Exponentiation order: Difference between revisions

From Rosetta Code
Content added Content deleted
(Exponentiation order in various BASIC dialents (QBasic, BASIC256, Run BASIC, True BASIC and Yabasic))
m (syntax highlighting fixup automation)
Line 34: Line 34:


=={{header|11l}}==
=={{header|11l}}==
<lang 11l>print(5 ^ 3 ^ 2)
<syntaxhighlight lang="11l">print(5 ^ 3 ^ 2)
print((5 ^ 3) ^ 2)
print((5 ^ 3) ^ 2)
print(5 ^ (3 ^ 2))</lang>
print(5 ^ (3 ^ 2))</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 47: Line 47:
There is no power operator in Action! Power function for REAL type is used. But the precision is insufficient.
There is no power operator in Action! Power function for REAL type is used. But the precision is insufficient.
{{libheader|Action! Tool Kit}}
{{libheader|Action! Tool Kit}}
<lang Action!>INCLUDE "D2:REAL.ACT" ;from the Action! Tool Kit
<syntaxhighlight lang="action!">INCLUDE "D2:REAL.ACT" ;from the Action! Tool Kit


PROC Main()
PROC Main()
Line 70: Line 70:
Print("5^(3^2)=")
Print("5^(3^2)=")
PrintRE(tmp2)
PrintRE(tmp2)
RETURN</lang>
RETURN</syntaxhighlight>
{{out}}
{{out}}
[https://gitlab.com/amarok8bit/action-rosetta-code/-/raw/master/images/Exponentiation_order.png Screenshot from Atari 8-bit computer]
[https://gitlab.com/amarok8bit/action-rosetta-code/-/raw/master/images/Exponentiation_order.png Screenshot from Atari 8-bit computer]
Line 84: Line 84:
5**3**2 is not a valid Ada expression. Parenthesis are mandatory.
5**3**2 is not a valid Ada expression. Parenthesis are mandatory.


<lang Ada>with Ada.Text_IO;
<syntaxhighlight lang="ada">with Ada.Text_IO;


procedure Exponentation_Order is
procedure Exponentation_Order is
Line 92: Line 92:
Put_Line ("(5**3)**2 : " & Natural'((5**3)**2)'Image);
Put_Line ("(5**3)**2 : " & Natural'((5**3)**2)'Image);
Put_Line ("5**(3**2) : " & Natural'(5**(3**2))'Image);
Put_Line ("5**(3**2) : " & Natural'(5**(3**2))'Image);
end Exponentation_Order;</lang>
end Exponentation_Order;</syntaxhighlight>


{{out}}
{{out}}
Line 100: Line 100:
=={{header|ALGOL 68}}==
=={{header|ALGOL 68}}==
Algol 68 provides various alternative symbols for the exponentiation operator generally, "**", "^" and "UP" can be used.
Algol 68 provides various alternative symbols for the exponentiation operator generally, "**", "^" and "UP" can be used.
<lang algol68>print( ( "5**3**2: ", 5**3**2, newline ) );
<syntaxhighlight lang="algol68">print( ( "5**3**2: ", 5**3**2, newline ) );
print( ( "(5**3)**2: ", (5**3)**2, newline ) );
print( ( "(5**3)**2: ", (5**3)**2, newline ) );
print( ( "5**(3**2): ", 5**(3**2), newline ) )</lang>
print( ( "5**(3**2): ", 5**(3**2), newline ) )</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 112: Line 112:
=={{header|ALGOL W}}==
=={{header|ALGOL W}}==
The Algol W exponentiation operator always produces a real result and requires an integer right operand, hence the round functions in the following.
The Algol W exponentiation operator always produces a real result and requires an integer right operand, hence the round functions in the following.
<lang algolw>begin
<syntaxhighlight lang="algolw">begin
write( "5**3**2: ", round( 5 ** 3 ** 2 ) );
write( "5**3**2: ", round( 5 ** 3 ** 2 ) );
write( "(5**3)**2: ", round( ( 5 ** 3 ) ** 2 ) );
write( "(5**3)**2: ", round( ( 5 ** 3 ) ** 2 ) );
write( "5**(3**2): ", round( 5 ** round( 3 ** 2 ) ) )
write( "5**(3**2): ", round( 5 ** round( 3 ** 2 ) ) )
end.</lang>
end.</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 139: Line 139:
AppleScript's compiler inserts its own parentheses with 5 ^ 3 ^ 2.
AppleScript's compiler inserts its own parentheses with 5 ^ 3 ^ 2.


<lang applescript>set r1 to 5 ^ 3 ^ 2 -- Changes to 5 ^ (3 ^ 2) when compiled.
<syntaxhighlight lang="applescript">set r1 to 5 ^ 3 ^ 2 -- Changes to 5 ^ (3 ^ 2) when compiled.
set r2 to (5 ^ 3) ^ 2
set r2 to (5 ^ 3) ^ 2
set r3 to 5 ^ (3 ^ 2)
set r3 to 5 ^ (3 ^ 2)
Line 145: Line 145:
return "5 ^ 3 ^ 2 = " & r1 & "
return "5 ^ 3 ^ 2 = " & r1 & "
(5 ^ 3) ^ 2 = " & r2 & "
(5 ^ 3) ^ 2 = " & r2 & "
5 ^ (3 ^ 2) = " & r3</lang>
5 ^ (3 ^ 2) = " & r3</syntaxhighlight>


{{output}}
{{output}}
Line 154: Line 154:
=={{header|Arturo}}==
=={{header|Arturo}}==


<lang rebol>print 5^3^2
<syntaxhighlight lang="rebol">print 5^3^2
print (5^3)^2
print (5^3)^2
print 5^(3^2)</lang>
print 5^(3^2)</syntaxhighlight>


{{out}}
{{out}}
Line 165: Line 165:


=={{header|AWK}}==
=={{header|AWK}}==
<syntaxhighlight lang="awk">
<lang AWK>
# syntax: GAWK -f EXPONENTIATION_ORDER.AWK
# syntax: GAWK -f EXPONENTIATION_ORDER.AWK
BEGIN {
BEGIN {
Line 173: Line 173:
exit(0)
exit(0)
}
}
</syntaxhighlight>
</lang>
<p>output:</p>
<p>output:</p>
<pre>
<pre>
Line 183: Line 183:
=={{header|BASIC}}==
=={{header|BASIC}}==
==={{header|Sinclair ZX81 BASIC}}===
==={{header|Sinclair ZX81 BASIC}}===
<lang basic>10 PRINT "5**3**2 = ";5**3**2
<syntaxhighlight lang="basic">10 PRINT "5**3**2 = ";5**3**2
20 PRINT "(5**3)**2 = ";(5**3)**2
20 PRINT "(5**3)**2 = ";(5**3)**2
30 PRINT "5**(3**2) = ";5**(3**2)</lang>
30 PRINT "5**(3**2) = ";5**(3**2)</syntaxhighlight>
{{out}}
{{out}}
<pre>5**3**2 = 15625
<pre>5**3**2 = 15625
Line 192: Line 192:


==={{header|BBC BASIC}}===
==={{header|BBC BASIC}}===
<lang bbcbasic>PRINT "5^3^2 = "; 5^3^2
<syntaxhighlight lang="bbcbasic">PRINT "5^3^2 = "; 5^3^2
PRINT "(5^3)^2 = "; (5^3)^2
PRINT "(5^3)^2 = "; (5^3)^2
PRINT "5^(3^2) = "; 5^(3^2)</lang>
PRINT "5^(3^2) = "; 5^(3^2)</syntaxhighlight>
{{out}}
{{out}}
<pre>5^3^2 = 15625
<pre>5^3^2 = 15625
Line 201: Line 201:


==={{header|IS-BASIC}}===
==={{header|IS-BASIC}}===
<lang IS-BASIC>100 PRINT "5^3^2 =";5^3^2
<syntaxhighlight lang="is-basic">100 PRINT "5^3^2 =";5^3^2
110 PRINT "(5^3)^2 =";(5^3)^2
110 PRINT "(5^3)^2 =";(5^3)^2
120 PRINT "5^(3^2) =";5^(3^2)</lang>
120 PRINT "5^(3^2) =";5^(3^2)</syntaxhighlight>
{{out}}
{{out}}
<pre>5^3^2 = 15625
<pre>5^3^2 = 15625
Line 217: Line 217:
{{works with|BASIC256}}
{{works with|BASIC256}}
{{works with|Run BASIC}}
{{works with|Run BASIC}}
<lang qbasic>PRINT "5^3^2 ="; 5^3^2
<syntaxhighlight lang="qbasic">PRINT "5^3^2 ="; 5^3^2
PRINT "(5^3)^2 ="; (5^3)^2
PRINT "(5^3)^2 ="; (5^3)^2
PRINT "5^(3^2) ="; 5^(3^2)
PRINT "5^(3^2) ="; 5^(3^2)
END</lang>
END</syntaxhighlight>
{{out}}
{{out}}
<pre>5^3^2 = 15625
<pre>5^3^2 = 15625
Line 231: Line 231:
{{works with|True BASIC}}
{{works with|True BASIC}}
{{works with|Run BASIC}}
{{works with|Run BASIC}}
<lang freebasic>print "5^3^2 = "; 5^3^2
<syntaxhighlight lang="freebasic">print "5^3^2 = "; 5^3^2
print "(5^3)^2 = "; (5^3)^2
print "(5^3)^2 = "; (5^3)^2
print "5^(3^2) = "; 5^(3^2)
print "5^(3^2) = "; 5^(3^2)
end</lang>
end</syntaxhighlight>
{{out}}
{{out}}
<pre>5^3^2 = 15625
<pre>5^3^2 = 15625
Line 245: Line 245:
{{works with|True BASIC}}
{{works with|True BASIC}}
{{works with|BASIC256}}
{{works with|BASIC256}}
<lang freebasic>print "5^3^2 = "; 5^3^2
<syntaxhighlight lang="freebasic">print "5^3^2 = "; 5^3^2
print "(5^3)^2 = "; (5^3)^2
print "(5^3)^2 = "; (5^3)^2
print "5^(3^2) = "; 5^(3^2)
print "5^(3^2) = "; 5^(3^2)
end</lang>
end</syntaxhighlight>
{{out}}
{{out}}
<pre>5^3^2 = 15625
<pre>5^3^2 = 15625
Line 259: Line 259:
{{works with|BASIC256}}
{{works with|BASIC256}}
{{works with|Run BASIC}}
{{works with|Run BASIC}}
<lang qbasic>PRINT "5^3^2 ="; 5^3^2
<syntaxhighlight lang="qbasic">PRINT "5^3^2 ="; 5^3^2
PRINT "(5^3)^2 ="; (5^3)^2
PRINT "(5^3)^2 ="; (5^3)^2
PRINT "5^(3^2) ="; 5^(3^2)
PRINT "5^(3^2) ="; 5^(3^2)
END</lang>
END</syntaxhighlight>
{{out}}
{{out}}
<pre>5^3^2 = 15625
<pre>5^3^2 = 15625
Line 273: Line 273:
{{works with|True BASIC}}
{{works with|True BASIC}}
{{works with|BASIC256}}
{{works with|BASIC256}}
<lang freebasic>print "5^3^2 = ", 5^3^2
<syntaxhighlight lang="freebasic">print "5^3^2 = ", 5^3^2
print "(5^3)^2 = ", (5^3)^2
print "(5^3)^2 = ", (5^3)^2
print "5^(3^2) = ", 5^(3^2)
print "5^(3^2) = ", 5^(3^2)
end</lang>
end</syntaxhighlight>
{{out}}
{{out}}
<pre>5^3^2 = 15625
<pre>5^3^2 = 15625
Line 284: Line 284:


=={{header|Bracmat}}==
=={{header|Bracmat}}==
<lang Bracmat>put$str$("5^3^2: " 5^3^2 "\n(5^3)^2: " (5^3)^2 "\n5^(3^2): " 5^(3^2) \n) </lang>
<syntaxhighlight lang="bracmat">put$str$("5^3^2: " 5^3^2 "\n(5^3)^2: " (5^3)^2 "\n5^(3^2): " 5^(3^2) \n) </syntaxhighlight>
{{out}}
{{out}}
<pre>5^3^2: 1953125
<pre>5^3^2: 1953125
Line 293: Line 293:
C does not have an exponentiation operator. The caret operator '^' performs xor bitwise operation in C. The function pow in the standard C Math library takes two arguments.
C does not have an exponentiation operator. The caret operator '^' performs xor bitwise operation in C. The function pow in the standard C Math library takes two arguments.


