Exponentiation with infix operators in (or operating on) the base

From Rosetta Code
Task
Exponentiation with infix operators in (or operating on) the base
You are encouraged to solve this task according to the task description, using any language you may know.

(Many programming languages,   especially those with extended─precision integer arithmetic,   usually support one of **, ^, or some such for exponentiation.)


Some languages treat/honor infix operators when performing exponentiation   (raising numbers to some power by the language's exponentiation operator,   if the computer programming language has one).


Other programming languages may make use of the   POW   or some other BIF   (Built─In Ffunction),   or some other library service.

If your language's exponentiation operator is not one of the usual ones, please comment on how to recognize it.


This task will deal with the case where there is some form of an   infix operator   operating in   (or operating on)   the base.


Example

A negative five raised to the 3rd power could be specified as:

   -5  ** 3          or as
  -(5) ** 3          or as
  (-5) ** 3          or as something else


(Not all computer programming languages have an exponential operator and/or support these syntax expression(s).


Task
  •   compute and display exponentiation with a possible infix operator, whether specified and/or implied/inferred.
  •   Raise the following numbers   (integer or real):
  •   -5     and
  •   +5
  •   to the following powers:
  •   2nd     and
  •   3rd
  •   using the following expressions   (if applicable in your language):
  •   -x**p
  •   -(x)**p
  •   (-x)**p
  •   -(x**p)
  •   Show here (on this page) the four (or more) types of symbolic expressions for each number and power.


Try to present the results in the same format/manner as the other programming entries to make any differences apparent.


The variables may be of any type(s) that is/are applicable in your language.


Related tasks



References



Ada

The order of precedence for Ada operators is:

logical_operator            ::=   and | or  | xor
relational_operator         ::=   =   | /=  | <   | <= | > | >=
binary_adding_operator      ::=   +   | –   | &
unary_adding_operator       ::=   +   | –
multiplying_operator        ::=   *   | /   | mod | rem
highest_precedence_operator ::=   **  | abs | not

Ada provides an exponentiation operator for integer types and floating point types.

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Float_Text_IO; use Ada.Float_Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Main is
   ivalue : Integer := -5;
   fvalue : float   := -5.0;
begin
   Put_Line("Integer exponentiation:");
   for i in 1..2 loop
      for power in 2..3 loop

         Put("x =" & ivalue'image & " p =" & power'image);
         Put("   -x ** p ");
         Put(item => -ivalue ** power, width => 4);
         Put("   -(x) ** p ");
         Put(item => -(ivalue) ** power, width => 4);
         Put("   (-x) ** p ");
         Put(Item => (- ivalue) ** power, Width => 4);
         Put("   -(x ** p) ");
         Put(Item => -(ivalue ** power), Width => 4);
         New_line;
      end loop;
      ivalue := 5;
      fvalue := 5.0;
   end loop;
   Put_Line("floating point exponentiation:");
   ivalue := -5;
   fvalue := -5.0;

   for i in 1..2 loop
      for power in 2..3 loop
         Put("x =" & fvalue'image & " p =" & power'image);
         Put("   -x ** p ");
         Put(item => -fvalue ** power, fore => 4, Aft => 1, Exp => 0);
         Put("   -(x) ** p ");
         Put(item => -(fvalue) ** power, fore => 4, Aft => 1, Exp => 0);
         Put("   (-x) ** p ");
         Put(Item => (- fvalue) ** power, fore => 4, Aft => 1, Exp => 0);
         Put("   -(x ** p) ");
         Put(Item => -(fvalue ** power), fore => 4, Aft => 1, Exp => 0);
         New_line;
      end loop;
      ivalue := 5;
      fvalue := 5.0;
   end loop;
end Main;
Output:
Integer exponentiation:
x =-5 p = 2   -x ** p  -25   -(x) ** p  -25   (-x) ** p   25   -(x ** p)  -25
x =-5 p = 3   -x ** p  125   -(x) ** p  125   (-x) ** p  125   -(x ** p)  125
x = 5 p = 2   -x ** p  -25   -(x) ** p  -25   (-x) ** p   25   -(x ** p)  -25
x = 5 p = 3   -x ** p -125   -(x) ** p -125   (-x) ** p -125   -(x ** p) -125
floating point exponentiation:
x =-5.00000E+00 p = 2   -x ** p  -25.0   -(x) ** p  -25.0   (-x) ** p   25.0   -(x ** p)  -25.0
x =-5.00000E+00 p = 3   -x ** p  125.0   -(x) ** p  125.0   (-x) ** p  125.0   -(x ** p)  125.0
x = 5.00000E+00 p = 2   -x ** p  -25.0   -(x) ** p  -25.0   (-x) ** p   25.0   -(x ** p)  -25.0
x = 5.00000E+00 p = 3   -x ** p -125.0   -(x) ** p -125.0   (-x) ** p -125.0   -(x ** p) -125.0

ALGOL 68

In Algol 68, all unary operators have a higher precedence than any binary operator.
Algol 68 also allows UP and ^ for the exponentiation operator.

BEGIN
    # show the results of exponentiation and unary minus in various combinations #
    FOR x FROM -5 BY 10 TO 5 DO
        FOR p FROM 2 TO 3 DO
            print( ( "x = ", whole( x, -2 ), " p = ", whole( p, 0 ) ) );
            print( ( "     -x**p  ", whole(   -x**p,  -4 ) ) );
            print( ( "   -(x)**p  ", whole( -(x)**p,  -4 ) ) );
            print( ( "   (-x)**p  ", whole( (-x)**p,  -4 ) ) );
            print( ( "    -(x**p) ", whole(  -(x**p), -4 ) ) );
            print( ( newline ) )
        OD
    OD
END
Output:
x = -5 p = 2     -x**p    25   -(x)**p    25   (-x)**p    25    -(x**p)  -25
x = -5 p = 3     -x**p   125   -(x)**p   125   (-x)**p   125    -(x**p)  125
x =  5 p = 2     -x**p    25   -(x)**p    25   (-x)**p    25    -(x**p)  -25
x =  5 p = 3     -x**p  -125   -(x)**p  -125   (-x)**p  -125    -(x**p) -125

