Factors of a Mersenne number: Difference between revisions

From Rosetta Code
Content added Content deleted
m (→‎{{header|REXX}}: added/changed comments and whitespace.)
m (added a note about the ;See also: video not being available.)
Line 57: Line 57:


;See also:
;See also:
*   [https://www.youtube.com/watch?v=SNwvJ7psoow Computers in 1948: 2¹²⁷-1]
* &nbsp; [https://www.youtube.com/watch?v=SNwvJ7psoow Computers in 1948: 2<sup>127</sup> - 1] <br> &nbsp; &nbsp; &nbsp; (Note: &nbsp; This video is no longer available because the YouTube account associated with this video has been terminated.)
<br><br>
<br><br>



Revision as of 07:49, 1 June 2020

Task
Factors of a Mersenne number
You are encouraged to solve this task according to the task description, using any language you may know.

A Mersenne number is a number in the form of 2P-1.

If P is prime, the Mersenne number may be a Mersenne prime (if P is not prime, the Mersenne number is also not prime).

In the search for Mersenne prime numbers it is advantageous to eliminate exponents by finding a small factor before starting a, potentially lengthy, Lucas-Lehmer test.

There are very efficient algorithms for determining if a number divides 2P-1 (or equivalently, if 2P mod (the number) = 1). Some languages already have built-in implementations of this exponent-and-mod operation (called modPow or similar).

The following is how to implement this modPow yourself:

For example, let's compute 223 mod 47. Convert the exponent 23 to binary, you get 10111. Starting with square = 1, repeatedly square it. Remove the top bit of the exponent, and if it's 1 multiply square by the base of the exponentiation (2), then compute square modulo 47. Use the result of the modulo from the last step as the initial value of square in the next step:

                  remove       optional   
      square      top bit   multiply by 2   mod 47
   ────────────   ───────   ─────────────   ────── 
   1*1 = 1        1  0111   1*2 = 2            2
   2*2 = 4        0   111      no              4
   4*4 = 16       1    11   16*2 = 32         32
   32*32 = 1024   1     1   1024*2 = 2048     27
   27*27 = 729    1         729*2 = 1458       1

Since 223 mod 47 = 1, 47 is a factor of 2P-1. (To see this, subtract 1 from both sides: 223-1 = 0 mod 47.) Since we've shown that 47 is a factor, 223-1 is not prime. Further properties of Mersenne numbers allow us to refine the process even more. Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero. Furthermore, q must be 1 or 7 mod 8. Finally any potential factor q must be prime. As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N).

These primality tests only work on Mersenne numbers where P is prime. For example, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither of which fit 2kP+1.


Task

Using the above method find a factor of 2929-1 (aka M929)


Related tasks


See also
  •   Computers in 1948: 2127 - 1
          (Note:   This video is no longer available because the YouTube account associated with this video has been terminated.)



360 Assembly

Translation of: BBC BASIC

Use of bitwise operations (TM (Test under Mask), SLA (Shift Left Arithmetic),SRA (Shift Right Arithmetic)). <lang>* Factors of a Mersenne number 11/09/2015 MERSENNE CSECT

        USING  MERSENNE,R15
        MVC    Q,=F'929'          q=929   (M929=2**929-1) 
        LA     R6,1               k=1

LOOPK C R6,=F'1048576' do k=1 to 2**20

        BNL    ELOOPK
        LR     R5,R6              k
        M      R4,Q               *q
        SLA    R5,1               *2   by shift left 1
        LA     R5,1(R5)           +1
        ST     R5,P               p=k*q*2+1
        L      R2,P               p
        N      R2,=F'7'           p&7
        C      R2,=F'1'           if    ((p&7)=1)    p='*001'
        BE     OK
        C      R2,=F'7'           or if ((p&7)=7)    p='*111'
        BNE    NOTOK

OK MVI PRIME,X'00' then prime=false is prime?

        LA     R2,2               loop count=2
        LA     R1,2               j=2 and after j=3

J2J3 L R4,P p

        SRDA   R4,32              r4>>r5
        DR     R4,R1              p/j
        LTR    R4,R4              if p//j=0 
        BZ     NOTPRIME           then goto notprime
        LA     R1,1(R1)           j=j+1
        BCT    R2,J2J3
        LA     R7,5               d=5

WHILED LR R5,R7 d

        MR     R4,R7              *d
        C      R5,P               do while(d*d<=p)
        BH     EWHILED
        LA     R2,2               loop count=2
        LA     R1,2               j=2 and after j=4

J2J4 L R4,P p

        SRDA   R4,32              r4>>r5
        DR     R4,R7              /d
        LTR    R4,R4              if p//d=0 
        BZ     NOTPRIME           then goto notprime
        AR     R7,R1              d=d+j
        LA     R1,2(R1)           j=j+2
        BCT    R2,J2J4
        B      WHILED

EWHILED MVI PRIME,X'01' prime=true so is prime NOTPRIME L R8,Q i=q

        MVC    Y,=F'1'            y=1
        MVC    Z,=F'2'            z=2

WHILEI LTR R8,R8 do while(i^=0)

        BZ     EWHILEI
        ST     R8,PG              i
        TM     PG+3,B'00000001'   if first bit of i not 1
        BZ     NOTFIRST           
        L      R5,Y               y
        M      R4,Z               *z
        LA     R4,0
        D      R4,P               /p
        ST     R4,Y               y=(y*z)//p

NOTFIRST L R5,Z z

        M      R4,Z               *z
        LA     R4,0
        D      R4,P               /p
        ST     R4,Z               z=(z*z)//p
        SRA    R8,1               i=i/2   by shift right 1
        B      WHILEI

EWHILEI CLI PRIME,X'01' if prime

        BNE    NOTOK
        CLC    Y,=F'1'            and if y=1
        BNE    NOTOK
        MVC    FACTOR,P           then factor=p
        B      OKFACTOR

NOTOK LA R6,1(R6) k=k+1

        B      LOOPK

ELOOPK MVC FACTOR,=F'0' factor=0 OKFACTOR L R1,Q

        XDECO  R1,PG              edit q
        L      R1,FACTOR
        XDECO  R1,PG+12           edit factor
        XPRNT  PG,24              print
        XR     R15,R15
        BR     R14

PRIME DS X flag for prime Q DS F P DS F Y DS F Z DS F FACTOR DS F a factor of q PG DS CL24 buffer

        YREGS 
        END    MERSENNE</lang>
Output:
         929       13007

Ada

mersenne.adb: <lang Ada>with Ada.Text_IO; -- reuse Is_Prime from Primality by Trial Division with Is_Prime;

procedure Mersenne is

  function Is_Set (Number : Natural; Bit : Positive) return Boolean is
  begin
     return Number / 2 ** (Bit - 1) mod 2 = 1;
  end Is_Set;
  function Get_Max_Bit (Number : Natural) return Natural is
     Test : Natural := 0;
  begin
     while 2 ** Test <= Number loop
        Test := Test + 1;
     end loop;
     return Test;
  end Get_Max_Bit;
  function Modular_Power (Base, Exponent, Modulus : Positive) return Natural is
     Maximum_Bit : constant Natural := Get_Max_Bit (Exponent);
     Square      : Natural := 1;
  begin
     for Bit in reverse 1 .. Maximum_Bit loop
        Square := Square ** 2;
        if Is_Set (Exponent, Bit) then
           Square := Square * Base;
        end if;
        Square := Square mod Modulus;
     end loop;
     return Square;
  end Modular_Power;
  Not_A_Prime_Exponent : exception;
  function Get_Factor (Exponent : Positive) return Natural is
     Factor : Positive;
  begin
     if not Is_Prime (Exponent) then
        raise Not_A_Prime_Exponent;
     end if;
     for K in 1 .. 16384 / Exponent loop
        Factor := 2 * K * Exponent + 1;
        if Factor mod 8 = 1 or else Factor mod 8 = 7 then
           if Is_Prime (Factor) and then Modular_Power (2, Exponent, Factor) = 1 then
              return Factor;
           end if;
        end if;
     end loop;
     return 0;
  end Get_Factor;
  To_Test : constant Positive := 929;
  Factor  : Natural;

begin

  Ada.Text_IO.Put ("2 **" & Integer'Image (To_Test) & " - 1 ");
  begin
     Factor := Get_Factor (To_Test);
     if Factor = 0 then
        Ada.Text_IO.Put_Line ("is prime.");
     else
        Ada.Text_IO.Put_Line ("has factor" & Integer'Image (Factor));
     end if;
  exception
     when Not_A_Prime_Exponent =>
        Ada.Text_IO.Put_Line ("is not a Mersenne number");
  end;

end Mersenne;</lang>

Output:
2 ** 929 - 1 has factor 13007

ALGOL 68

Translation of: Fortran
Works with: ALGOL 68 version Standard - with prelude inserted manually
Works with: ALGOL 68G version Any - tested with release mk15-0.8b.fc9.i386

<lang algol68>MODE ISPRIMEINT = INT; PR READ "prelude/is_prime.a68" PR;

MODE POWMODSTRUCT = INT; PR READ "prelude/pow_mod.a68" PR;

PROC m factor = (INT p)INT:BEGIN

 INT m factor;
 INT max k, msb, n, q;
 FOR i FROM bits width - 2 BY -1 TO 0 WHILE ( BIN p SHR i AND 2r1 ) = 2r0 DO
     msb := i
 OD;
 max k := ENTIER sqrt(max int) OVER p; # limit for k to prevent overflow of max int #
 FOR k FROM 1 TO max k DO
   q := 2*p*k + 1;
   IF NOT is prime(q) THEN
     SKIP
   ELIF q MOD 8 /= 1 AND q MOD 8 /= 7 THEN
     SKIP
   ELSE
     n := pow mod(2,p,q);
     IF n = 1 THEN
       m factor := q;
       return
     FI
   FI
 OD;
 m factor := 0;
 return:
   m factor

END;

BEGIN

 INT exponent, factor;
 print("Enter exponent of Mersenne number:");
 read(exponent);
 IF NOT is prime(exponent) THEN
   print(("Exponent is not prime: ", exponent, new line))
 ELSE
   factor := m factor(exponent);
   IF factor = 0 THEN
     print(("No factor found for M", exponent, new line))
   ELSE
     print(("M", exponent, " has a factor: ", factor, new line))
   FI
 FI

END</lang> Example:

Enter exponent of Mersenne number:929
M       +929 has a factor:      +13007

AutoHotkey

ahk discussion <lang autohotkey>MsgBox % MFact(27)  ;-1: 27 is not prime MsgBox % MFact(2)  ; 0 MsgBox % MFact(3)  ; 0 MsgBox % MFact(5)  ; 0 MsgBox % MFact(7)  ; 0 MsgBox % MFact(11)  ; 23 MsgBox % MFact(13)  ; 0 MsgBox % MFact(17)  ; 0 MsgBox % MFact(19)  ; 0 MsgBox % MFact(23)  ; 47 MsgBox % MFact(29)  ; 233 MsgBox % MFact(31)  ; 0 MsgBox % MFact(37)  ; 223 MsgBox % MFact(41)  ; 13367 MsgBox % MFact(43)  ; 431 MsgBox % MFact(47)  ; 2351 MsgBox % MFact(53)  ; 6361 MsgBox % MFact(929) ; 13007

MFact(p) { ; blank if 2**p-1 can be prime, otherwise a prime divisor < 2**32

  If !IsPrime32(p)
     Return -1                      ; Error (p must be prime)
  Loop % 2.0**(p<64 ? p/2-1 : 31)/p ; test prime divisors < 2**32, up to sqrt(2**p-1)
     If (((q:=2*p*A_Index+1)&7 = 1 || q&7 = 7) && IsPrime32(q) && PowMod(2,p,q)=1)
        Return q
  Return 0

}

IsPrime32(n) { ; n < 2**32

  If n in 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97
     Return 1
  If (!(n&1)||!mod(n,3)||!mod(n,5)||!mod(n,7)||!mod(n,11)||!mod(n,13)||!mod(n,17)||!mod(n,19))
     Return 0
  n1 := d := n-1, s := 0
  While !(d&1)
     d>>=1, s++
  Loop 3 {
     x := PowMod( A_Index=1 ? 2 : A_Index=2 ? 7 : 61, d, n)
     If (x=1 || x=n1)
        Continue
     Loop % s-1
        If (1 = x:=PowMod(x,2,n))
           Return 0
        Else If (x = n1)
           Break
     IfLess x,%n1%, Return 0
  }
  Return 1

}

PowMod(x,n,m) { ; x**n mod m

  y := 1, i := n, z := x
  While i>0
     y := i&1 ? mod(y*z,m) : y, z := mod(z*z,m), i >>= 1
  Return y

}</lang>

BBC BASIC

<lang bbcbasic> PRINT "A factor of M929 is "; FNmersenne_factor(929)