<lang C>#include<stdio.h>
<syntaxhighlight lang="c">#include<stdio.h>
#include<math.h>
#include<math.h>


Line 302: Line 302:
return 0;
return 0;
}</lang>
}</syntaxhighlight>


{{out}}
{{out}}
Line 311: Line 311:


=={{header|C++}}==
=={{header|C++}}==
<lang cpp>#include <iostream>
<syntaxhighlight lang="cpp">#include <iostream>
#include <cmath>
#include <cmath>


Line 319: Line 319:
return EXIT_SUCCESS;
return EXIT_SUCCESS;
}</lang>
}</syntaxhighlight>


With permissive flag:
With permissive flag:
<lang cpp>#include <iostream>
<syntaxhighlight lang="cpp">#include <iostream>
#include <cmath>
#include <cmath>


Line 334: Line 334:
return EXIT_SUCCESS;
return EXIT_SUCCESS;
}</lang>
}</syntaxhighlight>


{{out}}
{{out}}
Line 343: Line 343:


=={{header|C sharp|C#}}==
=={{header|C sharp|C#}}==
<lang csharp>using System;
<syntaxhighlight lang="csharp">using System;


namespace exponents
namespace exponents
Line 363: Line 363:
}
}
}
}
</syntaxhighlight>
</lang>
{{out}}
{{out}}
<pre>
<pre>
Line 373: Line 373:
Clojure uses prefix notation and expt only takes 2 arguments for exponentiation, so "5**3**2" isn't represented.
Clojure uses prefix notation and expt only takes 2 arguments for exponentiation, so "5**3**2" isn't represented.


<lang clojure>(use 'clojure.math.numeric-tower)
<syntaxhighlight lang="clojure">(use 'clojure.math.numeric-tower)
;; (5**3)**2
;; (5**3)**2
(expt (expt 5 3) 2) ; => 15625
(expt (expt 5 3) 2) ; => 15625
Line 385: Line 385:
;; 5**(3**2) alternative: evaluating right-to-left with reduce requires a small modification
;; 5**(3**2) alternative: evaluating right-to-left with reduce requires a small modification
(defn rreduce [f coll] (reduce #(f %2 %) (reverse coll)))
(defn rreduce [f coll] (reduce #(f %2 %) (reverse coll)))
(rreduce expt [5 3 2]) ; => 1953125</lang>
(rreduce expt [5 3 2]) ; => 1953125</syntaxhighlight>


=={{header|CLU}}==
=={{header|CLU}}==
<lang clu>start_up = proc ()
<syntaxhighlight lang="clu">start_up = proc ()
po: stream := stream$primary_output()
po: stream := stream$primary_output()
Line 394: Line 394:
stream$putl(po, "(5**3)**2 = " || int$unparse((5**3)**2))
stream$putl(po, "(5**3)**2 = " || int$unparse((5**3)**2))
stream$putl(po, "5**(3**2) = " || int$unparse(5**(3**2)))
stream$putl(po, "5**(3**2) = " || int$unparse(5**(3**2)))
end start_up</lang>
end start_up</syntaxhighlight>
{{out}}
{{out}}
<pre>5**3**2 = 1953125
<pre>5**3**2 = 1953125
Line 402: Line 402:
=={{header|Common Lisp}}==
=={{header|Common Lisp}}==
Because Common Lisp uses prefix notation and <code>expt</code> accepts only two arguments, it doesn't have an expression for <code>5**3**2</code>. Just showing expressions for the latter two.
Because Common Lisp uses prefix notation and <code>expt</code> accepts only two arguments, it doesn't have an expression for <code>5**3**2</code>. Just showing expressions for the latter two.
<lang lisp>(expt (expt 5 3) 2)
<syntaxhighlight lang="lisp">(expt (expt 5 3) 2)
(expt 5 (expt 3 2))</lang>
(expt 5 (expt 3 2))</syntaxhighlight>
{{out}}
{{out}}
<pre>15625
<pre>15625
Line 409: Line 409:


=={{header|D}}==
=={{header|D}}==
<lang d>void main() {
<syntaxhighlight lang="d">void main() {
import std.stdio, std.math, std.algorithm;
import std.stdio, std.math, std.algorithm;


Line 416: Line 416:
writefln("5 ^^ (3 ^^ 2) = %7d", 5 ^^ (3 ^^ 2));
writefln("5 ^^ (3 ^^ 2) = %7d", 5 ^^ (3 ^^ 2));
writefln("[5, 3, 2].reduce!pow = %7d", [5, 3, 2].reduce!pow);
writefln("[5, 3, 2].reduce!pow = %7d", [5, 3, 2].reduce!pow);
}</lang>
}</syntaxhighlight>
{{out}}
{{out}}
<pre>5 ^^ 3 ^^ 2 = 1953125
<pre>5 ^^ 3 ^^ 2 = 1953125
Line 424: Line 424:


=={{header|EchoLisp}}==
=={{header|EchoLisp}}==
<lang scheme>
<syntaxhighlight lang="scheme">
;; the standard and secure way is to use the (expt a b) function
;; the standard and secure way is to use the (expt a b) function
(expt 5 (expt 3 2)) ;; 5 ** ( 3 ** 2)
(expt 5 (expt 3 2)) ;; 5 ** ( 3 ** 2)
Line 441: Line 441:
(5 ** (3 ** 2))
(5 ** (3 ** 2))
→ 1953125
→ 1953125
</syntaxhighlight>
</lang>


=={{header|Factor}}==
=={{header|Factor}}==
Factor is a stack language where expressions take the form of reverse Polish notation, so there is no ambiguity here. It is up to you, the programmer, to perform operations in the order you intend.
Factor is a stack language where expressions take the form of reverse Polish notation, so there is no ambiguity here. It is up to you, the programmer, to perform operations in the order you intend.
<lang factor>USING: formatting math.functions ;
<syntaxhighlight lang="factor">USING: formatting math.functions ;


5 3 2 ^ ^
5 3 2 ^ ^
Line 451: Line 451:


5 3 ^ 2 ^
5 3 ^ 2 ^
"5 3 ^ 2 ^ %d\n" printf</lang>
"5 3 ^ 2 ^ %d\n" printf</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 460: Line 460:
Factor also has syntax for infix arithmetic via the the <code>infix</code> vocabulary.
Factor also has syntax for infix arithmetic via the the <code>infix</code> vocabulary.


<lang factor>USING: formatting infix ;
<syntaxhighlight lang="factor">USING: formatting infix ;


[infix 5**3**2 infix]
[infix 5**3**2 infix]
Line 469: Line 469:


[infix 5**(3**2) infix]
[infix 5**(3**2) infix]
"5**(3**2) = %d\n" printf</lang>
"5**(3**2) = %d\n" printf</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 478: Line 478:


=={{header|Fortran}}==
=={{header|Fortran}}==
<lang Fortran>write(*, "(a, i0)") "5**3**2 = ", 5**3**2
<syntaxhighlight lang="fortran">write(*, "(a, i0)") "5**3**2 = ", 5**3**2
write(*, "(a, i0)") "(5**3)**2 = ", (5**3)**2
write(*, "(a, i0)") "(5**3)**2 = ", (5**3)**2
write(*, "(a, i0)") "5**(3**2) = ", 5**(3**2)</lang>
write(*, "(a, i0)") "5**(3**2) = ", 5**(3**2)</syntaxhighlight>
{{out}}
{{out}}
<pre>5**3**2 = 1953125
<pre>5**3**2 = 1953125
Line 487: Line 487:


=={{header|FreeBASIC}}==
=={{header|FreeBASIC}}==
<lang freebasic>' FB 1.05.0
<syntaxhighlight lang="freebasic">' FB 1.05.0


' The exponentation operator in FB is ^ rather than **.
' The exponentation operator in FB is ^ rather than **.
Line 497: Line 497:
Print "(5^3)^2 =>"; (5^3)^2
Print "(5^3)^2 =>"; (5^3)^2
Print "5^(3^2) =>"; 5^(3^2)
Print "5^(3^2) =>"; 5^(3^2)
Sleep</lang>
Sleep</syntaxhighlight>


{{out}}
{{out}}
Line 509: Line 509:
Frink correctly follows standard mathematical notation that exponent towers are performed from "top to bottom" or "right to left."
Frink correctly follows standard mathematical notation that exponent towers are performed from "top to bottom" or "right to left."


<lang Frink>println["5^3^2 = " + 5^3^2]
<syntaxhighlight lang="frink">println["5^3^2 = " + 5^3^2]
println["(5^3)^2 = " + (5^3)^2]
println["(5^3)^2 = " + (5^3)^2]
println["5^(3^2) = " + 5^(3^2)]
println["5^(3^2) = " + 5^(3^2)]
</syntaxhighlight>
</lang>


{{out}}
{{out}}
Line 522: Line 522:


=={{header|Go}}==
=={{header|Go}}==
<lang Go>package main
<syntaxhighlight lang="go">package main


import "fmt"
import "fmt"
Line 535: Line 535:
fmt.Printf("(5^3)^2 = %.0f\n", b)
fmt.Printf("(5^3)^2 = %.0f\n", b)
fmt.Printf("5^(3^2) = %.0f\n", c)
fmt.Printf("5^(3^2) = %.0f\n", c)
}</lang>
}</syntaxhighlight>


{{out}}
{{out}}
Line 547: Line 547:


Solution:
Solution:
<lang groovy>println(" 5 ** 3 ** 2 == " + 5**3**2)
<syntaxhighlight lang="groovy">println(" 5 ** 3 ** 2 == " + 5**3**2)
println("(5 ** 3)** 2 == " + (5**3)**2)
println("(5 ** 3)** 2 == " + (5**3)**2)
println(" 5 **(3 ** 2)== " + 5**(3**2))</lang>
println(" 5 **(3 ** 2)== " + 5**(3**2))</syntaxhighlight>


Output:
Output:
Line 610: Line 610:
J uses the same evaluation order for exponentiation as it does for assignment. That is to say: the bottom up view is right-to-left and the top-down view is left-to-right.
J uses the same evaluation order for exponentiation as it does for assignment. That is to say: the bottom up view is right-to-left and the top-down view is left-to-right.