AWK

# syntax: GAWK -f EXPONENTIATION_WITH_INFIX_OPERATORS_IN_OR_OPERATING_ON_THE_BASE.AWK
# converted from FreeBASIC
BEGIN {
    print("  x   p |     -x^p   -(x)^p   (-x)^p   -(x^p)")
    print("--------+------------------------------------")
    for (x=-5; x<=5; x+=10) {
      for (p=2; p<=3; p++) {
        printf("%3d %3d | %8d %8d %8d %8d\n",x,p,(-x^p),(-(x)^p),((-x)^p),(-(x^p)))
      }
    }
    exit(0)
}
Output:
  x   p |     -x^p   -(x)^p   (-x)^p   -(x^p)
--------+------------------------------------
 -5   2 |      -25      -25       25      -25
 -5   3 |      125      125      125      125
  5   2 |      -25      -25       25      -25
  5   3 |     -125     -125     -125     -125

BASIC

Applesoft BASIC

S$="      ":M$=CHR$(13):?M$" X  P    -X^P  -(X)^P  (-X)^P  -(X^P)":FORX=-5TO+5STEP10:FORP=2TO3:?M$MID$("+",1+(X<0));X"  "PRIGHT$(S$+STR$(-X^P),8)RIGHT$(S$+STR$(-(X)^P),8)RIGHT$(S$+STR$((-X)^P),8)RIGHT$(S$+STR$(-(X^P)),8);:NEXTP,X
Output:

 X  P    -X^P  -(X)^P  (-X)^P  -(X^P)

-5  2      25      25      25     -25
-5  3     125     125     125     125
+5  2      25      25      25     -25
+5  3    -125    -125    -125    -125

BASIC256

print "     x    p    |     -x^p      -(x)^p      (-x)^p    -(x^p)"
print ("-"*15); "+"; ("-"*45)
for x = -5 to 5 step 10
	for p = 2 to 3
		print "    "; rjust(x,2); "    "; ljust(p,2); "   |   "; rjust((-x^p),6); "      "; rjust((-(x)^p),6); (" "*6); rjust(((-x)^p),6); "    "; rjust((-(x^p)),6)
	next p
next x
Output:
     x    p    |     -x^p      -(x)^p      (-x)^p    -(x^p)
---------------+---------------------------------------------
    -5    2    |    -25.0       -25.0        25.0     -25.0
    -5    3    |    125.0       125.0       125.0     125.0
     5    2    |    -25.0       -25.0        25.0     -25.0
     5    3    |   -125.0      -125.0      -125.0    -125.0

Gambas

Public Sub Main()

  Print "     x     p    |     -x^p      -(x)^p      (-x)^p    -(x^p)" 
  Print "----------------+---------------------------------------------" 
  For x As Integer = -5 To 5 Step 10 
    For p As Integer = 2 To 3 
        Print "    "; Format$(x, "-#"); "    "; Format$(p, "-#"); "    |     "; Format$((-x ^ p), "-###"); "       "; Format$((-(x) ^ p), "-###"); "        "; Format$(((-x) ^ p), "-###"); "      "; Format$((-(x ^ p)), "-###")
    Next
  Next 

End
Output:
Same as FreeBASIC entry.

QBasic

Works with: QBasic version 1.1
Works with: QuickBasic version 4.5
Works with: FreeBASIC
PRINT "     x     p    |     -x^p      -(x)^p      (-x)^p    -(x^p)"
PRINT "----------------+---------------------------------------------"
FOR x = -5 TO 5 STEP 10
    FOR p = 2 TO 3
        PRINT USING "    ##    ##    |    ####       ####       ####       ####"; x; p; (-x ^ p); (-(x) ^ p); ((-x) ^ p); (-(x ^ p))
    NEXT p
NEXT x
Output:
Same as FreeBASIC entry.

Run BASIC

Works with: Just BASIC
Works with: Liberty BASIC
Works with: QBasic
Works with: True BASIC
print "     x"; chr$(9); "        p"; chr$(9); "    |    "; chr$(9); "-x^p"; chr$(9); "     "; chr$(9); "-(x)^p"; chr$(9); "     "; chr$(9); "(-x)^p"; chr$(9); "    "; chr$(9); "-(x^p)"
print "----------------------------+-----------------------------------------------------------------"
for x = -5 to 5 step 10
  for p = 2 to 3
    print "    "; x; chr$(9); "    "; chr$(9); p; chr$(9); "    |    "; chr$(9); (-1*x^p); chr$(9); "       "; chr$(9); (-1*(x)^p); chr$(9); "       "; chr$(9); ((-1*x)^p); chr$(9); "       "; chr$(9); (-1*(x^p))
  next p
next x
end
Output:
Similar to FreeBASIC entry.

True BASIC

PRINT "     x     p    |     -x^p      -(x)^p      (-x)^p    -(x^p)"
PRINT "----------------+---------------------------------------------"
FOR x = -5 TO 5 STEP 10
    FOR p = 2 TO 3
        PRINT  USING "    ##    ##    |    ####       ####       ####       ####": x, p, (-x^p), (-(x)^p), ((-x)^p), (-(x^p))
    NEXT p
NEXT x
END
Output:
Same as FreeBASIC entry.

PureBasic

OpenConsole()
PrintN("     x     p    |     -x^p    -(x)^p   (-x)^p    -(x^p)")
PrintN("----------------+---------------------------------------")
For x.i = -5 To 5 Step 10
  For p.i = 2 To 3
    PrintN("    " + Str(x) + "    " + Str(p) + "     |      " + StrD(Pow(-x,p),0) + #TAB$ + StrD(Pow(-1*(x),p),0) +  #TAB$ + StrD(Pow((-x),p),0) +  #TAB$ + "  " + StrD(-1*Pow(x,p),0))
  Next p
Next x
Input()
CloseConsole()
Output:
     x     p    |     -x^p    -(x)^p   (-x)^p    -(x^p)
----------------+---------------------------------------
    -5    2     |      25       25      25        -25
    -5    3     |      125      125     125       125
    5    2     |      25        25      25        -25
    5    3     |      -125      -125    -125      -125

XBasic

Works with: Windows XBasic
PROGRAM	"Exponentiation with infix operators in (or operating on) the base"

DECLARE FUNCTION  Entry ()

FUNCTION  Entry ()
PRINT "     x     p    |     -x**p      -(x)**p      (-x)**p    -(x**p)"
PRINT "----------------+-----------------------------------------------"
FOR x = -5 TO 5 STEP 10
  FOR p = 2 TO 3
    PRINT "    "; FORMAT$("##",x); "    "; FORMAT$("##",p); "    |   "; FORMAT$("######",(-x**p)); "       "; FORMAT$("######",(-(x)**p)); "       "; FORMAT$("######",((-x)**p)); "    "; FORMAT$("######",(-(x**p)))
  NEXT p
NEXT x
END FUNCTION
END PROGRAM
Output:
Similar to FreeBASIC entry.

