Additive primes

From Rosetta Code
Revision as of 04:59, 24 June 2022 by Eliasen (talk | contribs) (Frink)
Task
Additive primes
You are encouraged to solve this task according to the task description, using any language you may know.
Definitions

In mathematics, additive primes are prime numbers for which the sum of their decimal digits are also primes.


Task

Write a program to determine (and show here) all additive primes less than 500.

Optionally, show the number of additive primes.


Also see



11l

Translation of: Python

<lang 11l>F is_prime(a)

  I a == 2
     R 1B
  I a < 2 | a % 2 == 0
     R 0B
  L(i) (3 .. Int(sqrt(a))).step(2)
     I a % i == 0
        R 0B
  R 1B

F digit_sum(=n)

  V sum = 0
  L n > 0
     sum += n % 10
     n I/= 10
  R sum

V additive_primes = 0 L(i) 2..499

  I is_prime(i) & is_prime(digit_sum(i))
     additive_primes++
     print(i, end' ‘ ’)

print("\nFound "additive_primes‘ additive primes less than 500’)</lang>

Output:
2 3 5 7 11 23 29 41 43 47 61 67 83 89 101 113 131 137 139 151 157 173 179 191 193 197 199 223 227 229 241 263 269 281 283 311 313 317 331 337 353 359 373 379 397 401 409 421 443 449 461 463 467 487 
Found 54 additive primes less than 500

AArch64 Assembly

Works with: as version Raspberry Pi 3B version Buster 64 bits
or android 64 bits with application Termux

<lang AArch64 Assembly> /* ARM assembly AARCH64 Raspberry PI 3B or android 64 bits */ /* program additivePrime64.s */

/*******************************************/ /* Constantes file */ /*******************************************/ /* for this file see task include a file in language AArch64 assembly*/ .include "../includeConstantesARM64.inc"

.equ MAXI, 500

/*********************************/ /* Initialized data */ /*********************************/ .data szMessResult: .asciz "Prime  : @ \n" szMessCounter: .asciz "Number found : @ \n" szCarriageReturn: .asciz "\n"

/*********************************/ /* UnInitialized data */ /*********************************/ .bss sZoneConv: .skip 24 TablePrime: .skip 8 * MAXI /*********************************/ /* code section */ /*********************************/ .text .global main main: // entry of program

   bl createArrayPrime
   mov x5,x0                       // prime number
   ldr x4,qAdrTablePrime           // address prime table
   mov x10,#0                      // init counter
   mov x6,#0                       // indice

1:

   ldr x2,[x4,x6,lsl #3]           // load prime
   mov x9,x2                       // save prime
   mov x7,#0                       // init digit sum
   mov x1,#10                      // divisor

2: // begin loop

   mov x0,x2                       // dividende
   udiv x2,x0,x1
   msub x3,x2,x1,x0                // compute remainder
   add x7,x7,x3                    // add digit to digit sum
   cmp x2,#0                       // quotient null ?
   bne 2b                          // no -> comppute other digit
   mov x8,#1                       // indice

4: // prime search loop

   cmp x8,x5                       // maxi ?
   bge 5f                          // yes
   ldr x0,[x4,x8,lsl #3]           // load prime
   cmp x0,x7                       // prime >= digit sum ?
   add x0,x8,1
   csel x8,x0,x8,lt                // no -> increment indice
   blt 4b                          // and loop
   bne 5f                          // > 
   mov x0,x9                       // equal
   bl displayPrime
   add x10,x10,#1                  // increment counter

5:

   add x6,x6,#1                    // increment first indice
   cmp x6,x5                       // maxi ?
   blt 1b                          // and loop
   
   mov x0,x10                      // number counter
   ldr x1,qAdrsZoneConv
   bl conversion10                 // call décimal conversion
   ldr x0,qAdrszMessCounter
   ldr x1,qAdrsZoneConv            // insert conversion in message
   bl strInsertAtCharInc
   bl affichageMess                // display message

100: // standard end of the program

   mov x0, #0                      // return code
   mov x8, #EXIT                   // request to exit program
   svc #0                          // perform the system call

qAdrszCarriageReturn: .quad szCarriageReturn qAdrszMessResult: .quad szMessResult qAdrszMessCounter: .quad szMessCounter qAdrTablePrime: .quad TablePrime /******************************************************************/ /* créate prime array */ /******************************************************************/ createArrayPrime:

   stp x1,lr,[sp,-16]!       // save  registres
   ldr x4,qAdrTablePrime    // address prime table
   mov x0,#1                      
   str x0,[x4]              // store 1 in array
   mov x0,#2
   str x0,[x4,#8]           // store 2 in array
   mov x0,#3
   str x0,[x4,#16]          // store 3 in array
   mov x5,#3                // prine counter 
   mov x7,#5                // first number to test

1:

   mov x6,#1                // indice

2:

   mov x0,x7                // dividende
   ldr x1,[x4,x6,lsl #3]    // load divisor
   udiv x2,x0,x1
   msub x3,x2,x1,x0         // compute remainder
   cmp x3,#0                // null remainder ?
   beq 4f                   // yes -> end loop
   cmp x2,x1                // quotient < divisor
   bge 3f
   str x7,[x4,x5,lsl #3]    // dividende is prime store in array
   add x5,x5,#1             // increment counter
   b 4f                     // and end loop

3:

   add x6,x6,#1             // else increment indice
   cmp x6,x5                // maxi ?
   blt 2b                   // no -> loop

4:

   add x7,x7,#2             // other odd number
   cmp x7,#MAXI             // maxi ?
   blt 1b                   // no -> loop
   mov x0,x5                // return counter

100:

   ldp x1,lr,[sp],16         // restaur des  2 registres
   ret

/******************************************************************/ /* Display prime table elements */ /******************************************************************/ /* x0 contains the prime */ displayPrime:

   stp x1,lr,[sp,-16]!       // save  registres
   ldr x1,qAdrsZoneConv
   bl conversion10           // call décimal conversion
   ldr x0,qAdrszMessResult
   ldr x1,qAdrsZoneConv      // insert conversion in message
   bl strInsertAtCharInc
   bl affichageMess          // display message

100:

   ldp x1,lr,[sp],16         // restaur des  2 registres
   ret

qAdrsZoneConv: .quad sZoneConv

/********************************************************/ /* File Include fonctions */ /********************************************************/ /* for this file see task include a file in language AArch64 assembly */ .include "../includeARM64.inc"

</lang>

Prime  : 2
Prime  : 3
Prime  : 5
Prime  : 7
Prime  : 11
Prime  : 23
Prime  : 29
Prime  : 41
Prime  : 43
Prime  : 47
Prime  : 61
Prime  : 67
Prime  : 83
Prime  : 89
Prime  : 101
Prime  : 113
Prime  : 131
Prime  : 137
Prime  : 139
Prime  : 151
Prime  : 157
Prime  : 173
Prime  : 179
Prime  : 191
Prime  : 193
Prime  : 197
Prime  : 199
Prime  : 223
Prime  : 227
Prime  : 229
Prime  : 241
Prime  : 263
Prime  : 269
Prime  : 281
Prime  : 283
Prime  : 311
Prime  : 313
Prime  : 317
Prime  : 331
Prime  : 337
Prime  : 353
Prime  : 359
Prime  : 373
Prime  : 379
Prime  : 397
Prime  : 401
Prime  : 409
Prime  : 421
Prime  : 443
Prime  : 449
Prime  : 461
Prime  : 463
Prime  : 467
Prime  : 487
Number found : 54

Ada

<lang Ada>with Ada.Text_Io;

procedure Additive_Primes is

  Last    : constant := 499;
  Columns : constant := 12;
  type Prime_List is array (2 .. Last) of Boolean;
  function Get_Primes return Prime_List is
     Prime : Prime_List := (others => True);
  begin
     for P in Prime'Range loop
        if Prime (P) then
           for N in 2 .. Positive'Last loop
              exit when N * P not in Prime'Range;
              Prime (N * P) := False;
           end loop;
        end if;
     end loop;
     return Prime;
  end Get_Primes;
  function Sum_Of (N : Natural) return Natural is
     Image : constant String := Natural'Image (N);
     Sum   : Natural := 0;
  begin
     for Char of Image loop
        Sum := Sum + (if Char in '0' .. '9'
                      then Natural'Value ("" & Char)
                      else 0);
     end loop;
     return Sum;
  end Sum_Of;
  package Natural_Io is new Ada.Text_Io.Integer_Io (Natural);
  use Ada.Text_Io, Natural_Io;
  Prime : constant Prime_List := Get_Primes;
  Count : Natural := 0;

begin

  Put_Line ("Additive primes <500:");
  for N in Prime'Range loop
     if Prime (N) and then Prime (Sum_Of (N)) then
        Count := Count + 1;
        Put (N, Width => 5);
        if Count mod Columns = 0 then
           New_Line;
        end if;
     end if;
  end loop;
  New_Line;
  Put ("There are ");
  Put (Count, Width => 2);
  Put (" additive primes.");
  New_Line;

end Additive_Primes;</lang>

Output:
Additive primes <500:
    2    3    5    7   11   23   29   41   43   47   61   67
   83   89  101  113  131  137  139  151  157  173  179  191
  193  197  199  223  227  229  241  263  269  281  283  311
  313  317  331  337  353  359  373  379  397  401  409  421
  443  449  461  463  467  487
There are 54 additive primes.

ALGOL 68

<lang algol68>BEGIN # find additive primes - primes whose digit sum is also prime #

   # sieve the primes to max prime #
   PR read "primes.incl.a68" PR
   []BOOL prime = PRIMESIEVE 499;
   # find the additive primes #
   INT additive count := 0;
   FOR n TO UPB prime DO
       IF prime[ n ] THEN
           # have a prime #
           INT digit sum := 0;
           INT v         := n;
           WHILE v > 0 DO
               digit sum +:= v MOD 10;
               v OVERAB 10
           OD;
           IF prime( digit sum ) THEN
               # the digit sum is prime #
               print( ( " ", whole( n, -3 ) ) );
               IF ( additive count +:= 1 ) MOD 20 = 0 THEN print( ( newline ) ) FI
           FI
       FI
   OD;
   print( ( newline, "Found ", whole( additive count, 0 ), " additive primes below ", whole( UPB prime + 1, 0 ), newline ) )

END</lang>

Output:
   2   3   5   7  11  23  29  41  43  47  61  67  83  89 101 113 131 137 139 151
 157 173 179 191 193 197 199 223 227 229 241 263 269 281 283 311 313 317 331 337
 353 359 373 379 397 401 409 421 443 449 461 463 467 487
Found 54 additive primes below 500

ALGOL W

<lang algolw>begin % find some additive primes - primes whose digit sum is also prime %

   % sets p( 1 :: n ) to a sieve of primes up to n %
   procedure Eratosthenes ( logical array p( * ) ; integer value n ) ;
   begin
       p( 1 ) := false; p( 2 ) := true;
       for i := 3 step 2 until n do p( i ) := true;
       for i := 4 step 2 until n do p( i ) := false;
       for i := 3 step 2 until truncate( sqrt( n ) ) do begin
           integer ii; ii := i + i;
           if p( i ) then for pr := i * i step ii until n do p( pr ) := false
       end for_i ;
   end Eratosthenes ;
   integer MAX_NUMBER;
   MAX_NUMBER := 500;
   begin
       logical array prime( 1 :: MAX_NUMBER );
       integer       aCount;
       % sieve the primes to MAX_NUMBER %
       Eratosthenes( prime, MAX_NUMBER );
       % find the primes that are additive primes %
       aCount := 0;
       for i := 1 until MAX_NUMBER - 1 do begin
           if prime( i ) then begin
               integer dSum, v;
               v    := i;
               dSum := 0;
               while v > 0 do begin
                   dSum := dSum + v rem 10;
                   v    := v div 10
               end while_v_gt_0 ;
               if prime( dSum ) then begin
                   writeon( i_w := 4, s_w := 0, " ", i );
                   aCount := aCount + 1;
                   if aCount rem 20 = 0 then write()
               end if_prime_dSum
           end if_prime_i
       end for_i ;
       write( i_w := 1, s_w := 0, "Found ", aCount, " additive primes below ", MAX_NUMBER )
   end

end.</lang>

Output:
    2    3    5    7   11   23   29   41   43   47   61   67   83   89  101  113  131  137  139  151
  157  173  179  191  193  197  199  223  227  229  241  263  269  281  283  311  313  317  331  337
  353  359  373  379  397  401  409  421  443  449  461  463  467  487
Found 54 additive primes below 500

APL

<lang APL>((+⌿(4/10)⊤P)∊P)/P←(~P∊P∘.×P)/P←1↓⍳500</lang>

Output:
2 3 5 7 11 23 29 41 43 47 61 67 83 89 101 113 131 137 139 151 157 173 179 191 193 197 199 223 227 229 241 263 269 281 283
      311 313 317 331 337 353 359 373 379 397 401 409 421 443 449 461 463 467 487

AppleScript

<lang applescript>on sieveOfEratosthenes(limit)

   script o
       property numberList : {missing value}
   end script
   
   repeat with n from 2 to limit
       set end of o's numberList to n
   end repeat
   
   repeat with n from 2 to (limit ^ 0.5) div 1
       if (item n of o's numberList is n) then
           repeat with multiple from n * n to limit by n
               set item multiple of o's numberList to missing value
           end repeat
       end if
   end repeat
   
   return o's numberList's numbers

end sieveOfEratosthenes

on sumOfDigits(n) -- n assumed to be a positive decimal integer.