     PRINT "A factor of M937 is "; FNmersenne_factor(937)
     END
     
     DEF FNmersenne_factor(P%)
     LOCAL K%, Q%
     IF NOT FNisprime(P%) THEN = -1
     FOR K% = 1 TO 1000000
       Q% = 2*K%*P% + 1
       IF (Q% AND 7) = 1 OR (Q% AND 7) = 7 THEN
         IF FNisprime(Q%) IF FNmodpow(2, P%, Q%) = 1 THEN = Q%
       ENDIF
     NEXT K%
     = 0
     
     DEF FNisprime(N%)
     LOCAL D%
     IF N% MOD 2=0 THEN = (N% = 2)
     IF N% MOD 3=0 THEN = (N% = 3)
     D% = 5
     WHILE D% * D% <= N%
       IF N% MOD D% = 0 THEN = FALSE
       D% += 2
       IF N% MOD D% = 0 THEN = FALSE
       D% += 4
     ENDWHILE
     = TRUE
     
     DEF FNmodpow(X%, N%, M%)
     LOCAL I%, Y%, Z%
     I% = N% : Y% = 1 : Z% = X%
     WHILE I%
       IF I% AND 1 THEN Y% = (Y% * Z%) MOD M%
       Z% = (Z% * Z%) MOD M%
       I% = I% >>> 1
     ENDWHILE
     = Y%

</lang>

Output:
A factor of M929 is 13007
A factor of M937 is 28111

Bracmat

<lang Bracmat>( ( modPow

 =   square P divisor highbit log 2pow
   .   !arg:(?P.?divisor)
     & 1:?square
     & 2\L!P:#%?log+?
     & 2^!log:?2pow
     &   whl
       ' (     mod
             $ (   ( div$(!P.!2pow):1&2
                   | 1
                   )
                 * !square^2
               . !divisor
               )
           : ?square
         & mod$(!P.!2pow):?P
         & 1/2*!2pow:~/:?2pow
         )
     & !square
 )

& ( isPrime

 =   incs nextincs primeCandidate nextPrimeCandidate quotient
   .     1 1 2 2 (4 2 4 2 4 6 2 6:?incs)
       : ?nextincs
     & 1:?primeCandidate
     & ( nextPrimeCandidate
       =   ( !nextincs:&!incs:?nextincs
           | 
           )
         & !nextincs:%?inc ?nextincs
         & !inc+!primeCandidate:?primeCandidate
       )
     &   whl
       ' ( (!nextPrimeCandidate:?divisor)^2:~>!arg
         & !arg*!divisor^-1:?quotient:/
         )
     & !quotient:/
 )

& ( Factors-of-a-Mersenne-Number

 =   P k candidate bignum
   .   !arg:?P
     & 2^!P+-1:?bignum
     & 0:?k
     &   whl
       ' ( 2*(1+!k:?k)*!P+1:?candidate
         & !candidate^2:~>!bignum
         & ( ~(mod$(!candidate.8):(1|7))
           | ~(isPrime$!candidate)
           | modPow$(!P.!candidate):?mp:~1
           )
         )
     & !mp:1
     & (!candidate.(2^!P+-1)*!candidate^-1)
 )

& ( Factors-of-a-Mersenne-Number$929:(?divisorA.?divisorB)

   &   out
     $ ( str
       $ ("found some divisors of 2^" !P "-1 : " !divisorA " and " !divisorB)
       )
 | out$"no divisors found"
 )

);</lang>

Output:
found some divisors of 2^!P-1 : 13007 and 348890248924938259750454781163390930305120269538278042934009621348894657205785
201247454118966026150852149399410259938217062100192168747352450719561908445272675574320888385228421992652298715687625495
638077382028762529439880103124705348782610789919949159935587158612289264184273

C

<lang C>int isPrime(int n){ if (n%2==0) return n==2; if (n%3==0) return n==3; int d=5; while(d*d<=n){ if(n%d==0) return 0; d+=2; if(n%d==0) return 0; d+=4;} return 1;}

main() {int i,d,p,r,q=929; if (!isPrime(q)) return 1; r=q; while(r>0) r<<=1; d=2*q+1; do { for(p=r, i= 1; p; p<<= 1){ i=((long long)i * i) % d; if (p < 0) i *= 2; if (i > d) i -= d;} if (i != 1) d += 2*q; else break; } while(1); printf("2^%d - 1 = 0 (mod %d)\n", q, d);}</lang>

C#

<lang csharp>using System;

namespace prog { class MainClass { public static void Main (string[] args) { int q = 929; if ( !isPrime(q) ) return; int r = q; while( r > 0 ) r <<= 1; int d = 2 * q + 1; do { int i = 1; for( int p=r; p!=0; p<<=1 ) { i = (i*i) % d; if (p < 0) i *= 2; if (i > d) i -= d; } if (i != 1) d += 2 * q; else break; } while(true);

Console.WriteLine("2^"+q+"-1 = 0 (mod "+d+")"); }

static bool isPrime(int n) { if ( n % 2 == 0 ) return n == 2; if ( n % 3 == 0 ) return n == 3; int d = 5; while( d*d <= n ) { if ( n % d == 0 ) return false; d += 2; if ( n % d == 0 ) return false; d += 4; } return true; } } }</lang>

C++

<lang cpp>#include <iostream>

  1. include <cstdint>
  2. include <vector>

typedef uint64_t integer;

integer bit_count(integer n) {

   integer count = 0;
   while (n > 0) {
       n >>= 1;
       ++count;
   }
   return count;

}

integer mod_pow(integer p, integer n) {

   integer square = 1;
   integer bits = bit_count(p);
   while (bits > 0) {
       square = square * square;
       if ((p & (1 << --bits)) != 0)
           square <<= 1;
       square %= n;
   }
   return square;

}

bool is_prime(integer n) {

   if (n < 2)
       return false;
   if (n % 2 == 0)
       return n == 2;
   for (integer p = 3; p * p <= n; p += 2) {
       if (n % p == 0)
           return false;
   }
   return true;

}

integer find_mersenne_factor(integer p) {

   integer k = 0;
   integer q = 1;
   for (;;) {
       ++k;
       q = 2 * k * p + 1;
       if (q % 8 == 1 || q % 8 == 7) {
           if (mod_pow(p, q) == 1 && is_prime(q))
               return q;
       }
   }
   return 0;

}

int main() {

   std::cout << find_mersenne_factor(929) << '\n';
   return 0;

}</lang>

Output:
13007

Clojure

Translation of: Python

<lang lisp>(ns mersennenumber

 (:gen-class))

(defn m* [p q m]

 " Computes (p*q) mod m "
 (mod (*' p q) m))

(defn power

 "modular exponentiation (i.e. b^e mod m"
 [b e m]
 (loop [b b, e e, x 1]
   (if (zero? e)
     x
     (if (even? e) (recur (m* b b m) (quot e 2) x)
                   (recur (m* b b m) (quot e 2) (m* b x m))))))

(defn divides? [k n]

 " checks if k divides n "
 (= (rem n k) 0))

(defn is-prime? [n]

 " checks if n is prime "
 (cond
   (< n 2) false             ; 0, 1 not prime (i.e. primes are greater than one)
   (= n 2) true              ; 2 is prime
   (= 0 (mod n 2)) false     ; all other evens are not prime
   :else                     ; check for divisors up to sqrt(n)
     (empty? (filter #(divides? % n) (take-while #(<= (* % %) n) (range 2 n))))))
Max k to check

(def MAX-K 16384)

(defn trial-factor [p k]

 " check if k satisfies 2*k*P + 1 divides 2^p - 1 "
 (let [q  (+ (* 2 p k) 1)
       mq (mod q 8)]
   (cond
     (not (is-prime? q))     nil
     (and (not= 1 mq)
          (not= 7 mq))       nil
     (= 1 (power 2 p q))     q
     :else                   nil)))

(defn m-factor [p]

 " searches for k-factor "
 (some #(trial-factor p %) (range 16384)))

(defn -main [p]

 (if-not (is-prime? p)
   (format "M%d = 2^%d - 1 exponent is not prime" p p)
   (if-let [factor (m-factor p)]
     (format "M%d = 2^%d - 1 is composite with factor %d" p p factor)
     (format "M%d = 2^%d - 1 is prime" p p))))
Tests different p values

(doseq [p [2,3,4,5,7,11,13,17,19,23,29,31,37,41,43,47,53,929]

       :let [s (-main p)]]
 (println s))

</lang>

Output:
M2 = 2^2 - 1 is prime
M3 = 2^3 - 1 is composite with factor 7
M4 = 2^4 - 1 exponent is not prime
M5 = 2^5 - 1 is composite with factor 31
M7 = 2^7 - 1 is composite with factor 127
M11 = 2^11 - 1 is composite with factor 23
M13 = 2^13 - 1 is composite with factor 8191
M17 = 2^17 - 1 is composite with factor 131071
M19 = 2^19 - 1 is composite with factor 524287
M23 = 2^23 - 1 is composite with factor 47
M29 = 2^29 - 1 is composite with factor 233
M31 = 2^31 - 1 is prime
M37 = 2^37 - 1 is composite with factor 223
M41 = 2^41 - 1 is composite with factor 13367
M43 = 2^43 - 1 is composite with factor 431
M47 = 2^47 - 1 is composite with factor 2351
M53 = 2^53 - 1 is composite with factor 6361
M929 = 2^929 - 1 is composite with factor 13007

CoffeeScript

Works with: node.js
Translation of: Ruby

<lang coffeescript>mersenneFactor = (p) ->

   limit = Math.sqrt(Math.pow(2,p) - 1)
   k = 1
   while (2*k*p - 1) < limit
       q = 2*k*p + 1
       if isPrime(q) and (q % 8 == 1 or q % 8 == 7) and trialFactor(2,p,q)
           return q
       k++
   return null

isPrime = (value) ->

   for i in [2...value]
       return false if value % i == 0
       return true  if value % i != 0

trialFactor = (base, exp, mod) ->

   square = 1
   bits = exp.toString(2).split()
   for bit in bits
       square = Math.pow(square, 2) * (if +bit is 1 then base else 1) % mod
   return square == 1

checkMersenne = (p) ->

   factor = mersenneFactor(+p)
   console.log "M#{p} = 2^#{p}-1 is #{if factor is null then "prime" else "composite with #{factor}"}"

checkMersenne(prime) for prime in ["2","3","4","5","7","11","13","17","19","23","29","31","37","41","43","47","53","929"] </lang>

M2 = 2^2-1 is prime
M3 = 2^3-1 is prime
M4 = 2^4-1 is prime
M5 = 2^5-1 is prime
M7 = 2^7-1 is prime
M11 = 2^11-1 is composite with 23
M13 = 2^13-1 is prime
M17 = 2^17-1 is prime
M19 = 2^19-1 is prime
M23 = 2^23-1 is composite with 47
M29 = 2^29-1 is composite with 233
M31 = 2^31-1 is prime
M37 = 2^37-1 is composite with 223
M41 = 2^41-1 is composite with 13367
M43 = 2^43-1 is composite with 431
M47 = 2^47-1 is composite with 2351
M53 = 2^53-1 is composite with 6361
M929 = 2^929-1 is composite with 13007

Common Lisp

Translation of: Maxima

<lang lisp>(defun mersenne-fac (p &aux (m (1- (expt 2 p))))

 (loop for k from 1
       for n = (1+ (* 2 k p))
       until (zerop (mod m n))
       finally (return n)))

(print (mersenne-fac 929))</lang>

Output:
13007

Version 2

We can use a primality test from the Primality by Trial Division task.

<lang lisp>(defun primep (n)

 "Is N prime?"
 (and (> n 1) 
      (or (= n 2) (oddp n))
      (loop for i from 3 to (isqrt n) by 2

never (zerop (rem n i)))))</lang>

Specific to this task, we define modulo-power and mersenne-prime-p.

<lang lisp>(defun modulo-power (base power modulus)

 (loop with square = 1
       for bit across (format nil "~b" power)
       do (setf square (* square square))
       when (char= bit #\1) do (setf square (* square base))
       do (setf square (mod square modulus))
       finally (return square)))

(defun mersenne-prime-p (power)

 (do* ((N (1- (expt 2 power)))
       (sqN (isqrt N))
       (k 1 (1+ k))
       (q (1+ (* 2 power k)) (1+ (* 2 power k)))
       (m (mod q 8) (mod q 8)))
     ((> q sqN) (values t))
   (when (and (or (= 1 m) (= 7 m))
              (primep q)
              (= 1 (modulo-power 2 power q)))
     (return (values nil q)))))</lang>

We can run the same tests from the Ruby entry.