<lang J> 5^3^2
<syntaxhighlight lang="j"> 5^3^2
1.95312e6
1.95312e6
(5^3)^2
(5^3)^2
15625
15625
5^(3^2)
5^(3^2)
1.95312e6</lang>
1.95312e6</syntaxhighlight>


----
----
Line 627: Line 627:
jq's built-in for exponentiation is an arity-two function and thus no ambiguity arising from infix-notation is possible. Here's an example:
jq's built-in for exponentiation is an arity-two function and thus no ambiguity arising from infix-notation is possible. Here's an example:


<lang jq>jq -n 'pow(pow(5;3);2)'
<syntaxhighlight lang="jq">jq -n 'pow(pow(5;3);2)'
15625</lang>
15625</syntaxhighlight>


For chaining, one could use `reduce`:
For chaining, one could use `reduce`:


<lang jq> def pow: reduce .[1:] as $i (.[0]; pow(.;$i))
<syntaxhighlight lang="jq"> def pow: reduce .[1:] as $i (.[0]; pow(.;$i))


[5,3,2] | pow</lang>
[5,3,2] | pow</syntaxhighlight>


Result: 15625
Result: 15625
Line 641: Line 641:
{{works with|Julia|0.6}}
{{works with|Julia|0.6}}


<lang julia>@show 5 ^ 3 ^ 2 # default: power operator is read right-to-left
<syntaxhighlight lang="julia">@show 5 ^ 3 ^ 2 # default: power operator is read right-to-left
@show (5 ^ 3) ^ 2
@show (5 ^ 3) ^ 2
@show 5 ^ (3 ^ 2)
@show 5 ^ (3 ^ 2)
@show reduce(^, [5, 3, 2])
@show reduce(^, [5, 3, 2])
@show foldl(^, [5, 3, 2]) # guarantees left associativity
@show foldl(^, [5, 3, 2]) # guarantees left associativity
@show foldr(^, [5, 3, 2]) # guarantees right associativity</lang>
@show foldr(^, [5, 3, 2]) # guarantees right associativity</syntaxhighlight>


{{out}}
{{out}}
Line 658: Line 658:
=={{header|Kotlin}}==
=={{header|Kotlin}}==
Kotlin does not have a dedicated exponentiation operator and we would normally use Java's Math.pow function instead. However, it's possible to define an infix function which would look like an operator and here we do so for integer base and exponent. For simplicity we disallow negative exponents altogether and consider 0 ** 0 == 1. Associativity would, of course, be the same as for a normal function call.
Kotlin does not have a dedicated exponentiation operator and we would normally use Java's Math.pow function instead. However, it's possible to define an infix function which would look like an operator and here we do so for integer base and exponent. For simplicity we disallow negative exponents altogether and consider 0 ** 0 == 1. Associativity would, of course, be the same as for a normal function call.
<lang scala>// version 1.0.5-2
<syntaxhighlight lang="scala">// version 1.0.5-2


infix fun Int.ipow(exp: Int): Int = when {
infix fun Int.ipow(exp: Int): Int = when {
Line 680: Line 680:
println("(5**3)**2 = ${(5 ipow 3) ipow 2}")
println("(5**3)**2 = ${(5 ipow 3) ipow 2}")
println("5**(3**2) = ${5 ipow (3 ipow 2)}")
println("5**(3**2) = ${5 ipow (3 ipow 2)}")
}</lang>
}</syntaxhighlight>


{{out}}
{{out}}
Line 693: Line 693:
Because lambdatalk uses prefix notation and {pow a b} accepts only two arguments, it doesn't have an expression for 5**3**2. Just showing expressions for the latter two.
Because lambdatalk uses prefix notation and {pow a b} accepts only two arguments, it doesn't have an expression for 5**3**2. Just showing expressions for the latter two.


<lang scheme>
<syntaxhighlight lang="scheme">
'{pow {pow 5 3} 2}
'{pow {pow 5 3} 2}
-> {pow {pow 5 3} 2}
-> {pow {pow 5 3} 2}
'{pow 5 {pow 3 2}}
'{pow 5 {pow 3 2}}
-> {pow 5 {pow 3 2}}
-> {pow 5 {pow 3 2}}
</syntaxhighlight>
</lang>


=={{header|Latitude}}==
=={{header|Latitude}}==
<lang latitude>5 ^ 3 ^ 2. ;; 1953125
<syntaxhighlight lang="latitude">5 ^ 3 ^ 2. ;; 1953125
(5 ^ 3) ^ 2. ;; 15625
(5 ^ 3) ^ 2. ;; 15625
5 ^ (3 ^ 2). ;; 1953125</lang>
5 ^ (3 ^ 2). ;; 1953125</syntaxhighlight>


=={{header|Lua}}==
=={{header|Lua}}==
<lang Lua>print("5^3^2 = " .. 5^3^2)
<syntaxhighlight lang="lua">print("5^3^2 = " .. 5^3^2)
print("(5^3)^2 = " .. (5^3)^2)
print("(5^3)^2 = " .. (5^3)^2)
print("5^(3^2) = " .. 5^(3^2))</lang>
print("5^(3^2) = " .. 5^(3^2))</syntaxhighlight>
{{out}}
{{out}}
<pre>5^3^2 = 1953125
<pre>5^3^2 = 1953125
Line 716: Line 716:


=={{header|Maple}}==
=={{header|Maple}}==
<lang Maple>5^3^2;
<syntaxhighlight lang="maple">5^3^2;
(5^3)^2;
(5^3)^2;
5^(3^2);</lang>
5^(3^2);</syntaxhighlight>
{{Out|Output}}
{{Out|Output}}
<pre>Error, ambiguous use of `^`, please use parentheses
<pre>Error, ambiguous use of `^`, please use parentheses
Line 725: Line 725:


=={{header|Mathematica}} / {{header|Wolfram Language}}==
=={{header|Mathematica}} / {{header|Wolfram Language}}==
<lang Mathematica>a = "5^3^2";
<syntaxhighlight lang="mathematica">a = "5^3^2";
Print[a <> " = " <> ToString[ToExpression[a]]]
Print[a <> " = " <> ToString[ToExpression[a]]]
b = "(5^3)^2";
b = "(5^3)^2";
Print[b <> " = " <> ToString[ToExpression[b]]]
Print[b <> " = " <> ToString[ToExpression[b]]]
c = "5^(3^2)";
c = "5^(3^2)";
Print[c <> " = " <> ToString[ToExpression[c]]]</lang>
Print[c <> " = " <> ToString[ToExpression[c]]]</syntaxhighlight>
{{out}}
{{out}}
<pre>5^3^2 = 1953125
<pre>5^3^2 = 1953125
Line 739: Line 739:
As with other postfix languages, there is no ambiguity because all operators have the same precedence.
As with other postfix languages, there is no ambiguity because all operators have the same precedence.
{{works with|min|0.19.6}}
{{works with|min|0.19.6}}
<lang min>5 3 2 pow pow
<syntaxhighlight lang="min">5 3 2 pow pow
"5 3 2 ^ ^ " print! puts!
"5 3 2 ^ ^ " print! puts!


5 3 pow 2 pow
5 3 pow 2 pow
"5 3 ^ 2 ^ " print! puts!</lang>
"5 3 ^ 2 ^ " print! puts!</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 752: Line 752:
=={{header|Nanoquery}}==
=={{header|Nanoquery}}==
Nanoquery uses the '^' operator, which performs exponentiation in order like multiplication. Parenthesis are often needed to perform operations like 5^3^2 correctly.
Nanoquery uses the '^' operator, which performs exponentiation in order like multiplication. Parenthesis are often needed to perform operations like 5^3^2 correctly.
<lang Nanoquery>% println 5^3^2
<syntaxhighlight lang="nanoquery">% println 5^3^2
15625
15625
% println (5^3)^2
% println (5^3)^2
15625
15625
% println 5^(3^2)
% println 5^(3^2)
1953125</lang>
1953125</syntaxhighlight>


=={{header|Nim}}==
=={{header|Nim}}==
Line 766: Line 766:
echo "5^(3^2) = ", 5^(3^2)
echo "5^(3^2) = ", 5^(3^2)
echo "foldl([5, 3, 2], a^b) = ", foldl([5, 3, 2], a^b)
echo "foldl([5, 3, 2], a^b) = ", foldl([5, 3, 2], a^b)
echo "foldr([5, 3, 2], a^b) = ", foldr([5, 3, 2], a^b)</lang>
echo "foldr([5, 3, 2], a^b) = ", foldr([5, 3, 2], a^b)</syntaxhighlight>


{{out}}
{{out}}
Line 792: Line 792:
=={{header|PARI/GP}}==
=={{header|PARI/GP}}==
Exponentiation is right-associative in GP.
Exponentiation is right-associative in GP.
<lang parigp>f(s)=print(s" = "eval(s));
<syntaxhighlight lang="parigp">f(s)=print(s" = "eval(s));
apply(f, ["5^3^2", "(5^3)^2", "5^(3^2)"]);</lang>
apply(f, ["5^3^2", "(5^3)^2", "5^(3^2)"]);</syntaxhighlight>
{{out}}
{{out}}
<pre>5^3^2 = 1953125
<pre>5^3^2 = 1953125
Line 800: Line 800:


=={{header|Perl}}==
=={{header|Perl}}==
<lang perl>say "$_ = " . eval($_) for qw/5**3**2 (5**3)**2 5**(3**2)/;</lang>
<syntaxhighlight lang="perl">say "$_ = " . eval($_) for qw/5**3**2 (5**3)**2 5**(3**2)/;</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 811: Line 811:
{{libheader|Phix/basics}}
{{libheader|Phix/basics}}
Phix has a power function rather than an infix power operator, hence there is no possible confusion.
Phix has a power function rather than an infix power operator, hence there is no possible confusion.
<!--<lang Phix>-->
<!--<syntaxhighlight lang="phix">-->
<span style="color: #0000FF;">?<span style="color: #7060A8;">power<span style="color: #0000FF;">(<span style="color: #7060A8;">power<span style="color: #0000FF;">(<span style="color: #000000;">5<span style="color: #0000FF;">,<span style="color: #000000;">3<span style="color: #0000FF;">)<span style="color: #0000FF;">,<span style="color: #000000;">2<span style="color: #0000FF;">)</span>
<span style="color: #0000FF;">?<span style="color: #7060A8;">power<span style="color: #0000FF;">(<span style="color: #7060A8;">power<span style="color: #0000FF;">(<span style="color: #000000;">5<span style="color: #0000FF;">,<span style="color: #000000;">3<span style="color: #0000FF;">)<span style="color: #0000FF;">,<span style="color: #000000;">2<span style="color: #0000FF;">)</span>
<span style="color: #0000FF;">?<span style="color: #7060A8;">power<span style="color: #0000FF;">(<span style="color: #000000;">5<span style="color: #0000FF;">,<span style="color: #7060A8;">power<span style="color: #0000FF;">(<span style="color: #000000;">3<span style="color: #0000FF;">,<span style="color: #000000;">2<span style="color: #0000FF;">)<span style="color: #0000FF;">)
<span style="color: #0000FF;">?<span style="color: #7060A8;">power<span style="color: #0000FF;">(<span style="color: #000000;">5<span style="color: #0000FF;">,<span style="color: #7060A8;">power<span style="color: #0000FF;">(<span style="color: #000000;">3<span style="color: #0000FF;">,<span style="color: #000000;">2<span style="color: #0000FF;">)<span style="color: #0000FF;">)
<!--</lang>-->
<!--</syntaxhighlight>-->
{{out}}
{{out}}
<pre>
<pre>
Line 823: Line 823:
=={{header|PicoLisp}}==
=={{header|PicoLisp}}==
The PicoLisp '**' exponentiation function takes 2 arguments
The PicoLisp '**' exponentiation function takes 2 arguments
<lang PicoLisp>: (** (** 5 3) 2)
<syntaxhighlight lang="picolisp">: (** (** 5 3) 2)
-> 15625
-> 15625