   set sum to n mod 10
   set n to n div 10
   repeat until (n = 0)
       set sum to sum + n mod 10
       set n to n div 10
   end repeat
   
   return sum

end sumOfDigits

on additivePrimes(limit)

   script o
       property primes : sieveOfEratosthenes(limit)
       property additives : {}
   end script
   
   repeat with p in o's primes
       if (sumOfDigits(p) is in o's primes) then set end of o's additives to p's contents
   end repeat
   
   return o's additives

end additivePrimes

-- Task code: tell additivePrimes(499) to return {|additivePrimes<500|:it, numberThereof:count}</lang>

Output:

<lang applescript>{|additivePrimes<500|:{2, 3, 5, 7, 11, 23, 29, 41, 43, 47, 61, 67, 83, 89, 101, 113, 131, 137, 139, 151, 157, 173, 179, 191, 193, 197, 199, 223, 227, 229, 241, 263, 269, 281, 283, 311, 313, 317, 331, 337, 353, 359, 373, 379, 397, 401, 409, 421, 443, 449, 461, 463, 467, 487}, numberThereof:54}</lang>

ARM Assembly

Works with: as version Raspberry Pi
or android 32 bits with application Termux

<lang ARM Assembly> /* ARM assembly Raspberry PI */ /* program additivePrime.s */

/* REMARK 1 : this program use routines in a include file 
  see task Include a file language arm assembly 
  for the routine affichageMess conversion10 
  see at end of this program the instruction include */

/* for constantes see task include a file in arm assembly */ /************************************/ /* Constantes */ /************************************/ .include "../constantes.inc"

.equ MAXI, 500


/*********************************/ /* Initialized data */ /*********************************/ .data szMessResult: .asciz "Prime  : @ \n" szMessCounter: .asciz "Number found : @ \n" szCarriageReturn: .asciz "\n"

/*********************************/ /* UnInitialized data */ /*********************************/ .bss sZoneConv: .skip 24 TablePrime: .skip 4 * MAXI /*********************************/ /* code section */ /*********************************/ .text .global main main: @ entry of program

   bl createArrayPrime
   mov r5,r0                       @ prime number
   ldr r4,iAdrTablePrime           @ address prime table
   mov r10,#0                      @ init counter
   mov r6,#0                       @ indice

1:

   ldr r2,[r4,r6,lsl #2]           @ load prime
   mov r9,r2                       @ save prime
   mov r7,#0                       @ init digit sum
   mov r1,#10                      @ divisor

2: @ begin loop

   mov r0,r2                       @ dividende
   bl division
   add r7,r7,r3                    @ add digit to digit sum
   cmp r2,#0                       @ quotient null ?
   bne 2b                          @ no -> comppute other digit
   mov r8,#1                       @ indice

4: @ prime search loop

   cmp r8,r5                       @ maxi ?
   bge 5f                          @ yes
   ldr r0,[r4,r8,lsl #2]           @ load prime
   cmp r0,r7                       @ prime >= digit sum ?
   addlt r8,r8,#1                  @ no -> increment indice
   blt 4b                          @ and loop
   bne 5f                          @ > 
   mov r0,r9                       @ equal
   bl displayPrime
   add r10,r10,#1                  @ increment counter

5:

   add r6,r6,#1                    @ increment first indice
   cmp r6,r5                       @ maxi ?
   blt 1b                          @ and loop
   
   mov r0,r10                      @ number counter
   ldr r1,iAdrsZoneConv
   bl conversion10                 @ call décimal conversion
   ldr r0,iAdrszMessCounter
   ldr r1,iAdrsZoneConv            @ insert conversion in message
   bl strInsertAtCharInc
   bl affichageMess                @ display message

100: @ standard end of the program

   mov r0, #0                      @ return code
   mov r7, #EXIT                   @ request to exit program
   svc #0                          @ perform the system call

iAdrszCarriageReturn: .int szCarriageReturn iAdrszMessResult: .int szMessResult iAdrszMessCounter: .int szMessCounter iAdrTablePrime: .int TablePrime /******************************************************************/ /* créate prime array */ /******************************************************************/ createArrayPrime:

   push {r1-r7,lr}          @ save registers
   ldr r4,iAdrTablePrime    @ address prime table
   mov r0,#1                      
   str r0,[r4]              @ store 1 in array
   mov r0,#2
   str r0,[r4,#4]           @ store 2 in array
   mov r0,#3
   str r0,[r4,#8]           @ store 3 in array
   mov r5,#3                @ prine counter 
   mov r7,#5                @ first number to test

1:

   mov r6,#1                @ indice

2:

   mov r0,r7                @ dividende
   ldr r1,[r4,r6,lsl #2]    @ load divisor
   bl division
   cmp r3,#0                @ null remainder ?
   beq 3f                   @ yes -> end loop
   cmp r2,r1                @ quotient < divisor
   strlt r7,[r4,r5,lsl #2]  @ dividende is prime store in array
   addlt r5,r5,#1           @ increment counter
   blt 3f                   @ and end loop
   add r6,r6,#1             @ else increment indice
   cmp r6,r5                @ maxi ?
   blt 2b                   @ no -> loop

3:

   add r7,#2                @ other odd number
   cmp r7,#MAXI             @ maxi ?
   blt 1b                   @ no -> loop
   mov r0,r5                @ return counter

100:

   pop {r1-r7,pc}

/******************************************************************/ /* Display prime table elements */ /******************************************************************/ /* r0 contains the prime */ displayPrime:

   push {r1,lr}                    @ save registers
   ldr r1,iAdrsZoneConv
   bl conversion10                 @ call décimal conversion
   ldr r0,iAdrszMessResult
   ldr r1,iAdrsZoneConv            @ insert conversion in message
   bl strInsertAtCharInc
   bl affichageMess                @ display message

100:

   pop {r1,pc}

iAdrsZoneConv: .int sZoneConv /***************************************************/ /* ROUTINES INCLUDE */ /***************************************************/ .include "../affichage.inc"

</lang>

Prime  : 2
Prime  : 3
Prime  : 5
Prime  : 7
Prime  : 11
Prime  : 23
Prime  : 29
Prime  : 41
Prime  : 43
Prime  : 47
Prime  : 61
Prime  : 67
Prime  : 83
Prime  : 89
Prime  : 101
Prime  : 113
Prime  : 131
Prime  : 137
Prime  : 139
Prime  : 151
Prime  : 157
Prime  : 173
Prime  : 179
Prime  : 191
Prime  : 193
Prime  : 197
Prime  : 199
Prime  : 223
Prime  : 227
Prime  : 229
Prime  : 241
Prime  : 263
Prime  : 269
Prime  : 281
Prime  : 283
Prime  : 311
Prime  : 313
Prime  : 317
Prime  : 331
Prime  : 337
Prime  : 353
Prime  : 359
Prime  : 373
Prime  : 379
Prime  : 397
Prime  : 401
Prime  : 409
Prime  : 421
Prime  : 443
Prime  : 449
Prime  : 461
Prime  : 463
Prime  : 467
Prime  : 487
Number found : 54

Arturo

<lang rebol>additives: select 2..500 'x -> and? prime? x prime? sum digits x

loop split.every:10 additives 'a ->

   print map a => [pad to :string & 4]

print ["\nFound" size additives "additive primes up to 500"]</lang>

Output:
   2    3    5    7   11   23   29   41   43   47 
  61   67   83   89  101  113  131  137  139  151 
 157  173  179  191  193  197  199  223  227  229 
 241  263  269  281  283  311  313  317  331  337 
 353  359  373  379  397  401  409  421  443  449 
 461  463  467  487 

Found 54 additive primes up to 500

AWK

<lang AWK>

  1. syntax: GAWK -f ADDITIVE_PRIMES.AWK

BEGIN {

   start = 1
   stop = 500
   for (i=start; i<=stop; i++) {
     if (is_prime(i) && is_prime(sum_digits(i))) {
       printf("%4d%1s",i,++count%10?"":"\n")
     }
   }
   printf("\nAdditive primes %d-%d: %d\n",start,stop,count)
   exit(0)

} function is_prime(x, i) {

   if (x <= 1) {
     return(0)
   }
   for (i=2; i<=int(sqrt(x)); i++) {
     if (x % i == 0) {
       return(0)
     }
   }
   return(1)

} function sum_digits(n, i,sum) {

   for (i=1; i<=length(n); i++) {
     sum += substr(n,i,1)
   }
   return(sum)

} </lang>

Output:
   2    3    5    7   11   23   29   41   43   47
  61   67   83   89  101  113  131  137  139  151
 157  173  179  191  193  197  199  223  227  229
 241  263  269  281  283  311  313  317  331  337
 353  359  373  379  397  401  409  421  443  449
 461  463  467  487
Additive primes 1-500: 54

BASIC

<lang basic>10 DEFINT A-Z: E=500 20 DIM P(E): P(0)=-1: P(1)=-1 30 FOR I=2 TO SQR(E) 40 IF NOT P(I) THEN FOR J=I*2 TO E STEP I: P(J)=-1: NEXT 50 NEXT 60 FOR I=B TO E: IF P(I) GOTO 100 70 J=I: S=0 80 IF J>0 THEN S=S+J MOD 10: J=J\10: GOTO 80 90 IF NOT P(S) THEN N=N+1: PRINT I, 100 NEXT 110 PRINT: PRINT N;" additive primes found below ";E</lang>

Output:
 2             3             5             7             11
 23            29            41            43            47
 61            67            83            89            101
 113           131           137           139           151
 157           173           179           191           193
 197           199           223           227           229
 241           263           269           281           283
 311           313           317           331           337
 353           359           373           379           397
 401           409           421           443           449
 461           463           467           487
 54  additive primes found below  500

BASIC256

<lang freebasic>print "Prime", "Digit Sum" for i = 2 to 499

   if isprime(i) then
       s = digSum(i)
       if isPrime(s) then print i, s
   end if

next i end

function isPrime(v)

   if v < 2 then return False
   if v mod 2 = 0 then return v = 2
   if v mod 3 = 0 then return v = 3
   d = 5
   while d * d <= v
       if v mod d = 0 then return False else d += 2
   end while
   return True

end function

function digsum(n)

   s = 0
   while n
       s += n mod 10
       n /= 10
   end while
   return s

end function</lang>

BCPL

<lang bcpl>get "libhdr" manifest $( limit = 500 $)

let dsum(n) =

   n=0 -> 0,
   dsum(n/10) + n rem 10

let sieve(prime, n) be $( 0!prime := false

   1!prime := false
   for i=2 to n do i!prime := true
   for i=2 to n/2
       if i!prime 
       $(  let j=i+i
           while j<=n
           $(  j!prime := false
               j := j+i
           $)
       $)

$)

let additive(prime, n) = n!prime & dsum(n)!prime

let start() be $( let prime = vec limit

   let num = 0
   sieve(prime, limit)
   for i=2 to limit
       if additive(prime,i)
       $(  writed(i,5)
           num := num + 1
           if num rem 10 = 0 then wrch('*N')
       $)
   writef("*N*NFound %N additive primes < %N.*N", num, limit)

$)</lang>

Output:
    2    3    5    7   11   23   29   41   43   47
   61   67   83   89  101  113  131  137  139  151
  157  173  179  191  193  197  199  223  227  229
  241  263  269  281  283  311  313  317  331  337
  353  359  373  379  397  401  409  421  443  449
  461  463  467  487

Found 54 additive primes < 500.

C

<lang C>

  1. include <stdbool.h>
  2. include <stdio.h>
  3. include <string.h>

void memoizeIsPrime( bool * result, const int N ) {

   result[2] = true;
   result[3] = true;
   int prime[N];
   prime[0] = 3;
   int end = 1;
   for (int n = 5; n < N; n += 2)
   {
       bool n_is_prime = true;
       for (int i = 0; i < end; ++i)
       {
           const int PRIME = prime[i];
           if (n % PRIME == 0)
           {
               n_is_prime = false;
               break;
           }
           if (PRIME * PRIME > n)
           {
               break;
           }
       }
       if (n_is_prime)
       {
           prime[end++] = n;
           result[n] = true;
       }
   }

}/* memoizeIsPrime */

int sumOfDecimalDigits( int n ) {

   int sum = 0;
   while (n > 0)
   {
       sum += n % 10;
       n /= 10;
   }
   return sum;

}/* sumOfDecimalDigits */

int main( void ) {

   const int N = 500;
   printf( "Rosetta Code: additive primes less than %d:\n", N );
   bool is_prime[N];
   memset( is_prime, 0, sizeof(is_prime) );
   memoizeIsPrime( is_prime, N );
   printf( "   2" );
   int count = 1;
   for (int i = 3; i < N; i += 2)
   {
       if (is_prime[i] && is_prime[sumOfDecimalDigits( i )])
       {
           printf( "%4d", i );
           ++count;
           if ((count % 10) == 0)
           {
               printf( "\n" );
           }
       }
   }
   printf( "\nThose were %d additive primes.\n", count );
   return 0;

}/* main */ </lang>

Output:
Rosetta Code: additive primes less than 500:
   2   3   5   7  11  23  29  41  43  47
  61  67  83  89 101 113 131 137 139 151
 157 173 179 191 193 197 199 223 227 229
 241 263 269 281 283 311 313 317 331 337
 353 359 373 379 397 401 409 421 443 449
 461 463 467 487
Those were 54 additive primes.