Yabasic

print "     x     p    |     -x^p      -(x)^p      (-x)^p    -(x^p)"
print "----------------+---------------------------------------------"
for x = -5 to 5 step 10
    for p = 2 to 3
        print "    ", x using "##", "    ", p using "##", "    |    ", (-x^p) using "####", "       ", (-(x)^p) using "####", "       ", ((-x)^p) using "####", "       ", (-(x^p)) using "####"
    next p
next x
Output:
Same as FreeBASIC entry.

EasyLang

for x in [ -5 5 ]
   for p in [ 2 3 ]
      print x & "^" & p & " = " & pow x p
   .
.

F#

F# does not support the ** operator for integers but for floats:

printfn "-5.0**2.0=%f; -(5.0**2.0)=%f" (-5.0**2.0) (-(5.0**2.0))
Output:
-5.0**2.0=25.000000; -(5.0**2.0)=-25.000000

Factor

USING: infix locals prettyprint sequences
sequences.generalizations sequences.repeating ;

:: row ( x p -- seq )
    x p "-x**p" [infix -x**p infix]
    "-(x)**p" [infix -(x)**p infix]
    "(-x)**p" [infix (-x)**p infix]
    "-(x**p)" [infix -(x**p) infix] 10 narray ;

{ "x value" "p value" } { "expression" "result" } 8 cycle append
-5 2 row
-5 3 row
5 2 row
5 3 row
5 narray simple-table.
Output:
x value p value expression result expression result expression result expression result
-5      2       -x**p      25     -(x)**p    25     (-x)**p    25     -(x**p)    -25
-5      3       -x**p      125    -(x)**p    125    (-x)**p    125    -(x**p)    125
5       2       -x**p      25     -(x)**p    25     (-x)**p    25     -(x**p)    -25
5       3       -x**p      -125   -(x)**p    -125   (-x)**p    -125   -(x**p)    -125

FreeBASIC

print "     x     p    |     -x^p      -(x)^p      (-x)^p    -(x^p)"
print "----------------+---------------------------------------------"
for x as integer = -5 to 5 step 10
     for p as integer = 2 to 3
          print using "    ##    ##    |    ####       ####       ####       ####";_
               x;p;(-x^p);(-(x)^p);((-x)^p);(-(x^p))
     next p
next x
Output:

    x     p    |     -x^p      -(x)^p      (-x)^p    -(x^p)

----------------+---------------------------------------------

   -5     2    |     -25        -25         25        -25
   -5     3    |     125        125        125        125
    5     2    |     -25        -25         25        -25
    5     3    |    -125       -125       -125       -125

Go

Go uses the math.Pow function for exponentiation and doesn't support operator overloading at all. Consequently, it is not possible to conjure up an infix operator to do the same job.

Perhaps the closest we can get is to define a derived type (float say) based on float64 and then give it a method with a short name (p say) to provide exponentiation.

This looks odd but is perfectly workable as the following example shows. However, as a method call, x.p is always going to take precedence over the unary minus operator and will always require the exponent to be enclosed in parentheses.

Note that we can't call the method (or similar) because identifiers in Go must begin with a Unicode letter and using a non-ASCII symbol would be awkward to type on some keyboards in any case.

package main

import (
    "fmt"
    "math"
)

type float float64

func (f float) p(e float) float { return float(math.Pow(float64(f), float64(e))) }

func main() {
    ops := []string{"-x.p(e)", "-(x).p(e)", "(-x).p(e)", "-(x.p(e))"}
    for _, x := range []float{float(-5), float(5)} {
        for _, e := range []float{float(2), float(3)} {
            fmt.Printf("x = %2.0f e = %0.0f | ", x, e)
            fmt.Printf("%s = %4.0f | ", ops[0], -x.p(e))
            fmt.Printf("%s = %4.0f | ", ops[1], -(x).p(e))
            fmt.Printf("%s = %4.0f | ", ops[2], (-x).p(e))
            fmt.Printf("%s = %4.0f\n", ops[3], -(x.p(e)))
        }
    }
}
Output:
x = -5 e = 2 | -x.p(e) =  -25 | -(x).p(e) =  -25 | (-x).p(e) =   25 | -(x.p(e)) =  -25
x = -5 e = 3 | -x.p(e) =  125 | -(x).p(e) =  125 | (-x).p(e) =  125 | -(x.p(e)) =  125
x =  5 e = 2 | -x.p(e) =  -25 | -(x).p(e) =  -25 | (-x).p(e) =   25 | -(x.p(e)) =  -25
x =  5 e = 3 | -x.p(e) = -125 | -(x).p(e) = -125 | (-x).p(e) = -125 | -(x.p(e)) = -125

Haskell

--https://wiki.haskell.org/Power_function
main = do
    print [-5^2,-(5)^2,(-5)^2,-(5^2)] --Integer
    print [-5^^2,-(5)^^2,(-5)^^2,-(5^^2)] --Fractional 
    print [-5**2,-(5)**2,(-5)**2,-(5**2)] --Real
    print [-5^3,-(5)^3,(-5)^3,-(5^3)] --Integer
    print [-5^^3,-(5)^^3,(-5)^^3,-(5^^3)] --Fractional
    print [-5**3,-(5)**3,(-5)**3,-(5**3)] --Real
Output:
[-25,-25,25,-25]
[-25.0,-25.0,25.0,-25.0]
[-25.0,-25.0,25.0,-25.0]
[-125,-125,-125,-125]
[-125.0,-125.0,-125.0,-125.0]
[-125.0,-125.0,-125.0,-125.0]

