527
533  535  537  543  545  551  553  559  565  573
579  581  583  589  591  597  611  623  629  633
635  649  655  667  669  671  679  681  685  687
689  695  697  699  703  707  713  717  721  723
731  737  745  749  753  755  763  767  771  779
781  785  789  791  793  799  803  807  813  815
817  831  835  843  849  851  865  869  871  879
889  893  895  899  901  905  913  917  921  923
933  939  943  949  951  955  959  965  973  979
985  989  993  995```

## AWK

` # syntax: GAWK -f ODD_SQUAREFREE_SEMIPRIMES.AWK# converted from C++BEGIN {    start = 1    stop = 999    for (i=start; i<=stop; i+=2) {      if (is_odd_square_free_semiprime(i)) {        printf("%4d%1s",i,++count%10?"":"\n")      }    }    printf("\nOdd Square Free Semiprimes %d-%d: %d\n",start,stop,count)    exit(0)}function is_odd_square_free_semiprime(n,  count,i) {    if (and(n,1) == 0) {      return(0)    }    for (i=3; i*i<=n; i+=2) {      for (; n%i==0; n=int(n/i)) {        if (++count > 1)  {          return(0)        }      }    }    return(count==1)} `
Output:
```  15   21   33   35   39   51   55   57   65   69
77   85   87   91   93   95  111  115  119  123
129  133  141  143  145  155  159  161  177  183
185  187  201  203  205  209  213  215  217  219
221  235  237  247  249  253  259  265  267  287
291  295  299  301  303  305  309  319  321  323
327  329  335  339  341  355  365  371  377  381
391  393  395  403  407  411  413  415  417  427
437  445  447  451  453  469  471  473  481  485
489  493  497  501  505  511  515  517  519  527
533  535  537  543  545  551  553  559  565  573
579  581  583  589  591  597  611  623  629  633
635  649  655  667  669  671  679  681  685  687
689  695  697  699  703  707  713  717  721  723
731  737  745  749  753  755  763  767  771  779
781  785  789  791  793  799  803  807  813  815
817  831  835  843  849  851  865  869  871  879
889  893  895  899  901  905  913  917  921  923
933  939  943  949  951  955  959  965  973  979
985  989  993  995
Odd Square Free Semiprimes 1-999: 194
```

## BASIC

### FreeBASIC

Use the function from Primality by trial division#FreeBASIC as an include. This code generates the odd squarefree semiprimes in ascending order of their first factor, then their second.

`#include "isprime.bas"dim as integer p, qfor p = 3 to 999    if not isprime(p) then continue for    for q = p+1 to 1000\p        if not isprime(q) then continue for        print p*q;" ";    next qnext p`
Output:
`  15  21  33  39  51  57  69  87  93  111  123  129  141  159  177  183  201  213  219  237  249  267  291  303  309  321  327  339  381  393  411  417  447  453  471  489  501  519  537  543  573  579  591  597  633  669  681  687  699  717  723  753  771  789  807  813  831  843  849  879  921  933  939  951  993  35  55  65  85  95  115  145  155  185  205  215  235  265  295  305  335  355  365  395  415  445  485  505  515  535  545  565  635  655  685  695  745  755  785  815  835  865  895  905  955  965  985  995  77  91  119  133  161  203  217  259  287  301  329  371  413  427  469  497  511  553  581  623  679  707  721  749  763  791  889  917  959  973  143  187  209  253  319  341  407  451  473  517  583  649  671  737  781  803  869  913  979  221  247  299  377  403  481  533  559  611  689  767  793  871  923  949  323  391  493  527  629  697  731  799  901  437  551  589  703  779  817  893  667  713  851  943  989  899`

### Tiny BASIC

`    LET P = 1 10 LET P = P + 2    LET Q = P    IF P >= 1000 THEN END    LET A = P    GOSUB 100    IF Z = 0 THEN GOTO 10 20 LET Q = Q + 2    IF Q > 1000/P THEN GOTO 10    LET A = Q    GOSUB 100    IF Z = 0 THEN GOTO 20    PRINT P," ",Q," ",P*Q    GOTO 20100 REM PRIMALITY BY TRIAL DIVISION    LET Z = 1    LET I = 2110 IF (A/I)*I = A THEN LET Z = 0    IF Z = 0 THEN RETURN    LET I = I + 1    IF I*I <= A THEN GOTO 110    RETURN`

## C#

This reveals a set of semi-prime numbers (with exactly two factors for each n), where 1 < p < q < n. It is square-free, since p < q.