C++

<lang cpp>#include <iomanip>

  1. include <iostream>

bool is_prime(unsigned int n) {

   if (n < 2)
       return false;
   if (n % 2 == 0)
       return n == 2;
   if (n % 3 == 0)
       return n == 3;
   for (unsigned int p = 5; p * p <= n; p += 4) {
       if (n % p == 0)
           return false;
       p += 2;
       if (n % p == 0)
           return false;
   }
   return true;

}

unsigned int digit_sum(unsigned int n) {

   unsigned int sum = 0;
   for (; n > 0; n /= 10)
       sum += n % 10;
   return sum;

}

int main() {

   const unsigned int limit = 500;
   std::cout << "Additive primes less than " << limit << ":\n";
   unsigned int count = 0;
   for (unsigned int n = 1; n < limit; ++n) {
       if (is_prime(digit_sum(n)) && is_prime(n)) {
           std::cout << std::setw(3) << n;
           if (++count % 10 == 0)
               std::cout << '\n';
           else
               std::cout << ' ';
       }
   }
   std::cout << '\n' << count << " additive primes found.\n";

}</lang>

Output:
Additive primes less than 500:
  2   3   5   7  11  23  29  41  43  47
 61  67  83  89 101 113 131 137 139 151
157 173 179 191 193 197 199 223 227 229
241 263 269 281 283 311 313 317 331 337
353 359 373 379 397 401 409 421 443 449
461 463 467 487 
54 additive primes found.


CLU

<lang clu>% Sieve of Erastothenes % Returns an array [1..max] marking the primes sieve = proc (max: int) returns (array[bool])

   prime: array[bool] := array[bool]$fill(1, max, true)
   prime[1] := false 
   
   for p: int in int$from_to(2, max/2) do
       if prime[p] then
           for comp: int in int$from_to_by(p*2, max, p) do
               prime[comp] := false
           end
       end
   end
   return(prime)

end sieve

% Sum the digits of a number digit_sum = proc (n: int) returns (int)

   sum: int := 0
   while n ~= 0 do
       sum := sum + n // 10
       n := n / 10
   end
   return(sum)

end digit_sum

start_up = proc ()

   max = 500
   po: stream := stream$primary_output()
   
   count: int := 0
   prime: array[bool] := sieve(max)
   for i: int in array[bool]$indexes(prime) do
       if prime[i] cand prime[digit_sum(i)] then
           count := count + 1
           stream$putright(po, int$unparse(i), 5)
           if count//10 = 0 then stream$putl(po, "") end
       end
   end
   
   stream$putl(po, "\nFound " || int$unparse(count) || 
                   " additive primes < " || int$unparse(max)) 

end start_up</lang>

Output:
    2    3    5    7   11   23   29   41   43   47
   61   67   83   89  101  113  131  137  139  151
  157  173  179  191  193  197  199  223  227  229
  241  263  269  281  283  311  313  317  331  337
  353  359  373  379  397  401  409  421  443  449
  461  463  467  487
Found 54 additive primes < 500

COBOL

<lang cobol> IDENTIFICATION DIVISION.

      PROGRAM-ID. ADDITIVE-PRIMES.
      
      DATA DIVISION.
      WORKING-STORAGE SECTION.
      01 VARIABLES.
         03 MAXIMUM            PIC 999.
         03 AMOUNT             PIC 999.
         03 CANDIDATE          PIC 999.
         03 DIGIT              PIC 9 OCCURS 3 TIMES, 
                               REDEFINES CANDIDATE.
         03 DIGITSUM           PIC 99.
         
      01 PRIME-DATA.
         03 COMPOSITE-FLAG     PIC X OCCURS 500 TIMES.
            88 PRIME           VALUE ' '.
         03 SIEVE-PRIME        PIC 999.
         03 SIEVE-COMP-START   PIC 999.
         03 SIEVE-COMP         PIC 999.
         03 SIEVE-MAX          PIC 999.
      
      01 OUT-FMT.
         03 NUM-FMT            PIC ZZZ9.
         03 OUT-LINE           PIC X(40).
         03 OUT-PTR            PIC 99.
         
      PROCEDURE DIVISION.
      BEGIN.
          MOVE 500 TO MAXIMUM.
          MOVE 1 TO OUT-PTR.
          PERFORM SIEVE.
          MOVE ZERO TO AMOUNT.
          PERFORM TEST-NUMBER 
              VARYING CANDIDATE FROM 2 BY 1
              UNTIL CANDIDATE IS GREATER THAN MAXIMUM.
          DISPLAY OUT-LINE.
          DISPLAY SPACES.
          MOVE AMOUNT TO NUM-FMT.
          DISPLAY 'Amount of additive primes found: ' NUM-FMT.
          STOP RUN.
      TEST-NUMBER.
          ADD DIGIT(1), DIGIT(2), DIGIT(3) GIVING DIGITSUM.
          IF PRIME(CANDIDATE) AND PRIME(DIGITSUM),
              ADD 1 TO AMOUNT,
              PERFORM WRITE-NUMBER.
      
      WRITE-NUMBER.
          MOVE CANDIDATE TO NUM-FMT.
          STRING NUM-FMT DELIMITED BY SIZE INTO OUT-LINE 
              WITH POINTER OUT-PTR.
          IF OUT-PTR IS GREATER THAN 40,
              DISPLAY OUT-LINE,
              MOVE SPACES TO OUT-LINE,
              MOVE 1 TO OUT-PTR.               
      
      SIEVE.
          MOVE SPACES TO PRIME-DATA.
          DIVIDE MAXIMUM BY 2 GIVING SIEVE-MAX.
          PERFORM SIEVE-OUTER-LOOP
              VARYING SIEVE-PRIME FROM 2 BY 1
              UNTIL SIEVE-PRIME IS GREATER THAN SIEVE-MAX.
         
      SIEVE-OUTER-LOOP.
          IF PRIME(SIEVE-PRIME),
              MULTIPLY SIEVE-PRIME BY 2 GIVING SIEVE-COMP-START,
              PERFORM SIEVE-INNER-LOOP
                  VARYING SIEVE-COMP 
                      FROM SIEVE-COMP-START BY SIEVE-PRIME
                  UNTIL SIEVE-COMP IS GREATER THAN MAXIMUM.
      
      SIEVE-INNER-LOOP.
          MOVE 'X' TO COMPOSITE-FLAG(SIEVE-COMP).</lang>
Output:
   2   3   5   7  11  23  29  41  43  47
  61  67  83  89 101 113 131 137 139 151
 157 173 179 191 193 197 199 223 227 229
 241 263 269 281 283 311 313 317 331 337
 353 359 373 379 397 401 409 421 443 449
 461 463 467 487

Amount of additive primes found:   54

Common Lisp

<lang lisp> (defun sum-of-digits (n)

"Return the sum of the digits of a number"
 (do* ((sum 0 (+ sum rem))
       rem )
      ((zerop n) sum)
   (multiple-value-setq (n rem) (floor n 10)) ))
     

(defun additive-primep (n)

 (and (primep n) (primep (sum-of-digits n))) )


To test if a number is prime we can use a number of different methods. Here I use Wilson's Theorem (see Primality by Wilson's theorem)

(defun primep (n)

 (unless (zerop n)
   (zerop (mod (1+ (factorial (1- n))) n)) ))

(defun factorial (n)

 (if (< n 2) 1 (* n (factorial (1- n)))) )


</lang>

Output:
(dotimes (i 500) (when (additive-primep i) (princ i) (princ " ")))

1 2 3 5 7 11 23 29 41 43 47 61 67 83 89 101 113 131 137 139 151 157 173 179 191 193 197 199 223 227 229 241 263 269 281 283 311 313 317 331 337 353 359 373 379 397 401 409 421 443 449 461 463 467 487

Crystal

<lang ruby># Fast/simple way to generate primes for small values.

  1. Uses P3 Prime Generator (PG) and its Prime Generator Sequence (PGS).

def prime?(n) # P3 Prime Generator primality test

 return false unless (n | 1 == 3 if n < 5) || (n % 6) | 4 == 5
 sqrt_n = Math.isqrt(n)  # For Crystal < 1.2.0 use Math.sqrt(n).to_i
 pc = typeof(n).new(5)
 while pc <= sqrt_n
   return false if n % pc == 0 || n % (pc + 2) == 0
   pc += 6
 end
 true

end

def additive_primes(n)

 primes = [2, 3]
 pc, inc = 5, 2
 while pc < n
   primes << pc if prime?(pc) && prime?(pc.digits.sum)
   pc += inc; inc ^= 0b110  # generate P3 sequence: 5 7 11 13 17 19 ...
 end
 primes # list of additive primes <= n

end

nn = 500 addprimes = additive_primes(nn) maxdigits = addprimes.last.digits.size addprimes.each_with_index { |n, idx| printf "%*d ", maxdigits, n; print "\n" if idx % 10 == 9 } # more efficient

  1. addprimes.each_with_index { |n, idx| print "%#{maxdigits}d " % n; print "\n" if idx % 10 == 9} # alternatively

puts "\n#{addprimes.size} additive primes below #{nn}."

puts

nn = 5000 addprimes = additive_primes(nn) maxdigits = addprimes.last.digits.size addprimes.each_with_index { |n, idx| printf "%*d ", maxdigits, n; print "\n" if idx % 10 == 9 } # more efficient puts "\n#{addprimes.size} additive primes below #{nn}." </lang>

Output:
  2   3   5   7  11  23  29  41  43  47 
 61  67  83  89 101 113 131 137 139 151 
157 173 179 191 193 197 199 223 227 229 
241 263 269 281 283 311 313 317 331 337 
353 359 373 379 397 401 409 421 443 449 
461 463 467 487 
54 additive primes below 500.

   2    3    5    7   11   23   29   41   43   47 
  61   67   83   89  101  113  131  137  139  151 
 157  173  179  191  193  197  199  223  227  229 
 241  263  269  281  283  311  313  317  331  337 
 353  359  373  379  397  401  409  421  443  449 
 461  463  467  487  557  571  577  593  599  601 
 607  641  643  647  661  683  719  733  739  751 
 757  773  797  809  821  823  827  829  863  881 
 883  887  911  919  937  953  971  977  991 1013 
1019 1031 1033 1039 1051 1091 1093 1097 1103 1109 
1123 1129 1163 1181 1187 1213 1217 1231 1237 1259 
1277 1279 1291 1297 1301 1303 1307 1321 1327 1361 
1367 1381 1433 1439 1451 1453 1459 1471 1493 1499 
1523 1543 1549 1567 1583 1613 1619 1637 1657 1693 
1697 1709 1721 1723 1741 1747 1783 1787 1811 1831 
1871 1873 1877 1901 1907 1949 2003 2027 2029 2063 
2069 2081 2083 2087 2089 2111 2113 2131 2137 2153 
2179 2203 2207 2221 2243 2267 2269 2281 2287 2311 
2333 2339 2351 2357 2371 2377 2393 2399 2423 2441 
2447 2467 2531 2539 2551 2557 2579 2591 2593 2609 
2621 2647 2663 2683 2687 2711 2713 2719 2731 2753 
2777 2791 2801 2803 2843 2861 2917 2939 2953 2957 
2971 2999 3011 3019 3037 3079 3109 3121 3163 3167 
3169 3181 3187 3217 3251 3253 3257 3259 3271 3299 
3301 3307 3323 3329 3343 3347 3361 3389 3413 3433 
3457 3491 3527 3529 3541 3547 3581 3583 3613 3617 
3631 3637 3659 3671 3673 3677 3691 3701 3709 3727 
3761 3767 3833 3851 3853 3907 3923 3929 3943 3947 
3989 4001 4003 4007 4021 4027 4049 4111 4133 4139 
4153 4157 4159 4177 4201 4229 4241 4243 4261 4283 
4289 4337 4339 4357 4373 4391 4397 4409 4421 4423 
4441 4447 4463 4481 4483 4513 4517 4519 4591 4603 
4621 4643 4649 4663 4733 4751 4793 4799 4801 4861 
4889 4919 4931 4933 4937 4951 4973 4999 
338 additive primes below 5000.

Delphi

See Pascal.