J

APLs use a negative sign distinguished from minus as a different character. Underscore followed by a number specifies a negative number. APLs also process the operations from right to left, evaluating parenthesized expressions when the interpreter comes to them. In J, unary plus returns complex conjugate, which won't affect the outcome of this experiment.

   format=: ''&$: :([: ; (a: , [: ":&.> [) ,. '{}' ([ (E. <@}.;._1 ]) ,) ])
   S=: 'x = {} p = {}     -x^p    {}   -(x)^p    {}   (-x)^p    {}    -(x^p)  {}'

   explicit=: dyad def 'S format~ 2 2 4 4 4 4 ":&> x,y,(-x^y),(-(x)^y),((-x)^y),(-(x^y))'
   tacit=:              S format~ 2 2 4 4 4 4 ":&> [`]`([:-^)`([:-^)`((^~-)~)`([:-^)`:0

   _2 explicit/\_5 2 _5 3 5 2 5 3
x = _5   p =  2       -x^p     _25   -(x)^p     _25   (-x)^p      25    -(x^p)   _25
x = _5   p =  3       -x^p     125   -(x)^p     125   (-x)^p     125    -(x^p)   125
x =  5   p =  2       -x^p     _25   -(x)^p     _25   (-x)^p      25    -(x^p)   _25
x =  5   p =  3       -x^p    _125   -(x)^p    _125   (-x)^p    _125    -(x^p)  _125
   
   -:/ 1 0 2 |: _2(tacit ,: explicit)/\_5 2 _5 3 5 2 5 3  NB. the verbs produce matching results
1

Julia

In Julia, the ^ symbol is the power infix operator. The ^ operator has a higher precedence than the - operator, so -5^2 is -25 and (-5)^2 is 25.

for x in [-5, 5], p in [2, 3]
    println("x is", lpad(x, 3), ", p is $p, -x^p is", lpad(-x^p, 4), ", -(x)^p is",
        lpad(-(x)^p, 5), ", (-x)^p is", lpad((-x)^p, 5), ", -(x^p) is", lpad(-(x^p), 5))
end
Output:
x is -5, p is 2, -x^p is -25, -(x)^p is  -25, (-x)^p is   25, -(x^p) is  -25
x is -5, p is 3, -x^p is 125, -(x)^p is  125, (-x)^p is  125, -(x^p) is  125
x is  5, p is 2, -x^p is -25, -(x)^p is  -25, (-x)^p is   25, -(x^p) is  -25
x is  5, p is 3, -x^p is-125, -(x)^p is -125, (-x)^p is -125, -(x^p) is -125

langur

writeln [-5^2, -(5)^2, (-5)^2, -(5^2)]
writeln [-5^3, -(5)^3, (-5)^3, -(5^3)]
Output:
[-25, -25, 25, -25]
[-125, -125, -125, -125]

Lua

Lua < 5.3 has a single double-precision numeric type. Lua >= 5.3 adds an integer numeric type. "^" is supported as an infix exponentiation operator for both types.

mathtype = math.type or type -- polyfill <5.3
function test(xs, ps)
  for _,x in ipairs(xs) do
    for _,p in ipairs(ps) do
      print(string.format("%2.f  %7s  %2.f  %7s    %4.f    %4.f    %4.f    %4.f", x, mathtype(x), p, mathtype(p), -x^p, -(x)^p, (-x)^p, -(x^p)))
    end
  end
end
print(" x  type(x)   p  type(p)    -x^p  -(x)^p  (-x)^p  -(x^p)")
print("--  -------  --  -------  ------  ------  ------  ------")
test( {-5.,5.}, {2.,3.} ) -- "float" (or "number" if <5.3)
if math.type then -- if >=5.3
  test( {-5,5}, {2,3} ) -- "integer"
end
Output:
 x  type(x)   p  type(p)    -x^p  -(x)^p  (-x)^p  -(x^p)
--  -------  --  -------  ------  ------  ------  ------
-5    float   2    float     -25     -25      25     -25
-5    float   3    float     125     125     125     125
 5    float   2    float     -25     -25      25     -25
 5    float   3    float    -125    -125    -125    -125
-5  integer   2  integer     -25     -25      25     -25
-5  integer   3  integer     125     125     125     125
 5  integer   2  integer     -25     -25      25     -25
 5  integer   3  integer    -125    -125    -125    -125

Maple

[-5**2,-(5)**2,(-5)**2,-(5**2)];
                      [-25, -25, 25, -25]

[-5**3,-(5)**3,(-5)**3,-(5**3)];
                    [-125, -125, -125, -125]


Mathematica / Wolfram Language

{-5^2, -(5)^2, (-5)^2, -(5^2)}
{-5^3, -(5)^3, (-5)^3, -(5^3)}
Output:
{-25, -25, 25, -25}
{-125, -125, -125, -125}

Nim

The infix exponentiation operator is defined in standard module “math”. Its precedence is less than that of unary “-” operator, so -5^2 is 25 and -(5^2) is -25.

import math, strformat

for x in [-5, 5]:
  for p in [2, 3]:
    echo &"x is {x:2}, ", &"p is {p:1}, ",
         &"-x^p is {-x^p:4}, ", &"-(x)^p is {-(x)^p:4}, ",
         &"(-x)^p is {(-x)^p:4}, ", &"-(x^p) is {-(x^p):4}"
Output:
x is -5, p is 2, -x^p is   25, -(x)^p is   25, (-x)^p is   25, -(x^p) is  -25
x is -5, p is 3, -x^p is  125, -(x)^p is  125, (-x)^p is  125, -(x^p) is  125
x is  5, p is 2, -x^p is   25, -(x)^p is   25, (-x)^p is   25, -(x^p) is  -25
x is  5, p is 3, -x^p is -125, -(x)^p is -125, (-x)^p is -125, -(x^p) is -125