`using System; using static System.Console; using System.Collections;using System.Linq; using System.Collections.Generic; class Program { static void Main(string[] args) {    int lmt = 1000, amt, c = 0, sr = (int)Math.Sqrt(lmt), lm2; var res = new List<int>();    var pr = PG.Primes(lmt / 3 + 5).ToArray(); lm2 = pr.OrderBy(i => Math.Abs(sr - i)).First();    lm2 = Array.IndexOf(pr, lm2); for (var p = 0; p < lm2; p++) { amt = 0; for (var q = p + 1; amt < lmt; q++)      res.Add(amt = pr[p] * pr[q]); } res.Sort(); foreach(var item in res.TakeWhile(x => x < lmt))        Write("{0,4} {1}", item, ++c % 20 == 0 ? "\n" : "");    Write("\n\nCounted {0} odd squarefree semiprimes under {1}", c, lmt); } } class PG { public static IEnumerable<int> Primes(int lim) {    var flags = new bool[lim + 1]; int j = 3;    for (int d = 8, sq = 9; sq <= lim; j += 2, sq += d += 8)      if (!flags[j]) { yield return j;        for (int k = sq, i = j << 1; k <= lim; k += i) flags[k] = true; }    for (; j <= lim; j += 2) if (!flags[j]) yield return j; } }`
Output:
```  15   21   33   35   39   51   55   57   65   69   77   85   87   91   93   95  111  115  119  123
129  133  141  143  145  155  159  161  177  183  185  187  201  203  205  209  213  215  217  219
221  235  237  247  249  253  259  265  267  287  291  295  299  301  303  305  309  319  321  323
327  329  335  339  341  355  365  371  377  381  391  393  395  403  407  411  413  415  417  427
437  445  447  451  453  469  471  473  481  485  489  493  497  501  505  511  515  517  519  527
533  535  537  543  545  551  553  559  565  573  579  581  583  589  591  597  611  623  629  633
635  649  655  667  669  671  679  681  685  687  689  695  697  699  703  707  713  717  721  723
731  737  745  749  753  755  763  767  771  779  781  785  789  791  793  799  803  807  813  815
817  831  835  843  849  851  865  869  871  879  889  893  895  899  901  905  913  917  921  923
933  939  943  949  951  955  959  965  973  979  985  989  993  995

Counted 194 odd squarefree semiprimes under 1000```

## C++

`#include <iomanip>#include <iostream> bool odd_square_free_semiprime(int n) {    if ((n & 1) == 0)        return false;    int count = 0;    for (int i = 3; i * i <= n; i += 2) {        for (; n % i == 0; n /= i) {            if (++count > 1)                return false;        }    }    return count == 1;} int main() {    const int n = 1000;    std::cout << "Odd square-free semiprimes < " << n << ":\n";    int count = 0;    for (int i = 1; i < n; i += 2) {        if (odd_square_free_semiprime(i)) {            ++count;            std::cout << std::setw(4) << i;            if (count % 20 == 0)                std::cout << '\n';        }    }    std::cout << "\nCount: " << count << '\n';    return 0;}`
Output:
```Odd square-free semiprimes < 1000:
15  21  33  35  39  51  55  57  65  69  77  85  87  91  93  95 111 115 119 123
129 133 141 143 145 155 159 161 177 183 185 187 201 203 205 209 213 215 217 219
221 235 237 247 249 253 259 265 267 287 291 295 299 301 303 305 309 319 321 323
327 329 335 339 341 355 365 371 377 381 391 393 395 403 407 411 413 415 417 427
437 445 447 451 453 469 471 473 481 485 489 493 497 501 505 511 515 517 519 527
533 535 537 543 545 551 553 559 565 573 579 581 583 589 591 597 611 623 629 633
635 649 655 667 669 671 679 681 685 687 689 695 697 699 703 707 713 717 721 723
731 737 745 749 753 755 763 767 771 779 781 785 789 791 793 799 803 807 813 815
817 831 835 843 849 851 865 869 871 879 889 893 895 899 901 905 913 917 921 923
933 939 943 949 951 955 959 965 973 979 985 989 993 995
Count: 194
```

## Factor

Works with: Factor version 0.99 2021-02-05
`USING: combinators.short-circuit formatting grouping io kernelmath.primes.factors math.ranges prettyprint sequences sets ; : sq-free-semiprime? ( n -- ? )    factors { [ length 2 = ] [ all-unique? ] } 1&& ; : odd-sfs-upto ( n -- seq )    1 swap 2 <range> [ sq-free-semiprime? ] filter ; 999 odd-sfs-upto dup length"Found %d odd square-free semiprimes < 1000:\n" printf20 group [ [ "%4d" printf ] each nl ] each nl`