Draco

<lang draco>proc sieve([*] bool prime) void:

   word max, p, c;
   max := dim(prime,1)-1;
   prime[0] := false;
   prime[1] := false;
   for p from 2 upto max do prime[p] := true od;
   for p from 2 upto max/2 do
       for c from p*2 by p upto max do
           prime[c] := false
       od
   od

corp

proc digit_sum(word num) byte:

   byte sum;
   sum := 0;
   while
       sum := sum + num % 10;
       num := num / 10;
       num /= 0
   do od;
   sum

corp

proc main() void:

   word MAX = 500;
   word p, n;
   [MAX]bool prime;
   sieve(prime);
   n := 0;
   for p from 2 upto MAX-1 do
       if prime[p] and prime[digit_sum(p)] then
           write(p:4);
           n := n + 1;
           if n % 20 = 0 then writeln() fi
       fi
   od;
   writeln();
   writeln("There are ", n, " additive primes below ", MAX)

corp</lang>

Output:
   2   3   5   7  11  23  29  41  43  47  61  67  83  89 101 113 131 137 139 151
 157 173 179 191 193 197 199 223 227 229 241 263 269 281 283 311 313 317 331 337
 353 359 373 379 397 401 409 421 443 449 461 463 467 487
There are 54 additive primes below 500

Erlang

<lang Erlang> main(_) ->

   AddPrimes = [N || N <- lists:seq(2,500), isprime(N) andalso isprime(digitsum(N))],
   io:format("The additive primes up to 500 are:~n~p~n~n", [AddPrimes]),
   io:format("There are ~b of them.~n", [length(AddPrimes)]).

isprime(N) when N < 2 -> false; isprime(N) -> isprime(N, 2, 0, <<1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6>>).

isprime(N, D, J, Wheel) when J =:= byte_size(Wheel) -> isprime(N, D, 3, Wheel); isprime(N, D, _, _) when D*D > N -> true; isprime(N, D, _, _) when N rem D =:= 0 -> false; isprime(N, D, J, Wheel) -> isprime(N, D + binary:at(Wheel, J), J + 1, Wheel).

digitsum(N) -> digitsum(N, 0). digitsum(0, S) -> S; digitsum(N, S) -> digitsum(N div 10, S + N rem 10). </lang>

Output:
The additive primes up to 500 are:
[2,3,5,7,11,23,29,41,43,47,61,67,83,89,101,113,131,137,139,151,157,173,179,
 191,193,197,199,223,227,229,241,263,269,281,283,311,313,317,331,337,353,359,
 373,379,397,401,409,421,443,449,461,463,467,487]

There are 54 of them.

F#

This task uses Extensible Prime Generator (F#) <lang fsharp> // Additive Primes. Nigel Galloway: March 22nd., 2021 let rec fN g=function n when n<10->n+g |n->fN(g+n%10)(n/10) primes32()|>Seq.takeWhile((>)500)|>Seq.filter(fN 0>>isPrime)|>Seq.iter(printf "%d "); printfn "" </lang>

Output:
2 3 5 7 11 23 29 41 43 47 61 67 83 89 101 113 131 137 139 151 157 173 179 191 193 197 199 223 227 229 241 263 269 281 283 311 313 317 331 337 353 359 373 379 397 401 409 421 443 449 461 463 467 487

Factor

Works with: Factor version 0.99 2021-02-05

<lang factor>USING: formatting grouping io kernel math math.primes prettyprint sequences ;

sum-digits ( n -- sum )
   0 swap [ 10 /mod rot + swap ] until-zero ;

499 primes-upto [ sum-digits prime? ] filter [ 9 group simple-table. nl ] [ length "Found %d additive primes < 500.\n" printf ] bi</lang>

Output:
2   3   5   7   11  23  29  41  43
47  61  67  83  89  101 113 131 137
139 151 157 173 179 191 193 197 199
223 227 229 241 263 269 281 283 311
313 317 331 337 353 359 373 379 397
401 409 421 443 449 461 463 467 487

Found  54  additive primes  <  500.

Fermat

<lang fermat>Function Digsum(n) =

   digsum := 0;
   while n>0 do
       digsum := digsum + n|10;
       n:=n\10;
   od;
   digsum.;

nadd := 0; !!'Additive primes below 500 are';

for p=1 to 500 do

   if Isprime(p) and Isprime(Digsum(p)) then
      !!(p,' -> ',Digsum(p));
      nadd := nadd+1;
   fi od;

!!('There were ',nadd);</lang>

Output:

Additive primes below 500 are

2 ->  2
3 ->  3
5 ->  5
7 ->  7
11 ->  2
23 ->  5
29 ->  11
41 ->  5
43 ->  7
47 ->  11
61 ->  7
67 ->  13
83 ->  11
89 ->  17
101 ->  2
113 ->  5
131 ->  5
137 ->  11
139 ->  13
151 ->  7
157 ->  13
173 ->  11
179 ->  17
191 ->  11
193 ->  13
197 ->  17
199 ->  19
223 ->  7
227 ->  11
229 ->  13
241 ->  7
263 ->  11
269 ->  17
281 ->  11
283 ->  13
311 ->  5
313 ->  7
317 ->  11
331 ->  7
337 ->  13
353 ->  11
359 ->  17
373 ->  13
379 ->  19
397 ->  19
401 ->  5
409 ->  13
421 ->  7
443 ->  11
449 ->  17
461 ->  11
463 ->  13
467 ->  17
487 ->  19
There were 54

Forth

Works with: Gforth

<lang forth>: prime? ( n -- ? ) here + c@ 0= ;

notprime! ( n -- ) here + 1 swap c! ;
prime_sieve ( n -- )
 here over erase
 0 notprime!
 1 notprime!
 2
 begin
   2dup dup * >
 while
   dup prime? if
     2dup dup * do
       i notprime!
     dup +loop
   then
   1+
 repeat
 2drop ;
digit_sum ( u -- u )
 dup 10 < if exit then
 10 /mod recurse + ;
print_additive_primes ( n -- )
 ." Additive primes less than " dup 1 .r ." :" cr
 dup prime_sieve
 0 swap
 1 do
   i prime? if
     i digit_sum prime? if
       i 3 .r
       1+ dup 10 mod 0= if cr else space then
     then
   then
 loop
 cr . ." additive primes found." cr ;

500 print_additive_primes bye</lang>

Output:
Additive primes less than 500:
  2   3   5   7  11  23  29  41  43  47
 61  67  83  89 101 113 131 137 139 151
157 173 179 191 193 197 199 223 227 229
241 263 269 281 283 311 313 317 331 337
353 359 373 379 397 401 409 421 443 449
461 463 467 487 
54 additive primes found.

FreeBASIC

As with the other special primes tasks, use one of the primality testing algorithms as an include. <lang freebasic>#include "isprime.bas"

function digsum( n as uinteger ) as uinteger

   dim as uinteger s
   while n
       s+=n mod 10
       n\=10
   wend
   return s

end function

dim as uinteger s

print "Prime","Digit Sum" for i as uinteger = 2 to 499

   if isprime(i) then
       s = digsum(i)
       if isprime(s) then
           print i, s
       end if
   end if

next i</lang>

Output:
Prime         Digit Sum
2             2
3             3
5             5
7             7
11            2
23            5
29            11
41            5
43            7
47            11
61            7
67            13
83            11
89            17
101           2
113           5
131           5
137           11
139           13
151           7
157           13
173           11
179           17
191           11
193           13
197           17
199           19
223           7
227           11
229           13
241           7
263           11
269           17
281           11
283           13
311           5
313           7
317           11
331           7
337           13
353           11
359           17
373           13
379           19
397           19
401           5
409           13
421           7
443           11
449           17
461           11
463           13
467           17
487           19

Free Pascal

Using Sieve of Eratosthenes to find all primes upto 500, then go through the list, sum digits and check for prime

<lang pascal> Program AdditivePrimes; Const max_number = 500;

Var is_prime : array Of Boolean;

Procedure sieve(Var arr: Array Of boolean ); {use Sieve of Eratosthenes to find all primes to max number} Var i,j : NativeUInt;

Begin

 For i := 2 To high(arr) Do
   arr[i] := True;  // set all bits to be True
 For i := 2 To high(arr) Do
   Begin
     If (arr[i]) Then
       For j := 2 To (high(arr) Div i) Do
         arr[i * j] := False;
   End;

End;

Function GetSumOfDigits(num: NativeUInt): longint; {calcualte the sum of digits of a number} Var

 sum  : longint = 0;
 dummy: NativeUInt;

Begin

 Repeat
   dummy := num;
   num := num Div 10;
   Inc(sum, dummy - (num SHL 3 + num SHL 1));
 Until num < 1;
 GetSumOfDigits := sum;

End;

Var x : NativeUInt = 2; {first prime}

 counter : longint = 0;

Begin

 setlength(is_prime,max_number); //set length of array to max_number
 Sieve(is_prime); //apply Sieve
 
 {since 2 is the only even prime, let's do it separate}
 If is_prime[x] And is_prime[GetSumOfDigits(x)] Then
   Begin
     write(x:4);
     inc(counter);
   End;
 inc(x);
 While x < max_number Do
   Begin
     If is_prime[x] And is_prime[GetSumOfDigits(x)] Then
       Begin
         if counter mod 10 = 0 then writeln();
         write(x:4);
         inc(counter);
       End;
     inc(x,2);
   End;
 writeln();
 writeln();
 writeln(counter,' additive primes found.');

End. </lang>

Output:
   2   3   5   7  11  23  29  41  43  47
  61  67  83  89 101 113 131 137 139 151
 157 173 179 191 193 197 199 223 227 229
 241 263 269 281 283 311 313 317 331 337
 353 359 373 379 397 401 409 421 443 449
 461 463 467 487

54 additive primes found.

Frink

<lang frink>isAdditive = {|x| isPrime[sum[integerDigits[x]]]} println[formatTable[columnize[select[primes[2, 500], isAdditive], 10]]]</lang>

Output:
 2   3   5   7   11  23  29  41  43  47
 61  67  83  89 101 113 131 137 139 151
157 173 179 191 193 197 199 223 227 229
241 263 269 281 283 311 313 317 331 337
353 359 373 379 397 401 409 421 443 449
461 463 467 487

Go

<lang go>package main

import "fmt"

func isPrime(n int) bool {

   switch {
   case n < 2:
       return false
   case n%2 == 0:
       return n == 2
   case n%3 == 0:
       return n == 3
   default:
       d := 5
       for d*d <= n {
           if n%d == 0 {
               return false
           }
           d += 2
           if n%d == 0 {
               return false
           }
           d += 4
       }
       return true
   }

}

func sumDigits(n int) int {

   sum := 0
   for n > 0 {
       sum += n % 10
       n /= 10
   }
   return sum

}

func main() {

   fmt.Println("Additive primes less than 500:")
   i := 2
   count := 0
   for {
       if isPrime(i) && isPrime(sumDigits(i)) {
           count++
           fmt.Printf("%3d  ", i)
           if count%10 == 0 {
               fmt.Println()
           }
       }
       if i > 2 {
           i += 2
       } else {
           i++
       }
       if i > 499 {
           break
       }
   }
   fmt.Printf("\n\n%d additive primes found.\n", count)

}</lang>

Output:
Additive primes less than 500:
  2    3    5    7   11   23   29   41   43   47  
 61   67   83   89  101  113  131  137  139  151  
157  173  179  191  193  197  199  223  227  229  
241  263  269  281  283  311  313  317  331  337  
353  359  373  379  397  401  409  421  443  449  
461  463  467  487
 
54 additive primes found.

J

<lang J> (#~ 1 p: [:+/@|: 10&#.inv) i.&.(p:inv) 500 2 3 5 7 11 23 29 41 43 47 61 67 83 89 101 113 131 137 139 151 157 173 179 191 193 197 199 223 227 229 241 263 269 281 283 311 313 317 331 337 353 359 373 379 397 401 409 421 443 449 461 463 467 487</lang>

Java

<lang Java>public class additivePrimes {

   public static void main(String[] args) {
       int additive_primes = 0;
       for (int i = 2; i < 500; i++) {
           if(isPrime(i) && isPrime(digitSum(i))){
               additive_primes++;
               System.out.print(i + " ");
           }
       }
       System.out.print("\nFound " + additive_primes + " additive primes less than 500");
   }
   static boolean isPrime(int n) {
       int counter = 1;
       if (n < 2 || (n != 2 && n % 2 == 0) || (n != 3 && n % 3 == 0)) {
           return false;
       }
       while (counter * 6 - 1 <= Math.sqrt(n)) {
           if (n % (counter * 6 - 1) == 0 || n % (counter * 6 + 1) == 0) {
               return false;
           } else {
               counter++;
           }
       }
       return true;
   }
   static int digitSum(int n) {
       int sum = 0;
       while (n > 0) {
           sum += n % 10;
           n /= 10;
       }
       return sum;
   }

} </lang>

Output:
2 3 5 7 11 23 29 41 43 47 61 67 83 89 101 113 131 137 139 151 157 173 179 191 193 197 199 223 227 229 241 263 269 281 283 311 313 317 331 337 353 359 373 379 397 401 409 421 443 449 461 463 467 487 
Found 54 additive primes less than 500

jq

Works with: jq

Works with gojq, the Go implementation of jq

Preliminaries <lang jq>def is_prime:

 . as $n
 | if ($n < 2)         then false
   elif ($n % 2 == 0)  then $n == 2
   elif ($n % 3 == 0)  then $n == 3
   elif ($n % 5 == 0)  then $n == 5
   elif ($n % 7 == 0)  then $n == 7
   elif ($n % 11 == 0) then $n == 11
   elif ($n % 13 == 0) then $n == 13
   elif ($n % 17 == 0) then $n == 17
   elif ($n % 19 == 0) then $n == 19
   else {i:23}
   | until( (.i * .i) > $n or ($n % .i == 0); .i += 2)
   | .i * .i > $n
   end;
  1. Emit an array of primes less than `.`

def primes:

 if . < 2 then []
 else [2] + [range(3; .; 2) | select(is_prime)]
 end;

def add(s): reduce s as $x (null; . + $x);

def sumdigits: add(tostring | explode[] | [.] | implode | tonumber);

  1. Pretty-printing

def nwise($n):

 def n: if length <= $n then . else .[0:$n] , (.[$n:] | n) end;
 n;

def lpad($len): tostring | ($len - length) as $l | (" " * $l)[:$l] + .; </lang> The task <lang jq>

  1. Input: a number n
  2. Output: an array of additive primes less than n

def additive_primes:

 primes
 | . as $primes
 | reduce .[] as $p (null;
     ( $p | sumdigits ) as $sum
     | if (($primes | bsearch($sum)) > -1)
       then . + [$p]
       else .
       end );

"Erdős primes under 500:", (500 | additive_primes

| ((nwise(10) | map(lpad(4)) | join(" ")),
  "\n\(length) additive primes found."))
</lang>
Output:
Erdős primes under 500:
   2    3    5    7   11   23   29   41   43   47
  61   67   83   89  101  113  131  137  139  151
 157  173  179  191  193  197  199  223  227  229
 241  263  269  281  283  311  313  317  331  337
 353  359  373  379  397  401  409  421  443  449
 461  463  467  487

54 additive primes found.