Pascal

Works with: Extended Pascal

Apart from the built-in (prefix) functions sqr (exponent = 2) and sqrt (exponent = 0.5) already defined in Standard “Unextended” Pascal (ISO standard 7185), Extended Pascal (ISO standard 10206) defines following additional (infix) operators:

program exponentiationWithInfixOperatorsInTheBase(output);

const
	minimumWidth = 7;
	fractionDigits = minimumWidth div 4 + 1;

procedure testIntegerPower(
		{ `pow` can in fact accept `integer`, `real` and `complex`. }
		protected base: integer;
		{ For `pow` the `exponent` _has_ to be an `integer`. }
		protected exponent: integer
	);
begin
	writeLn('=====> testIntegerPower <=====');
	writeLn('                base = ', base:minimumWidth);
	writeLn('            exponent = ', exponent:minimumWidth);
	{ Note: `exponent` may not be negative if `base` is zero! }
	writeLn('  -base pow exponent = ', -base pow exponent:minimumWidth);
	writeLn('-(base) pow exponent = ', -(base) pow exponent:minimumWidth);
	writeLn('(-base) pow exponent = ', (-base) pow exponent:minimumWidth);
	writeLn('-(base pow exponent) = ', -(base pow exponent):minimumWidth)
end;

procedure testRealPower(
		{ `**` actually accepts all data types (`integer`, `real`, `complex`). }
		protected base: real;
		{ The `exponent` in an `**` expression will be, if applicable, }
		{ _promoted_ to a `real` value approximation. }
		protected exponent: integer
	);
begin
	writeLn('======> testRealPower <======');
	writeLn('               base = ', base:minimumWidth:fractionDigits);
	writeLn('           exponent = ', exponent:pred(minimumWidth, succ(fractionDigits)));
	if base > 0.0 then
	begin
		{ The result of `base ** exponent` is a `complex` value }
		{ `base` is a `complex` value, `real` otherwise. }
		writeLn('  -base ** exponent = ', -base ** exponent:minimumWidth:fractionDigits);
		writeLn('-(base) ** exponent = ', -(base) ** exponent:minimumWidth:fractionDigits);
		writeLn('(-base) ** exponent = illegal');
		writeLn('-(base ** exponent) = ', -(base ** exponent):minimumWidth:fractionDigits)
	end
	else
	begin
		{ “negative” zero will not alter the sign of the value. }
		writeLn('  -base ** exponent = ', -base pow exponent:minimumWidth:fractionDigits);
		writeLn('-(base) ** exponent = ', -(base) pow exponent:minimumWidth:fractionDigits);
		writeLn('(-base) ** exponent = ', (-base) pow exponent:minimumWidth:fractionDigits);
		writeLn('-(base ** exponent) = ', -(base pow exponent):minimumWidth:fractionDigits)
	end
end;

{ === MAIN =================================================================== }
begin
	testIntegerPower(-5, 2);
	testIntegerPower(+5, 2);
	testIntegerPower(-5, 3);
	testIntegerPower( 5, 3);
	testRealPower(-5.0, 2);
	testRealPower(+5.0, 2);
	testRealPower(-5E0, 3);
	testRealPower(+5E0, 3)
end.
Output:
=====> testIntegerPower <=====
                base =      -5
            exponent =       2
  -base pow exponent =     -25
-(base) pow exponent =     -25
(-base) pow exponent =      25
-(base pow exponent) =     -25
=====> testIntegerPower <=====
                base =       5
            exponent =       2
  -base pow exponent =     -25
-(base) pow exponent =     -25
(-base) pow exponent =      25
-(base pow exponent) =     -25
=====> testIntegerPower <=====
                base =      -5
            exponent =       3
  -base pow exponent =     125
-(base) pow exponent =     125
(-base) pow exponent =     125
-(base pow exponent) =     125
=====> testIntegerPower <=====
                base =       5
            exponent =       3
  -base pow exponent =    -125
-(base) pow exponent =    -125
(-base) pow exponent =    -125
-(base pow exponent) =    -125
======> testRealPower <======
               base =   -5.00
           exponent =    2
  -base ** exponent =  -25.00
-(base) ** exponent =  -25.00
(-base) ** exponent =   25.00
-(base ** exponent) =  -25.00
======> testRealPower <======
               base =    5.00
           exponent =    2
  -base ** exponent =  -25.00
-(base) ** exponent =  -25.00
(-base) ** exponent = illegal
-(base ** exponent) =  -25.00
======> testRealPower <======
               base =   -5.00
           exponent =    3
  -base ** exponent =  125.00
-(base) ** exponent =  125.00
(-base) ** exponent =  125.00
-(base ** exponent) =  125.00
======> testRealPower <======
               base =    5.00
           exponent =    3
  -base ** exponent = -125.00
-(base) ** exponent = -125.00
(-base) ** exponent = illegal
-(base ** exponent) = -125.00

Since there are two different power operators available, both accepting operands of different data types, having different limits, and yielding different data types, it was not sensible to produce a table similar to other entries on this page.

Perl

Use the module Sub::Infix to define a custom operator. Note that the bracketing punctuation controls the precedence level. Results structured same as in Raku example.

use strict;
use warnings;
use Sub::Infix;

BEGIN { *e = infix { $_[0] ** $_[1] } }; # operator needs to be defined at compile time

my @eqns = ('1 + -$xOP$p', '1 + (-$x)OP$p', '1 + (-($x)OP$p)', '(1 + -$x)OP$p', '1 + -($xOP$p)');

for my $op ('**', '/e/', '|e|') {
    for ( [-5, 2], [-5, 3], [5, 2], [5, 3] ) {
        my( $x, $p, $eqn ) = @$_;
        printf 'x: %2d p: %2d |', $x, $p;
        $eqn = s/OP/$op/gr and printf '%17s %4d |', $eqn, eval $eqn for @eqns;
        print "\n";
    }
    print "\n";
}
Output:
x: -5 p:  2 |      1 + -$x**$p  -24 |    1 + (-$x)**$p   26 |  1 + (-($x)**$p)  -24 |    (1 + -$x)**$p   36 |    1 + -($x**$p)  -24 |
x: -5 p:  3 |      1 + -$x**$p  126 |    1 + (-$x)**$p  126 |  1 + (-($x)**$p)  126 |    (1 + -$x)**$p  216 |    1 + -($x**$p)  126 |
x:  5 p:  2 |      1 + -$x**$p  -24 |    1 + (-$x)**$p   26 |  1 + (-($x)**$p)  -24 |    (1 + -$x)**$p   16 |    1 + -($x**$p)  -24 |
x:  5 p:  3 |      1 + -$x**$p -124 |    1 + (-$x)**$p -124 |  1 + (-($x)**$p) -124 |    (1 + -$x)**$p  -64 |    1 + -($x**$p) -124 |