Output:
```Found 194 odd square-free semiprimes < 1000:
15  21  33  35  39  51  55  57  65  69  77  85  87  91  93  95 111 115 119 123
129 133 141 143 145 155 159 161 177 183 185 187 201 203 205 209 213 215 217 219
221 235 237 247 249 253 259 265 267 287 291 295 299 301 303 305 309 319 321 323
327 329 335 339 341 355 365 371 377 381 391 393 395 403 407 411 413 415 417 427
437 445 447 451 453 469 471 473 481 485 489 493 497 501 505 511 515 517 519 527
533 535 537 543 545 551 553 559 565 573 579 581 583 589 591 597 611 623 629 633
635 649 655 667 669 671 679 681 685 687 689 695 697 699 703 707 713 717 721 723
731 737 745 749 753 755 763 767 771 779 781 785 789 791 793 799 803 807 813 815
817 831 835 843 849 851 865 869 871 879 889 893 895 899 901 905 913 917 921 923
933 939 943 949 951 955 959 965 973 979 985 989 993 995
```

## Forth

Works with: Gforth
`: odd-square-free-semi-prime? { n -- ? }  n 1 and 0= if false exit then  0 { count }  3  begin    dup dup * n <=  while    begin      dup n swap mod 0=    while      count 1+ to count      count 1 > if        drop false exit      then      dup n swap / to n    repeat    2 +  repeat  drop  count 1 = ; : special_odd_numbers ( n -- )  ." Odd square-free semiprimes < " dup 1 .r ." :" cr  0 swap  1 do    i odd-square-free-semi-prime? if      1+      i 4 .r      dup 20 mod 0= if cr then    then  2 +loop  cr ." Count: " . cr ; 1000 special_odd_numbersbye`
Output:
```Odd square-free semiprimes < 1000:
15  21  33  35  39  51  55  57  65  69  77  85  87  91  93  95 111 115 119 123
129 133 141 143 145 155 159 161 177 183 185 187 201 203 205 209 213 215 217 219
221 235 237 247 249 253 259 265 267 287 291 295 299 301 303 305 309 319 321 323
327 329 335 339 341 355 365 371 377 381 391 393 395 403 407 411 413 415 417 427
437 445 447 451 453 469 471 473 481 485 489 493 497 501 505 511 515 517 519 527
533 535 537 543 545 551 553 559 565 573 579 581 583 589 591 597 611 623 629 633
635 649 655 667 669 671 679 681 685 687 689 695 697 699 703 707 713 717 721 723
731 737 745 749 753 755 763 767 771 779 781 785 789 791 793 799 803 807 813 815
817 831 835 843 849 851 865 869 871 879 889 893 895 899 901 905 913 917 921 923
933 939 943 949 951 955 959 965 973 979 985 989 993 995
Count: 194
```

## Go

Translation of: Wren
Library: Go-rcu
`package main import (    "fmt"    "rcu"    "sort") func main() {    primes := rcu.Primes(333)    var oss []int    for i := 1; i < len(primes)-1; i++ {        for j := i + 1; j < len(primes); j++ {            n := primes[i] * primes[j]            if n >= 1000 {                break            }            oss = append(oss, n)        }    }    sort.Ints(oss)    fmt.Println("Odd squarefree semiprimes under 1,000:")    for i, n := range oss {        fmt.Printf("%3d ", n)        if (i+1)%10 == 0 {            fmt.Println()        }    }    fmt.Printf("\n\n%d such numbers found.\n", len(oss))}`
Output:
```Odd squarefree semiprimes under 1,000:
15  21  33  35  39  51  55  57  65  69
77  85  87  91  93  95 111 115 119 123
129 133 141 143 145 155 159 161 177 183
185 187 201 203 205 209 213 215 217 219
221 235 237 247 249 253 259 265 267 287
291 295 299 301 303 305 309 319 321 323
327 329 335 339 341 355 365 371 377 381
391 393 395 403 407 411 413 415 417 427
437 445 447 451 453 469 471 473 481 485
489 493 497 501 505 511 515 517 519 527
533 535 537 543 545 551 553 559 565 573
579 581 583 589 591 597 611 623 629 633
635 649 655 667 669 671 679 681 685 687
689 695 697 699 703 707 713 717 721 723
731 737 745 749 753 755 763 767 771 779
781 785 789 791 793 799 803 807 813 815
817 831 835 843 849 851 865 869 871 879
889 893 895 899 901 905 913 917 921 923
933 939 943 949 951 955 959 965 973 979
985 989 993 995