Haskell

Naive solution which doesn't rely on advanced number theoretic libraries. <lang haskell>import Data.List (unfoldr)

-- infinite list of primes primes = 2 : sieve [3,5..]

 where sieve (x:xs) = x : sieve (filter (\y -> y `mod` x /= 0) xs)

-- primarity test, effective for numbers less then billion isPrime n = all (\p -> n `mod` p /= 0) $ takeWhile (< sqrtN) primes

 where sqrtN = round . sqrt . fromIntegral $ n

-- decimal digits of a number digits = unfoldr f

 where f 0 = Nothing
       f n = let (q, r) = divMod n 10 in Just (r,q)

-- test for an additive prime isAdditivePrime n = isPrime n && (isPrime . sum . digits) n </lang>

The task

λ> isPrime 12373
True

λ> isAdditivePrime 12373
False

λ> isPrime 12347
True

λ> isAdditivePrime 12347
True

λ> takeWhile (< 500) $ filter isAdditivePrime primes
[2,3,5,7,11,13,23,29,31,41,43,47,61,67,83,89,101,103,113,131,137,139,151,157,173,179,191,193,197,199,211,223,227,229,241,263,269,281,283,311,313,317,331,337,353,359,373,379,397,401,409,421,443,449,461,463,467,487]

Julia

<lang julia>using Primes

let

   p = primesmask(500)
   println("Additive primes under 500:")
   pcount = 0
   for i in 2:499
       if p[i] && p[sum(digits(i))]
           pcount += 1
           print(lpad(i, 4), pcount % 20 == 0 ? "\n" : "")
       end
   end
   println("\n\n$pcount additive primes found.")

end

</lang>

Output:
Erdős primes under 500:
   2   3   5   7  11  23  29  41  43  47  61  67  83  89 101 113 131 137 139 151
 157 173 179 191 193 197 199 223 227 229 241 263 269 281 283 311 313 317 331 337
 353 359 373 379 397 401 409 421 443 449 461 463 467 487

54 additive primes found.

Kotlin

Translation of: Python

<lang kotlin>fun isPrime(n: Int): Boolean {

   if (n <= 3) return n > 1
   if (n % 2 == 0 || n % 3 == 0) return false
   var i = 5
   while (i * i <= n) {
       if (n % i == 0 || n % (i + 2) == 0) return false
       i += 6
   }
   return true

}

fun digitSum(n: Int): Int {

   var sum = 0
   var num = n
   while (num > 0) {
       sum += num % 10
       num /= 10
   }
   return sum

}

fun main() {

   var additivePrimes = 0
   for (i in 2 until 500) {
       if (isPrime(i) and isPrime(digitSum(i))) {
           additivePrimes++
           print("$i ")
       }
   }
   println("\nFound $additivePrimes additive primes less than 500")

}</lang>

Output:
2 3 5 7 11 23 29 41 43 47 61 67 83 89 101 113 131 137 139 151 157 173 179 191 193 197 199 223 227 229 241 263 269 281 283 311 313 317 331 337 353 359 373 379 397 401 409 421 443 449 461 463 467 487 
Found 54 additive primes less than 500

Ksh

<lang ksh>#!/bin/ksh

  1. Prime numbers for which the sum of their decimal digits are also primes
  1. # Variables:

integer MAX_n=500

  1. # Functions:
  2. # Function _isprime(n) return 1 for prime, 0 for not prime

function _isprime { typeset _n ; integer _n=$1 typeset _i ; integer _i

(( _n < 2 )) && return 0 for (( _i=2 ; _i*_i<=_n ; _i++ )); do (( ! ( _n % _i ) )) && return 0 done return 1 }

  1. # Function _sumdigits(n) return sum of n's digits

function _sumdigits { typeset _n ; _n=$1 typeset _i _sum ; integer _i _sum=0

for ((_i=0; _i<${#_n}; _i++)); do (( _sum+=${_n:${_i}:1} )) done echo ${_sum} }

######
  1. main #
######

integer i digsum for ((i=2; i<MAX_n; i++)); do _isprime ${i} && (( ! $? )) && continue

digsum=$(_sumdigits ${i}) _isprime ${digsum} ; (( $? )) && printf "%4d " ${i} done print</lang>

Output:
   2    3    5    7   11   23   29   41   43   47   61   67   83   89  101  113  131  137  139  151  157  173  179  191  193  197  199  223  227  229  241  263  269  281  283  311  313  317  331  337  353  359  373  379  397  401  409  421  443  449  461  463  467  487 


langur

<lang langur>val .isPrime = f .i == 2 or .i > 2 and not any f(.x) .i div .x, pseries 2 to .i ^/ 2

val .sumDigits = f fold f{+}, s2n toString .i

writeln "Additive primes less than 500:"

var .count = 0

for .i in [2] ~ series(3..500, 2) {

   if .isPrime(.i) and .isPrime(.sumDigits(.i)) {
       write $"\.i:3;  "
       .count += 1
       if .count div 10: writeln()
   }

}

writeln $"\n\n\.count; additive primes found.\n" </lang>

Output:
Additive primes less than 500:
  2    3    5    7   11   23   29   41   43   47  
 61   67   83   89  101  113  131  137  139  151  
157  173  179  191  193  197  199  223  227  229  
241  263  269  281  283  311  313  317  331  337  
353  359  373  379  397  401  409  421  443  449  
461  463  467  487  

54 additive primes found.


Lua

This task uses primegen from: Extensible_prime_generator#Lua <lang lua>function sumdigits(n)

 local sum = 0
 while n > 0 do
   sum = sum + n % 10
   n = math.floor(n/10)
 end
 return sum

end

primegen:generate(nil, 500) aprimes = primegen:filter(function(n) return primegen.tbd(sumdigits(n)) end) print(table.concat(aprimes, " ")) print("Count:", #aprimes)</lang>

Output:
2 3 5 7 11 23 29 41 43 47 61 67 83 89 101 113 131 137 139 151 157 173 179 191 193 197 199 223 227 229 241 263 269 281 283 311 313 317 331 337 353 359 373 379 397 401 409 421 443 449 461 463 467 487
Count:  54

Mathematica/Wolfram Language

<lang Mathematica>ClearAll[AdditivePrimeQ] AdditivePrimeQ[n_Integer] := PrimeQ[n] \[And] PrimeQ[Total[IntegerDigits[n]]] Select[Range[500], AdditivePrimeQ]</lang>

Output:
{2,3,5,7,11,23,29,41,43,47,61,67,83,89,101,113,131,137,139,151,157,173,179,191,193,197,199,223,227,229,241,263,269,281,283,311,313,317,331,337,353,359,373,379,397,401,409,421,443,449,461,463,467,487}

Modula-2

<lang modula2>MODULE AdditivePrimes; FROM InOut IMPORT WriteString, WriteCard, WriteLn;

CONST

   Max = 500;

VAR

   N: CARDINAL;
   Count: CARDINAL;
   Prime: ARRAY [2..Max] OF BOOLEAN;

PROCEDURE DigitSum(n: CARDINAL): CARDINAL; BEGIN

   IF n < 10 THEN 
       RETURN n;
   ELSE 
       RETURN (n MOD 10) + DigitSum(n DIV 10);
   END;

END DigitSum;

PROCEDURE Sieve; VAR i, j, max2: CARDINAL; BEGIN

   FOR i := 2 TO Max DO
       Prime[i] := TRUE;
   END;
   
   FOR i := 2 TO Max DIV 2 DO
       IF Prime[i] THEN;
           j := i*2;
           WHILE j <= Max DO 
               Prime[j] := FALSE;
               j := j + i;
           END;
       END;
   END;

END Sieve;

BEGIN

   Count := 0;
   Sieve();
   FOR N := 2 TO Max DO
       IF Prime[N] AND Prime[DigitSum(N)] THEN
           WriteCard(N, 4);
           Count := Count + 1;
           IF Count MOD 10 = 0 THEN WriteLn(); END;
       END;
   END;
   WriteLn();
   WriteString('There are '); WriteCard(Count,0);
   WriteString(' additive primes less than '); WriteCard(Max,0);
   WriteString('.');
   WriteLn();

END AdditivePrimes.</lang>

Output:
   2   3   5   7  11  23  29  41  43  47
  61  67  83  89 101 113 131 137 139 151
 157 173 179 191 193 197 199 223 227 229
 241 263 269 281 283 311 313 317 331 337
 353 359 373 379 397 401 409 421 443 449
 461 463 467 487
There are 54 additive primes less than 500.

Nim

<lang Nim>import math, strutils

const N = 499

  1. Sieve of Erathostenes.

var composite: array[2..N, bool] # Initialized to false, ie. prime.

for n in 2..sqrt(N.toFloat).int:

 if not composite[n]:
   for k in countup(n * n, N, n):
     composite[k] = true


func digitSum(n: Positive): Natural =

 ## Compute sum of digits.
 var n = n.int
 while n != 0:
   result += n mod 10
   n = n div 10


echo "Additive primes less than 500:" var count = 0 for n in 2..N:

 if not composite[n] and not composite[digitSum(n)]:
   inc count
   stdout.write ($n).align(3)
   stdout.write if count mod 10 == 0: '\n' else: ' '

echo()

echo "\nNumber of additive primes found: ", count</lang>

Output:
Additive primes less than 500:
  2   3   5   7  11  23  29  41  43  47
 61  67  83  89 101 113 131 137 139 151
157 173 179 191 193 197 199 223 227 229
241 263 269 281 283 311 313 317 331 337
353 359 373 379 397 401 409 421 443 449
461 463 467 487 

Number of additive primes found: 54

Pari/GP

This is a good task for demonstrating several different ways to approach a simple problem. <lang parigp>hasPrimeDigitsum(n)=isprime(sumdigits(n)); \\ see A028834 in the OEIS

v1 = select(isprime, select(hasPrimeDigitsum, [1..499])); v2 = select(hasPrimeDigitsum, select(isprime, [1..499])); v3 = select(hasPrimeDigitsum, primes([1, 499]));

s=0; forprime(p=2,499, if(hasPrimeDigitsum(p), s++)); s; [#v1, #v2, #v3, s]</lang>

Output:
%1 = [54, 54, 54, 54]

Pascal

Works with: Free Pascal
Works with: Delphi

checking isPrime(sum of digits) before testimg isprime(num) improves speed.
Tried to speed up calculation of sum of digits.