x: -5 p:  2 |     1 + -$x/e/$p   26 |   1 + (-$x)/e/$p   26 | 1 + (-($x)/e/$p)   26 |   (1 + -$x)/e/$p   36 |   1 + -($x/e/$p)  -24 |
x: -5 p:  3 |     1 + -$x/e/$p  126 |   1 + (-$x)/e/$p  126 | 1 + (-($x)/e/$p)  126 |   (1 + -$x)/e/$p  216 |   1 + -($x/e/$p)  126 |
x:  5 p:  2 |     1 + -$x/e/$p   26 |   1 + (-$x)/e/$p   26 | 1 + (-($x)/e/$p)   26 |   (1 + -$x)/e/$p   16 |   1 + -($x/e/$p)  -24 |
x:  5 p:  3 |     1 + -$x/e/$p -124 |   1 + (-$x)/e/$p -124 | 1 + (-($x)/e/$p) -124 |   (1 + -$x)/e/$p  -64 |   1 + -($x/e/$p) -124 |

x: -5 p:  2 |     1 + -$x|e|$p   36 |   1 + (-$x)|e|$p   36 | 1 + (-($x)|e|$p)   26 |   (1 + -$x)|e|$p   36 |   1 + -($x|e|$p)  -24 |
x: -5 p:  3 |     1 + -$x|e|$p  216 |   1 + (-$x)|e|$p  216 | 1 + (-($x)|e|$p)  126 |   (1 + -$x)|e|$p  216 |   1 + -($x|e|$p)  126 |
x:  5 p:  2 |     1 + -$x|e|$p   16 |   1 + (-$x)|e|$p   16 | 1 + (-($x)|e|$p)   26 |   (1 + -$x)|e|$p   16 |   1 + -($x|e|$p)  -24 |
x:  5 p:  3 |     1 + -$x|e|$p  -64 |   1 + (-$x)|e|$p  -64 | 1 + (-($x)|e|$p) -124 |   (1 + -$x)|e|$p  -64 |   1 + -($x|e|$p) -124 |

Phix

Library: Phix/basics

Phix has a power() function instead of an infix operator, hence there are only two possible syntaxes, with the obvious outcomes.
(Like Go, Phix does not support operator overloading or definition at all.)

for x=-5 to 5 by 10 do
    for p=2 to 3 do
        printf(1,"x = %2d, p = %d, power(-x,p) = %4d, -power(x,p) = %4d\n",{x,p,power(-x,p),-power(x,p)})
    end for
end for
Output:
x = -5, p = 2, power(-x,p) =   25, -power(x,p) =  -25
x = -5, p = 3, power(-x,p) =  125, -power(x,p) =  125
x =  5, p = 2, power(-x,p) =   25, -power(x,p) =  -25
x =  5, p = 3, power(-x,p) = -125, -power(x,p) = -125

QB64

For x = -5 To 5 Step 10
    For p = 2 To 3
        Print "x = "; x; " p ="; p; "   ";
        Print Using "-x^p is ####"; -x ^ p;
        Print Using ", -(x)^p is ####"; -(x) ^ p;
        Print Using ", (-x)^p is ####"; (-x) ^ p;
        Print Using ", -(x^p) is ####"; -(x ^ p)
    Next
Next
Output:
x = -5  p = 2    -x^p is  -25, -(x)^p is  -25, (-x)^p is   25, -(x^p) is  -25
x = -5  p = 3    -x^p is  125, -(x)^p is  125, (-x)^p is  125, -(x^p) is  125
x =  5  p = 2    -x^p is  -25, -(x)^p is  -25, (-x)^p is   25, -(x^p) is  -25
x =  5  p = 3    -x^p is -125, -(x)^p is -125, (-x)^p is -125, -(x^p) is -125

R

expressions <- alist(-x ^ p, -(x) ^ p, (-x) ^ p, -(x ^ p))
x <- c(-5, -5, 5, 5)
p <- c(2, 3, 2, 3)
output <- data.frame(x,
                     p,
                     setNames(lapply(expressions, eval), sapply(expressions, deparse)),
                     check.names = FALSE)
print(output, row.names = FALSE)
Output:
  x p -x^p -(x)^p (-x)^p -(x^p)
 -5 2  -25    -25     25    -25
 -5 3  125    125    125    125
  5 2  -25    -25     25    -25
  5 3 -125   -125   -125   -125

Raku

In Raku by default, infix exponentiation binds tighter than unary negation. It is trivial however to define your own infix operators with whatever precedence level meets the needs of your program.

A slight departure from the task specs. Use 1 + {expression} rather than just {expression} to better demonstrate the relative precedence levels. Where {expression} is one of:

  • -x{exponential operator}p
  • -(x){exponential operator}p
  • ((-x){exponential operator}p)
  • -(x{exponential operator}p)

Also add a different grouping: (1 + -x){exponential operator}p

sub infix:<↑> is looser(&prefix:<->) { $^a ** $^b }
sub infix:<∧> is looser(&infix:<->)  { $^a ** $^b }

for
   ('Default precedence: infix exponentiation is tighter (higher) precedence than unary negation.',
     '1 + -$x**$p',   {1 + -$^a**$^b},   '1 + (-$x)**$p', {1 + (-$^a)**$^b},  '1 + (-($x)**$p)', {1 + (-($^a)**$^b)},
     '(1 + -$x)**$p', {(1 + -$^a)**$^b}, '1 + -($x**$p)', {1 + -($^a**$^b)}),

   ("\nEasily modified: custom loose infix exponentiation is looser (lower) precedence than unary negation.",
     '1 + -$x↑$p ',   {1 + -$^a$^b},    '1 + (-$x)↑$p ', {1 + (-$^a)↑$^b},   '1 + (-($x)↑$p) ', {1 + (-($^a)↑$^b)},
     '(1 + -$x)↑$p ', {(1 + -$^a)↑$^b},  '1 + -($x↑$p) ', {1 + -($^a$^b)}),