: (** 5 (** 3 2))
: (** 5 (** 3 2))
-> 1953125</lang>
-> 1953125</syntaxhighlight>


=={{header|PL/I}}==
=={{header|PL/I}}==
<lang pli>exponentiation: procedure options(main);
<syntaxhighlight lang="pli">exponentiation: procedure options(main);
put skip edit('5**3**2 = ', 5**3**2) (A,F(7));
put skip edit('5**3**2 = ', 5**3**2) (A,F(7));
put skip edit('(5**3)**2 = ', (5**3)**2) (A,F(7));
put skip edit('(5**3)**2 = ', (5**3)**2) (A,F(7));
put skip edit('5**(3**2) = ', 5**(3**2)) (A,F(7));
put skip edit('5**(3**2) = ', 5**(3**2)) (A,F(7));
end exponentiation;</lang>
end exponentiation;</syntaxhighlight>
{{out}}
{{out}}
<pre>5**3**2 = 15625
<pre>5**3**2 = 15625
Line 841: Line 841:


=={{header|Python}}==
=={{header|Python}}==
<lang python>>>> 5**3**2
<syntaxhighlight lang="python">>>> 5**3**2
1953125
1953125
>>> (5**3)**2
>>> (5**3)**2
Line 853: Line 853:
>>> reduce(pow, (5, 3, 2))
>>> reduce(pow, (5, 3, 2))
15625
15625
>>> </lang>
>>> </syntaxhighlight>


=={{header|Quackery}}==
=={{header|Quackery}}==
Line 876: Line 876:


It turns out that the parser is so blind to "**" that we cannot even quote it. The following are identical:
It turns out that the parser is so blind to "**" that we cannot even quote it. The following are identical:
<lang rsplus>print(quote(5**3))
<syntaxhighlight lang="rsplus">print(quote(5**3))
print(quote(5^3))</lang>
print(quote(5^3))</syntaxhighlight>


Another method is to use "^" as if it is an ordinary function of two arguments. It appears that "**" does not support this. As there is no potential for ambiguity in the operator precedence, we will not print this result below. For example:
Another method is to use "^" as if it is an ordinary function of two arguments. It appears that "**" does not support this. As there is no potential for ambiguity in the operator precedence, we will not print this result below. For example:
<lang rsplus>'^'('^'(5, 3), 2)</lang>
<syntaxhighlight lang="rsplus">'^'('^'(5, 3), 2)</syntaxhighlight>
is clearly (5^3)^2 i.e. 15625, whereas
is clearly (5^3)^2 i.e. 15625, whereas
<lang rsplus>'^'(5, '^'(3, 2))</lang>
<syntaxhighlight lang="rsplus">'^'(5, '^'(3, 2))</syntaxhighlight>
is clearly 5^(3^2) i.e. 1953125.
is clearly 5^(3^2) i.e. 1953125.


As for actually solving the task, the requirement that each output be on a new line causes us a surprising amount of difficulty. To avoid repeating ourselves, we must almost resort to metaprogramming:
As for actually solving the task, the requirement that each output be on a new line causes us a surprising amount of difficulty. To avoid repeating ourselves, we must almost resort to metaprogramming:
<lang rsplus>inputs <- alist(5^3^2, (5^3)^2, 5^(3^2), 5**3**2, (5**3)**2, 5**(3**2))
<syntaxhighlight lang="rsplus">inputs <- alist(5^3^2, (5^3)^2, 5^(3^2), 5**3**2, (5**3)**2, 5**(3**2))
invisible(sapply(inputs, function(x) cat(deparse(x), "returns: ", eval(x), "\n")))</lang>
invisible(sapply(inputs, function(x) cat(deparse(x), "returns: ", eval(x), "\n")))</syntaxhighlight>


Alternatively, we could print out a matrix or data frame:
Alternatively, we could print out a matrix or data frame:
<lang rsplus>print(matrix(sapply(inputs, eval), dimnames = list(inputs, "Outputs")))
<syntaxhighlight lang="rsplus">print(matrix(sapply(inputs, eval), dimnames = list(inputs, "Outputs")))
print(data.frame(Inputs = sapply(inputs, deparse), Outputs = sapply(inputs, eval))))</lang>
print(data.frame(Inputs = sapply(inputs, deparse), Outputs = sapply(inputs, eval))))</syntaxhighlight>
{{out}}
{{out}}
<pre>> print(quote(5**3))
<pre>> print(quote(5**3))
Line 922: Line 922:


=={{header|Racket}}==
=={{header|Racket}}==
<lang racket>#lang racket
<syntaxhighlight lang="racket">#lang racket
;; 5**3**2 depends on associativity of ** : Racket's (scheme's) prefix function
;; 5**3**2 depends on associativity of ** : Racket's (scheme's) prefix function
;; calling syntax only allows for pairs of arguments for expt.
;; calling syntax only allows for pairs of arguments for expt.
Line 943: Line 943:
(require (only-in srfi/1 reduce reduce-right))
(require (only-in srfi/1 reduce reduce-right))
(reduce expt 1 '(5 3 2))
(reduce expt 1 '(5 3 2))
(reduce-right expt 1 '(5 3 2))</lang>
(reduce-right expt 1 '(5 3 2))</syntaxhighlight>
{{out}}
{{out}}
<pre>prefix
<pre>prefix
Line 961: Line 961:
Note that the reduction forms automatically go right-to-left because the base operator is right-associative. Most other operators are left-associative and would automatically reduce left-to-right instead.
Note that the reduction forms automatically go right-to-left because the base operator is right-associative. Most other operators are left-associative and would automatically reduce left-to-right instead.


<lang perl6>use MONKEY-SEE-NO-EVAL;
<syntaxhighlight lang="raku" line>use MONKEY-SEE-NO-EVAL;
sub demo($x) { say " $x\t───► ", EVAL $x }
sub demo($x) { say " $x\t───► ", EVAL $x }


Line 975: Line 975:
demo '(5³)²';
demo '(5³)²';
demo '5³²';
demo '5³²';
</syntaxhighlight>
</lang>


{{out}}
{{out}}
Line 992: Line 992:
=={{header|Red}}==
=={{header|Red}}==
In Red, operators simply evaluate left to right. As this differs from mathematical order of operations, Red provides the <code>math</code> function which evaluates a block using math rules instead of Red's default evaluation. One could also use the <code>power</code> function, sidestepping the issue of evaluation order entirely. All three approaches are shown.
In Red, operators simply evaluate left to right. As this differs from mathematical order of operations, Red provides the <code>math</code> function which evaluates a block using math rules instead of Red's default evaluation. One could also use the <code>power</code> function, sidestepping the issue of evaluation order entirely. All three approaches are shown.
<lang rebol>Red["Exponentiation order"]
<syntaxhighlight lang="rebol">Red["Exponentiation order"]


exprs: [
exprs: [
Line 1,007: Line 1,007:
print [mold/only expr "=" math expr "using math"]
print [mold/only expr "=" math expr "using math"]
]
]
]</lang>
]</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 1,021: Line 1,021:


=={{header|REXX}}==
=={{header|REXX}}==
<lang rexx>/*REXX program demonstrates various ways of multiple exponentiations. */
<syntaxhighlight lang="rexx">/*REXX program demonstrates various ways of multiple exponentiations. */
/*┌────────────────────────────────────────────────────────────────────┐
/*┌────────────────────────────────────────────────────────────────────┐
│ The REXX language uses ** for exponentiation. │
│ The REXX language uses ** for exponentiation. │
Line 1,031: Line 1,031:
say ' (5**3)**2 ───► ' (5**3)**2
say ' (5**3)**2 ───► ' (5**3)**2
say ' 5**(3**2) ───► ' 5**(3**2)
say ' 5**(3**2) ───► ' 5**(3**2)
/*stick a fork in it, we're done.*/</lang>
/*stick a fork in it, we're done.*/</syntaxhighlight>
'''output'''
'''output'''
<pre>
<pre>
Line 1,043: Line 1,043:
In the Ring it is impossible to show the result of: 5^3^2
In the Ring it is impossible to show the result of: 5^3^2


<lang ring>
<syntaxhighlight lang="ring">
see "(5^3)^2 =>" + pow(pow(5,3),2) + nl
see "(5^3)^2 =>" + pow(pow(5,3),2) + nl
see "5^(3^2) =>" + pow(5,pow(3,2)) + nl
see "5^(3^2) =>" + pow(5,pow(3,2)) + nl
</syntaxhighlight>
</lang>
Output:
Output:
<pre>
<pre>
Line 1,054: Line 1,054:


=={{header|Ruby}}==
=={{header|Ruby}}==
<lang ruby>ar = ["5**3**2", "(5**3)**2", "5**(3**2)", "[5,3,2].inject(:**)"]
<syntaxhighlight lang="ruby">ar = ["5**3**2", "(5**3)**2", "5**(3**2)", "[5,3,2].inject(:**)"]
ar.each{|exp| puts "#{exp}:\t#{eval exp}"}
ar.each{|exp| puts "#{exp}:\t#{eval exp}"}
</syntaxhighlight>
</lang>
{{out}}
{{out}}
<pre>
<pre>
Line 1,067: Line 1,067:
=={{header|Rust}}==
=={{header|Rust}}==


<lang rust>fn main() {
<syntaxhighlight lang="rust">fn main() {
println!("5**3**2 = {:7}", 5u32.pow(3).pow(2));
println!("5**3**2 = {:7}", 5u32.pow(3).pow(2));
println!("(5**3)**2 = {:7}", (5u32.pow(3)).pow(2));
println!("(5**3)**2 = {:7}", (5u32.pow(3)).pow(2));
println!("5**(3**2) = {:7}", 5u32.pow(3u32.pow(2)));
println!("5**(3**2) = {:7}", 5u32.pow(3u32.pow(2)));
}</lang>
}</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 1,083: Line 1,083:


=={{header|Seed7}}==
=={{header|Seed7}}==
<lang seed7>$ include "seed7_05.s7i";
<syntaxhighlight lang="seed7">$ include "seed7_05.s7i";


const proc: main is func
const proc: main is func
Line 1,090: Line 1,090:
writeln("(5**3)**2 = " <& (5**3)**2);
writeln("(5**3)**2 = " <& (5**3)**2);
writeln("5**(3**2) = " <& 5**(3**2));
writeln("5**(3**2) = " <& 5**(3**2));
end func;</lang>
end func;</syntaxhighlight>


{{out}}
{{out}}
Line 1,101: Line 1,101:
=={{header|Sidef}}==
=={{header|Sidef}}==
In Sidef, the whitespace between the operands and the operator controls the precedence of the operation.
In Sidef, the whitespace between the operands and the operator controls the precedence of the operation.
<lang ruby>var a = [
<syntaxhighlight lang="ruby">var a = [
'5**3**2',
'5**3**2',
'(5**3)**2',
'(5**3)**2',
Line 1,113: Line 1,113:
a.each {|e|
a.each {|e|
"%-12s == %s\n".printf(e, eval(e))
"%-12s == %s\n".printf(e, eval(e))
}</lang>
}</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 1,126: Line 1,126:


=={{header|Simula}}==
=={{header|Simula}}==
<lang Simula>OutText("5** 3 **2: "); OutInt(5** 3 **2, 0); Outimage;
<syntaxhighlight lang="simula">OutText("5** 3 **2: "); OutInt(5** 3 **2, 0); Outimage;
OutText("(5**3)**2: "); OutInt((5**3)**2, 0); Outimage;
OutText("(5**3)**2: "); OutInt((5**3)**2, 0); Outimage;
OutText("5**(3**2): "); OutInt(5**(3**2), 0); Outimage</lang>
OutText("5**(3**2): "); OutInt(5**(3**2), 0); Outimage</syntaxhighlight>
{{out}}
{{out}}
<pre>5** 3 **2: 15625
<pre>5** 3 **2: 15625
Line 1,137: Line 1,137:
Works in Smalltalk/X &sup1;
Works in Smalltalk/X &sup1;
<p>Smalltalk strictly evaluates left to right; operators are not known to the language/parser, but instead message sends to the receiver on the left side (aka: virtual function calls) .
<p>Smalltalk strictly evaluates left to right; operators are not known to the language/parser, but instead message sends to the receiver on the left side (aka: virtual function calls) .
<lang smalltalk>Transcript show:'5**3**2 => '; showCR: 5**3**2.
<syntaxhighlight lang="smalltalk">Transcript show:'5**3**2 => '; showCR: 5**3**2.
Transcript show:'(5**3)**2 => '; showCR: (5**3)**2.
Transcript show:'(5**3)**2 => '; showCR: (5**3)**2.
Transcript show:'5**(3**2) => '; showCR: 5**(3**2).</lang>
Transcript show:'5**(3**2) => '; showCR: 5**(3**2).</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 1,150: Line 1,150:
=={{header|Stata}}==
=={{header|Stata}}==


<lang stata>. di (5^3^2)
<syntaxhighlight lang="stata">. di (5^3^2)
15625
15625


Line 1,157: Line 1,157:


. di (5^(3^2))
. di (5^(3^2))
1953125</lang>
1953125</syntaxhighlight>


Likewise in Mata:
Likewise in Mata:


<lang stata>. mata (5^3^2)
<syntaxhighlight lang="stata">. mata (5^3^2)
15625
15625


Line 1,168: Line 1,168:


. mata (5^(3^2))
. mata (5^(3^2))
1953125</lang>
1953125</syntaxhighlight>




Line 1,175: Line 1,175:
Swift doesn't have an exponentiation operator, however it's possible to define one, including the precedence and associativity.
Swift doesn't have an exponentiation operator, however it's possible to define one, including the precedence and associativity.


<lang swift>precedencegroup ExponentiationPrecedence {
<syntaxhighlight lang="swift">precedencegroup ExponentiationPrecedence {
associativity: left
associativity: left
higherThan: MultiplicationPrecedence
higherThan: MultiplicationPrecedence
Line 1,211: Line 1,211:
print(5 ** 3 ** 2)
print(5 ** 3 ** 2)
print((5 ** 3) ** 2)
print((5 ** 3) ** 2)
print(5 ** (3 ** 2))</lang>
print(5 ** (3 ** 2))</syntaxhighlight>


{{out}}
{{out}}
Line 1,220: Line 1,220:


=={{header|Tcl}}==
=={{header|Tcl}}==
<lang tcl>foreach expression {5**3**2 (5**3)**2 5**(3**2)} {
<syntaxhighlight lang="tcl">foreach expression {5**3**2 (5**3)**2 5**(3**2)} {
puts "${expression}:\t[expr $expression]"
puts "${expression}:\t[expr $expression]"
}</lang>
}</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 1,232: Line 1,232:


=={{header|VBA}}==
=={{header|VBA}}==
<lang vb>Public Sub exp()
<syntaxhighlight lang="vb">Public Sub exp()
Debug.Print "5^3^2", 5 ^ 3 ^ 2
Debug.Print "5^3^2", 5 ^ 3 ^ 2
Debug.Print "(5^3)^2", (5 ^ 3) ^ 2
Debug.Print "(5^3)^2", (5 ^ 3) ^ 2
Debug.Print "5^(3^2)", 5 ^ (3 ^ 2)
Debug.Print "5^(3^2)", 5 ^ (3 ^ 2)
End Sub</lang>{{out}}
End Sub</syntaxhighlight>{{out}}
<pre>5^3^2 15625
<pre>5^3^2 15625
(5^3)^2 15625
(5^3)^2 15625
Line 1,243: Line 1,243:


=={{header|VBScript}}==
=={{header|VBScript}}==
<syntaxhighlight lang="vb">
<lang vb>
WScript.StdOut.WriteLine "5^3^2 => " & 5^3^2
WScript.StdOut.WriteLine "5^3^2 => " & 5^3^2
WScript.StdOut.WriteLine "(5^3)^2 => " & (5^3)^2
WScript.StdOut.WriteLine "(5^3)^2 => " & (5^3)^2
WScript.StdOut.WriteLine "5^(3^2) => " & 5^(3^2)
WScript.StdOut.WriteLine "5^(3^2) => " & 5^(3^2)
</syntaxhighlight>
</lang>


{{Out}}
{{Out}}
Line 1,257: Line 1,257:


=={{header|Verbexx}}==
=={{header|Verbexx}}==
<lang verbexx>// Exponentiation order example:
<syntaxhighlight lang="verbexx">// Exponentiation order example:


@SAY "5**3**2 = " ( 5**3**2 );
@SAY "5**3**2 = " ( 5**3**2 );
Line 1,267: Line 1,267:
5**3**2 = 1953125
5**3**2 = 1953125
(5**3)**2 = 15625
(5**3)**2 = 15625
5**(3**2) = 1953125</lang>
5**(3**2) = 1953125</syntaxhighlight>


=={{header|Wren}}==
=={{header|Wren}}==
{{libheader|Wren-fmt}}
{{libheader|Wren-fmt}}
Wren doesn't have an exponentiation operator as such but the Num class has a ''pow'' method which does the same thing.
Wren doesn't have an exponentiation operator as such but the Num class has a ''pow'' method which does the same thing.
<lang ecmascript>import "/fmt" for Fmt
<syntaxhighlight lang="ecmascript">import "/fmt" for Fmt


var ops = [ "5**3**2", "(5**3)**2", "5**(3**2)" ]
var ops = [ "5**3**2", "(5**3)**2", "5**(3**2)" ]
Line 1,278: Line 1,278:
for (i in 0...ops.count) {
for (i in 0...ops.count) {
System.print("%(Fmt.s(-9, ops[i])) -> %(results[i])")
System.print("%(Fmt.s(-9, ops[i])) -> %(results[i])")
}</lang>
}</syntaxhighlight>


{{out}}
{{out}}
Line 1,290: Line 1,290:
{{trans|C}}
{{trans|C}}
zkl does not have an exponentiation operator but floats have a pow method.
zkl does not have an exponentiation operator but floats have a pow method.
<lang zkl>println("5 ^ 3 ^ 2 = %,d".fmt((5.0).pow((3.0).pow(2))));
<syntaxhighlight lang="zkl">println("5 ^ 3 ^ 2 = %,d".fmt((5.0).pow((3.0).pow(2))));
println("(5 ^ 3) ^ 2 = %,d".fmt((5.0).pow(3).pow(2)));
println("(5 ^ 3) ^ 2 = %,d".fmt((5.0).pow(3).pow(2)));
println("5 ^ (3 ^ 2) = %,d".fmt((5.0).pow((3.0).pow(2))));</lang>
println("5 ^ (3 ^ 2) = %,d".fmt((5.0).pow((3.0).pow(2))));</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>

Revision as of 11:00, 27 August 2022

Task
Exponentiation order
You are encouraged to solve this task according to the task description, using any language you may know.

This task will demonstrate the order of exponentiation   (xy)   when there are multiple exponents.

(Many programming languages,   especially those with extended─precision integer arithmetic,   usually support one of **, ^, or some such for exponentiation.)


Task requirements

Show the result of a language's evaluation of multiple exponentiation (either as an integer or floating point).

If your language's exponentiation operator is not one of the usual ones, please comment on how to recognize it.


Using whatever operator or syntax your language supports (if any), show the results in three lines (with identification):

  •   5**3**2
  •   (5**3)**2
  •   5**(3**2)


If there are other methods (or formats) of multiple exponentiations, show them as well.


See also


Related tasks



11l

print(5 ^ 3 ^ 2)
print((5 ^ 3) ^ 2)
print(5 ^ (3 ^ 2))
Output:
1.95313e+06
15625
1.95313e+06

Action!

There is no power operator in Action! Power function for REAL type is used. But the precision is insufficient.

INCLUDE "D2:REAL.ACT" ;from the Action! Tool Kit

PROC Main()
  REAL r2,r3,r5,tmp1,tmp2

  Put(125) PutE() ;clear screen

  IntToReal(2,r2)
  IntToReal(3,r3)
  IntToReal(5,r5)

  PrintE("There is no power operator in Action!")
  PrintE("Power function for REAL type is used.")
  PrintE("But the precision is insufficient.")
  Power(r5,r3,tmp1)
  Power(tmp1,r2,tmp2)
  Print("(5^3)^2=")
  PrintRE(tmp2)

  Power(r3,r2,tmp1)
  Power(r5,tmp1,tmp2)
  Print("5^(3^2)=")
  PrintRE(tmp2)
RETURN
Output:

Screenshot from Atari 8-bit computer

There is no power operator in Action!
Power function for REAL type is used.
But the precision is insufficient.
(5^3)^2=15624.9977
5^(3^2)=1953124.17

Ada

5**3**2 is not a valid Ada expression. Parenthesis are mandatory.

with Ada.Text_IO;

procedure Exponentation_Order is
   use Ada.Text_IO;
begin
   --  Put_Line ("5**3**2   : " & Natural'(5**3**2)'Image);
   Put_Line ("(5**3)**2 : " & Natural'((5**3)**2)'Image);
   Put_Line ("5**(3**2) : " & Natural'(5**(3**2))'Image);
end Exponentation_Order;
Output:
(5**3)**2 :  15625
5**(3**2) :  1953125

ALGOL 68

Algol 68 provides various alternative symbols for the exponentiation operator generally, "**", "^" and "UP" can be used.

print( ( "5**3**2:   ", 5**3**2, newline ) );
print( ( "(5**3)**2: ", (5**3)**2, newline ) );
print( ( "5**(3**2): ", 5**(3**2), newline ) )
Output:
5**3**2:        +15625
(5**3)**2:      +15625
5**(3**2):    +1953125

ALGOL W

The Algol W exponentiation operator always produces a real result and requires an integer right operand, hence the round functions in the following.

begin
    write( "5**3**2:   ", round( 5 ** 3 ** 2 ) );
    write( "(5**3)**2: ", round( ( 5 ** 3 ) ** 2 ) );
    write( "5**(3**2): ", round( 5 ** round( 3 ** 2 ) ) )
end.
Output:
5**3**2:            15625
(5**3)**2:          15625
5**(3**2):        1953125

APL

APL has no order of precedence other than right-to-left operation. * is the APL exponentiation operator.