194 such numbers found.
```

## jq

Works with: jq

Works with gojq, the Go implementation of jq

See e.g. Erdős-primes#jq for a suitable definition of `is_prime`.

`# Output: a stream of proper square-free odd prime factors of .def proper_odd_squarefree_prime_factors:  range(3; 1 + sqrt|floor) as \$i  | select( (. % \$i) == 0 )  | (. / \$i) as \$r  | select(\$i != \$r and all(\$i, \$r; is_prime) )  | \$i, \$r; def is_odd_squarefree_semiprime:  isempty(proper_odd_squarefree_prime_factors) | not; # For pretty-printingdef lpad(\$len): tostring | (\$len - length) as \$l | (" " * \$l)[:\$l] + .; def nwise(\$n):  def n: if length <= \$n then . else .[0:\$n] , (.[\$n:] | n) end;  n; # The task:[range(3;1000;2) | select(is_odd_squarefree_semiprime)]| nwise(10)| map(lpad(3)) | join(" ")`
Output:

As for Arturo, Wren, et al.

## Julia

`using Primes twoprimeproduct(n) = (a = factor(n).pe; length(a) == 2 && all(p -> p[2] == 1, a)) special1k = filter(n -> isodd(n) && twoprimeproduct(n), 1:1000) foreach(p -> print(rpad(p[2], 4), p[1] % 20 == 0 ? "\n" : ""), enumerate(special1k)) `
Output:
```15  21  33  35  39  51  55  57  65  69  77  85  87  91  93  95  111 115 119 123
129 133 141 143 145 155 159 161 177 183 185 187 201 203 205 209 213 215 217 219
221 235 237 247 249 253 259 265 267 287 291 295 299 301 303 305 309 319 321 323
327 329 335 339 341 355 365 371 377 381 391 393 395 403 407 411 413 415 417 427
437 445 447 451 453 469 471 473 481 485 489 493 497 501 505 511 515 517 519 527
533 535 537 543 545 551 553 559 565 573 579 581 583 589 591 597 611 623 629 633
635 649 655 667 669 671 679 681 685 687 689 695 697 699 703 707 713 717 721 723
731 737 745 749 753 755 763 767 771 779 781 785 789 791 793 799 803 807 813 815
817 831 835 843 849 851 865 869 871 879 889 893 895 899 901 905 913 917 921 923
933 939 943 949 951 955 959 965 973 979 985 989 993 995
```

## Mathematica / Wolfram Language

`n = 1000; primes = [email protected]ileList[NextPrime, 3, # < n/3 &]; reduceList[x_List, n_] := TakeWhile[Rest[x], # < n/First[x] &];q = Rest /@    NestWhileList[reduceList[#, n] &, primes, [email protected]# > 2 &];semiPrimes = [email protected]@MapThread[Times, {q, primes[[;; [email protected]]]}];Partition[TakeWhile[semiPrimes, # < 1000 &], UpTo[10]] // TableForm`
Output:
```
15	21	33	35	39	51	55	57	65	69
77	85	87	91	93	95	111	115	119	123
129	133	141	143	145	155	159	161	177	183
185	187	201	203	205	209	213	215	217	219
221	235	237	247	249	253	259	265	267	287
291	295	299	301	303	305	309	319	321	323
327	329	335	339	341	355	365	371	377	381
391	393	395	403	407	411	413	415	417	427
437	445	447	451	453	469	471	473	481	485
489	493	497	501	505	511	515	517	519	527
533	535	537	543	545	551	553	559	565	573
579	581	583	589	591	597	611	623	629	633
635	649	655	667	669	671	679	681	685	687
689	695	697	699	703	707	713	717	721	723
731	737	745	749	753	755	763	767	771	779
781	785	789	791	793	799	803	807	813	815
817	831	835	843	849	851	865	869	871	879
889	893	895	899	901	905	913	917	921	923
933	939	943	949	951	955	959	965	973	979
985	989	993	995

```

## Ksh

`#!/bin/ksh # Odd squarefree semiprimes#	# Odd numbers of the form p*q where p and q are distinct primes and p*q<1000 #	# Variables:#integer i j candidate cnt=0typeset -a primes osfsp #	# Functions:##	# Function _isprime(n) return 1 for prime, 0 for not prime#function _isprime {	typeset _n ; integer _n=\$1	typeset _i ; integer _i 	(( _n < 2 )) && return 0	for (( _i=2 ; _i*_i<=_n ; _i++ )); do		(( ! ( _n % _i ) )) && return 0	done	return 1} #	# Function _firstNprimes(n, arr) return array of first N primes#function _firstNprimes {	typeset _n ; integer _n=\$1	