   ("\nEven more so: custom looser infix exponentiation is looser (lower) precedence than infix subtraction.",
     '1 + -$x∧$p ',   {1 + -$^a$^b},    '1 + (-$x)∧$p ', {1 + (-$^a)∧$^b},   '1 + (-($x)∧$p) ', {1 + (-($^a)∧$^b)},
     '(1 + -$x)∧$p ', {(1 + -$^a)∧$^b},  '1 + -($x∧$p) ', {1 + -($^a$^b)})
-> $case {
    my ($title, @operations) = $case<>;
    say $title;
    for -5, 5 X 2, 3 -> ($x, $p) {
        printf "x = %2d  p = %d", $x, $p;
        for @operations -> $label, &code { print " │ $label = " ~ $x.&code($p).fmt('%4d') }
        say ''
    }
}
Output:
Default precedence: infix exponentiation is tighter (higher) precedence than unary negation.
x = -5  p = 2 │ 1 + -$x**$p =  -24 │ 1 + (-$x)**$p =   26 │ 1 + (-($x)**$p) =  -24 │ (1 + -$x)**$p =   36 │ 1 + -($x**$p) =  -24
x = -5  p = 3 │ 1 + -$x**$p =  126 │ 1 + (-$x)**$p =  126 │ 1 + (-($x)**$p) =  126 │ (1 + -$x)**$p =  216 │ 1 + -($x**$p) =  126
x =  5  p = 2 │ 1 + -$x**$p =  -24 │ 1 + (-$x)**$p =   26 │ 1 + (-($x)**$p) =  -24 │ (1 + -$x)**$p =   16 │ 1 + -($x**$p) =  -24
x =  5  p = 3 │ 1 + -$x**$p = -124 │ 1 + (-$x)**$p = -124 │ 1 + (-($x)**$p) = -124 │ (1 + -$x)**$p =  -64 │ 1 + -($x**$p) = -124

Easily modified: custom loose infix exponentiation is looser (lower) precedence than unary negation.
x = -5  p = 2 │ 1 + -$x↑$p  =   26 │ 1 + (-$x)↑$p  =   26 │ 1 + (-($x)↑$p)  =   26 │ (1 + -$x)↑$p  =   36 │ 1 + -($x↑$p)  =  -24
x = -5  p = 3 │ 1 + -$x↑$p  =  126 │ 1 + (-$x)↑$p  =  126 │ 1 + (-($x)↑$p)  =  126 │ (1 + -$x)↑$p  =  216 │ 1 + -($x↑$p)  =  126
x =  5  p = 2 │ 1 + -$x↑$p  =   26 │ 1 + (-$x)↑$p  =   26 │ 1 + (-($x)↑$p)  =   26 │ (1 + -$x)↑$p  =   16 │ 1 + -($x↑$p)  =  -24
x =  5  p = 3 │ 1 + -$x↑$p  = -124 │ 1 + (-$x)↑$p  = -124 │ 1 + (-($x)↑$p)  = -124 │ (1 + -$x)↑$p  =  -64 │ 1 + -($x↑$p)  = -124

Even more so: custom looser infix exponentiation is looser (lower) precedence than infix subtraction.
x = -5  p = 2 │ 1 + -$x∧$p  =   36 │ 1 + (-$x)∧$p  =   36 │ 1 + (-($x)∧$p)  =   26 │ (1 + -$x)∧$p  =   36 │ 1 + -($x∧$p)  =  -24
x = -5  p = 3 │ 1 + -$x∧$p  =  216 │ 1 + (-$x)∧$p  =  216 │ 1 + (-($x)∧$p)  =  126 │ (1 + -$x)∧$p  =  216 │ 1 + -($x∧$p)  =  126
x =  5  p = 2 │ 1 + -$x∧$p  =   16 │ 1 + (-$x)∧$p  =   16 │ 1 + (-($x)∧$p)  =   26 │ (1 + -$x)∧$p  =   16 │ 1 + -($x∧$p)  =  -24
x =  5  p = 3 │ 1 + -$x∧$p  =  -64 │ 1 + (-$x)∧$p  =  -64 │ 1 + (-($x)∧$p)  = -124 │ (1 + -$x)∧$p  =  -64 │ 1 + -($x∧$p)  = -124

REXX

/*REXX program shows exponentition with an  infix operator  (implied and/or specified).*/
_= '─';   ! = '║';   mJunct= '─╫─';   bJunct= '─╨─'       /*define some special glyphs. */

say @('  x  ', 5)  @("  p  ", 5)        !
say @('value', 5)  @("value", 5) copies(!        @('expression',10)  @("result",6)" ",  4)
say @(''  , 5, _)  @("",   5, _)copies(mJunct || @('',       10, _)  @("",   6, _)   ,  4)

   do    x=-5  to 5  by 10                       /*assign   -5    and    5    to    X.  */
      do p= 2  to 3                              /*assign    2    and    3    to    P.  */

                           a =  -x**p ;   b =  -(x)**p ;   c =  (-x)**p ;   d =  -(x**p)
                           ae= '-x**p';   be= "-(x)**p";   ce= '(-x)**p';   de= "-(x**p)"
      say @(x,5)  @(p,5) ! @(ae, 10)    right(a, 5)" " ,
                         ! @(be, 10)    right(b, 5)" " ,
                         ! @(ce, 10)    right(c, 5)" " ,
                         ! @(de, 10)    right(d, 5)
      end   /*p*/
   end      /*x*/

say @(''  , 5, _)  @('',   5, _)copies(bJunct || @('',       10, _)  @('',   6, _)   ,  4)
exit 0                                           /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
@:    parse arg txt, w, fill;  if fill==''  then fill= ' ';   return center( txt, w, fill)
output   when using the internal default input:
  x     p   ║
value value ║ expression result ║ expression result ║ expression result ║ expression result
───── ──────╫─────────── ───────╫─────────── ───────╫─────────── ───────╫─────────── ──────
 -5     2   ║   -x**p       25  ║  -(x)**p      25  ║  (-x)**p      25  ║  -(x**p)     -25
 -5     3   ║   -x**p      125  ║  -(x)**p     125  ║  (-x)**p     125  ║  -(x**p)     125
  5     2   ║   -x**p       25  ║  -(x)**p      25  ║  (-x)**p      25  ║  -(x**p)     -25
  5     3   ║   -x**p     -125  ║  -(x)**p    -125  ║  (-x)**p    -125  ║  -(x**p)    -125
───── ──────╨─────────── ───────╨─────────── ───────╨─────────── ───────╨─────────── ──────