      5*3*2
1953125
      (5*3)*2
15625
      5*(3*2)
1953125

AppleScript

AppleScript's compiler inserts its own parentheses with 5 ^ 3 ^ 2.

set r1 to 5 ^ 3 ^ 2 -- Changes to 5 ^ (3 ^ 2) when compiled.
set r2 to (5 ^ 3) ^ 2
set r3 to 5 ^ (3 ^ 2)

return "5 ^ 3 ^ 2 = " & r1 & "
(5 ^ 3) ^ 2 = " & r2 & "
5 ^ (3 ^ 2) = " & r3
Output:
"5 ^ 3 ^ 2 = 1.953125E+6
(5 ^ 3) ^ 2 = 1.5625E+4
5 ^ (3 ^ 2) = 1.953125E+6"

Arturo

print 5^3^2
print (5^3)^2
print 5^(3^2)
Output:
1953125
15625
1953125

AWK

# syntax: GAWK -f EXPONENTIATION_ORDER.AWK
BEGIN {
    printf("5^3^2   = %d\n",5^3^2)
    printf("(5^3)^2 = %d\n",(5^3)^2)
    printf("5^(3^2) = %d\n",5^(3^2))
    exit(0)
}

output:

5^3^2   = 1953125
(5^3)^2 = 15625
5^(3^2) = 1953125

BASIC

Sinclair ZX81 BASIC

10 PRINT "5**3**2   = ";5**3**2
20 PRINT "(5**3)**2 = ";(5**3)**2
30 PRINT "5**(3**2) = ";5**(3**2)
Output:
5**3**2   = 15625
(5**3)**2 = 15625
5**(3**2) = 1953125

BBC BASIC

PRINT "5^3^2   = "; 5^3^2
PRINT "(5^3)^2 = "; (5^3)^2
PRINT "5^(3^2) = "; 5^(3^2)
Output:
5^3^2   = 15625
(5^3)^2 = 15625
5^(3^2) = 1953125

IS-BASIC

100 PRINT "5^3^2   =";5^3^2
110 PRINT "(5^3)^2 =";(5^3)^2
120 PRINT "5^(3^2) =";5^(3^2)
Output:
5^3^2   = 15625
(5^3)^2 = 15625
5^(3^2) = 1953125


QBasic

Works with: QBasic version 1.1
Works with: QuickBasic version 4.5
Works with: FreeBASIC
Works with: True BASIC
Works with: BASIC256
Works with: Run BASIC
PRINT "5^3^2   ="; 5^3^2
PRINT "(5^3)^2 ="; (5^3)^2
PRINT "5^(3^2) ="; 5^(3^2)
END
Output:
5^3^2   = 15625
(5^3)^2 = 15625
5^(3^2) = 1953125

BASIC256

Works with: QBasic
Works with: FreeBASIC
Works with: True BASIC
Works with: Run BASIC
print "5^3^2   = "; 5^3^2
print "(5^3)^2 = "; (5^3)^2
print "5^(3^2) = "; 5^(3^2)
end
Output:
5^3^2   = 15625
(5^3)^2 = 15625
5^(3^2) = 1953125

Run BASIC

Works with: QBasic
Works with: FreeBASIC
Works with: True BASIC
Works with: BASIC256
print "5^3^2   = "; 5^3^2
print "(5^3)^2 = "; (5^3)^2
print "5^(3^2) = "; 5^(3^2)
end
Output:
5^3^2   = 15625
(5^3)^2 = 15625
5^(3^2) = 1953125

True BASIC

Works with: QBasic
Works with: FreeBASIC
Works with: BASIC256
Works with: Run BASIC
PRINT "5^3^2   ="; 5^3^2
PRINT "(5^3)^2 ="; (5^3)^2
PRINT "5^(3^2) ="; 5^(3^2)
END
Output:
5^3^2   = 15625
(5^3)^2 = 15625
5^(3^2) = 1953125

Yabasic

Works with: QBasic
Works with: FreeBASIC
Works with: True BASIC
Works with: BASIC256
print "5^3^2   = ", 5^3^2
print "(5^3)^2 = ", (5^3)^2
print "5^(3^2) = ", 5^(3^2)
end
Output:
5^3^2   = 15625
(5^3)^2 = 15625
5^(3^2) = 1953125


Bracmat

put$str$("5^3^2: " 5^3^2 "\n(5^3)^2: " (5^3)^2 "\n5^(3^2): " 5^(3^2) \n)
Output:
5^3^2: 1953125
(5^3)^2: 15625
5^(3^2): 1953125

C

C does not have an exponentiation operator. The caret operator '^' performs xor bitwise operation in C. The function pow in the standard C Math library takes two arguments.

#include<stdio.h>
#include<math.h>

int main()
{
    printf("(5 ^ 3) ^ 2 = %.0f",pow(pow(5,3),2));
    printf("\n5 ^ (3 ^ 2) = %.0f",pow(5,pow(3,2)));
	
    return 0;
}
Output:
(5 ^ 3) ^ 2 = 15625
5 ^ (3 ^ 2) = 1953125

C++

#include <iostream>
#include <cmath>

int main() {
    std::cout << "(5 ^ 3) ^ 2 = " << (uint) pow(pow(5,3), 2) << std::endl;
    std::cout << "5 ^ (3 ^ 2) = "<< (uint) pow(5, (pow(3, 2)));
	
    return EXIT_SUCCESS;
}

With permissive flag:

#include <iostream>
#include <cmath>

enum my_int {};
inline my_int operator^(my_int a, my_int b) { return static_cast<my_int>(pow(a,b)); }

int main() {
    my_int x = 5, y = 3, z = 2;
    std::cout << "(5 ^ 3) ^ 2 = " << ((x^y)^z) << std::endl;
    std::cout << "5 ^ (3 ^ 2) = "<< (x^(y^z));
	
    return EXIT_SUCCESS;
}
Output:
(5 ^ 3) ^ 2 = 15625
5 ^ (3 ^ 2) = 1953125

C#

using System;

namespace exponents
{
    class Program
    {
        static void Main(string[] args)
        {
            /* 
             * Like C, C# does not have an exponent operator.
             * Exponentiation is done via Math.Pow, which
             * only takes two arguments 
             */
            Console.WriteLine(Math.Pow(Math.Pow(5, 3), 2));
            Console.WriteLine(Math.Pow(5, Math.Pow(3, 2)));
            Console.Read();
        }

    }
}
Output:
15625
1953125

Clojure

Clojure uses prefix notation and expt only takes 2 arguments for exponentiation, so "5**3**2" isn't represented.

(use 'clojure.math.numeric-tower)
;; (5**3)**2
(expt (expt 5 3) 2)      ; => 15625

;; 5**(3**2)
(expt 5 (expt 3 2))      ; => 1953125

;; (5**3)**2 alternative: use reduce 
(reduce expt [5 3 2])  ; => 15625

;; 5**(3**2) alternative: evaluating right-to-left with reduce requires a small modification
(defn rreduce [f coll] (reduce #(f %2 %) (reverse coll)))
(rreduce expt [5 3 2]) ; => 1953125

CLU

start_up = proc ()
    po: stream := stream$primary_output()
    
    stream$putl(po, "5**3**2   = " || int$unparse(5**3**2))
    stream$putl(po, "(5**3)**2 = " || int$unparse((5**3)**2))
    stream$putl(po, "5**(3**2) = " || int$unparse(5**(3**2)))
end start_up
Output:
5**3**2   = 1953125
(5**3)**2 = 15625
5**(3**2) = 1953125

Common Lisp

Because Common Lisp uses prefix notation and expt accepts only two arguments, it doesn't have an expression for 5**3**2. Just showing expressions for the latter two.

(expt (expt 5 3) 2)
(expt 5 (expt 3 2))
Output:
15625
1953125

D

void main() {
    import std.stdio, std.math, std.algorithm;

    writefln("5 ^^ 3 ^^ 2          = %7d", 5 ^^ 3 ^^ 2);
    writefln("(5 ^^ 3) ^^ 2        = %7d", (5 ^^ 3) ^^ 2);
    writefln("5 ^^ (3 ^^ 2)        = %7d", 5 ^^ (3 ^^ 2));
    writefln("[5, 3, 2].reduce!pow = %7d", [5, 3, 2].reduce!pow);
}
Output:
5 ^^ 3 ^^ 2          = 1953125
(5 ^^ 3) ^^ 2        =   15625
5 ^^ (3 ^^ 2)        = 1953125
[5, 3, 2].reduce!pow =   15625

EchoLisp

;; the standard and secure way is to use the (expt a b) function
(expt 5 (expt 3 2))  ;; 5 ** ( 3 ** 2)
     1953125
(expt (expt 5 3) 2) ;; (5 ** 3) ** 2
     15625

;; infix EchoLisp may use the ** operator, which right associates
(lib 'match)
(load 'infix.glisp)

(5 ** 3 ** 2)
     1953125
((5 ** 3) ** 2)
     15625
(5 ** (3 ** 2))
     1953125

Factor

Factor is a stack language where expressions take the form of reverse Polish notation, so there is no ambiguity here. It is up to you, the programmer, to perform operations in the order you intend.

USING: formatting math.functions ;

5 3 2 ^ ^
"5 3 2 ^ ^  %d\n" printf

5 3 ^ 2 ^
"5 3 ^ 2 ^  %d\n" printf
Output:
5 3 2 ^ ^  1953125
5 3 ^ 2 ^  15625

Factor also has syntax for infix arithmetic via the the infix vocabulary.

USING: formatting infix ;

[infix  5**3**2    infix]
"5**3**2   = %d\n" printf

[infix  (5**3)**2  infix]
"(5**3)**2 = %d\n" printf

[infix  5**(3**2)  infix]
"5**(3**2) = %d\n" printf
Output:
5**3**2   = 15625
(5**3)**2 = 15625
5**(3**2) = 1953125

Fortran

write(*, "(a, i0)") "5**3**2   = ", 5**3**2
write(*, "(a, i0)") "(5**3)**2 = ", (5**3)**2
write(*, "(a, i0)") "5**(3**2) = ", 5**(3**2)
Output:
5**3**2   = 1953125
(5**3)**2 = 15625
5**(3**2) = 1953125

FreeBASIC

' FB 1.05.0

' The exponentation operator in FB is ^ rather than **.
' In the absence of parenthesis this operator is
' left-associative. So the first example
' will have the same value as the second example.

Print "5^3^2   =>"; 5^3^2
Print "(5^3)^2 =>"; (5^3)^2
Print "5^(3^2) =>"; 5^(3^2)
Sleep
Output:
5^3^2   => 15625
(5^3)^2 => 15625
5^(3^2) => 1953125

Frink

Frink correctly follows standard mathematical notation that exponent towers are performed from "top to bottom" or "right to left."

println["5^3^2   = " + 5^3^2]
println["(5^3)^2 = " + (5^3)^2]
println["5^(3^2) = " + 5^(3^2)]
Output:
5^3^2   = 1953125
(5^3)^2 = 15625
5^(3^2) = 1953125

Go

package main

import "fmt"
import "math"

func main() {
    var a, b, c float64
    a = math.Pow(5, math.Pow(3, 2))
    b = math.Pow(math.Pow(5, 3), 2)
    c = math.Pow(5, math.Pow(3, 2))
    fmt.Printf("5^3^2   = %.0f\n", a)
    fmt.Printf("(5^3)^2 = %.0f\n", b)
    fmt.Printf("5^(3^2) = %.0f\n", c)
}
Output:
5^3^2   = 1953125
(5^3)^2 = 15625
5^(3^2) = 1953125

Groovy

Solution:

println(" 5 ** 3 ** 2 == " + 5**3**2)
println("(5 ** 3)** 2 == " + (5**3)**2)
println(" 5 **(3 ** 2)== " + 5**(3**2))

Output:

 5 ** 3 ** 2 == 15625
(5 ** 3)** 2 == 15625
 5 **(3 ** 2)== 1953125

Haskell

Haskell has three infix exponentiation operators dealing with different domains:

λ> :i (^)
(^) :: (Num a, Integral b) => a -> b -> a 	-- Defined in ‘GHC.Real’
infixr 8 ^
λ> :i (**)
class Fractional a => Floating a where
  ...
  (**) :: a -> a -> a
  ...
  	-- Defined in ‘GHC.Float’
infixr 8 **
λ> :i (^^)
(^^) :: (Fractional a, Integral b) => a -> b -> a  -- Defined in ‘GHC.Real’
infixr 8 ^^

All of them are right-associative.