> (loop for p in '(2 3 4 5 7 11 13 17 19 23 29 31 37 41 43 47 53 929)
        do (multiple-value-bind (primep factor) 
               (mersenne-prime-p p)
             (format t "~&M~w = 2**~:*~w-1 is ~:[composite with factor ~w~;prime~]."
                     p primep factor)))
M2 = 2**2-1 is prime.
M3 = 2**3-1 is prime.
M4 = 2**4-1 is prime.
M5 = 2**5-1 is prime.
M7 = 2**7-1 is prime.
M11 = 2**11-1 is composite with factor 23.
M13 = 2**13-1 is prime.
M17 = 2**17-1 is prime.
M19 = 2**19-1 is prime.
M23 = 2**23-1 is composite with factor 47.
M29 = 2**29-1 is composite with factor 233.
M31 = 2**31-1 is prime.
M37 = 2**37-1 is composite with factor 223.
M41 = 2**41-1 is composite with factor 13367.
M43 = 2**43-1 is composite with factor 431.
M47 = 2**47-1 is composite with factor 2351.
M53 = 2**53-1 is composite with factor 6361.
M929 = 2**929-1 is composite with factor 13007.

Crystal

Translation of: Ruby

<lang ruby>require "big"

def prime?(n) # P3 Prime Generator primality test

 return n | 1 == 3 if n < 5              # n: 0,1,4|false, 2,3|true 
 return false if n.gcd(6) != 1           # for n a P3 prime candidate (pc)
 pc1, pc2 = -1, 1                        # use P3's prime candidates sequence
 until (pc1 += 6) > Math.sqrt(n).to_i    # pcs are only 1/3 of all integers
   return false if n % pc1 == 0 || n % (pc2 += 6) == 0  # if n is composite
 end
 true

end

  1. Compute b**e mod m

def powmod(b, e, m)

 r, b = 1.to_big_i, b.to_big_i
 while e > 0
   r = (r * b) % m if e.odd?
   b = (b * b) % m
   e >>= 1
 end
 r

end

def mersenne_factor(p)

 mers_num = 2.to_big_i ** p - 1
 kp2 = p2 = 2.to_big_i *  p
 while (kp2 - 1) ** 2 < mers_num
   q  = kp2 + 1     # return q if it's a factor
   return q if [1, 7].includes?(q % 8) && prime?(q) && (powmod(2, p, q) == 1)
   kp2 += p2
 end
 true    # could also set to `0` value to check for

end

def check_mersenne(p)

 print "M#{p} = 2**#{p}-1 is "
 f = mersenne_factor(p)
 (puts "prime"; return) if f.is_a?(Bool)  # or f == 0
 puts "composite with factor #{f}"

end

(2..53).each { |p| check_mersenne(p) if prime?(p) } check_mersenne 929</lang>

Output:
M2 = 2**2-1 is prime
M3 = 2**3-1 is prime
M5 = 2**5-1 is prime
M7 = 2**7-1 is prime
M11 = 2**11-1 is composite with factor 23
M13 = 2**13-1 is prime
M17 = 2**17-1 is prime
M19 = 2**19-1 is prime
M23 = 2**23-1 is composite with factor 47
M29 = 2**29-1 is composite with factor 233
M31 = 2**31-1 is prime
M37 = 2**37-1 is composite with factor 223
M41 = 2**41-1 is composite with factor 13367
M43 = 2**43-1 is composite with factor 431
M47 = 2**47-1 is composite with factor 2351
M53 = 2**53-1 is composite with factor 6361
M929 = 2**929-1 is composite with factor 13007

D

<lang d>import std.stdio, std.math, std.traits;

ulong mersenneFactor(in ulong p) pure nothrow @nogc {

   static bool isPrime(T)(in T n) pure nothrow @nogc {
       if (n < 2 || n % 2 == 0)
           return n == 2;
       for (Unqual!T i = 3; i ^^ 2 <= n; i += 2)
           if (n % i == 0)
               return false;
       return true;
   }
   static ulong modPow(in ulong cb, in ulong ce,in ulong m)
   pure nothrow @nogc {
       ulong b = cb;
       ulong result = 1;
       for (ulong e = ce; e > 0; e >>= 1) {
           if ((e & 1) == 1)
               result = (result * b) % m;
           b = (b ^^ 2) % m;
       }
       return result;
   }
   immutable ulong limit = p <= 64 ? cast(ulong)(real(2.0) ^^ p - 1).sqrt : uint.max; // prevents silent overflows
   for (ulong k = 1; (2 * p * k + 1) < limit; k++) {
       immutable ulong q = 2 * p * k + 1;
       if ((q % 8 == 1 || q % 8 == 7) && isPrime(q) && 
           modPow(2, p, q) == 1)
           return q;
   }
   return 1; // returns a sensible smallest factor

}

void main() {

   writefln("Factor of M929: %d", 929.mersenneFactor);

}</lang>

Output:
Factor of M929: 13007

EchoLisp

<lang scheme>

M = 2^P - 1 , P prime
look for a prime divisor q such as
q < √ M, q = 1 or 7 modulo 8, q = 1 + 2kP
q is divisor if (powmod 2 P q) = 1
m-divisor returns q or #f

(define ( m-divisor P )

must limit the search as √ M may be HUGE

(define maxprime (min 1_000_000_000 (sqrt (expt 2 P)))) (for ((q (in-range 1 maxprime (* 2 P)))) #:when (member (modulo q 8) '(1 7)) #:when (prime? q) #:break (= 1 (powmod 2 P q)) => q #f ))

(m-divisor 929)

   → 13007

(m-divisor 4423)

   → #f

(lib 'bigint) (prime? (1- (expt 2 4423))) ;; 2^4423 -1 is a Mersenne prime

   → #t

</lang>

Elixir

Translation of: Ruby

<lang elixir>defmodule Mersenne do

 def mersenne_factor(p) do
   limit = :math.sqrt(:math.pow(2, p) - 1)
   mersenne_loop(p, limit, 1)
 end
 
 defp mersenne_loop(p, limit, k) when (2*k*p - 1) > limit, do: nil
 defp mersenne_loop(p, limit, k) do
   q = 2*k*p + 1
   if prime?(q) and rem(q,8) in [1,7] and trial_factor(2,p,q),
     do: q, else: mersenne_loop(p, limit, k+1)
 end
 
 defp trial_factor(base, exp, mod) do
   Integer.digits(exp, 2)
   |> Enum.reduce(1, fn bit,square ->
     (square * square * (if bit==1, do: base, else: 1)) |> rem(mod)
   end) == 1
 end
 
 def check_mersenne(p) do
   IO.write "M#{p} = 2**#{p}-1 is "
   f = mersenne_factor(p)
   IO.puts if f, do: "composite with factor #{f}", else: "prime"
 end
 
 def prime?(n), do: prime?(n, :math.sqrt(n), 2)
 
 defp prime?(_, limit, i) when limit < i, do: true
 defp prime?(n, limit, i) do
   if rem(n,i) == 0, do: false, else: prime?(n, limit, i+1)
 end

end

[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,929] |> Enum.each(fn p -> Mersenne.check_mersenne(p) end)</lang>

Output:
M2 = 2**2-1 is prime
M3 = 2**3-1 is prime
M5 = 2**5-1 is prime
M7 = 2**7-1 is prime
M11 = 2**11-1 is composite with factor 23
M13 = 2**13-1 is prime
M17 = 2**17-1 is prime
M19 = 2**19-1 is prime
M23 = 2**23-1 is composite with factor 47
M29 = 2**29-1 is composite with factor 233
M31 = 2**31-1 is prime
M37 = 2**37-1 is composite with factor 223
M41 = 2**41-1 is composite with factor 13367
M43 = 2**43-1 is composite with factor 431
M47 = 2**47-1 is composite with factor 2351
M53 = 2**53-1 is composite with factor 6361
M929 = 2**929-1 is composite with factor 13007

Erlang

The modpow function is not my original. This is a translation of python, more or less.

<lang erlang> -module(mersene2). -export([prime/1,modpow/3,mf/1]).

mf(P) -> merseneFactor(P,math:sqrt(math:pow(2,P)-1),2).

merseneFactor(P,Limit,Acc) when Acc >= Limit -> io:write("None found"); merseneFactor(P,Limit,Acc) ->

       Q = 2 * P * Acc + 1,                                                  
       Isprime = prime(Q),                                                   
       Mod = modpow(2,P,Q),                                                  
                                                                             
       if                                                                    
           Isprime == false ->                                               
              merseneFactor(P,Limit,Acc+1);                                  
                                                                             
           Q rem 8 =/= 1 andalso Q rem 8 =/= 7 ->                            
              merseneFactor(P,Limit,Acc+1);                                  
                                                                             
            Mod == 1 ->                                                      
               io:format("M~w is composite with Factor: ~w~n",[P,Q]);        
                                                                             
           true -> merseneFactor(P,Limit,Acc+1)                              
       end.                                                                  
                                                                             

modpow(B, E, M) -> modpow(B, E, M, 1).

modpow(_B, E, _M, R) when E =< 0 -> R; modpow(B, E, M, R) ->

   R1 = case E band 1 =:= 1 of                                               
            true -> (R * B) rem M;                                           
            false  -> R                                                      
        end,                                                                 
   modpow( (B*B) rem M, E bsr 1, M, R1).                                     
                                                                             

prime(N) -> divisors(N, N-1).

divisors(N, 1) -> true; divisors(N, C) ->

  case N rem C =:= 0 of                
     true  -> false;                   
     false -> divisors(N, C-1)         
  end.                                 

</lang>

Output:
30> [ mersene2:mf(X) || X <- [37,41,43,47,53,92,929]].
M37 is composite with Factor: 223
M41 is composite with Factor: 13367
M43 is composite with Factor: 431
M47 is composite with Factor: 2351
M53 is composite with Factor: 6361
M92 is composite with Factor: 1657
M929 is composite with Factor: 13007
[ok,ok,ok,ok,ok,ok,ok]

Factor

<lang factor>USING: combinators.short-circuit interpolate io kernel locals math math.bits math.functions math.primes sequences ; IN: rosetta-code.mersenne-factors

mod-pow-step ( square bit m -- square' )
   [ [ sq ] [ [ 2 * ] when ] bi* ] dip mod ;
mod-pow ( m q -- n )
   1 :> s! m make-bits <reversed>
   [ s swap q mod-pow-step s! ] each s ;
halt-search? ( m q N -- ? )
   dupd > [
       {
           [ nip 8 mod [ 1 ] [ 7 ] bi [ = ] 2bi@ or ]
           [ mod-pow 1 = ] [ nip prime? ]
       } 2&&
   ] dip or ;
find-mersenne-factor ( m -- factor/f )
   1          :> k!
   2 m * 1 +  :> q!                 ! the tentative factor.
   2 m ^ sqrt :> N                  ! upper bound on search.
   [ m q N halt-search? ] [ k 1 + k! 2 k * m * 1 + q! ] until
   q N > f q ? ;
test-mersenne ( m -- )
   dup find-mersenne-factor
   [ [I M${1} is not prime: factor ${0} found.I] ]
   [ [I No factor found for M${}.I] ] if* nl ;

929 test-mersenne</lang>

Output:
M929 is not prime: factor 13007 found.