typeset _arr ; nameref _arr="\$2" 	typeset _i _cnt ; integer _i=1 _cnt=0 	while (( _cnt <= _n )); do		_isprime \${_i} ; (( \$? )) && (( _cnt++ )) && _arr+=( \${_i} )		(( _i++ ))	done} #	# Function _isunique(n, arr) add n to array if unique to array#function _isunique {	typeset _n ; integer _n=\$1	typeset _arr ; nameref _arr="\$2" 	typeset _buff _oldIFS	_oldIFS=\$IFS 	IFS=\|	_buff=\${_arr[*]}	[[ \${_n} == @(\${_buff}) ]] || _arr+=( \${_n} )	IFS=\${_oldIFS}} #	# Function _insertionSort(array) - Insersion sort of array of integers#function _insertionSort {	typeset _arr ; nameref _arr="\$1"	typeset _i _j _val ; integer _i _j _val     for (( _i=1; _i<\${#_arr[*]}; _i++ )); do        _val=\${_arr[_i]}        (( _j = _i - 1 ))        while (( _j>=0 && _arr[_j]>_val )); do            _arr[_j+1]=\${_arr[_j]}            (( _j-- ))        done        _arr[_j+1]=\${_val}    done} ####### main # ###### _firstNprimes 66 primes			# 67th prime -> 337 * 3 = 1011 > 999 for ((i=0; i<\${#primes[*]}; i++)); do	for ((j=0; j<\${#primes[*]}; j++)); do		((j == i )) && continue		(( candidate = primes[i] * primes[j] ))		(( candidate > 999 )) || (( ! \$(( candidate & 1 )) )) && continue		_isunique \${candidate} osfsp	donedone _insertionSort osfspprint \${osfsp[*]} echoprint "Counted \${#osfsp[*]} odd squarefree semiprimes under 1000"`
Output:
```15 21 33 35 39 51 55 57 65 69 77 85 87 91 93 95 111 115 119 123 129 133 141 143
145 155 159 161 177 183 185 187 201 203 205 209 213 215 217 219 221 235 237 247
249 253 259 265 267 287 291 295 299 301 303 305 309 319 321 323 327 329 335 339
341 355 365 371 377 381 391 393 395 403 407 411 413 415 417 427 437 445 447 451
453 469 471 473 481 485 489 493 497 501 505 511 515 517 519 527 533 535 537 543
545 551 553 559 565 573 579 581 583 589 591 597 611 623 629 633 635 649 655 667
669 671 679 681 685 687 689 695 697 699 703 707 713 717 721 723 731 737 745 749
753 755 763 767 771 779 781 785 789 791 793 799 803 807 813 815 817 831 835 843
849 851 865 869 871 879 889 893 895 899 901 905 913 917 921 923 933 939 943 949
951 955 959 965 973 979 985 989 993 995
Counted 194 odd squarefree semiprimes under 1000

```

## Nim

`import algorithm, strutils, sugar const  M = 1000 - 1  N = M div 3   # Minimal value for "p" is 3. # Sieve of Eratosthenes.var composite: array[3..N, bool] for n in countup(3, N, 2):  let n2 = n * n  if n2 > N: break  if not composite[n]:    for k in countup(n2, N, 2 * n):      composite[k] = true let primes = collect(newSeq):               for n in countup(3, N, 2):                 if not composite[n]: n var result: seq[int]for i in 0..<primes.high:  let p = primes[i]  for j in (i+1)..primes.high:    let q = primes[j]    if p * q > M: break    result.add p * qresult.sort() for i, n in result:  stdout.write (\$n).align(3), if (i + 1) mod 20 == 0: '\n' else: ' 'echo()`
Output:
``` 15  21  33  35  39  51  55  57  65  69  77  85  87  91  93  95 111 115 119 123
129 133 141 143 145 155 159 161 177 183 185 187 201 203 205 209 213 215 217 219
221 235 237 247 249 253 259 265 267 287 291 295 299 301 303 305 309 319 321 323
327 329 335 339 341 355 365 371 377 381 391 393 395 403 407 411 413 415 417 427
437 445 447 451 453 469 471 473 481 485 489 493 497 501 505 511 515 517 519 527
533 535 537 543 545 551 553 559 565 573 579 581 583 589 591 597 611 623 629 633
635 649 655 667 669 671 679 681 685 687 689 695 697 699 703 707 713 717 721 723
731 737 745 749 753 755 763 767 771 779 781 785 789 791 793 799 803 807 813 815
817 831 835 843 849 851 865 869 871 879 889 893 895 899 901 905 913 917 921 923
933 939 943 949 951 955 959 965 973 979 985 989 993 995 ```