λ> 5^3^2
1953125
λ> (5^3)^2
15625
λ> 5^(3^2)
1953125
λ> 5**3**2 == 5**(3**2)
True

However natural chaining of (^^) operator is impossible:

 5^^3^^2 = 5^^(3^^2)

but (3^^2) is not Integral any longer, so evaluation leads to the type error. Left-assiciative chain is Ok:

λ> (5^^3)^^2
15625.0
λ> ((5^^3)^^2)^^4
5.9604644775390624e16

Io

Io> 5**3**2
==> 15625
Io> (5**3)**2
==> 15625
Io> 5**(3**2)
==> 1953125
Io> 5 pow(3) pow(2)
==> 15625
Io> 5 **(3) **(2)
==> 15625
Io> Number getSlot("**") == Number getSlot("pow")
==> true
Io> 

Operators in Io are implemented as methods. Here the ** method is the same as the pow method. Syntax sugar converts "normal" mathematical expressions to messages.

J

J uses the same evaluation order for exponentiation as it does for assignment. That is to say: the bottom up view is right-to-left and the top-down view is left-to-right.

   5^3^2
1.95312e6
   (5^3)^2
15625
   5^(3^2)
1.95312e6

Java

Java has no exponentiation operator, but uses the static method java.lang.Math.pow(double a, double b). There are no associativity issues.

jq

Requires: jq 1.5 or higher

jq's built-in for exponentiation is an arity-two function and thus no ambiguity arising from infix-notation is possible. Here's an example:

jq -n 'pow(pow(5;3);2)'
15625

For chaining, one could use `reduce`:

    def pow: reduce .[1:] as $i (.[0]; pow(.;$i))

    [5,3,2] | pow

Result: 15625

Julia

Works with: Julia version 0.6
@show 5 ^ 3 ^ 2 # default: power operator is read right-to-left
@show (5 ^ 3) ^ 2
@show 5 ^ (3 ^ 2)
@show reduce(^, [5, 3, 2])
@show foldl(^, [5, 3, 2]) # guarantees left associativity
@show foldr(^, [5, 3, 2]) # guarantees right associativity
Output:
5 ^ (3 ^ 2) = 1953125
(5 ^ 3) ^ 2 = 15625
5 ^ (3 ^ 2) = 1953125
reduce(^, [5, 3, 2]) = 15625
foldl(^, [5, 3, 2]) = 15625
foldr(^, [5, 3, 2]) = 1953125

Kotlin

Kotlin does not have a dedicated exponentiation operator and we would normally use Java's Math.pow function instead. However, it's possible to define an infix function which would look like an operator and here we do so for integer base and exponent. For simplicity we disallow negative exponents altogether and consider 0 ** 0 == 1. Associativity would, of course, be the same as for a normal function call.

// version 1.0.5-2

infix fun Int.ipow(exp: Int): Int = when {
    exp < 0   -> throw IllegalArgumentException("negative exponents not allowed")
    exp == 0  -> 1
    else      -> {
        var ans = 1
        var base = this
        var e = exp
        while(e != 0) {
            if (e and 1 == 1) ans *= base
            e = e shr 1
            base *= base
        }
        ans
    }
} 

fun main(args: Array<String>) {
    println("5**3**2   = ${5 ipow 3 ipow 2}") 
    println("(5**3)**2 = ${(5 ipow 3) ipow 2}")
    println("5**(3**2) = ${5 ipow (3 ipow 2)}")
}
Output:
5**3**2   = 15625
(5**3)**2 = 15625
5**(3**2) = 1953125

Lambdatalk

Because lambdatalk uses prefix notation and {pow a b} accepts only two arguments, it doesn't have an expression for 5**3**2. Just showing expressions for the latter two.

'{pow {pow 5 3} 2}
-> {pow {pow 5 3} 2}
'{pow 5 {pow 3 2}}
-> {pow 5 {pow 3 2}}

Latitude

5 ^ 3 ^ 2.   ;; 1953125
(5 ^ 3) ^ 2. ;; 15625
5 ^ (3 ^ 2). ;; 1953125

Lua

print("5^3^2 = " .. 5^3^2)
print("(5^3)^2 = " .. (5^3)^2)
print("5^(3^2) = " .. 5^(3^2))
Output:
5^3^2 = 1953125
(5^3)^2 = 15625
5^(3^2) = 1953125

Lua also has math.pow(a, b), which is identical to pow(a, b) in C. Since function arguments are contained in brackets anyway, the associativity of nested uses of math.pow will be obvious.

Maple

5^3^2;
(5^3)^2;
5^(3^2);
Output:
Error, ambiguous use of `^`, please use parentheses
15625
1953125

Mathematica / Wolfram Language

a = "5^3^2";
Print[a <> " = " <> ToString[ToExpression[a]]]
b = "(5^3)^2";
Print[b <> " = " <> ToString[ToExpression[b]]]
c = "5^(3^2)";
Print[c <> " = " <> ToString[ToExpression[c]]]
Output:
5^3^2 = 1953125
(5^3)^2 = 15625
5^(3^2) = 1953125

min

As with other postfix languages, there is no ambiguity because all operators have the same precedence.

Works with: min version 0.19.6
5 3 2 pow pow
"5 3 2 ^ ^  " print! puts!

5 3 pow 2 pow
"5 3 ^ 2 ^  " print! puts!
Output:
5 3 2 ^ ^  1953125.0
5 3 ^ 2 ^  15625.0

Nanoquery

Nanoquery uses the '^' operator, which performs exponentiation in order like multiplication. Parenthesis are often needed to perform operations like 5^3^2 correctly.

% println 5^3^2
15625
% println (5^3)^2
15625
% println 5^(3^2)
1953125

Nim

<Lang Nim>import math, sequtils

echo "5^3^2 = ", 5^3^2 echo "(5^3)^2 = ", (5^3)^2 echo "5^(3^2) = ", 5^(3^2) echo "foldl([5, 3, 2], a^b) = ", foldl([5, 3, 2], a^b) echo "foldr([5, 3, 2], a^b) = ", foldr([5, 3, 2], a^b)</syntaxhighlight>

Output:
5^3^2 =   1953125
(5^3)^2 = 15625
5^(3^2) = 1953125
foldl([5, 3, 2], a^b) = 15625
foldr([5, 3, 2], a^b) = 1953125

OCaml

OCaml language has '**' as an exponentiation symbol for floating point integers <OCaml code>

  1. 5. ** 3. ** 2. ;;
  2. 5. **( 3. ** 2.) ;;
  3. (5. ** 3. ) **2. ;;
Output:
- :   float = 1953125.
- :     float = 1953125. 
- :   float = 15625.

PARI/GP

Exponentiation is right-associative in GP.

f(s)=print(s" = "eval(s));
apply(f, ["5^3^2", "(5^3)^2", "5^(3^2)"]);
Output:
5^3^2 = 1953125
(5^3)^2 = 15625
5^(3^2) = 1953125

Perl

say "$_ = " . eval($_)  for  qw/5**3**2  (5**3)**2  5**(3**2)/;
Output:
5**3**2 = 1953125
(5**3)**2 = 15625
5**(3**2) = 1953125

Phix

Library: Phix/basics

Phix has a power function rather than an infix power operator, hence there is no possible confusion.

?power(power(5,3),2)
?power(5,power(3,2))
Output:
15625
1953125

PicoLisp

The PicoLisp '**' exponentiation function takes 2 arguments

: (** (** 5 3) 2)
-> 15625

: (** 5 (** 3 2))
-> 1953125

PL/I

exponentiation: procedure options(main);
    put skip edit('5**3**2   = ', 5**3**2)   (A,F(7));
    put skip edit('(5**3)**2 = ', (5**3)**2) (A,F(7));
    put skip edit('5**(3**2) = ', 5**(3**2)) (A,F(7));
end exponentiation;
Output:
5**3**2   =   15625
(5**3)**2 =   15625
5**(3**2) = 1953125

Python

>>> 5**3**2
1953125
>>> (5**3)**2
15625
>>> 5**(3**2)
1953125
>>> # The following is not normally done
>>> try: from functools import reduce # Py3K
except: pass

>>> reduce(pow, (5, 3, 2))
15625
>>>

Quackery

Quackery uses Reverse Polish Notation, so there is no ambiguity and no need for parenthesising.

As a dialogue in the Quackery Shell…

Welcome to Quackery.

Enter "leave" to leave the shell.

/O> $ "5 3 2 ** **" dup echo$ say " returns " quackery echo cr
... $ "5 3 ** 2 **" dup echo$ say " returns " quackery echo cr
... 
5 3 2 ** ** returns 1953125
5 3 ** 2 ** returns 15625

Stack empty.

R

The 'Operator Syntax and Precedence' documentation tells us that "^" is "exponentiation (right to left)". The 'Arithmetic Operators' documentation also tells us that the parser translates "**" to "^", but its depreciation status is complicated.

It turns out that the parser is so blind to "**" that we cannot even quote it. The following are identical:

print(quote(5**3))
print(quote(5^3))

Another method is to use "^" as if it is an ordinary function of two arguments. It appears that "**" does not support this. As there is no potential for ambiguity in the operator precedence, we will not print this result below. For example:

'^'('^'(5, 3), 2)

is clearly (5^3)^2 i.e. 15625, whereas

'^'(5, '^'(3, 2))

is clearly 5^(3^2) i.e. 1953125.

As for actually solving the task, the requirement that each output be on a new line causes us a surprising amount of difficulty. To avoid repeating ourselves, we must almost resort to metaprogramming:

inputs <- alist(5^3^2, (5^3)^2, 5^(3^2), 5**3**2, (5**3)**2, 5**(3**2))
invisible(sapply(inputs, function(x) cat(deparse(x), "returns: ", eval(x), "\n")))

Alternatively, we could print out a matrix or data frame:

print(matrix(sapply(inputs, eval), dimnames = list(inputs, "Outputs")))
print(data.frame(Inputs = sapply(inputs, deparse), Outputs = sapply(inputs, eval))))
Output:
> print(quote(5**3))
5^3
> print(quote(5^3))
5^3
> invisible(sapply(inputs, function(x) cat(deparse(x), "returns: ", eval(x), "\n")))
5^3^2 returns:  1953125 
(5^3)^2 returns:  15625 
5^(3^2) returns:  1953125 
5^3^2 returns:  1953125 
(5^3)^2 returns:  15625 
5^(3^2) returns:  1953125
> print(matrix(sapply(inputs, eval), dimnames = list(inputs, "Outputs")))
        Outputs
5^3^2   1953125
(5^3)^2   15625
5^(3^2) 1953125
5^3^2   1953125
(5^3)^2   15625
5^(3^2) 1953125
> print(data.frame(Inputs = sapply(inputs, deparse), Outputs = sapply(inputs, eval)))
   Inputs Outputs
1   5^3^2 1953125
2 (5^3)^2   15625
3 5^(3^2) 1953125
4   5^3^2 1953125
5 (5^3)^2   15625
6 5^(3^2) 1953125

Racket

#lang racket
;; 5**3**2 depends on associativity of ** : Racket's (scheme's) prefix function
;; calling syntax only allows for pairs of arguments for expt.