Forth

<lang forth>: prime? ( odd -- ? )

 3
 begin 2dup dup * >=
 while 2dup mod 0=
       if 2drop false exit
       then 2 +
 repeat   2drop true ;
2-exp-mod { e m -- 2^e mod m }
 1
 0 30 do
   e 1 i lshift >= if
     dup *
     e 1 i lshift and if 2* then
     m mod
   then
 -1 +loop ;
factor-mersenne ( exponent -- factor )
 16384 over /  dup 2 < abort" Exponent too large!"
 1 do
   dup i * 2* 1+      ( q )
   dup prime? if
     dup 7 and  dup 1 = swap 7 = or if
       2dup 2-exp-mod 1 = if
         nip unloop exit
       then
     then
   then drop
 loop drop 0 ;
929 factor-mersenne .  \ 13007

4423 factor-mersenne . \ 0</lang>

Fortran

Works with: Fortran version 90 and later

<lang fortran>PROGRAM EXAMPLE

 IMPLICIT NONE
 INTEGER :: exponent, factor
 WRITE(*,*) "Enter exponent of Mersenne number"
 READ(*,*) exponent
 factor = Mfactor(exponent)
 IF (factor == 0) THEN
   WRITE(*,*) "No Factor found"
 ELSE
   WRITE(*,"(A,I0,A,I0)") "M", exponent, " has a factor: ", factor
 END IF

CONTAINS

FUNCTION isPrime(number) ! code omitted - see Primality by Trial Division END FUNCTION

FUNCTION Mfactor(p)

 INTEGER :: Mfactor
 INTEGER, INTENT(IN) :: p
 INTEGER :: i, k,  maxk, msb, n, q
 DO i = 30, 0 , -1
   IF(BTEST(p, i)) THEN
     msb = i
     EXIT
   END IF
 END DO

 maxk = 16384  / p     ! limit for k to prevent overflow of 32 bit signed integer
 DO k = 1, maxk
   q = 2*p*k + 1
   IF (.NOT. isPrime(q)) CYCLE
   IF (MOD(q, 8) /= 1 .AND. MOD(q, 8) /= 7) CYCLE
   n = 1
   DO i = msb, 0, -1
     IF (BTEST(p, i)) THEN
       n = MOD(n*n*2, q)
     ELSE
       n = MOD(n*n, q)
     ENDIF
   END DO
   IF (n == 1) THEN
     Mfactor = q
     RETURN
   END IF
 END DO
 Mfactor = 0

END FUNCTION END PROGRAM EXAMPLE</lang>

Output:
M929 has a factor: 13007

FreeBASIC

Translation of: C

<lang freebasic>' FB 1.05.0 Win64

Function isPrime(n As Integer) As Boolean

 If n Mod 2 = 0 Then Return n = 2
 If n Mod 3 = 0 Then Return n = 3
 Dim d As Integer = 5
 While d * d <= n
   If n Mod d = 0 Then Return False
   d += 2
   If n Mod d = 0 Then Return False
   d += 4
 Wend
 Return True

End Function

' test 929 plus all prime numbers below 100 which are known not to be Mersenne primes Dim q(1 To 16) As Integer = {11, 23, 29, 37, 41, 43, 47, 53, 59, 67, 71, 73, 79, 83, 97, 929} For k As Integer = 1 To 16

 If isPrime(q(k)) Then
   Dim As Integer d, i, p, r = q(k) 
   While r > 0 : r Shl= 1 : Wend
   d = 2 * q(k) + 1
   Do
     i = 1
     p = r
     While p <> 0
       i = (i * i) Mod d
       If p < 0 Then i *= 2
       If i > d Then i -= d
       p Shl= 1
     Wend
     If i <> 1 Then
       d += 2 * q(k)
     Else
       Exit Do
     End If
   Loop
   Print "2^"; Str(q(k)); Tab(6); " - 1 = 0 (mod"; d; ")" 
 Else
   Print Str(q(k)); " is not prime"
 End If

Next Print Print "Press any key to quit" Sleep</lang>

Output:
2^11  - 1 = 0 (mod 23)
2^23  - 1 = 0 (mod 47)
2^29  - 1 = 0 (mod 233)
2^37  - 1 = 0 (mod 223)
2^41  - 1 = 0 (mod 13367)
2^43  - 1 = 0 (mod 431)
2^47  - 1 = 0 (mod 2351)
2^53  - 1 = 0 (mod 6361)
2^59  - 1 = 0 (mod 179951)
2^67  - 1 = 0 (mod 193707721)
2^71  - 1 = 0 (mod 228479)
2^73  - 1 = 0 (mod 439)
2^79  - 1 = 0 (mod 2687)
2^83  - 1 = 0 (mod 167)
2^97  - 1 = 0 (mod 11447)
2^929 - 1 = 0 (mod 13007)

GAP

<lang gap>MersenneSmallFactor := function(n)

   local k, m, d;
   if IsPrime(n) then
       d := 2*n;
       m := 1;
       for k in [1 .. 1000000] do
           m := m + d;
           if PowerModInt(2, n, m) = 1 then
               return m;
           fi;
       od;
   fi;
   return fail;

end;


  1. If n is not prime, fail immediately

MersenneSmallFactor(15);

  1. fail

MersenneSmallFactor(929);

  1. 13007

MersenneSmallFactor(1009);

  1. 3454817
  1. We stop at k = 1000000 in 2*k*n + 1, so it may fail if 2^n - 1 has only larger factors

MersenneSmallFactor(101);

  1. fail

FactorsInt(2^101-1);

  1. [ 7432339208719, 341117531003194129 ]</lang>

Go

<lang go>package main

import (

   "fmt"
   "math"

)

// limit search to small primes. really this is higher than // you'd want it, but it's fun to factor M67. const qlimit = 2e8

func main() {

   mtest(31)
   mtest(67)
   mtest(929)

}

func mtest(m int32) {

   // the function finds odd prime factors by
   // searching no farther than sqrt(N), where N = 2^m-1.
   // the first odd prime is 3, 3^2 = 9, so M3 = 7 is still too small.
   // M4 = 15 is first number for which test is meaningful.
   if m < 4 {
       fmt.Printf("%d < 4.  M%d not tested.\n", m, m)
       return
   }
   flimit := math.Sqrt(math.Pow(2, float64(m)) - 1)
   var qlast int32
   if flimit < qlimit {
       qlast = int32(flimit)
   } else {
       qlast = qlimit
   }
   composite := make([]bool, qlast+1)
   sq := int32(math.Sqrt(float64(qlast)))

loop:

   for q := int32(3); ; {
       if q <= sq {
           for i := q * q; i <= qlast; i += q {
               composite[i] = true
           }
       }
       if q8 := q % 8; (q8 == 1 || q8 == 7) && modPow(2, m, q) == 1 {
           fmt.Printf("M%d has factor %d\n", m, q)
           return
       }
       for {
           q += 2
           if q > qlast {
               break loop
           }
           if !composite[q] {
               break
           }
       }
   }
   fmt.Printf("No factors of M%d found.\n", m)

}

// base b to power p, mod m func modPow(b, p, m int32) int32 {

   pow := int64(1)
   b64 := int64(b)
   m64 := int64(m)
   bit := uint(30)
   for 1<<bit&p == 0 {
       bit--
   }
   for {
       pow *= pow
       if 1<<bit&p != 0 {
           pow *= b64
       }
       pow %= m64
       if bit == 0 {
           break
       }
       bit--
   }
   return int32(pow)

}</lang>

Output:
No factors of M31 found.
M67 has factor 193707721
M929 has factor 13007

Haskell

Using David Amos module Primes [1] for prime number testing:

<lang haskell>import Data.List import HFM.Primes (isPrime) import Control.Monad import Control.Arrow

int2bin = reverse.unfoldr(\x -> if x==0 then Nothing

                               else Just ((uncurry.flip$(,))$divMod x 2))

trialfac m = take 1. dropWhile ((/=1).(\q -> foldl (((`mod` q).).pm) 1 bs)) $ qs

 where qs = filter (liftM2 (&&) (liftM2 (||) (==1) (==7) .(`mod`8)) isPrime ).
             map (succ.(2*m*)). enumFromTo 1 $ m `div` 2
       bs = int2bin m
       pm n b = 2^b*n*n</lang>

<lang haskell>*Main> trialfac 929 [13007]</lang>

Icon and Unicon

Translation of: PHP

The following works in both languages: <lang unicon>procedure main(A)

   p := integer(A[1]) | 929
   write("M",p," has a factor ",mfactor(p))

end

procedure mfactor(p)

   if isPrime(p) then {
       limit := sqrt(2^p)-1
       k := 1
       while 2*p*k-1 < limit do {
           q := 2*p*k+1
           if isPrime(q) & (q%8 = (1|7)) & btest(p,q) then return q
           k +:= 1
           }
       }

end

procedure btest(p, q)

  return (2^p % q) = 1

end

procedure isPrime(n)

   if n%(i := 2|3) = 0 then return n = i;
   d := 5
   while d*d <= n do {
       if n%d = 0 then fail
       d +:= 2
       if n%d = 0 then fail
       d +:= 4
       }
   return

end</lang>

Sample runs:

->fmn
M929 has a factor 13007
->fmn 41
M41 has a factor 13367
->

J

<lang j>trialfac=: 3 : 0

 qs=. (#~8&(1=|+.7=|))(#~1&p:)1+(*(1x+i.@<:@<.)&.-:)y
 qs#~1=qs&|@(2&^@[**:@])/ 1,~ |.#: y

)</lang>

Examples:

<lang j>trialfac 929 13007</lang> <lang j>trialfac 44497</lang> Empty output --> No factors found.

Java

<lang java> import java.math.BigInteger;

class MersenneFactorCheck {

 private final static BigInteger TWO = BigInteger.valueOf(2);
 
 public static boolean isPrime(long n)
 {
   if (n == 2)
     return true;
   if ((n < 2) || ((n & 1) == 0))
     return false;
   long maxFactor = (long)Math.sqrt((double)n);
   for (long possibleFactor = 3; possibleFactor <= maxFactor; possibleFactor += 2)
     if ((n % possibleFactor) == 0)
       return false;
   return true;
 }
 
 public static BigInteger findFactorMersenneNumber(int primeP)
 {
   if (primeP <= 0)
     throw new IllegalArgumentException();
   BigInteger bigP = BigInteger.valueOf(primeP);
   BigInteger m = BigInteger.ONE.shiftLeft(primeP).subtract(BigInteger.ONE);
   // There are more complicated ways of getting closer to sqrt(), but not that important here, so go with simple
   BigInteger maxFactor = BigInteger.ONE.shiftLeft((primeP + 1) >>> 1);
   BigInteger twoP = BigInteger.valueOf(primeP << 1);
   BigInteger possibleFactor = BigInteger.ONE;
   int possibleFactorBits12 = 0;
   int twoPBits12 = primeP & 3;
   
   while ((possibleFactor = possibleFactor.add(twoP)).compareTo(maxFactor) <= 0)
   {
     possibleFactorBits12 = (possibleFactorBits12 + twoPBits12) & 3;
     // "Furthermore, q must be 1 or 7 mod 8". We know it's odd due to the +1 done above, so bit 0 is set. Therefore, we only care about bits 1 and 2 equaling 00 or 11
     if ((possibleFactorBits12 == 0) || (possibleFactorBits12 == 3))
       if (TWO.modPow(bigP, possibleFactor).equals(BigInteger.ONE))
         return possibleFactor;
   }
   return null;
 }
 
 public static void checkMersenneNumber(int p)
 {
   if (!isPrime(p))
   {
     System.out.println("M" + p + " is not prime");
     return;
   }
   BigInteger factor = findFactorMersenneNumber(p);
   if (factor == null)
     System.out.println("M" + p + " is prime");
   else
     System.out.println("M" + p + " is not prime, has factor " + factor);
   return;
 }
 public static void main(String[] args)
 {
   for (int p = 1; p <= 50; p++)
     checkMersenneNumber(p);
   checkMersenneNumber(929);
   return;
 }
 

} </lang>

Output:
M1 is not prime
M2 is prime
M3 is prime
M4 is not prime
M5 is prime
M6 is not prime
M7 is prime
M8 is not prime
M9 is not prime
M10 is not prime
M11 is not prime, has factor 23
M12 is not prime
M13 is prime
M14 is not prime
...
M47 is not prime, has factor 2351
M48 is not prime
M49 is not prime
M50 is not prime
M929 is not prime, has factor 13007

JavaScript

<lang javascript>function mersenne_factor(p){

 var limit, k, q
 limit = Math.sqrt(Math.pow(2,p) - 1)
 k = 1
 while ((2*k*p - 1) < limit){
   q = 2*k*p + 1
   if (isPrime(q) && (q % 8 == 1 || q % 8 == 7) && trial_factor(2,p,q)){
     return q // q is a factor of 2**p-1
   }
   k++
 }
 return null

}

function isPrime(value){

 for (var i=2; i < value; i++){
   if (value % i == 0){
     return false
   }
   if (value % i != 0){
     return true;

}

 }

}

function trial_factor(base, exp, mod){

 var square, bits
 square = 1
 bits = exp.toString(2).split()
 for (var i=0,ln=bits.length; i<ln; i++){
   square = Math.pow(square, 2) * (bits[i] == 1 ? base : 1) % mod
 }
 return (square == 1)

}

function check_mersenne(p){

 var f, result
 console.log("M"+p+" = 2^"+p+"-1 is ")
 f = mersenne_factor(p)
 console.log(f == null ? "prime" : "composite with factor "+f)

}</lang>

> check_mersenne(3)
"M3 = 2**3-1 is prime"
> check_mersenne(23)
"M23 = 2**23-1 is composite with factor 47"
> check_mersenne(929)
"M929 = 2**929-1 is composite with factor 13007"

Julia

<lang julia># v0.6

using Primes

function mersennefactor(p::Int)::Int

   q = 2p + 1
   while true
       if log2(q) > p / 2
           return -1
       elseif q % 8 in (1, 7) && Primes.isprime(q) && powermod(2, p, q) == 1
           return q
       end
   q += 2p
   end

end

for i in filter(Primes.isprime, push!(collect(1:20), 929))

   mf = mersennefactor(i)
   if mf != -1 println("M$i = ", mf, " × ", (big(2) ^ i - 1) ÷ mf)
   else println("M$i is prime") end

end</lang>

Output:
M2 is prime
M3 is prime
M5 is prime
M7 is prime
M11 = 23 × 89
M13 is prime
M17 is prime
M19 is prime
M929 = 13007 × 34889024892493825975045478116339093030512026953827804293400962134
88946572057852012474541189660261508521493994102599382170621001921687473524507195
61908445272675574320888385228421992652298715687625495638077382028762529439880103
124705348782610789919949159935587158612289264184273