## PARI/GP

`for(s=3, 999, f=factor(s); m=matsize(f); if(s%2==1&&m[1]==2&&f[1,2]==1&&f[2,2]==1, print(s)))`

## Perl

`#!/usr/bin/perl use strict; # https://rosettacode.org/wiki/Odd_squarefree_semiprimesuse warnings; my (@primes, @found) = grep \$_ & 1 && (1 x \$_) !~ /^(11+)\1+\$/, 3 .. 999 / 3;"@primes" =~ /\b(\d+)\b.*?\b(\d+)\b(?{ \$found[\$1 * \$2] = \$1 * \$2 })(*FAIL)/;print "@{[ grep \$_, @found[3 .. 999] ]}\n" =~ s/.{75}\K /\n/gr;`
Output:
```15 21 33 35 39 51 55 57 65 69 77 85 87 91 93 95 111 115 119 123 129 133 141
143 145 155 159 161 177 183 185 187 201 203 205 209 213 215 217 219 221 235
237 247 249 253 259 265 267 287 291 295 299 301 303 305 309 319 321 323 327
329 335 339 341 355 365 371 377 381 391 393 395 403 407 411 413 415 417 427
437 445 447 451 453 469 471 473 481 485 489 493 497 501 505 511 515 517 519
527 533 535 537 543 545 551 553 559 565 573 579 581 583 589 591 597 611 623
629 633 635 649 655 667 669 671 679 681 685 687 689 695 697 699 703 707 713
717 721 723 731 737 745 749 753 755 763 767 771 779 781 785 789 791 793 799
803 807 813 815 817 831 835 843 849 851 865 869 871 879 889 893 895 899 901
905 913 917 921 923 933 939 943 949 951 955 959 965 973 979 985 989 993 995
```

## Phix

```function oss(integer n)
sequence f = prime_factors(n,true)
return length(f)==2 and f[1]!=f[2]
end function
sequence res = apply(true,sprintf,{{"%d"},filter(tagset(999,1,2),oss)})
printf(1,"Found %d odd square-free semiprimes less than 1,000:\n %s\n",
{length(res),join(shorten(res,"",5),", ")})
```
Output:
```Found 194 odd square-free semiprimes less than 1,000:
15, 21, 33, 35, 39, ..., 979, 985, 989, 993, 995
```

## Python

`#!/usr/bin/python def isPrime(n):    for i in range(2, int(n**0.5) + 1):        if n % i == 0:            return False            return True  if __name__ == '__main__':    for p in range(3, 999):        if not isPrime(p):                        continue        for q in range(p+1, 1000//p):            if not isPrime(q):                continue            print(p*q, end = " ");`