;; So no can do for 5**3**2
;; (5**3)**2
(displayln "prefix")
(expt (expt 5 3) 2)
;; (5**3)**2
(expt 5 (expt 3 2))

;; There is also a less-used infix operation (for all functions, not just expt)... which I suppose
;; might do with an airing. But fundamentally nothing changes.
(displayln "\"in\"fix")
((5 . expt . 3) . expt .  2)
(5  . expt . (3 . expt . 2))

;; everyone's doing a reduction, it seems
(displayln "reduction")
(require (only-in srfi/1 reduce reduce-right))
(reduce expt 1 '(5 3 2))
(reduce-right expt 1 '(5 3 2))
Output:
prefix
15625
1953125
"in"fix
15625
1953125
reduction
14134776518227074636666380005943348126619871175004951664972849610340958208
1953125

Raku

(formerly Perl 6)

Works with: rakudo version 2016.08

Note that the reduction forms automatically go right-to-left because the base operator is right-associative. Most other operators are left-associative and would automatically reduce left-to-right instead.

use MONKEY-SEE-NO-EVAL;
sub demo($x) { say "  $x\t───► ", EVAL $x }

demo '5**3**2';      # show ** is right associative
demo '(5**3)**2';
demo '5**(3**2)';

demo '[**] 5,3,2';   # reduction form, show only final result
demo '[\**] 5,3,2';  # triangle reduction, show growing results

# Unicode postfix exponents are supported as well:

demo '(5³)²';
demo '5³²';
Output:
  5**3**2	───► 1953125
  (5**3)**2	───► 15625
  5**(3**2)	───► 1953125
  [**] 5,3,2	───► 1953125
  [\**] 5,3,2	───► 2 9 1953125
  (5³)²	───► 15625
  5³²	───► 23283064365386962890625

The Unicode exponent form without parentheses ends up raising to the 32nd power. Nor are you even allowed to parenthesize it the other way: 5(³²) would be a syntax error. Despite all that, for programs that do a lot of squaring or cubing, the postfix forms can enhance both readability and concision.

Red

In Red, operators simply evaluate left to right. As this differs from mathematical order of operations, Red provides the math function which evaluates a block using math rules instead of Red's default evaluation. One could also use the power function, sidestepping the issue of evaluation order entirely. All three approaches are shown.

Red["Exponentiation order"]

exprs: [
    [5 ** 3 ** 2]
    [(5 ** 3) ** 2]
    [5 ** (3 ** 2)]
    [power power 5 3 2]   ;-- functions too
    [power 5 power 3 2]
]

foreach expr exprs [
    print [mold/only expr "=" do expr]
    if find expr '** [
        print [mold/only expr "=" math expr "using math"]
    ]
]
Output:
5 ** 3 ** 2 = 15625
5 ** 3 ** 2 = 1953125 using math
(5 ** 3) ** 2 = 15625
(5 ** 3) ** 2 = 15625 using math
5 ** (3 ** 2) = 1953125
5 ** (3 ** 2) = 1953125 using math
power power 5 3 2 = 15625
power 5 power 3 2 = 1953125

REXX

/*REXX program demonstrates various ways of multiple exponentiations.   */
/*┌────────────────────────────────────────────────────────────────────┐
  │ The REXX language uses      **      for exponentiation.            │
  │                   Also,    *  *     can be used.                   │
  |    and even                */*power of*/*                          |
  └────────────────────────────────────────────────────────────────────┘*/

say '   5**3**2   ───► '    5**3**2
say '   (5**3)**2 ───► '    (5**3)**2
say '   5**(3**2) ───► '    5**(3**2)
                                       /*stick a fork in it, we're done.*/

output

   5**3**2   ───►  15625
   (5**3)**2 ───►  15625
   5**(3**2) ───►  1953125

Ring

In the Ring it is impossible to show the result of: 5^3^2

see "(5^3)^2 =>" + pow(pow(5,3),2) + nl
see "5^(3^2) =>" + pow(5,pow(3,2)) + nl

Output:

(5^3)^2 =>15625
5^(3^2) =>1953125

Ruby

ar = ["5**3**2", "(5**3)**2", "5**(3**2)", "[5,3,2].inject(:**)"]
ar.each{|exp| puts "#{exp}:\t#{eval exp}"}
Output:
5**3**2:	1953125
(5**3)**2:	15625
5**(3**2):	1953125
[5,3,2].inject(:**):	15625

Rust

fn main() {
    println!("5**3**2   = {:7}", 5u32.pow(3).pow(2));
    println!("(5**3)**2 = {:7}", (5u32.pow(3)).pow(2));
    println!("5**(3**2) = {:7}", 5u32.pow(3u32.pow(2)));
}
Output:
5**3**2   =   15625
(5**3)**2 =   15625
5**(3**2) = 1953125

Scala

Scal has no exponentiation operator, but uses the function (scala.)math.pow(x: Double, y: Double): Double function in the Scala runtime library.
Integer exponentiation can be done with e.g. BigInt or BigInteger.pow(n: Int) method.
There are no associativity issues.

Seed7

$ include "seed7_05.s7i";

const proc: main is func
  begin
    writeln("5**3**2   = " <& 5**3**2);
    writeln("(5**3)**2 = " <& (5**3)**2);
    writeln("5**(3**2) = " <& 5**(3**2));
  end func;
Output:
5**3**2   = 1953125
(5**3)**2 = 15625
5**(3**2) = 1953125

Sidef

In Sidef, the whitespace between the operands and the operator controls the precedence of the operation.

var a = [
    '5**3**2',
    '(5**3)**2',
    '5**(3**2)',
    '5 ** 3 ** 2',
    '5 ** 3**2',
    '5**3 ** 2',
    '[5,3,2]«**»',
]

a.each {|e|
    "%-12s == %s\n".printf(e, eval(e))
}
Output:
5**3**2      == 1953125
(5**3)**2    == 15625
5**(3**2)    == 1953125
5 ** 3 ** 2  == 15625
5 ** 3**2    == 1953125
5**3 ** 2    == 15625
[5,3,2]«**»  == 15625

Simula

OutText("5** 3 **2: "); OutInt(5** 3 **2, 0); Outimage;
OutText("(5**3)**2: "); OutInt((5**3)**2, 0); Outimage;
OutText("5**(3**2): "); OutInt(5**(3**2), 0); Outimage
Output:
5** 3 **2: 15625
(5**3)**2: 15625
5**(3**2): 1953125

Smalltalk

Works in Smalltalk/X ¹

Smalltalk strictly evaluates left to right; operators are not known to the language/parser, but instead message sends to the receiver on the left side (aka: virtual function calls) .

Transcript show:'5**3**2 => '; showCR: 5**3**2.
Transcript show:'(5**3)**2 => '; showCR: (5**3)**2.
Transcript show:'5**(3**2) => '; showCR: 5**(3**2).
Output:
5**(3**2) => 1953125
5**3**2 => 15625
(5**3)**2 => 15625

Note ¹ other Smalltalk's may define ** to simply call "raisedTo:", which is standard.

Stata

. di (5^3^2)
15625

. di ((5^3)^2)
15625

. di (5^(3^2))
1953125

Likewise in Mata:

. mata (5^3^2)
  15625

. mata ((5^3)^2)
  15625

. mata (5^(3^2))
  1953125


Swift

Swift doesn't have an exponentiation operator, however it's possible to define one, including the precedence and associativity.

precedencegroup ExponentiationPrecedence {
  associativity: left
  higherThan: MultiplicationPrecedence
}

infix operator ** : ExponentiationPrecedence

@inlinable
public func ** <T: BinaryInteger>(lhs: T, rhs: T) -> T {
  guard lhs != 0 else {
    return 1
  }

  var x = lhs
  var n = rhs
  var y = T(1)

  while n > 1 {
    switch n & 1 {
    case 0:
      n /= 2
    case 1:
      y *= x
      n = (n - 1) / 2
    case _:
      fatalError()
    }

    x *= x
  }

  return x * y
}

print(5 ** 3 ** 2)
print((5 ** 3) ** 2)
print(5 ** (3 ** 2))
Output:
15625
15625
1953125

Tcl

foreach expression {5**3**2 (5**3)**2 5**(3**2)} {
    puts "${expression}:\t[expr $expression]"
}
Output:
5**3**2:	1953125
(5**3)**2:	15625
5**(3**2):	1953125

There's also a binary pow() expression function that always converts its arguments to floating point numbers and then applies the exponentiation operation; it's now largely obsolete because of the ** operator, but is retained for backward compatibility with older programs.

VBA

Public Sub exp()
    Debug.Print "5^3^2", 5 ^ 3 ^ 2
    Debug.Print "(5^3)^2", (5 ^ 3) ^ 2
    Debug.Print "5^(3^2)", 5 ^ (3 ^ 2)
End Sub
Output:
5^3^2          15625 
(5^3)^2        15625 
5^(3^2)        1953125 

VBScript

WScript.StdOut.WriteLine "5^3^2 => " & 5^3^2
WScript.StdOut.WriteLine "(5^3)^2 => " & (5^3)^2
WScript.StdOut.WriteLine "5^(3^2) => " & 5^(3^2)
Output:
5^3^2 => 15625
(5^3)^2 => 15625
5^(3^2) => 1953125

Verbexx

// Exponentiation order example:

@SAY "5**3**2   = " ( 5**3**2   ); 
@SAY "(5**3)**2 = " ( (5**3)**2 );
@SAY "5**(3**2) = " ( 5**(3**2) );

/] Output:
  
    5**3**2   =  1953125
    (5**3)**2 =  15625
    5**(3**2) =  1953125

Wren

Library: Wren-fmt

Wren doesn't have an exponentiation operator as such but the Num class has a pow method which does the same thing.

import "/fmt" for Fmt

var ops = [ "5**3**2", "(5**3)**2", "5**(3**2)" ]
var results = [ 5.pow(3).pow(2), (5.pow(3)).pow(2), 5.pow(3.pow(2)) ]
for (i in 0...ops.count) {
    System.print("%(Fmt.s(-9, ops[i])) -> %(results[i])")
}
Output:
5**3**2   -> 15625
(5**3)**2 -> 15625
5**(3**2) -> 1953125

zkl

Translation of: C

zkl does not have an exponentiation operator but floats have a pow method.

println("5 ^ 3 ^ 2   = %,d".fmt((5.0).pow((3.0).pow(2))));
println("(5 ^ 3) ^ 2 = %,d".fmt((5.0).pow(3).pow(2)));
println("5 ^ (3 ^ 2) = %,d".fmt((5.0).pow((3.0).pow(2))));
Output:
5 ^ 3 ^ 2   = 1,953,125
(5 ^ 3) ^ 2 = 15,625
5 ^ (3 ^ 2) = 1,953,125