Kotlin

Translation of: C

<lang scala>// version 1.0.6

fun isPrime(n: Int): Boolean {

   if (n < 2) return false
   if (n % 2 == 0) return n == 2
   if (n % 3 == 0) return n == 3
   var d = 5
   while (d * d <= n) {
       if (n % d == 0) return false
       d += 2
       if (n % d == 0) return false
       d += 4
   }
   return true

}

fun main(args: Array<String>) {

   // test 929 plus all prime numbers below 100 which are known not to be Mersenne primes
   val q = intArrayOf(11, 23, 29, 37, 41, 43, 47, 53, 59, 67, 71, 73, 79, 83, 97, 929)
   for (k in 0 until q.size) {
       if (isPrime(q[k])) {
           var i: Long
           var d: Int
           var p: Int
           var r: Int = q[k]
           while (r > 0) r = r shl 1
           d = 2 * q[k] + 1
           while (true) {
               i = 1L
               p = r
               while (p != 0) {
                   i = (i * i) % d
                   if (p < 0) i *= 2
                   if (i > d) i -= d
                   p = p shl 1
               }
               if (i != 1L)
                   d += 2 * q[k]
               else
                   break
           }
           println("2^${"%3d".format(q[k])} - 1 = 0 (mod $d)")
       } else {
           println("${q[k]} is not prime")
       }
   }

}</lang>

Output:
2^ 11 - 1 = 0 (mod 23)
2^ 23 - 1 = 0 (mod 47)
2^ 29 - 1 = 0 (mod 233)
2^ 37 - 1 = 0 (mod 223)
2^ 41 - 1 = 0 (mod 13367)
2^ 43 - 1 = 0 (mod 431)
2^ 47 - 1 = 0 (mod 2351)
2^ 53 - 1 = 0 (mod 6361)
2^ 59 - 1 = 0 (mod 179951)
2^ 67 - 1 = 0 (mod 193707721)
2^ 71 - 1 = 0 (mod 228479)
2^ 73 - 1 = 0 (mod 439)
2^ 79 - 1 = 0 (mod 2687)
2^ 83 - 1 = 0 (mod 167)
2^ 97 - 1 = 0 (mod 11447)
2^929 - 1 = 0 (mod 13007)

Lingo

<lang Lingo>on modPow (b, e, m)

   bits = getBits(e)
   sq = 1
   repeat while TRUE
       tb = bits[1]
       bits.deleteAt(1)
       sq = sq*sq
       if tb then sq=sq*b
       sq = sq mod m
       if bits.count=0 then return sq
   end repeat

end

on getBits (n)

   bits = []
   f = 1
   repeat while TRUE
       bits.addAt(1, bitAnd(f, n)>0)
       f = f * 2
       if f>n then exit repeat
   end repeat
   return bits

end</lang>

<lang Lingo>repeat with i = 2 to the maxInteger

   if modPow(2, 929, i)=1 then
       put "M929 has a factor: " & i
       exit repeat
   end if

end repeat</lang>

Output:
-- "M929 has a factor: 13007"

Mathematica

Believe it or not, this type of test runs faster in Mathematica than the squaring version described above.

<lang mathematica> For[i = 2, i < Prime[1000000], i = NextPrime[i],

If[Mod[2^44497, i] == 1, 
 Print["divisible by "<>i]]]; Print["prime test passed; call Lucas and Lehmer"]</lang>

Maxima

<lang maxima>mersenne_fac(p) := block([m: 2^p - 1, k: 1],

  while mod(m, 2 * k * p + 1) # 0 do k: k + 1,
  2 * k * p + 1

)$

mersenne_fac(929); /* 13007 */</lang>

Nim

Translation of: C

<lang nim>import math

proc isPrime(a: int): bool =

 if a == 2: return true
 if a < 2 or a mod 2 == 0: return false
 for i in countup(3, int sqrt(float a), 2):
   if a mod i == 0:
     return false
 return true

const q = 929 if not isPrime q: quit 1 var r = q while r > 0: r = r shl 1 var d = 2 * q + 1 while true:

 var i = 1
 var p = r
 while p != 0:
   i = (i * i) mod d
   if p < 0: i *= 2
   if i > d: i -= d
   p = p shl 1
 if i != 1: d += 2 * q
 else: break

echo "2^",q," - 1 = 0 (mod ",d,")"</lang>

Output:
2^929 - 1 = 0 (mod 13007)

Octave

Translation of: Fortran

(GNU Octave has a isprime built-in test)

<lang octave>% test a bit; lsb is 1 (like built-in bit* ops) function b = bittst(n, p)

 b = bitand(n, 2^(p-1)) > 0;

endfunction

function f = Mfactor(p)

 % msb is the index of the first non-zero bit
 [b, msb] = max(bitand(p, 2 .^ [32:-1:1]) > 0);
 maxk = floor(sqrt(intmax()) / p);
 for k = 1 : maxk
   q = 2*p*k + 1;
   if ( ! isprime(q) )
     continue;
   endif
   if ( (mod(q, 8) != 1) && ( mod(q, 8) != 7) )
     continue;
   endif
   n = 1;
   for i = msb:-1:1
     if ( bittst(p, i) )

n = mod(n*n*2, q);

     else

n = mod(n*n, q);

     endif
   endfor
   if ( n==1 )
     f = q;
     return
   endif
 endfor
 f = 0;

endfunction

printf("%d\n", Mfactor(929));</lang>

PARI/GP

This version takes about 15 microseconds to find a factor of 2929 − 1. <lang parigp>factorMersenne(p)={

 forstep(q=2*p+1,sqrt(2)<<(p\2),2*p,
   [1,0,0,0,0,0,1][q%8] && Mod(2, q)^p==1 && return(q)
 );
 1<<p-1

}; factorMersenne(929)</lang>

This implementation seems to be broken: <lang parigp>TM(p) = local(status=1, i=1, len=0, S=0);{ printp("Test TM \t..."); S=2*p+1; len = length(binary(p)); B = Vecsmall(binary(p)); q = B[i]*B[i]; while( i<=len & status ==1,

      if( B[i] != 0,
          q = q*2;
      );
      r = q%S;     
      q = r*r;
      if( i == len & r == 1,
          status = 0; 
          printp("Not Prime!");
      ); 
      i++;

); return(status); }</lang>

Pascal

Translation of: Fortran

<lang pascal>program FactorsMersenneNumber(input, output);

function isPrime(n: longint): boolean;

 var
   d: longint;
 begin
   isPrime := true;
   if (n mod 2) = 0 then
   begin
     isPrime := (n = 2);
     exit;
   end;
   if (n mod 3) = 0 then
   begin
     isPrime := (n = 3);
     exit;
   end;
   d := 5;
   while d*d <= n do
   begin
     if (n mod d) = 0 then
     begin

isPrime := false; exit;

     end;
     d := d + 2;
   end;
 end;

function btest(n, pos: longint): boolean;

 begin
   btest := (n shr pos) mod 2 = 1;
 end;

function MFactor(p: longint): longint;

 var
   i, k,  maxk, msb, n, q: longint;
 begin
   for i := 30 downto 0 do
     if btest(p, i) then
     begin

msb := i; break;

     end;
   maxk := 16384 div p;     // limit for k to prevent overflow of 32 bit signed integer
   for k := 1 to maxk do
   begin
     q := 2*p*k + 1;
     if not isprime(q) then

continue;

     if ((q mod 8) <> 1) and ((q mod 8) <> 7) then

continue;

     n := 1;
     for i := msb downto 0 do

if btest(p, i) then n := (n*n*2) mod q else n := (n*n) mod q;

     if n = 1 then
     begin

mfactor := q; exit;

     end;
   end;
   mfactor := 0;
 end;

var

 exponent, factor: longint;

begin

 write('Enter the exponent of the Mersenne number (suggestion: 929): ');
 readln(exponent);
 if not isPrime(exponent) then
 begin
   writeln('M', exponent, ' (2**', exponent, ' - 1) is not prime.');
   exit;
 end;
 factor := MFactor(exponent);
 if factor = 0 then
   writeln('M', exponent, ' (2**', exponent, ' - 1) has no factor.')
 else
   writeln('M', exponent, ' (2**', exponent, ' - 1) has the factor: ', factor);

end.</lang>

Output:
:> ./FactorsMersenneNumber
Enter the exponent of the Mersenne number (suggestion: 929): 929
M929 (2**929 - 1) has the factor: 13007

Perl

<lang perl>use strict; use utf8;

sub factors { my $n = shift; my $p = 2; my @out;

while ($n >= $p * $p) { while ($n % $p == 0) { push @out, $p; $n /= $p; } $p = next_prime($p); } push @out, $n if $n > 1 || !@out; @out; }

sub next_prime { my $p = shift; do { $p = $p == 2 ? 3 : $p + 2 } until is_prime($p); $p; }

my %pcache; sub is_prime { my $x = shift; $pcache{$x} //= (factors($x) == 1) }

sub mtest { my @bits = split "", sprintf("%b", shift); my $p = shift; my $sq = 1; while (@bits) { $sq = $sq * $sq; $sq *= 2 if shift @bits; $sq %= $p; } $sq == 1; }

for my $m (2 .. 60, 929) { next unless is_prime($m); use bigint;

my ($f, $k, $x) = (0, 0, 2**$m - 1);

my $q; while (++$k) { $q = 2 * $k * $m + 1; next if (($q & 7) != 1 && ($q & 7) != 7); next unless is_prime($q); last if $q * $q > $x; last if $f = mtest($m, $q); }

print $f? "M$m = $x = $q × @{[$x / $q]}\n" : "M$m = $x is prime\n"; }</lang>

Output:
M2 = 3 is prime
M2 = 3 is prime
M3 = 7 is prime
M5 = 31 is prime
M7 = 127 is prime
M11 = 2047 = 23  × 89
M13 = 8191 is prime
...
M53 = 9007199254740991 = 6361 × 1416003655831
M59 = 576460752303423487 = 179951 × 3203431780337
M929 = 4538..<yadda yadda>..8911 = 13007 × 348890..<blah blah>..84273

Following the task introduction, this uses GMP's modular exponentiation and simple probable prime test for the small numbers, then looks for small factors before doing a Lucas-Lehmer test. For ranges above about p=2000, looking for small factors this way saves time (the amount of testing should be adjusted based on the input size and platform -- this example just uses a fixed amount). Note as well that the Lucas-Lehmer test shown here is ignoring the large speedup we can get by optimizing the modulo operation, but that's a different task. <lang perl>use Math::GMP;

  1. Use GMP's simple probable prime test.

sub is_prime { Math::GMP->new(shift)->probab_prime(20); }

  1. Lucas-Lehmer test, deterministic for 2^p-1 given p

sub is_mersenne_prime {

 my($p, $mp, $s) = ($_[0], Math::GMP->new(2)**$_[0]-1, Math::GMP->new(4));
 return 1 if $p == 2;
 $s = ($s * $s - 2) % $mp  for 3 .. $p;
 $s == 0;

}

for my $p (2 .. 100, 929) {

 next unless is_prime($p);
 my $mp = Math::GMP->new(2) ** $p - 1;
 my $lim = $mp->bsqrt();
 $lim = 1000000 if $lim > 1000000;   # We're using it as a pre-test
 my $factor;
 for (my $q = Math::GMP->new(2*$p+1);  $q <= $lim && !$factor;  $q += 2*$p) {
   next unless ($q & 7) == 1 || ($q & 7) == 7;
   next unless is_prime($q);
   $factor = $q if Math::GMP->new(2)->powm_gmp($p,$q) == 1;  #  $mp % $q == 0
 }
 if ($factor) {
   print "M$p = $factor * ",$mp/$factor,"\n";
 } else {
   print "M$p is ", is_mersenne_prime($p) ? "prime" : "composite", "\n";
 }

}</lang>

Output:
M2 is prime
M3 is prime
M5 is prime
M7 is prime
M11 = 23 * 89
M13 is prime
M17 is prime
M19 is prime
M23 = 47 * 178481
M29 = 233 * 2304167
M31 is prime
M37 = 223 * 616318177
M41 = 13367 * 164511353
M43 = 431 * 20408568497
M47 = 2351 * 59862819377
M53 = 6361 * 1416003655831
M59 = 179951 * 3203431780337
M61 is prime
M67 is composite
M71 = 228479 * 10334355636337793
M73 = 439 * 21514198099633918969
M79 = 2687 * 224958284260258499201
M83 = 167 * 57912614113275649087721
M89 is prime
M97 = 11447 * 13842607235828485645766393
M929 = 13007 * 348890248924[.....]64184273