## Raku

`say (3..333).grep(*.is-prime).combinations(2)».map( * * * ).flat\    .grep( * < 1000 ).sort.batch(20)».fmt('%3d').join: "\n";`
Output:
``` 15  21  33  35  39  51  55  57  65  69  77  85  87  91  93  95 111 115 119 123
129 133 141 143 145 155 159 161 177 183 185 187 201 203 205 209 213 215 217 219
221 235 237 247 249 253 259 265 267 287 291 295 299 301 303 305 309 319 321 323
327 329 335 339 341 355 365 371 377 381 391 393 395 403 407 411 413 415 417 427
437 445 447 451 453 469 471 473 481 485 489 493 497 501 505 511 515 517 519 527
533 535 537 543 545 551 553 559 565 573 579 581 583 589 591 597 611 623 629 633
635 649 655 667 669 671 679 681 685 687 689 695 697 699 703 707 713 717 721 723
731 737 745 749 753 755 763 767 771 779 781 785 789 791 793 799 803 807 813 815
817 831 835 843 849 851 865 869 871 879 889 893 895 899 901 905 913 917 921 923
933 939 943 949 951 955 959 965 973 979 985 989 993 995```

## REXX

`/*REXX pgm finds odd squarefree semiprimes (product of 2 primes)  that are less then N. */parse arg hi cols .                              /*obtain optional argument from the CL.*/if   hi=='' |   hi==","  then   hi= 1000         /* "      "         "   "   "     "    */if cols=='' | cols==","  then cols=   10         /* "      "         "   "   "     "    */call genP                                        /*build array of semaphores for primes.*/w= 10                                            /*width of a number in any column.     */                                    @oss= ' odd squarefree semiprimes  <  '   commas(1000)if cols>0 then say ' index │'center(@oss,    1 + cols*(w+1)     )if cols>0 then say '───────┼'center(""   ,   1 + cols*(w+1), '─')idx= 1                                           /*initialize the index of output lines.*/\$=;                                   ss.= 0     /*a list of odd squarefree semiprimes. */        do    j=2    while @.j < hi              /*gen odd squarefree semiprimes   < HI.*/           do k=j+1  while @.k < hi;  _= @.j*@.k /*ensure primes are squarefree &  < HI.*/           if _>=hi  then leave                  /*Is the product ≥ HI?   Then skip it. */           ss._= 1                               /*mark # as being squarefree semiprime.*/           end   /*k*/        end      /*j*/oss= 0                                           /*number of odd squarefree semiprimes. */        do m=3  by 2  to hi-1                    /*search a list of possible candicates.*/        if \ss.m  then iterate                   /*Does this number exist?  No, skip it.*/        oss= oss + 1                             /*bump count of odd sq─free semiprimes.*/        if cols==0         then iterate          /*Build the list  (to be shown later)? */        \$= \$  right( commas(m), w)               /*add an  odd  square─free  semiprime. */        if oss//cols\==0   then iterate          /*have we populated a line of output?  */        say center(idx, 7)'│'  substr(\$, 2);  \$= /*display what we have so far  (cols). */        idx= idx + cols                          /*bump the  index  count for the output*/        end   /*m*/ if \$\==''  then say center(idx, 7)"│"  substr(\$, 2)  /*possible display residual output.*/if cols>0 then say '───────┴'center(""   ,   1 + cols*(w+1), '─')saysay 'Found '       commas(oss)       @ossexit 0                                           /*stick a fork in it,  we're all done. *//*──────────────────────────────────────────────────────────────────────────────────────*/commas: parse arg ?;  do jc=length(?)-3  to 1  by -3; ?=insert(',', ?, jc); end;  return ?/*──────────────────────────────────────────────────────────────────────────────────────*/genP: @.1=2;  @.2=3;  @.3=5;  @.4=7;  @.5=11     /*define low primes; # of primes so far*/               #= 5;           sq.#= @.# ** 2    /*the highest prime squared  (so far). */                                                 /* [↓]  generate more  primes  ≤  high.*/        do [email protected].#+2  by 2  to hi+1                /*find odd primes from here on.        */        parse var j '' -1 _;       if    _==5  then iterate  /*J ÷ by 5?  (right digit).*/        if j//3==0  then iterate;  if j//7==0  then iterate  /*" "  " 3?     J ÷ by 7?  */                 do k=5  while sq.k<=j           /* [↓]  divide by the known odd primes.*/                 if j//@.k==0  then iterate j    /*Is  J ÷ X?  Then not prime.     ___  */                 end   /*k*/                     /* [↑]  only process numbers  ≤  √ J   */        #= #+1;              @.#= j;   sq.#= j*j /*bump # Ps;  assign next P;  P squared*/        end            /*j*/;          return`
output   when using the default inputs:
``` index │                                      odd squarefree semiprimes  <   1,000
───────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────
1   │         15         21         33         35         39         51         55         57         65         69
11   │         77         85         87         91         93         95        111        115        119        123
21   │        129        133        141        143        145        155        159        161        177        183
31   │        185        187        201        203        205        209        213        215        217        219
41   │        221        235        237        247        249        253        259        265        267        287
51   │        291        295        299        301        303        305        309        319        321        323
61   │        327        329        335        339        341        355        365        371        377        381
71   │        391        393        395        403        407        411        413        415        417        427
81   │        437        445        447        451        453        469        471        473        481        485
91   │        489        493        497        501        505        511        515        517        519        527
101  │        533        535        537        543        545        551        553        559        565        573
111  │        579        581        583        589        591        597        611        623        629        633
121  │        635        649        655        667        669        671        679        681        685        687
131  │        689        695        697        699        703        707        713        717        721        723
141  │        731        737        745        749        753        755        763        767        771        779
151  │        781        785        789        791        793        799        803        807        813        815
161  │        817        831        835        843        849        851        865        869        871        879
171  │        889        893        895        899        901        905        913        917        921        923
181  │        933        939        943        949        951        955        959        965        973        979
191  │        985        989        993        995
───────┴───────────────────────────────────────────────────────────────────────────────────────────────────────────────

Found  194  odd squarefree semiprimes  <   1,000
```

## Ring

`load "stdlib.ring" # for isprime() function? "working..." + nl + "Odd squarefree semiprimes are:" limit = 1000 Prim = [] # create table of prime numbers from 3 to 1000 / 3pr = []for n = 3 to 1000 / 3    if isprime(n) Add(pr,n) oknext pl = len(pr) # calculate upper limit for nfor nlim = 1 to pl    if pr[nlim] * pr[nlim] > limit exit oknext nlim-- # add items to result list and sortfor n = 1 to nlim    for m = n + 1 to pl        amt = pr[n] * pr[m]        if amt > limit exit ok        add(Prim, amt)    nextnext Prim = sort(Prim) # display resultsfor n = 1 to len(Prim)    see sf(Prim[n], 4) + " "    if n % 20 = 0 see nl oknext n--  ? nl + nl + "Found " + n + " Odd squarefree semiprimes." + nl + "done..." # a very plain string formatter, intended to even up columnar outputsdef sf x, y    s = string(x) l = len(s)    if l > y y = l ok    return substr("          ", 11 - y + l) + s`
Output:
```working...
Odd squarefree semiprimes are:
15   21   33   35   39   51   55   57   65   69   77   85   87   91   93   95  111  115  119  123
129  133  141  143  145  155  159  161  177  183  185  187  201  203  205  209  213  215  217  219
221  235  237  247  249  253  259  265  267  287  291  295  299  301  303  305  309  319  321  323
327  329  335  339  341  355  365  371  377  381  391  393  395  403  407  411  413  415  417  427
437  445  447  451  453  469  471  473  481  485  489  493  497  501  505  511  515  517  519  527
533  535  537  543  545  551  553  559  565  573  579  581  583  589  591  597  611  623  629  633
635  649  655  667  669  671  679  681  685  687  689  695  697  699  703  707  713  717  721  723
731  737  745  749  753  755  763  767  771  779  781  785  789  791  793  799  803  807  813  815
817  831  835  843  849  851  865  869  871  879  889  893  895  899  901  905  913  917  921  923
933  939  943  949  951  955  959  965  973  979  985  989  993  995