<lang pascal>program AdditivePrimes; {$IFDEF FPC} {$MODE DELPHI}{$CODEALIGN proc=16} {$ELSE} {$APPTYPE CONSOLE} {$ENDIF} {$DEFINE DO_OUTPUT}

uses

 sysutils;

const

 RANGE = 500; // 1000*1000;//
 MAX_OFFSET = 0; // 1000*1000*1000;//

type

 tNum = array [0 .. 15] of byte;
 tNumSum = record
   dgtNum, dgtSum: tNum;
   dgtLen, num: Uint32;
 end;
 tpNumSum = ^tNumSum;

function isPrime(n: Uint32): boolean; const

 wheeldiff: array [0 .. 7] of Uint32 = (+6, +4, +2, +4, +2, +4, +6, +2);

var

 p: NativeUInt;
 flipflop: Int32;

begin

 if n < 64 then
   EXIT(n in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
     53, 59, 61])
 else
 begin
   IF (n AND 1 = 0) OR (n mod 3 = 0) OR (n mod 5 = 0) then
     EXIT(false);
   result := true;
   p := 1;
   flipflop := 6;
   while result do
   Begin
     p := p + wheeldiff[flipflop];
     if p * p > n then
       BREAK;
     result := n mod p <> 0;
     flipflop := flipflop - 1;
     if flipflop < 0 then
       flipflop := 7;
   end
 end

end;

procedure IncNum(var NumSum: tNumSum; delta: Uint32); const

 BASE = 10;

var

 carry, dg: Uint32;
 le: Int32;

Begin

 if delta = 0 then
   EXIT;
 le := 0;
 with NumSum do
 begin
   num := num + delta;
   repeat
     carry := delta div BASE;
     delta := delta - BASE * carry;
     dg := dgtNum[le] + delta;
     IF dg >= BASE then
     Begin
       dg := dg - BASE;
       inc(carry);
     end;
     dgtNum[le] := dg;
     inc(le);
     delta := carry;
   until carry = 0;
   if dgtLen < le then
     dgtLen := le;
   // correct sum of digits // le is >= 1
   delta := dgtSum[le];
   repeat
     dec(le);
     delta := delta + dgtNum[le];
     dgtSum[le] := delta;
   until le = 0;
 end;

end;

var

 NumSum: tNumSum;
 s: AnsiString;
 i, k, cnt, Nr: NativeUInt;
 ColWidth, MAXCOLUMNS, NextRowCnt: NativeUInt;

BEGIN

 ColWidth := Trunc(ln(MAX_OFFSET + RANGE) / ln(10)) + 2;
 MAXCOLUMNS := 80;
 NextRowCnt := MAXCOLUMNS DIV ColWidth;
 fillchar(NumSum, SizeOf(NumSum), #0);
 NumSum.dgtLen := 1;
 IncNum(NumSum, MAX_OFFSET);
 setlength(s, ColWidth);
 fillchar(s[1], ColWidth, ' ');
 // init string
 with NumSum do
 Begin
   For i := dgtLen - 1 downto 0 do
     s[ColWidth - i] := AnsiChar(dgtNum[i] + 48);
   // reset digits lenght to get the max changed digits since last update of string
   dgtLen := 0;
 end;
 cnt := 0;
 Nr := NextRowCnt;
 For i := 0 to RANGE do
   with NumSum do
   begin
     if isPrime(dgtSum[0]) then
       if isPrime(num) then
       Begin
         cnt := cnt + 1;
         dec(Nr);
         // correct changed digits in string s
         For k := dgtLen - 1 downto 0 do
           s[ColWidth - k] := AnsiChar(dgtNum[k] + 48);
         dgtLen := 0;

{$IFDEF DO_OUTPUT}

         write(s);
         if Nr = 0 then
         begin
           writeln;
           Nr := NextRowCnt;
         end;

{$ENDIF}

       end;
     IncNum(NumSum, 1);
   end;
 if Nr <> NextRowCnt then
   write(#10);
 writeln(cnt, ' additive primes found.');

END. </lang>

Output:
TIO.RUN
   2   3   5   7  11  23  29  41  43  47  61  67  83  89 101 113 131 137 139 151
 157 173 179 191 193 197 199 223 227 229 241 263 269 281 283 311 313 317 331 337
 353 359 373 379 397 401 409 421 443 449 461 463 467 487
54 additive primes found.

//OFFSET : 1000*1000*1000, RANGE = 1000*1000 no output
18103 additive primes found.
Real time: 1.951 s User time: 1.902 s Sys. time: 0.038 s CPU share: 99.46 %

Perl

Library: ntheory

<lang perl>use strict; use warnings; use ntheory 'is_prime'; use List::Util <sum max>;

sub pp {

   my $format = ('%' . (my $cw = 1+length max @_) . 'd') x @_;
   my $width  = ".{@{[$cw * int 60/$cw]}}";
   (sprintf($format, @_)) =~ s/($width)/$1\n/gr;

}

my($limit, @ap) = 500; is_prime($_) and is_prime(sum(split ,$_)) and push @ap, $_ for 1..$limit;

print @ap . " additive primes < $limit:\n" . pp(@ap);</lang>

Output:
54 additive primes < 500:
   2   3   5   7  11  23  29  41  43  47  61  67  83  89 101
 113 131 137 139 151 157 173 179 191 193 197 199 223 227 229
 241 263 269 281 283 311 313 317 331 337 353 359 373 379 397
 401 409 421 443 449 461 463 467 487

Phix

with javascript_semantics
function additive(string p) return is_prime(sum(sq_sub(p,'0'))) end function
sequence res = filter(apply(get_primes_le(500),sprint),additive)
printf(1,"%d additive primes found: %s\n",{length(res),join(shorten(res,"",6))})
Output:
54 additive primes found: 2 3 5 7 11 23 ... 443 449 461 463 467 487

Phixmonti

<lang Phixmonti>/# Rosetta Code problem: http://rosettacode.org/wiki/Additive_primes by Galileo, 05/2022 #/

include ..\Utilitys.pmt

def isprime

   dup 1 <= if drop false
   else dup 2 == not if
       ( dup sqrt 2 swap ) for
           over swap mod not if drop false exitfor endif
       endfor
       endif
   endif
   false == not

enddef

def digitsum

   0 swap dup 0 > while dup 10 mod rot + swap 10 / int dup 0 > endwhile
   drop

enddef

0 500 for

   dup isprime over digitsum isprime and if print " " print 1 + else drop endif

endfor

"Additive primes found: " print print </lang>

Output:
2 3 5 7 11 23 29 41 43 47 61 67 83 89 101 113 131 137 139 151 157 173 179 191 193 197 199 223 227 229 241 263 269 281 283 311 313 317 331 337 353 359 373 379 397 401 409 421 443 449 461 463 467 487 Additive primes found: 54
=== Press any key to exit ===

PicoLisp

<lang PicoLisp>(de prime? (N)

  (let D 0
     (or
        (= N 2)
        (and
           (> N 1)
           (bit? 1 N)
           (for (D 3  T  (+ D 2))
              (T (> D (sqrt N)) T)
              (T (=0 (% N D)) NIL) ) ) ) ) )

(de additive (N)

  (and
     (prime? N)
     (prime? (sum format (chop N))) ) )

(let C 0

  (for (N 0 (> 500 N) (inc N))
     (when (additive N)
        (printsp N)
        (inc 'C) ) )
  (prinl)
  (prinl "Total count: " C) )</lang>
Output:
2 3 5 7 11 23 29 41 43 47 61 67 83 89 101 113 131 137 139 151 157 173 179 191 193 197 199 223 227 229 241 263 269 281 283 311 313 317 331 337 353 359 373 379 397 401 409 421 443 449 461 463 467 487 
Total count: 54

PILOT

<lang pilot>C :z=2

 :c=0
 :max=500
  • number

C :n=z U :*digsum C :n=s U :*prime J (p=0):*next C :n=z U :*prime J (p=0):*next T :#z C :c=c+1

  • next

C :z=z+1 J (z<max):*number T :There are #c additive primes below #max E :

  • prime

C :p=1 E (n<4): C :p=0 E (n=2*(n/2)): C :i=3

 :m=n/2
  • ptest

E (n=i*(n/i)): C :i=i+2 J (i<=m):*ptest C :p=1 E :

  • digsum

C :s=0

 :i=n
  • digit

C :j=i/10

 :s=s+(i-j*10)
 :i=j

J (i>0):*digit E :</lang>

Output:
2
3
5
7
11
23
29
41
43
47
61
67
83
89
101
113
131
137
139
151
157
173
179
191
193
197
199
223
227
229
241
263
269
281
283
311
313
317
331
337
353
359
373
379
397
401
409
421
443
449
461
463
467
487
There are 54 additive primes below 500

PL/I

See #Polyglot:PL/I and PL/M

PL/M

See #Polyglot:PL/I and PL/M

Polyglot:PL/I and PL/M

Works with: 8080 PL/M Compiler

... under CP/M (or an emulator)

Should work with many PL/I implementations.
The PL/I include file "pg.inc" can be found on the Polyglot:PL/I and PL/M page. Note the use of text in column 81 onwards to hide the PL/I specifics from the PL/M compiler. <lang pli>/* FIND ADDITIVE PRIMES - PRIMES WHOSE DIGIT SUM IS ALSO PRIME */ additive_primes_100H: procedure options (main);

/* PROGRAM-SPECIFIC %REPLACE STATEMENTS MUST APPEAR BEFORE THE %INCLUDE AS */ /* E.G. THE CP/M PL/I COMPILER DOESN'T LIKE THEM TO FOLLOW PROCEDURES */

  /* PL/I                                                                      */
     %replace dclsieve by         500;
  /* PL/M */                                                                   /*
     DECLARE  DCLSIEVE LITERALLY '501';
  /* */

/* PL/I DEFINITIONS */ %include 'pg.inc'; /* PL/M DEFINITIONS: CP/M BDOS SYSTEM CALL AND CONSOLE I/O ROUTINES, ETC. */ /*

  DECLARE BINARY LITERALLY 'ADDRESS', CHARACTER LITERALLY 'BYTE';
  DECLARE FIXED  LITERALLY ' ',       BIT       LITERALLY 'BYTE';
  DECLARE STATIC LITERALLY ' ',       RETURNS   LITERALLY ' ';
  DECLARE FALSE  LITERALLY '0',       TRUE LITERALLY '1';
  DECLARE HBOUND LITERALLY 'LAST',    SADDR  LITERALLY '.';
  BDOSF: PROCEDURE( FN, ARG )BYTE;
                              DECLARE FN BYTE, ARG ADDRESS; GOTO 5;   END; 
  BDOS: PROCEDURE( FN, ARG ); DECLARE FN BYTE, ARG ADDRESS; GOTO 5;   END;
  PRCHAR:   PROCEDURE( C );   DECLARE C BYTE;      CALL BDOS( 2, C ); END;
  PRSTRING: PROCEDURE( S );   DECLARE S ADDRESS;   CALL BDOS( 9, S ); END;
  PRNL:     PROCEDURE;        CALL PRCHAR( 0DH ); CALL PRCHAR( 0AH ); END;
  PRNUMBER: PROCEDURE( N );
     DECLARE N ADDRESS;
     DECLARE V ADDRESS, N$STR( 6 ) BYTE, W BYTE;
     N$STR( W := LAST( N$STR ) ) = '$';
     N$STR( W := W - 1 ) = '0' + ( ( V := N ) MOD 10 );
     DO WHILE( ( V := V / 10 ) > 0 );
        N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
     END; 
     CALL BDOS( 9, .N$STR( W ) );
  END PRNUMBER;
  MODF:     PROCEDURE( A, B )ADDRESS;
     DECLARE ( A, B ) ADDRESS;
     RETURN A MOD B;
  END MODF;

/* END LANGUAGE DEFINITIONS */

  /* TASK */
  /* PRIME ELEMENTS ARE 0, 1, ... 500 IN PL/M AND 1, 2, ... 500 IN PL/I */
  /* ELEMENT 0 IN PL/M IS IS UNUSED */
  DECLARE PRIME( DCLSIEVE ) BIT;
  DECLARE ( MAXPRIME, MAXROOT, ACOUNT, I, J, DSUM, V ) FIXED BINARY;
  /* SIEVE THE PRIMES UP TO MAX PRIME */
  PRIME( 1 ) = FALSE; PRIME( 2 ) = TRUE;
  MAXPRIME = HBOUND( PRIME                                                     , 1
                   );
  MAXROOT  = 1; /* FIND THE ROOT OF MAXPRIME TO AVOID 16-BIT OVERFLOW */
  DO WHILE( MAXROOT * MAXROOT < MAXPRIME ); MAXROOT = MAXROOT + 1; END;
  DO I = 3 TO MAXPRIME BY 2; PRIME( I ) = TRUE;  END;
  DO I = 4 TO MAXPRIME BY 2; PRIME( I ) = FALSE; END;
  DO I = 3 TO MAXROOT BY 2;
     IF PRIME( I ) THEN DO;
        DO J = I * I TO MAXPRIME BY I; PRIME( J ) = FALSE; END;
     END;
  END;
  /* FIND THE PRIMES THAT ARE ADDITIVE PRIMES */
  ACOUNT = 0;
  DO I = 1 TO MAXPRIME;
     IF PRIME( I ) THEN DO;
        V    = I;
        DSUM = 0;
        DO WHILE( V > 0 );
           DSUM = DSUM + MODF( V, 10 );
           V    = V / 10;
        END;
        IF PRIME( DSUM ) THEN DO;
           CALL PRCHAR( ' ' );
           IF I <  10 THEN CALL PRCHAR( ' ' );
           IF I < 100 THEN CALL PRCHAR( ' ' );
           CALL PRNUMBER( I );
           ACOUNT = ACOUNT + 1;
           IF MODF( ACOUNT, 12 ) = 0 THEN CALL PRNL;
        END;
     END;
  END;
  CALL PRNL;
  CALL PRSTRING( SADDR( 'FOUND $' ) );
  CALL PRNUMBER( ACOUNT );
  CALL PRSTRING( SADDR( ' ADDITIVE PRIMES BELOW $' ) );
  CALL PRNUMBER( MAXPRIME );
  CALL PRNL;

EOF: end additive_primes_100H;</lang>

Output:
   2   3   5   7  11  23  29  41  43  47  61  67
  83  89 101 113 131 137 139 151 157 173 179 191
 193 197 199 223 227 229 241 263 269 281 283 311
 313 317 331 337 353 359 373 379 397 401 409 421
 443 449 461 463 467 487
FOUND 54 ADDITIVE PRIMES BELOW 500

Processing

<lang processing>IntList primes = new IntList();

void setup() {

 sieve(500);
 int count = 0;
 for (int i = 2; i < 500; i++) {
   if (primes.hasValue(i) && primes.hasValue(sumDigits(i))) {
     print(i + " ");
     count++;
   }
 }
 println();
 print("Number of additive primes less than 500: " + count);

}

int sumDigits(int n) {

 int sum = 0;
 for (int i = 0; i <= floor(log(n) / log(10)); i++) {
   sum += floor(n / pow(10, i)) % 10;
 }
 return sum;

}

void sieve(int max) {

 for (int i = 2; i <= max; i++) {
   primes.append(i);
 }
 for (int i = 0; i < primes.size(); i++) {
   for (int j = i + 1; j < primes.size(); j++) {
     if (primes.get(j) % primes.get(i) == 0) {
       primes.remove(j);
       j--;
     }
   }
 }

}</lang>

Output:
2 3 5 7 11 23 29 41 43 47 61 67 83 89 101 113 131 137 139 151 157 173 179 191 193 197 199 223 227 229 241 263 269 281 283 311 313 317 331 337 353 359 373 379 397 401 409 421 443 449 461 463 467 487 
Number of additive primes less than 500: 54

PureBasic

<lang PureBasic>#MAX=500 Global Dim P.b(#MAX) : FillMemory(@P(),#MAX,1,#PB_Byte) If OpenConsole()=0 : End 1 : EndIf For n=2 To Sqr(#MAX)+1 : If P(n) : m=n*n : While m<=#MAX : P(m)=0 : m+n : Wend : EndIf : Next

Procedure.i qsum(v.i)

 While v : qs+v%10 : v/10 : Wend
 ProcedureReturn qs

EndProcedure

For i=2 To #MAX

 If P(i) And P(qsum(i)) : c+1 : Print(RSet(Str(i),5)) : If c%10=0 : PrintN("") : EndIf : EndIf

Next PrintN(~"\n\n"+Str(c)+" additive primes below 500.") Input()</lang>

Output:
    2    3    5    7   11   23   29   41   43   47
   61   67   83   89  101  113  131  137  139  151
  157  173  179  191  193  197  199  223  227  229
  241  263  269  281  283  311  313  317  331  337
  353  359  373  379  397  401  409  421  443  449
  461  463  467  487

54 additive primes below 500.