Phix

Translation/Amalgamation of BBC BASIC, D, and Go <lang Phix>function is_prime(integer n)

   if n<2 then return 0 end if
   if n=2 then return 1 end if
   if remainder(n,2)=0 then return 0 end if
   for i=3 to floor(sqrt(n)) by 2 do
       if remainder(n,i)=0 then
           return 0
       end if
   end for
   return 1

end function

function modpow(atom x, atom n, atom m)

   atom i = n,
        y = 1,
        z = x
   while i do
       if and_bits(i,1) then
           y = mod(y*z,m)
       end if
       z = mod(z*z,m)
       i = floor(i/2)
   end while
   return y

end function

function mersenne_factor(integer p)

   if not is_prime(p) then return -1 end if
   atom limit = sqrt(power(2,p))-1
   integer k = 1
   while 1 do
       atom q = 2*p*k + 1
       if q>=limit then exit end if
       if find(mod(q,8),{1,7}) 
       and is_prime(q) 
       and modpow(2,p,q)=1 then
           return q
       end if
       k += 1
   end while
   return 0

end function

sequence tests = {11, 23, 29, 37, 41, 43, 47, 53, 59, 67, 71, 73, 79, 83, 97, 929, 937} for i=1 to length(tests) do

   integer ti = tests[i]
   printf(1,"A factor of M%d is %d\n",{ti,mersenne_factor(ti)})

end for</lang>

Output:
A factor of M11 is 23
A factor of M23 is 47
A factor of M29 is 233
A factor of M37 is 223
A factor of M41 is 13367
A factor of M43 is 431
A factor of M47 is 2351
A factor of M53 is 6361
A factor of M59 is 179951
A factor of M67 is 193707721
A factor of M71 is 228479
A factor of M73 is 439
A factor of M79 is 2687
A factor of M83 is 167
A factor of M97 is 11447
A factor of M929 is 13007
A factor of M937 is 28111

PHP

Translation of: D

Requires bcmath <lang php>echo 'M929 has a factor: ', mersenneFactor(929), '
';

function mersenneFactor($p) {

   $limit = sqrt(pow(2, $p) - 1);
   for ($k = 1; 2 * $p * $k - 1 < $limit; $k++) { 
       $q = 2 * $p * $k + 1;
       if (isPrime($q) && ($q % 8 == 1 || $q % 8 == 7) && bcpowmod("2", "$p", "$q") == "1") {
           return $q;
       }
   }
   return 0;

}

function isPrime($n) {

   if ($n < 2 || $n % 2 == 0) return $n == 2;
   for ($i = 3; $i * $i <= $n; $i += 2) {
       if ($n % $i == 0) {
           return false;
       }
   }
   return true;

}</lang>

Output:
M929 has a factor: 13007

PicoLisp

<lang PicoLisp>(de **Mod (X Y N)

  (let M 1
     (loop
        (when (bit? 1 Y)
           (setq M (% (* M X) N)) )
        (T (=0 (setq Y (>> 1 Y)))
           M )
        (setq X (% (* X X) N)) ) ) )

(de prime? (N)

  (or
     (= N 2)
     (and
        (> N 1)
        (bit? 1 N)
        (let S (sqrt N)
           (for (D 3  T  (+ D 2))
              (T (> D S) T)
              (T (=0 (% N D)) NIL) ) ) ) ) )

(de mFactor (P)

  (let (Lim (sqrt (dec (** 2 P)))  K 0  Q)
     (loop
        (setq Q (inc (* 2 (inc 'K) P)))
        (T (>= Q Lim) NIL)
        (T
           (and
              (member (% Q 8) (1 7))
              (prime? Q)
              (= 1 (**Mod 2 P Q)) )
           Q ) ) ) )</lang>
Output:
: (for P (2 3 4 5 7 11 13 17 19 23 29 31 37 41 43 47 53 929)
   (prinl
      "M" P " = 2**" P "-1 is "
      (cond
         ((not (prime? P)) "not prime")
         ((mFactor P) (pack "composite with factor " @))
         (T "prime") ) ) )
M2 = 2**2-1 is prime
M3 = 2**3-1 is prime
M4 = 2**4-1 is not prime
M5 = 2**5-1 is prime
M7 = 2**7-1 is prime
M11 = 2**11-1 is composite with factor 23
M13 = 2**13-1 is prime
M17 = 2**17-1 is prime
M19 = 2**19-1 is prime
M23 = 2**23-1 is composite with factor 47
M29 = 2**29-1 is composite with factor 233
M31 = 2**31-1 is prime
M37 = 2**37-1 is composite with factor 223
M41 = 2**41-1 is composite with factor 13367
M43 = 2**43-1 is composite with factor 431
M47 = 2**47-1 is composite with factor 2351
M53 = 2**53-1 is composite with factor 6361
M929 = 2**929-1 is composite with factor 13007

Prolog

<lang prolog> mersenne_factor(P, F) :-

   prime(P),
   once((
       between(1, 100_000, K),  % Fail if we can't find a small factor
       Q is 2*K*P + 1,
       test_factor(Q, P, F))).

test_factor(Q, P, prime) :- Q*Q > (1 << P - 1), !. test_factor(Q, P, Q) :-

   R is Q /\ 7, member(R, [1, 7]),
   prime(Q),
   powm(2, P, Q) =:= 1.


wheel235(L) :-

  W = [4, 2, 4, 2, 4, 6, 2, 6 | W],
  L = [1, 2, 2 | W].

prime(N) :-

  N >= 2,
  wheel235(W),
  prime(N, 2, W).

prime(N, D, _) :- D*D > N, !. prime(N, D, [A|As]) :-

   N mod D =\= 0,
   D2 is D + A, prime(N, D2, As).

</lang>

Output:
?- mersenne_factor(23, X).
X = 47.

?- mersenne_factor(5,X).
X = prime.

?- mersenne_factor(25,X).
false.

?- mersenne_factor(929,X).
X = 13007.

?- mersenne_factor(127,X).
false.

Python

<lang python>def is_prime(number):

   return True # code omitted - see Primality by Trial Division

def m_factor(p):

   max_k = 16384 / p # arbitrary limit; since Python automatically uses long's, it doesn't overflow
   for k in xrange(max_k):
       q = 2*p*k + 1
       if not is_prime(q):
           continue
       elif q % 8 != 1 and q % 8 != 7:
           continue
       elif pow(2, p, q) == 1:
           return q
   return None

if __name__ == '__main__':

   exponent = int(raw_input("Enter exponent of Mersenne number: "))
   if not is_prime(exponent):
       print "Exponent is not prime: %d" % exponent
   else:
       factor = m_factor(exponent)
       if not factor:
           print "No factor found for M%d" % exponent
       else:
           print "M%d has a factor: %d" % (exponent, factor)</lang>
Example:
Enter exponent of Mersenne number: 929
M929 has a factor: 13007

Racket

<lang racket>

  1. lang racket

(define (number->digits n)

 (map (compose1 string->number string)
      (string->list (number->string n 2))))

(define (modpow exp base)

 (for/fold ([square 1])
   ([d (number->digits exp)])
   (modulo (* (if (= d 1) 2 1) square square) base)))

Search through all integers from 1 on to find the first divisor.
Returns #f if 2^p-1 is prime.

(define (mersenne-factor p)

 (for/first ([i (in-range 1 (floor (expt 2 (quotient p 2))) (* 2 p))]
             #:when (and (member (modulo i 8) '(1 7))
                         (= 1 (modpow p i))))
   i))

(mersenne-factor 929) </lang>

Output:

<lang racket> 13007 </lang>

Raku

(formerly Perl 6)

Works with: rakudo version 2015.12

<lang perl6>my @primes = 2, 3, -> $n is copy {

   repeat { $n += 2 } until $n %% none do for @primes -> $p {
       last if $p > sqrt($n);
       $p;
   }
   $n;

} ... *;

multi factors(1) { 1 } multi factors(Int $remainder is copy) {

 gather for @primes -> $factor {
   if $factor * $factor > $remainder {
     take $remainder if $remainder > 1;
     last;
   }
   while $remainder %% $factor {
       take $factor;
       last if ($remainder div= $factor) === 1;
   }
 }

}

sub is_prime($x) { (state %){$x} //= factors($x) == 1 }

sub mtest($bits, $p) {

   my @bits = $bits.base(2).comb;
   loop (my $sq = 1; @bits; $sq %= $p) {

$sq *= $sq; $sq += $sq if 1 == @bits.shift;

   }
   $sq == 1;

}

for flat 2 .. 60, 929 -> $m {

   next unless is_prime($m);
   my $f = 0;
   my $x = 2**$m - 1;
   my $q;
   for 1..* -> $k {

$q = 2 * $k * $m + 1; next unless $q % 8 == 1|7 or is_prime($q); last if $q * $q > $x or $f = mtest($m, $q);

   }
   say $f ?? "M$m = $x\n\t= $q × { $x div $q }"
          !! "M$m = $x is prime";

}</lang>

Output:
M2 = 3 is prime
M3 = 7 is prime
M5 = 31 is prime
M7 = 127 is prime
M11 = 2047
	= 23 × 89
M13 = 8191 is prime
M17 = 131071 is prime
M19 = 524287 is prime
M23 = 8388607
	= 47 × 178481
M29 = 536870911
	= 233 × 2304167
M31 = 2147483647 is prime
M37 = 137438953471
	= 223 × 616318177
M41 = 2199023255551
	= 13367 × 164511353
M43 = 8796093022207
	= 431 × 20408568497
M47 = 140737488355327
	= 2351 × 59862819377
M53 = 9007199254740991
	= 6361 × 1416003655831
M59 = 576460752303423487
	= 179951 × 3203431780337
M929 = 4538015467766671944574165338592225830478699345884382504442663144885072806275648112625635725391102144133907238129251016389326737199538896813326509341743147661691195191795226666084858428449394948944821764472508048114220424520501343042471615418544488778723282182172070046459244838911
	= 13007 × 348890248924938259750454781163390930305120269538278042934009621348894657205785201247454118966026150852149399410259938217062100192168747352450719561908445272675574320888385228421992652298715687625495638077382028762529439880103124705348782610789919949159935587158612289264184273

REXX

REXX practically has no limit (well, up to around 8 million) on the number of decimal digits (precision).

This REXX version automatically adjusts the   numeric digits   to whatever is needed. <lang rexx>/*REXX program uses exponent─and─mod operator to test possible Mersenne numbers. */ numeric digits 20 /*this will be increased if necessary. */ parse arg N spec /*obtain optional arguments from the CL*/ if N== | N=="," then N= 88 /*Not specified? Then use the default.*/ if spec== | spec=="," then spec= 920 970 /* " " " " " " */

     do j=1;                  z= j              /*process a range, & then do some more.*/
     if j==N             then j= word(spec, 1)  /*now, use  the high range of numbers. */
     if j>word(spec, 2)  then leave             /*done with  "    "    "    "    "     */
     if \isPrime(z)  then iterate               /*if  Z  isn't a prime,  keep plugging.*/
     r= commas( testMer(z) );   L= length(r)    /*add commas;    get its new length.   */
     if r==0  then say right('M'z, 10)     "──────── is a Mersenne prime."
              else say right('M'z, 50)     "is composite, a factor:"right(r, max(L, 13) )
     end   /*j*/

exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ commas: parse arg _; do jc=length(_)-3 to 1 by -3; _=insert(',', _, jc); end; return _ /*──────────────────────────────────────────────────────────────────────────────────────*/ isPrime: procedure; parse arg x; if wordpos(x, '2 3 5 7') \== 0 then return 1

        if x<11  then return 0;             if x//2 == 0 | x//3       == 0  then return 0
             do j=5  by 6;                  if x//j == 0 | x//(j+2)   == 0  then return 0
             if j*j>x   then return 1                 /*◄─┐         ___                */
             end   /*j*/                              /*  └─◄ Is j>√ x ?  Then return 1*/

/*──────────────────────────────────────────────────────────────────────────────────────*/ iSqrt: procedure; parse arg x; #= 1; r= 0; do while #<=x; #= # * 4

                                                               end   /*while*/
          do while #>1;      #= # % 4;   _= x-r-#;    r= r % 2
          if _>=0  then do;  x= _;       r= r + #
                        end
          end   /*while*/                             /*iSqrt ≡    integer square root.*/
        return r                                      /*─────      ─       ──     ─  ─ */