Found 194 Odd squarefree semiprimes.
done...
```

## Sidef

`func odd_squarefree_almost_primes(upto, k=2) {    k.squarefree_almost_primes(upto).grep{.is_odd}} with (1e3) {|n|    var list = odd_squarefree_almost_primes(n, 2)    say "Found #{list.len} odd square-free semiprimes <= #{n.commify}:"    say (list.first(10).join(', '), ', ..., ', list.last(10).join(', '))}`
Output:
```Found 194 odd square-free semiprimes <= 1,000:
15, 21, 33, 35, 39, 51, 55, 57, 65, 69, ..., 951, 955, 959, 965, 973, 979, 985, 989, 993, 995
```

## Wren

Library: Wren-math
Library: Wren-seq
Library: Wren-fmt
Library: Wren-sort
`import "/math" for Intimport "/seq" for Lstimport "/fmt" for Fmtimport "/sort" for Sort var primes = Int.primeSieve(333)var oss = []for (i in 1...primes.count-1) {    for (j in i + 1...primes.count) {       var n = primes[i] * primes[j]       if (n >= 1000) break       oss.add(n)    }}Sort.quick(oss)System.print("Odd squarefree semiprimes under 1,000:")for (chunk in Lst.chunks(oss, 10)) Fmt.print("\$3d", chunk)System.print("\n%(oss.count) such numbers found.")`
Output:
```Odd squarefree semiprimes under 1,000:
15  21  33  35  39  51  55  57  65  69
77  85  87  91  93  95 111 115 119 123
129 133 141 143 145 155 159 161 177 183
185 187 201 203 205 209 213 215 217 219
221 235 237 247 249 253 259 265 267 287
291 295 299 301 303 305 309 319 321 323
327 329 335 339 341 355 365 371 377 381
391 393 395 403 407 411 413 415 417 427
437 445 447 451 453 469 471 473 481 485
489 493 497 501 505 511 515 517 519 527
533 535 537 543 545 551 553 559 565 573
579 581 583 589 591 597 611 623 629 633
635 649 655 667 669 671 679 681 685 687
689 695 697 699 703 707 713 717 721 723
731 737 745 749 753 755 763 767 771 779
781 785 789 791 793 799 803 807 813 815
817 831 835 843 849 851 865 869 871 879
889 893 895 899 901 905 913 917 921 923
933 939 943 949 951 955 959 965 973 979
985 989 993 995

194 such numbers found.
```

## XPL0

`func IsPrime(N);        \Return 'true' if N is a prime numberint  N, I;[if N <= 1 then return false;for I:= 2 to sqrt(N) do    if rem(N/I) = 0 then return false;return true;]; def Max = 1000;int N, A(Max), P, Q, Count;[for N:= 0 to Max-1 do    A(N):= false;for P:= 3 to Max/5 do    if IsPrime(P) then        for Q:= P+2 to Max/P do            if IsPrime(Q) then                if P*Q < Max then                    A(P*Q):= true;Count:= 0;for N:= 0 to Max-1 do    if A(N) then        [IntOut(0, N);        Count:= Count+1;        if rem(Count/10) = 0 then CrLf(0) else ChOut(0, 9\tab\);        ];CrLf(0);IntOut(0, Count);Text(0, " odd squarefree semiprimes found below 1000.");]`
Output:
```15      21      33      35      39      51      55      57      65      69
77      85      87      91      93      95      111     115     119     123
129     133     141     143     145     155     159     161     177     183
185     187     201     203     205     209     213     215     217     219
221     235     237     247     249     253     259     265     267     287
291     295     299     301     303     305     309     319     321     323
327     329     335     339     341     355     365     371     377     381
391     393     395     403     407     411     413     415     417     427
437     445     447     451     453     469     471     473     481     485
489     493     497     501     505     511     515     517     519     527
533     535     537     543     545     551     553     559     565     573
579     581     583     589     591     597     611     623     629     633
635     649     655     667     669     671     679     681     685     687
689     695     697     699     703     707     713     717     721     723
731     737     745     749     753     755     763     767     771     779
781     785     789     791     793     799     803     807     813     815
817     831     835     843     849     851     865     869     871     879
889     893     895     899     901     905     913     917     921     923
933     939     943     949     951     955     959     965     973     979
985     989     993     995
194 odd squarefree semiprimes found below 1000.
```