Python

<lang Python>def is_prime(n: int) -> bool:

   if n <= 3:
       return n > 1
   if n % 2 == 0 or n % 3 == 0:
       return False
   i = 5
   while i ** 2 <= n:
       if n % i == 0 or n % (i + 2) == 0:
           return False
       i += 6
   return True

def digit_sum(n: int) -> int:

   sum = 0
   while n > 0:
       sum += n % 10
       n //= 10
   return sum

def main() -> None:

   additive_primes = 0
   for i in range(2, 500):
       if is_prime(i) and is_prime(digit_sum(i)):
           additive_primes += 1
           print(i, end=" ")
   print(f"\nFound {additive_primes} additive primes less than 500")

if __name__ == "__main__":

   main()</lang>
Output:
2 3 5 7 11 23 29 41 43 47 61 67 83 89 101 113 131 137 139 151 157 173 179 191 193 197 199 223 227 229 241 263 269 281 283 311 313 317 331 337 353 359 373 379 397 401 409 421 443 449 461 463 467 487 
Found 54 additive primes less than 500

Quackery

eratosthenes and isprime are defined at Sieve of Eratosthenes#Quackery.

digitsum is defined at Sum digits of an integer#Quackery.

<lang Quackery> 500 eratosthenes

 []
 500 times
   [ i^ isprime if
       [ i^ 10 digitsum 
         isprime if
           [ i^ join ] ] ] 
 dup echo cr cr
 size echo say " additive primes found."</lang>
Output:
[ 2 3 5 7 11 23 29 41 43 47 61 67 83 89 101 113 131 137 139 151 157 173 179 191 193 197 199 223 227 229 241 263 269 281 283 311 313 317 331 337 353 359 373 379 397 401 409 421 443 449 461 463 467 487 ]

54 additive primes found.


Racket

<lang racket>#lang racket

(require math/number-theory)

(define (sum-of-digits n (σ 0))

 (if (zero? n) σ (let-values (((q r) (quotient/remainder n 10)))
                   (sum-of-digits q (+ σ r)))))

(define (additive-prime? n)

 (and (prime? n) (prime? (sum-of-digits n))))

(define additive-primes<500 (filter additive-prime? (range 1 500))) (printf "There are ~a additive primes < 500~%" (length additive-primes<500)) (printf "They are: ~a~%" additive-primes<500)</lang>

Output:
There are 54 additive primes < 500
They are: (2 3 5 7 11 23 29 41 43 47 61 67 83 89 101 113 131 137 139 151 157 173 179 191 193 197 199 223 227 229 241 263 269 281 283 311 313 317 331 337 353 359 373 379 397 401 409 421 443 449 461 463 467 487)

Raku

<lang perl6>unit sub MAIN ($limit = 500); say "{+$_} additive primes < $limit:\n{$_».fmt("%" ~ $limit.chars ~ "d").batch(10).join("\n")}",

   with ^$limit .grep: { .is-prime and .comb.sum.is-prime }</lang>
Output:
54 additive primes < 500:
  2   3   5   7  11  23  29  41  43  47
 61  67  83  89 101 113 131 137 139 151
157 173 179 191 193 197 199 223 227 229
241 263 269 281 283 311 313 317 331 337
353 359 373 379 397 401 409 421 443 449
461 463 467 487

Red

<lang Red> cross-sum: function [n][out: 0 foreach m form n [out: out + to-integer to-string m]] additive-primes: function [n][collect [foreach p ps: primes n [if find ps cross-sum p [keep p]]]]

length? probe new-line/skip additive-primes 500 true 10 [

   2 3 5 7 11 23 29 41 43 47 
   61 67 83 89 101 113 131 137 139 151 
   157 173 179 191 193 197 199 223 227 229 
   241 263 269 281 283 311 313 317 331 337 
   353 359 373 379 397 401 409 421 443 449 
   461 463 467 487

] == 54 </lang> Uses primes defined in https://rosettacode.org/wiki/Sieve_of_Eratosthenes#Red.

REXX

<lang rexx>/*REXX program counts/displays the number of additive primes under a specified number N.*/ parse arg n cols . /*get optional number of primes to find*/ if n== | n=="," then n= 500 /*Not specified? Then assume default.*/ if cols== | cols=="," then cols= 10 /* " " " " " */ call genP n /*generate all primes under N. */ w= 10 /*width of a number in any column. */

                                    title= " additive primes that are  < "     commas(n)

if cols>0 then say ' index │'center(title, 1 + cols*(w+1) ) if cols>0 then say '───────┼'center("" , 1 + cols*(w+1), '─') found= 0; idx= 1 /*initialize # of additive primes & IDX*/ $= /*a list of additive primes (so far). */

      do j=1  for #;      p= @.j                /*obtain the  Jth  prime.              */
      _= sumDigs(p);      if \!._  then iterate /*is sum of J's digs a prime? No, skip.*/       /* ◄■■■■■■■■ a filter. */
      found= found + 1                          /*bump the count of additive primes.   */
      if cols<0                    then iterate /*Build the list  (to be shown later)? */
      c= commas(p)                              /*maybe add commas to the number.      */
      $= $  right(c, max(w, length(c) ) )       /*add additive prime──►list, allow big#*/
      if found//cols\==0           then iterate /*have we populated a line of output?  */
      say center(idx, 7)'│'  substr($, 2);  $=  /*display what we have so far  (cols). */
      idx= idx + cols                           /*bump the  index  count for the output*/
      end   /*j*/

if $\== then say center(idx, 7)"│" substr($, 2) /*possible display residual output.*/ if cols>0 then say '───────┴'center("" , 1 + cols*(w+1), '─') say say 'found ' commas(found) title exit 0 /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ commas: parse arg ?; do jc=length(?)-3 to 1 by -3; ?=insert(',', ?, jc); end; return ? sumDigs: parse arg x 1 s 2; do k=2 for length(x)-1; s= s + substr(x,k,1); end; return s /*──────────────────────────────────────────────────────────────────────────────────────*/ genP: parse arg n; @.1= 2; @.2= 3; @.3= 5; @.4= 7; @.5= 11; @.6= 13

                   !.= 0;   !.2= 1;  !.3= 1;  !.5= 1;  !.7= 1;  !.11= 1;  !.13= 1
                          #= 6;  sq.#= @.# ** 2 /*the number of primes;  prime squared.*/
       do j=@.#+2  by 2  for max(0, n%2-@.#%2-1)       /*find odd primes from here on. */
       parse var  j     -1  _                 /*obtain the last digit of the  J  var.*/
       if     _==5  then iterate;  if j// 3==0  then iterate  /*J ÷ by 5?   J ÷ by  3? */
       if j// 7==0  then iterate;  if j//11==0  then iterate  /*" "  " 7?   " "  " 11? */
                                                /* [↓]  divide by the primes.   ___    */
             do k=6  while sq.k<=j              /*divide  J  by other primes ≤ √ J     */
             if j//@.k==0  then iterate j       /*÷ by prev. prime?  ¬prime     ___    */
             end   /*k*/                        /* [↑]   only divide up to     √ J     */
       #= # + 1;    @.#= j;  sq.#= j*j;  !.j= 1 /*bump prime count; assign prime & flag*/
       end   /*j*/;                      return</lang>
output   when using the default inputs:
 index │                                        additive primes that are  <  500
───────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────
   1   │          2          3          5          7         11         23         29         41         43         47
  11   │         61         67         83         89        101        113        131        137        139        151
  21   │        157        173        179        191        193        197        199        223        227        229
  31   │        241        263        269        281        283        311        313        317        331        337
  41   │        353        359        373        379        397        401        409        421        443        449
  51   │        461        463        467        487
───────┴───────────────────────────────────────────────────────────────────────────────────────────────────────────────

found  54  additive primes that are  <  500

Ring

<lang ring> load "stdlib.ring"

see "working..." + nl see "Additive primes are:" + nl

row = 0 limit = 500

for n = 1 to limit

   num = 0
   if isprime(n) 
      strn = string(n)
      for m = 1 to len(strn)
          num = num + number(strn[m])
      next
      if isprime(num)
         row = row + 1
         see "" + n + " "
         if row%10 = 0
            see nl
         ok
      ok
   ok

next

see nl + "found " + row + " additive primes." + nl see "done..." + nl </lang>

Output:
working...
Additive primes are:
2 3 5 7 11 23 29 41 43 47 
61 67 83 89 101 113 131 137 139 151 
157 173 179 191 193 197 199 223 227 229 
241 263 269 281 283 311 313 317 331 337 
353 359 373 379 397 401 409 421 443 449 
461 463 467 487 
found 54 additive primes.
done...

Ruby

<lang ruby>require "prime"

additive_primes = Prime.lazy.select{|prime| prime.digits.sum.prime? }

N = 500 res = additive_primes.take_while{|n| n < N}.to_a puts res.join(" ") puts "\n#{res.size} additive primes below #{N}." </lang>

Output:
2 3 5 7 11 23 29 41 43 47 61 67 83 89 101 113 131 137 139 151 157 173 179 191 193 197 199 223 227 229 241 263 269 281 283 311 313 317 331 337 353 359 373 379 397 401 409 421 443 449 461 463 467 487

54 additive primes below 500.


Rust

Flat implementation

<lang fsharp>fn main() {

   let limit = 500;
   let column_w = limit.to_string().len() + 1;
   let mut pms = Vec::with_capacity(limit / 2 - limit / 3 / 2 - limit / 5 / 3 / 2 + 1);
   let mut count = 0;
   for u in (2..3).chain((3..limit).step_by(2)) {
       if pms.iter().take_while(|&&p| p * p <= u).all(|&p| u % p != 0) {
           pms.push(u);
           let dgs = std::iter::successors(Some(u), |&n| (n > 9).then(|| n / 10)).map(|n| n % 10);
           if pms.binary_search(&dgs.sum()).is_ok() {
               print!("{}{u:column_w$}", if count % 10 == 0 { "\n" } else { "" });
               count += 1;
           }
       }
   }
   println!("\n---\nFound {count} additive primes less than {limit}");

}</lang>

Output:
   2   3   5   7  11  23  29  41  43  47
  61  67  83  89 101 113 131 137 139 151
 157 173 179 191 193 197 199 223 227 229
 241 263 269 281 283 311 313 317 331 337
 353 359 373 379 397 401 409 421 443 449
 461 463 467 487
---
Found 54 additive primes less than 500

With crate "primal"

primal implements the sieve of Eratosthenes with optimizations (10+ times faster for large limits)

<lang fsharp>// [dependencies] // primal = "0.3.0"

fn sum_digits(u: usize) -> usize {

   std::iter::successors(Some(u), |&n| (n > 9).then(|| n / 10)).fold(0, |s, n| s + n % 10)

}

fn main() {

   let limit = 500;
   let column_w = limit.to_string().len() + 1;
   let sieve_primes = primal::Sieve::new(limit);
   let count = sieve_primes
       .primes_from(2)
       .filter(|&p| p < limit && sieve_primes.is_prime(sum_digits(p)))
       .zip(["\n"].iter().chain(&[""; 9]).cycle())
       .inspect(|(u, sn)| print!("{sn}{u:column_w$}"))
       .count();
   println!("\n---\nFound {count} additive primes less than {limit}");

}</lang>

Output:

   2   3   5   7  11  23  29  41  43  47
  61  67  83  89 101 113 131 137 139 151
 157 173 179 191 193 197 199 223 227 229
 241 263 269 281 283 311 313 317 331 337
 353 359 373 379 397 401 409 421 443 449
 461 463 467 487
---
Found 54 additive primes less than 500