/*──────────────────────────────────────────────────────────────────────────────────────*/ testMer: procedure; parse arg x; p= 2**x /* [↓] do we have enough digits?*/

        $$=x2b( d2x(x) ) + 0
        if pos('E',p)\==0  then do;  parse var p "E" _;   numeric digits _ + 2;   p= 2**x
                                end
        !.= 1;   !.1= 0;   !.7= 0                     /*array used for a quicker test. */
        R= iSqrt(p)                                   /*obtain integer square root of P*/
                   do k=2  by 2;         q= k*x  +  1 /*(shortcut) compute value of Q. */
                   m= q // 8                          /*obtain the remainder when ÷ 8. */
                   if !.m       then iterate          /*M  must be either one or seven.*/
                   parse var q  -1 _;  if _==5  then iterate   /*last digit a five ? */
                   if q// 3==0  then iterate                     /*divisible by three? */
                   if q// 7==0  then iterate                     /*    "      " seven? */
                   if q//11==0  then iterate                     /*    "      " eleven?*/
                                                      /*      ____                     */
                   if q>R               then return 0 /*Is q>√2**x ?   A Mersenne prime*/
                   sq= 1;        $= $$                /*obtain binary version from  $. */
                       do  until $==;      sq= sq*sq
                       parse var $  _  2  $           /*obtain 1st digit and the rest. */
                       if _  then sq= (sq+sq) // q
                       end   /*until*/
                   if sq==1  then return q            /*Not a prime?   Return a factor.*/
                   end   /*k*/</lang>

Program note:   the   iSqrt   function computes the integer square root of a non-negative integer without using any floating point, just integers.

output   when using the default (two) ranges of numbers:
        M2 ──────── is a Mersenne prime.
        M3 ──────── is a Mersenne prime.
        M5 ──────── is a Mersenne prime.
        M7 ──────── is a Mersenne prime.
                                               M11 is composite, a factor:           23
       M13 ──────── is a Mersenne prime.
       M17 ──────── is a Mersenne prime.
       M19 ──────── is a Mersenne prime.
                                               M23 is composite, a factor:           47
                                               M29 is composite, a factor:          233
       M31 ──────── is a Mersenne prime.
                                               M37 is composite, a factor:          223
                                               M41 is composite, a factor:       13,367
                                               M43 is composite, a factor:          431
                                               M47 is composite, a factor:        2,351
                                               M53 is composite, a factor:        6,361
                                               M59 is composite, a factor:      179,951
       M61 ──────── is a Mersenne prime.
                                               M67 is composite, a factor:  193,707,721
                                               M71 is composite, a factor:      228,479
                                               M73 is composite, a factor:          439
                                               M79 is composite, a factor:        2,687
                                               M83 is composite, a factor:          167
                                              M929 is composite, a factor:       13,007
                                              M937 is composite, a factor:       28,111
                                              M941 is composite, a factor:        7,529
                                              M947 is composite, a factor:  295,130,657
                                              M953 is composite, a factor:      343,081
                                              M967 is composite, a factor:       23,209

Ring

<lang ring>

  1. Project : Factors of a Mersenne number

see "A factor of M929 is " + mersennefactor(929) + nl see "A factor of M937 is " + mersennefactor(937) + nl

func mersennefactor(p)

      if not isprime(p) 
        return -1
      ok
      for k = 1 to 50
           q = 2*k*p + 1
           if (q && 7) = 1 or (q && 7) = 7
              if isprime(q)
                 if modpow(2, p, q) = 1
                    return q
                 ok
              ok
           ok
      next 
      return 0

func isprime(num)

      if (num <= 1) return 0 ok
      if (num % 2 = 0) and num != 2 return 0 ok
      for i = 3 to floor(num / 2) -1 step 2
           if (num % i = 0) return 0 ok
      next
      return 1

func modpow(x,n,m)

      i = n
      y = 1
      z = x
      while i > 0
              if i & 1
                 y = (y * z) % m
              ok
              z = (z * z) % m
              i = (i >> 1)
       end
       return y

</lang> Output:

A factor of M929 is 13007
A factor of M937 is 28111

Ruby

Works with: Ruby version 1.9.3+

<lang ruby>require 'prime'

def mersenne_factor(p)

 limit = Math.sqrt(2**p - 1)
 k = 1
 while (2*k*p - 1) < limit
   q = 2*k*p + 1
   if q.prime? and (q % 8 == 1 or q % 8 == 7) and trial_factor(2,p,q)
     # q is a factor of 2**p-1
     return q
   end
   k += 1
 end
 nil

end

def trial_factor(base, exp, mod)

 square = 1
 ("%b" % exp).each_char {|bit| square = square**2 * (bit == "1" ? base : 1) % mod}
 (square == 1)

end

def check_mersenne(p)

 print "M#{p} = 2**#{p}-1 is "
 f = mersenne_factor(p)
 if f.nil?
   puts "prime"
 else
   puts "composite with factor #{f}"
 end

end

Prime.each(53) { |p| check_mersenne p } check_mersenne 929</lang>

Output:
M2 = 2**2-1 is prime
M3 = 2**3-1 is prime
M5 = 2**5-1 is prime
M7 = 2**7-1 is prime
M11 = 2**11-1 is composite with factor 23
M13 = 2**13-1 is prime
M17 = 2**17-1 is prime
M19 = 2**19-1 is prime
M23 = 2**23-1 is composite with factor 47
M29 = 2**29-1 is composite with factor 233
M31 = 2**31-1 is prime
M37 = 2**37-1 is composite with factor 223
M41 = 2**41-1 is composite with factor 13367
M43 = 2**43-1 is composite with factor 431
M47 = 2**47-1 is composite with factor 2351
M53 = 2**53-1 is composite with factor 6361
M929 = 2**929-1 is composite with factor 13007

Scala

Library: Scala

Full-blown version

<lang Scala> /** Find factors of a Mersenne number

*
* The implementation finds factors for M929 and further.
*
* @example M59 = 2^059 - 1 =             576460752303423487  (   2 msec)
* @example = 179951 × 3203431780337.
*/

object FactorsOfAMersenneNumber extends App {

 val two: BigInt = 2
 // An infinite stream of primes, lazy evaluation and memo-ized
 val oddPrimes = sieve(LazyList.from(3, 2))
 def sieve(nums: LazyList[Int]): LazyList[Int] =
   LazyList.cons(nums.head, sieve((nums.tail) filter (_ % nums.head != 0)))
 def primes: LazyList[Int] = sieve(2 #:: oddPrimes)
 def factorMersenne(p: Int): Option[Long] = {
   val limit = (mersenne(p) - 1 min Int.MaxValue).toLong
   def factorTest(p: Long, q: Long): Boolean = {
     (List(1, 7) contains (q % 8)) && two.modPow(p, q) == 1 && BigInt(q).isProbablePrime(7)
   }
   // Build a stream of factors from (2*p+1) step-by (2*p)
   def s(a: Long): LazyList[Long] = a #:: s(a + (2 * p)) // Build stream of possible factors
   // Limit and Filter Stream and then take the head element
   val e = s(2 * p + 1).takeWhile(_ < limit).filter(factorTest(p, _))
   e.headOption
 }
 def mersenne(p: Int): BigInt = (two pow p) - 1
 // Test
 (primes takeWhile (_ <= 97)) ++ List(929, 937) foreach { p => { // Needs some intermediate results for nice formatting
   val nMersenne = mersenne(p);
   val lit = f"${nMersenne}%30d"
   val preAmble = f"${s"M${p}"}%4s = 2^$p%03d - 1 = ${lit}%s"
   val datum = System.nanoTime
   val result = factorMersenne(p)
   val mSec = ((System.nanoTime - datum) / 1.0e+6).round
   def decStr = {
     if (lit.length > 30) f"(M has ${lit.length}%3d dec)" else ""
   }
   def sPrime: String = {
     if (result.isEmpty) " is a Mersenne prime number." else " " * 28
   }
   println(f"$preAmble${sPrime} ${f"($mSec%,1d"}%13s msec)")
   if (result.isDefined)
     println(f"${decStr}%-17s = ${result.get} × ${nMersenne / result.get}")
 }
 }

} </lang>

Output:
  M2 = 2^002 - 1 =                              3 is a Mersenne prime number.           (63 msec)
  M3 = 2^003 - 1 =                              7 is a Mersenne prime number.            (0 msec)
  M5 = 2^005 - 1 =                             31 is a Mersenne prime number.            (1 msec)
  M7 = 2^007 - 1 =                            127 is a Mersenne prime number.            (2 msec)
 M11 = 2^011 - 1 =                           2047                                    (2.097 msec)
                  = 23 × 89
 M13 = 2^013 - 1 =                           8191 is a Mersenne prime number.           (33 msec)
 M17 = 2^017 - 1 =                         131071 is a Mersenne prime number.          (254 msec)
 M19 = 2^019 - 1 =                         524287 is a Mersenne prime number.          (524 msec)
 M23 = 2^023 - 1 =                        8388607                                        (0 msec)
                  = 47 × 178481
 M29 = 2^029 - 1 =                      536870911                                        (0 msec)
                  = 233 × 2304167
 M31 = 2^031 - 1 =                     2147483647 is a Mersenne prime number.       (31.484 msec)
 M37 = 2^037 - 1 =                   137438953471                                        (0 msec)
                  = 223 × 616318177
 M41 = 2^041 - 1 =                  2199023255551                                        (0 msec)
                  = 13367 × 164511353
 M43 = 2^043 - 1 =                  8796093022207                                        (0 msec)
                  = 431 × 20408568497
 M47 = 2^047 - 1 =                140737488355327                                        (0 msec)
                  = 2351 × 59862819377
 M53 = 2^053 - 1 =               9007199254740991                                        (0 msec)
                  = 6361 × 1416003655831
 M59 = 2^059 - 1 =             576460752303423487                                        (1 msec)
                  = 179951 × 3203431780337
 M61 = 2^061 - 1 =            2305843009213693951 is a Mersenne prime number.       (16.756 msec)
 M67 = 2^067 - 1 =          147573952589676412927                                    (1.435 msec)
                  = 193707721 × 761838257287
 M71 = 2^071 - 1 =         2361183241434822606847                                        (2 msec)
                  = 228479 × 10334355636337793
 M73 = 2^073 - 1 =         9444732965739290427391                                        (0 msec)
                  = 439 × 21514198099633918969
 M79 = 2^079 - 1 =       604462909807314587353087                                        (0 msec)
                  = 2687 × 224958284260258499201
 M83 = 2^083 - 1 =      9671406556917033397649407                                        (0 msec)
                  = 167 × 57912614113275649087721
 M89 = 2^089 - 1 =    618970019642690137449562111 is a Mersenne prime number.       (11.097 msec)
 M97 = 2^097 - 1 = 158456325028528675187087900671                                        (0 msec)
                  = 11447 × 13842607235828485645766393
M929 = 2^929 - 1 = 4538015467766671944574165338592225830478699345884382504442663144885072806275648112625635725391102144133907238129251016389326737199538896813326509341743147661691195191795226666084858428449394948944821764472508048114220424520501343042471615418544488778723282182172070046459244838911                                        (0 msec)
(M has 280 dec)   = 13007 × 348890248924938259750454781163390930305120269538278042934009621348894657205785201247454118966026150852149399410259938217062100192168747352450719561908445272675574320888385228421992652298715687625495638077382028762529439880103124705348782610789919949159935587158612289264184273
M937 = 2^937 - 1 = 1161731959748268017810986326679609812602547032546401921137321765090578638406565916832162745700122148898280252961088260195667644723081957584211586391486245801392945969099578026517723757683045106929874371704962060317240428677248343818872733547147389127353160238636049931893566678761471                                        (0 msec)
(M has 283 dec)   = 28111 × 41326596696960905617409068573854000661753300577937530544531385048222355604801178073784737138491058621119143856891902109340387916583613446131819799775399160520541637405271175928203328152077304504637841830776637626453716647477796727931156257235508844486256634009321971181870679761

Scheme

This works with PLT Scheme, other implementations only need to change the inclusion.

<lang scheme>

  1. lang scheme
this needs to be changed for other R6RS implementations

(require rnrs/arithmetic/bitwise-6)

modpow, as per the task description.

(define (modpow exponent base)

 (let loop ([square 1] [index (- (bitwise-length exponent) 1)])
   (if (< index 0)
       square
       (loop (modulo (* (if (bitwise-bit-set? exponent index) 2 1)
                     square square) base)
             (- index 1)))))
search through all integers from 1 on to find the first divisor
returns #f if 2^p-1 is prime

(define (mersenne-factor p)

 (for/first ((i (in-range 1 (floor (expt 2 (quotient p 2))) (* 2 p)))
             #:when (and (or (= 1 (modulo i 8)) (= 7 (modulo i 8)))
                         (= 1 (modpow p i))))
   i))

</lang>

Output:
> (mersenne-factor 929)
13007
> (mersenne-factor 23)
47
> (mersenne-factor 3)
#f

Seed7

<lang seed7>$ include "seed7_05.s7i";

const func boolean: isPrime (in integer: number) is func

 result
   var boolean: prime is FALSE;
 local
   var integer: upTo is 0;
   var integer: testNum is 3;
 begin
   if number = 2 then
     prime := TRUE;
   elsif odd(number) and number > 2 then
     upTo := sqrt(number);
     while number rem testNum <> 0 and testNum <= upTo do
       testNum +:= 2;
     end while;
     prime := testNum > upTo;
   end if;
 end func;

const func integer: modPow (in var integer: base,

   in var integer: exponent, in integer: modulus) is func
 result
   var integer: power is 1;
 begin
   if exponent < 0 or modulus < 0 then
     raise RANGE_ERROR;
   else
     while exponent > 0 do
       if odd(exponent) then
         power := (power * base) mod modulus;
       end if;
       exponent >>:= 1;
       base := base ** 2 mod modulus;
     end while;
   end if;
 end func;

const func integer: mersenneFactor (in integer: exponent) is func

 result
   var integer: factor is 0;
 local 
   var integer: maxk is 0;
   var integer: k is 1;
   var boolean: searching is TRUE;
 begin
   maxk := 16384 div exponent; # Limit for k to prevent overflow of 32 bit signed integer
   while k <= maxk and searching do
     factor := 2 * exponent * k + 1;
     if (factor mod 8 = 1 or factor mod 8 = 7) and
         isPrime(factor) and modPow(2, exponent, factor) = 1 then
       searching := FALSE;
     end if;
     incr(k);
   end while;
   if searching then
     factor := 0;
   end if;
 end func;

const proc: main is func

 begin
   writeln("Factor of M929: " <& mersenneFactor(929));
 end func;</lang>

Original source: isPrime, modPow (modified to use integer instead of bigInteger).

Output:
Factor of M929: 13007

Sidef

<lang ruby>func mtest(b, p) {

   var bits = b.base(2).digits
   for (var sq = 1; bits; sq %= p) {
       sq *= sq
       sq += sq if bits.shift==1
   }
   sq == 1

}

for m (2..60 -> grep{ .is_prime }, 929) {

   var f = 0
   var x = (2**m - 1)
   var q
   { |k|
       q = (2*k*m + 1)
       q%8 ~~ [1,7] || q.is_prime || next
       q*q > x || (f = mtest(m, q)) && break
   } << 1..Inf
   say (f ? "M#{m} is composite with factor #{q}"
          : "M#{m} is prime")

}</lang>

Output:
M2 is prime
M3 is prime
M5 is prime
M7 is prime
M11 is composite with factor 23
M13 is prime
M17 is prime
M19 is prime
M23 is composite with factor 47
M29 is composite with factor 233
M31 is prime
M37 is composite with factor 223
M41 is composite with factor 13367
M43 is composite with factor 431
M47 is composite with factor 2351
M53 is composite with factor 6361
M59 is composite with factor 179951
M929 is composite with factor 13007

Swift

<lang swift>import Foundation

extension BinaryInteger {

 var isPrime: Bool {
   if self == 0 || self == 1 {
     return false
   } else if self == 2 {
     return true
   }
   let max = Self(ceil((Double(self).squareRoot())))
   for i in stride(from: 2, through: max, by: 1) where self % i == 0  {
     return false
   }
   return true
 }
 func modPow(exp: Self, mod: Self) -> Self {
   guard exp != 0 else {
     return 1
   }
   var res = Self(1)
   var base = self % mod
   var exp = exp
   while true {
     if exp & 1 == 1 {
       res *= base
       res %= mod
     }
     if exp == 1 {
       return res
     }
     exp >>= 1
     base *= base
     base %= mod
   }
 }

}

func mFactor(exp: Int) -> Int? {

 for k in 0..<16384 {
   let q = 2*exp*k + 1
   if !q.isPrime {
     continue
   } else if q % 8 != 1 && q % 8 != 7 {
     continue
   } else if 2.modPow(exp: exp, mod: q) == 1 {
     return q
   }
 }
 return nil

}

print(mFactor(exp: 929)!) </lang>

Output:
13007

Tcl

For primes::is_prime see Prime decomposition#Tcl <lang tcl>proc int2bits {n} {

   binary scan [binary format I1 $n] B* binstring
   return [split [string trimleft $binstring 0] ""]
   
   # another method
   if {$n == 0} {return 0}
   set bits [list]
   while {$n > 0} {
       lappend bits [expr {$n % 2}]
       set n [expr {$n / 2}]
   }
   return [lreverse $bits]

}

proc trial_factor {base exp mod} {

   set square 1
   foreach bit [int2bits $exp] {
       set square [expr {($square ** 2) * ($bit == 1 ? $base : 1) % $mod}]
   }
   return [expr {$square == 1}]

}

proc m_factor p {

   set limit [expr {sqrt(2**$p - 1)}]
   for {set k 1} {2 * $k * $p - 1 < $limit} {incr k} {
       set q [expr {2 * $k * $p + 1}]
       if { ! [primes::is_prime $q]} {
           continue
       } elseif { ! ($q % 8 == 1 || $q % 8 == 7)} {
           # optimization
           continue
       } elseif {[trial_factor 2 $p $q]} {
           # $q is a factor of 2**$p-1
           return $q
       }
   }
   return -1

}

set exp 929 if {[set fact [m_factor 929]] > 0} {

   puts "M$exp has a factor: $fact"

} else {

   puts "no factor found for M$exp"

}</lang>

TI-83 BASIC

Translation of: BBC BASIC
Works with: TI-83 BASIC version TI-84Plus 2.55MP

The program uses the new remainder function from OS 2.53MP, if not available it can be replaced by: <lang ti83b>remainder(A,B) equivalent to iPart(B*fPart(A/B))</lang>Due to several problems, no Goto has been used. As a matter of fact the version is clearer. <lang ti83b>Prompt Q 1→K:0→T While K≤2^20 and T=0 2KQ+1→P remainder(P,8)→W If W=1 or W=7 Then 0→E:0→M If remainder(P,2)=0:1→M If remainder(P,3)=0:1→M 5→D While M=0 and DD≤P If remainder(P,D)=0:1→M D+2→D If remainder(P,D)=0:1→M D+4→D End If M=0:1→E Q→I:1→Y:2→Z While I≠0 If remainder(I,2)=1:remainder(YZ,P)→Y remainder(ZZ,P)→Z iPart(I/2)→I End If E=1 and Y=1 Then P→F:1→T End End K+1→K End If T=0:0→F Disp Q,F</lang>

Input:
Q=?929
Output:
             929
           13007
            Done

uBasic/4tH

<lang>Print "A factor of M929 is "; FUNC(_FNmersenne_factor(929)) Print "A factor of M937 is "; FUNC(_FNmersenne_factor(937))

End

_FNmersenne_factor Param(1)

 Local(2)
 If (FUNC(_FNisprime(a@)) = 0) Then Return (-1)
 For b@ = 1 TO 99999
   c@ = (2*a@*b@) + 1
   If (FUNC(_FNisprime(c@))) Then
     If (AND (c@, 7) = 1) + (AND (c@, 7) = 7) Then
       Until FUNC(_ModPow2 (a@, c@)) = 1
     EndIf
   EndIf
 Next

Return (c@ * (b@<100000))


_FNisprime Param(1)

 Local (1)
 If ((a@ % 2) = 0) Then Return (a@ = 2)
 If ((a@ % 3) = 0) Then Return (a@ = 3)
 b@ = 5
 Do Until ((b@ * b@) > a@) + ((a@ % b@) = 0)
   b@ = b@ + 2
 Until (a@ % b@) = 0
   b@ = b@ + 4
 Loop

Return ((b@ * b@) > a@)


_ModPow2 Param(2)

 Local(2)
 d@ = 1
 For c@ = 30 To 0 Step -1
   If ((a@+1) > SHL(1,c@)) Then
      d@ = d@ * d@
      If AND (a@, SHL(1,c@)) Then
         d@ = d@ * 2
      EndIf
      d@ = d@ % b@
   EndIf
 Next

Return (d@)</lang>

Output:
A factor of M929 is 13007
A factor of M937 is 28111

0 OK, 0:123

VBScript

Translation of: REXX

<lang vb>' Factors of a Mersenne number

   for i=1 to 59
       z=i
       if z=59 then z=929  ':) 61 turns into 929.
       if isPrime(z) then 
           r=testM(z)
           zz=left("M" & z & space(4),4)
           if r=0 then 
               Wscript.echo zz & " prime."
           else 
               Wscript.echo zz & " not prime, a factor: " & r
           end if
       end if
   next

function modPow(base,n,div)

   dim i,y,z
   i = n : y = 1 : z = base
   do while i
       if i and 1 then y = (y * z) mod div
       z = (z * z) mod div
       i = i \ 2
   loop
   modPow= y

end function

function isPrime(x)

   dim i
   if x=2 or x=3 or _
      x=5 or x=7 _
                 then isPrime=1: exit function
   if x<11       then isPrime=0: exit function
   if x mod 2=0  then isPrime=0: exit function
   if x mod 3=0  then isPrime=0: exit function
   i=5
   do
       if (x mod i)     =0 or _
          (x mod (i+2)) =0 _
                 then isPrime=0: exit function
       if i*i>x  then isPrime=1: exit function
       i=i+6
   loop

end function

function testM(x)

   dim sqroot,k,q
   sqroot=Sqr(2^x)
   k=1
   do
       q=2*k*x+1
       if q>sqroot then exit do
       if (q and 7)=1 or (q and 7)=7 then
           if isPrime(q) then
               if modPow(2,x,q)=1 then 
                   testM=q
                   exit function
               end if
           end if
       end if
       k=k+1
   loop
   testM=0 

end function</lang>

Output:
M2   prime.
M3   prime.
M5   prime.
M7   prime.
M11  not prime, a factor: 23
M13  prime.
M17  prime.
M19  prime.
M23  not prime, a factor: 47
M29  not prime, a factor: 233
M31  prime.
M37  not prime, a factor: 223
M41  not prime, a factor: 13367
M43  not prime, a factor: 431
M47  not prime, a factor: 2351
M53  not prime, a factor: 6361
M929 not prime, a factor: 13007

Visual Basic

Translation of: BBC BASIC
Works with: Visual Basic version VB6 Standard

<lang vb>Sub mersenne()

   Dim q As Long, k As Long, p As Long, d As Long
   Dim factor As Long, i As Long, y As Long, z As Long
   Dim prime As Boolean
   q = 929   'input value
   For k = 1 To 1048576   '2**20
       p = 2 * k * q + 1
       If (p And 7) = 1 Or (p And 7) = 7 Then    'p=*001 or p=*111
           'p is prime?
           prime = False
           If p Mod 2 = 0 Then GoTo notprime
           If p Mod 3 = 0 Then GoTo notprime
           d = 5
           Do While d * d <= p
               If p Mod d = 0 Then GoTo notprime
               d = d + 2
               If p Mod d = 0 Then GoTo notprime
               d = d + 4
           Loop
           prime = True
       notprime:   'modpow
           i = q: y = 1: z = 2
           Do While i   'i <> 0
               On Error GoTo okfactor
               If i And 1 Then y = (y * z) Mod p  'test first bit
               z = (z * z) Mod p
               On Error GoTo 0
               i = i \ 2
           Loop
           If prime And y = 1 Then factor = p: GoTo okfactor
       End If
   Next k
   factor = 0

okfactor:

   Debug.Print "M" & q, "factor=" & factor

End Sub</lang>

Output:
M47           factor=2351

zkl

Translation of: EchoLisp

<lang zkl>var [const] BN=Import("zklBigNum"); // libGMP

   // M = 2^P - 1 , P prime
   // Look for a prime divisor q such as: 
   //     q < M.sqrt(), q = 1 or 7 modulo 8, q = 1 + 2kP
   // q is divisor if 2.powmod(P,q) == 1
   // m-divisor returns q or False

fcn m_divisor(P){

  // must limit the search as M.sqrt() may be HUGE and I'm slow
  maxPrime:='wrap{ BN(2).pow(P).sqrt().min(0d5_000_000) };
  t,b2:=BN(0),BN(2);  // so I can do some in place BigInt math
  foreach q in (maxPrime(P*2)){ // 0..maxPrime -1, faster than just odd #s
     if((q%8==1 or q%8==7) and t.set(q).probablyPrime() and

b2.powm(P,q)==1) return(q);

  }
  False

}</lang> <lang zkl>m_divisor(929).println(); // 13007 m_divisor(4423).println(); // False (BN(2).pow(4423) - 1).probablyPrime().println(); // True</lang>

Output:
13007
False
True