Sage

<lang SageMath> limit = 500 additivePrimes = list(filter(lambda x: x > 0,

                            list(map(lambda x: int(x) if sum([int(digit) for digit in x]) in Primes() else 0, 
                                     list(map(str,list(primes(1,limit))))))))

print(f"{additivePrimes}\nFound {len(additivePrimes)} additive primes less than {limit}") </lang>

Output:
[2, 3, 5, 7, 11, 23, 29, 41, 43, 47, 61, 67, 83, 89, 101, 113, 131, 137, 139, 151, 157, 173, 179, 191, 193, 197, 199, 223, 227, 229, 241, 263, 269, 281, 283, 311, 313, 317, 331, 337, 353, 359, 373, 379, 397, 401, 409, 421, 443, 449, 461, 463, 467, 487]
Found 54 additive primes less than 500

Seed7

<lang seed7>$ include "seed7_05.s7i";

const func boolean: isPrime (in integer: number) is func

 result
   var boolean: prime is FALSE;
 local
   var integer: upTo is 0;
   var integer: testNum is 3;
 begin
   if number = 2 then
     prime := TRUE;
   elsif odd(number) and number > 2 then
     upTo := sqrt(number);
     while number rem testNum <> 0 and testNum <= upTo do
       testNum +:= 2;
     end while;
     prime := testNum > upTo;
   end if;
 end func;

const func integer: digitSum (in var integer: number) is func

 result
   var integer: sum is 0;
 begin
   while number > 0 do
     sum +:= number rem 10;
     number := number div 10;
   end while;
 end func;

const proc: main is func

 local
   var integer: n is 0;
   var integer: count is 0;
 begin
   for n range 2 to 499 do
     if isPrime(n) and isPrime(digitSum(n)) then
       write(n lpad 3 <& " ");
       incr(count);
       if count rem 9 = 0 then
         writeln;
       end if;
     end if;
   end for;
   writeln("\nFound " <& count <& " additive primes < 500.");
 end func;</lang>
Output:
  2   3   5   7  11  23  29  41  43
 47  61  67  83  89 101 113 131 137
139 151 157 173 179 191 193 197 199
223 227 229 241 263 269 281 283 311
313 317 331 337 353 359 373 379 397
401 409 421 443 449 461 463 467 487

Found 54 additive primes < 500.

Sidef

<lang ruby>func additive_primes(upto, base = 10) {

   upto.primes.grep { .sumdigits(base).is_prime }

}

additive_primes(500).each_slice(10, {|*a|

   a.map { '%3s' % _ }.join(' ').say

})</lang>

Output:
  2   3   5   7  11  23  29  41  43  47
 61  67  83  89 101 113 131 137 139 151
157 173 179 191 193 197 199 223 227 229
241 263 269 281 283 311 313 317 331 337
353 359 373 379 397 401 409 421 443 449
461 463 467 487

TSE SAL

<lang TSESAL>

INTEGER PROC FNMathGetSquareRootI( INTEGER xI )

INTEGER squareRootI = 0
IF ( xI > 0 )
 WHILE( ( squareRootI * squareRootI ) <= xI )
  squareRootI = squareRootI + 1
 ENDWHILE
 squareRootI = squareRootI - 1
ENDIF
RETURN( squareRootI )

END // INTEGER PROC FNMathCheckIntegerIsPrimeB( INTEGER nI )

INTEGER I = 0
INTEGER primeB = FALSE
INTEGER stopB = FALSE
INTEGER restI = 0
INTEGER limitI = 0
primeB = FALSE
IF ( nI <= 0 )
 RETURN( FALSE )
ENDIF
IF ( nI == 1 )
 RETURN( FALSE )
ENDIF
IF ( nI == 2 )
 RETURN( TRUE )
ENDIF
IF ( nI == 3 )
 RETURN( TRUE )
ENDIF
IF ( nI MOD 2 == 0 )
 RETURN( FALSE )
ENDIF
IF ( ( nI MOD 6 ) <> 1 ) AND ( ( nI MOD 6 ) <> 5 )
 RETURN( FALSE )
ENDIF
limitI = FNMathGetSquareRootI( nI )
I = 3
REPEAT
 restI = ( nI MOD I )
 IF ( restI == 0 )
  primeB = FALSE
  stopB = TRUE
 ENDIF
 IF ( I > limitI )
  primeB = TRUE
  stopB = TRUE
 ENDIF
 I = I + 2
UNTIL ( stopB )
RETURN( primeB )

END // INTEGER PROC FNMathCheckIntegerDigitSumI( INTEGER J )

STRING s[255] = Str( J )
STRING cS[255] = ""
INTEGER minI = 1
INTEGER maxI = Length( s )
INTEGER I = 0
INTEGER K = 0
FOR I = minI TO maxI
 cS = s[ I ]
 K = K + Val( cS )
ENDFOR
RETURN( K )

END // INTEGER PROC FNMathCheckIntegerDigitSumIsPrimeB( INTEGER I )

INTEGER J = FNMathCheckIntegerDigitSumI( I )
INTEGER B = FNMathCheckIntegerIsPrimeB( J )
RETURN( B )

END // INTEGER PROC FNMathGetPrimeAdditiveAllToBufferB( INTEGER maxI, INTEGER bufferI )

INTEGER B = FALSE
INTEGER B1 = FALSE
INTEGER B2 = FALSE
INTEGER B3 = FALSE
INTEGER minI = 2
INTEGER I = 0
FOR I = minI TO maxI
 B1 = FNMathCheckIntegerIsPrimeB( I )
 B2 = FNMathCheckIntegerDigitSumIsPrimeB( I )
 B3 = B1 AND B2
 IF ( B3 )
  PushPosition()
  PushBlock()
  GotoBufferId( bufferI )
  AddLine( Str( I ) )
  PopBlock()
  PopPosition()
 ENDIF
ENDFOR
B = TRUE
RETURN( B )

END // PROC Main()

STRING s1[255] = "500" // change this
INTEGER bufferI = 0
PushPosition()
bufferI = CreateTempBuffer()
PopPosition()
IF ( NOT ( Ask( " = ", s1, _EDIT_HISTORY_ ) ) AND ( Length( s1 ) > 0 ) ) RETURN() ENDIF
Message( FNMathGetPrimeAdditiveAllToBufferB( Val( s1 ), bufferI ) ) // gives e.g. TRUE
GotoBufferId( bufferI )

END

</lang>

Output:

2 3 5 7 11 23 29 41 43 47 61 67 83 89 101 113 131 137 139 151 157 173 179 191 193 197 199 223 227 229 241 263 269 281 283 311 313 317 331 337 353 359 373 379 397 401 409 421 443 449 461 463 467 487

Swift

<lang swift>import Foundation

func isPrime(_ n: Int) -> Bool {

   if n < 2 {
       return false
   }
   if n % 2 == 0 {
       return n == 2
   }
   if n % 3 == 0 {
       return n == 3
   }
   var p = 5
   while p * p <= n {
       if n % p == 0 {
           return false
       }
       p += 2
       if n % p == 0 {
           return false
       }
       p += 4
   }
   return true

}

func digitSum(_ num: Int) -> Int {

   var sum = 0
   var n = num
   while n > 0 {
       sum += n % 10
       n /= 10
   }
   return sum

}

let limit = 500 print("Additive primes less than \(limit):") var count = 0 for n in 1..<limit {

   if isPrime(digitSum(n)) && isPrime(n) {
       count += 1
       print(String(format: "%3d", n), terminator: count % 10 == 0 ? "\n" : " ")
   }

} print("\n\(count) additive primes found.")</lang>

Output:
Additive primes less than 500:
  2   3   5   7  11  23  29  41  43  47
 61  67  83  89 101 113 131 137 139 151
157 173 179 191 193 197 199 223 227 229
241 263 269 281 283 311 313 317 331 337
353 359 373 379 397 401 409 421 443 449
461 463 467 487 
54 additive primes found.

Vlang

Translation of: go

<lang vlang>fn is_prime(n int) bool {

   if n < 2 {
       return false
   } else if n%2 == 0 {
       return n == 2
   } else if n%3 == 0 {
       return n == 3
   } else {
       mut d := 5
       for d*d <= n {
           if n%d == 0 {
               return false
           }
           d += 2
           if n%d == 0 {
               return false
           }
           d += 4
       }
       return true
   }

}

fn sum_digits(nn int) int {

   mut n := nn
   mut sum := 0
   for n > 0 {
       sum += n % 10
       n /= 10
   }
   return sum

}

fn main() {

   println("Additive primes less than 500:")
   mut i := 2
   mut count := 0
   for {
       if is_prime(i) && is_prime(sum_digits(i)) {
           count++
           print("${i:3}  ")
           if count%10 == 0 {
               println()
           }
       }
       if i > 2 {
           i += 2
       } else {
           i++
       }
       if i > 499 {
           break
       }
   }
   println("\n\n$count additive primes found.")

}</lang>

Output:
Additive primes less than 500:
  2    3    5    7   11   23   29   41   43   47  
 61   67   83   89  101  113  131  137  139  151  
157  173  179  191  193  197  199  223  227  229  
241  263  269  281  283  311  313  317  331  337  
353  359  373  379  397  401  409  421  443  449  
461  463  467  487
 
54 additive primes found.

VTL-2

<lang VTL2>10 M=499 20 :1)=1 30 P=2 40 :P)=0 50 P=P+1 60 #=M>P*40 70 P=2 80 C=P*2 90 :C)=1 110 C=C+P 120 #=M>C*90 130 P=P+1 140 #=M/2>P*80 150 P=2 160 N=0 170 #=:P)*290 180 S=0 190 K=P 200 K=K/10 210 S=S+% 220 #=0<K*200 230 #=:S)*290 240 ?=P 250 $=9 260 N=N+1 270 #=N/10*0+%=0=0*290 280 ?="" 290 P=P+1 300 #=M>P*170 310 ?="" 320 ?="There are "; 330 ?=N 340 ?=" additive primes below "; 350 ?=M+1</lang>

Output:
2       3       5       7       11      23      29      41      43      47
61      67      83      89      101     113     131     137     139     151
157     173     179     191     193     197     199     223     227     229
241     263     269     281     283     311     313     317     331     337
353     359     373     379     397     401     409     421     443     449
461     463     467     487
There are 54 additive primes below 500

Wren

Library: Wren-math
Library: Wren-fmt

<lang ecmascript>import "/math" for Int import "/fmt" for Fmt

var sumDigits = Fn.new { |n|

   var sum = 0
   while (n > 0) {
       sum = sum + (n % 10)
       n = (n/10).floor
   }
   return sum

}

System.print("Additive primes less than 500:") var primes = Int.primeSieve(499) var count = 0 for (p in primes) {

   if (Int.isPrime(sumDigits.call(p))) {
       count = count + 1
       Fmt.write("$3d  ", p)
       if (count % 10 == 0) System.print()
   }

} System.print("\n\n%(count) additive primes found.")</lang>

Output:
Additive primes less than 500:
  2    3    5    7   11   23   29   41   43   47  
 61   67   83   89  101  113  131  137  139  151  
157  173  179  191  193  197  199  223  227  229  
241  263  269  281  283  311  313  317  331  337  
353  359  373  379  397  401  409  421  443  449  
461  463  467  487  

54 additive primes found.

XPL0

<lang XPL0>func IsPrime(N); \Return 'true' if N is a prime number int N, I; [if N <= 1 then return false; for I:= 2 to sqrt(N) do

   if rem(N/I) = 0 then return false;

return true; ];

func SumDigits(N); \Return the sum of the digits in N int N, Sum; [Sum:= 0; repeat N:= N/10;

       Sum:= Sum + rem(0);

until N=0; return Sum; ];

int Count, N; [Count:= 0; for N:= 0 to 500-1 do

   if IsPrime(N) & IsPrime(SumDigits(N)) then
       [IntOut(0, N);
       Count:= Count+1;
       if rem(Count/10) = 0 then CrLf(0) else ChOut(0, 9\tab\);
       ];

CrLf(0); IntOut(0, Count); Text(0, " additive primes found below 500. "); ]</lang>

Output:
2       3       5       7       11      23      29      41      43      47
61      67      83      89      101     113     131     137     139     151
157     173     179     191     193     197     199     223     227     229
241     263     269     281     283     311     313     317     331     337
353     359     373     379     397     401     409     421     443     449
461     463     467     487     
54 additive primes found below 500.

Yabasic

<lang Yabasic>// Rosetta Code problem: http://rosettacode.org/wiki/Additive_primes // by Galileo, 06/2022

limit = 500

dim flags(limit)

for i = 2 to limit

   for k = i*i to limit step i 
       flags(k) = 1
   next
   if flags(i) = 0 primes$ = primes$ + str$(i) + " "

next

dim prim$(1)

n = token(primes$, prim$())

for i = 1 to n

   sum = 0
   num$ = prim$(i)
   for j = 1 to len(num$)
       sum = sum + val(mid$(num$, j, 1))
   next
   if instr(primes$, str$(sum) + " ") print prim$(i), " "; : count = count + 1

next

print "\nFound: ", count</lang>

Output:
2 3 5 7 11 23 29 41 43 47 61 67 83 89 101 113 131 137 139 151 157 173 179 191 193 197 199 223 227 229 241 263 269 281 283 311 313 317 331 337 353 359 373 379 397 401 409 421 443 449 461 463 467 487
Found: 54
---Program done, press RETURN---