RPL

Using infix exponentiation as required, even if not RPLish:

≪ → x p 
  ≪ { 'x' 'p' '-x^p' '-(x)^p' '(-x)^p' '-(x^p)' } 1
     DO GETI EVAL ROT ROT UNTIL DUP 1 == END
     DROP 7 ROLLD 6 →LIST
≫ ≫ 'SHOXP' STO
Input:
-5 2 SHOXP
-5 3 SHOXP
5 2 SHOXP
5 3 SHOXP
Output:
8: { 'x' 'p' '-x^p' '-x^p' '(-x)^p' '-x^p' }
7: { -5 2 -25 -25 25 -25 }
6: { 'x' 'p' '-x^p' '-x^p' '(-x)^p' '-x^p' }
5: { -5 3 125 125 125 125 }
4: { 'x' 'p' '-x^p' '-x^p' '(-x)^p' '-x^p' }
3: { 5 2 -25 -25 25 -25 }
2: { 'x' 'p' '-x^p' '-x^p' '(-x)^p' '-x^p' }
1: { 5 3 -125 -125 -125 -125 }

Original infix expressions (see code above in bold characters) have been simplified by the interpreter when storing the program. In reverse Polish notation, there is only one way to answer the task:

≪ → x p 
  ≪ x NEG p ^ 
≫ ≫ 'SHOXP' STO

Ruby

nums = [-5, 5]
pows = [2, 3]
nums.product(pows) do |x, p|
  puts "x = #{x} p = #{p}\t-x**p #{-x**p}\t-(x)**p  #{-(x)**p}\t(-x)**p #{ (-x)**p}\t-(x**p)  #{-(x**p)}"
end
Output:
x = -5 p = 2	-x**p -25	-(x)**p  -25	(-x)**p 25	-(x**p)  -25
x = -5 p = 3	-x**p 125	-(x)**p  125	(-x)**p 125	-(x**p)  125
x = 5 p = 2	-x**p -25	-(x)**p  -25	(-x)**p 25	-(x**p)  -25
x = 5 p = 3	-x**p -125	-(x)**p  -125	(-x)**p -125	-(x**p)  -125

Python

from itertools import product

xx = '-5 +5'.split()
pp = '2 3'.split()
texts = '-x**p -(x)**p (-x)**p -(x**p)'.split()

print('Integer variable exponentiation')
for x, p in product(xx, pp):
    print(f'  x,p = {x:2},{p}; ', end=' ')
    x, p = int(x), int(p)
    print('; '.join(f"{t} =={eval(t):4}" for t in texts))

print('\nBonus integer literal exponentiation')
X, P = 'xp'
xx.insert(0, ' 5')
texts.insert(0, 'x**p')
for x, p in product(xx, pp):
    texts2 = [t.replace(X, x).replace(P, p) for t in texts]
    print(' ', '; '.join(f"{t2} =={eval(t2):4}" for t2 in texts2))
Output:
Integer variable exponentiation
  x,p = -5,2;  -x**p == -25; -(x)**p == -25; (-x)**p ==  25; -(x**p) == -25
  x,p = -5,3;  -x**p == 125; -(x)**p == 125; (-x)**p == 125; -(x**p) == 125
  x,p = +5,2;  -x**p == -25; -(x)**p == -25; (-x)**p ==  25; -(x**p) == -25
  x,p = +5,3;  -x**p ==-125; -(x)**p ==-125; (-x)**p ==-125; -(x**p) ==-125

Bonus integer literal exponentiation
   5**2 ==  25; - 5**2 == -25; -( 5)**2 == -25; (- 5)**2 ==  25; -( 5**2) == -25
   5**3 == 125; - 5**3 ==-125; -( 5)**3 ==-125; (- 5)**3 ==-125; -( 5**3) ==-125
  -5**2 == -25; --5**2 ==  25; -(-5)**2 == -25; (--5)**2 ==  25; -(-5**2) ==  25
  -5**3 ==-125; --5**3 == 125; -(-5)**3 == 125; (--5)**3 == 125; -(-5**3) == 125
  +5**2 ==  25; -+5**2 == -25; -(+5)**2 == -25; (-+5)**2 ==  25; -(+5**2) == -25
  +5**3 == 125; -+5**3 ==-125; -(+5)**3 ==-125; (-+5)**3 ==-125; -(+5**3) ==-125


Smalltalk

Smalltalk has no prefix operator for negation. To negate, you have to send the number a "negated" message, which has higher precedence than any binary message. Literal constants may have a sign (which is not an operation, but part of the constant).

a := 2.
b := 3.
Transcript show:'-5**2 => '; showCR: -5**2.
Transcript show:'-5**a => '; showCR: -5**a.
Transcript show:'-5**b => '; showCR: -5**b.
Transcript show:'5**2 => '; showCR: 5**2.
Transcript show:'5**a => '; showCR: 5**a.
Transcript show:'5**b => '; showCR: 5**b.
" Transcript show:'-(5**b) => '; showCR: -(5**b).  -- invalid: syntax error "
" Transcript show:'5**-b => '; showCR: 5**-b.      -- invalid: syntax error "

Using the "negated" message:

Transcript show:'5 negated**2 => '; showCR: 5 negated**2. "negates 5"
Transcript show:'5 negated**3 => '; showCR: 5 negated**3.
Transcript show:'5**2 negated => '; showCR: 5**2 negated. "negates 2"
Transcript show:'5**3 negated => '; showCR: 5**3 negated. "negates 3"
Transcript show:'5 negated**a => '; showCR: 5 negated**a. 
Transcript show:'5 negated**b => '; showCR: 5 negated**b.
Transcript show:'5**a negated => '; showCR: 5**a negated. 
Transcript show:'5**b negated => '; showCR: 5**b negated. 
Transcript show:'(5**a) negated => '; showCR: (5**a) negated. 
Transcript show:'(5**b) negated => '; showCR: (5**b) negated. 
Transcript show:'(-5**a) negated => '; showCR: (-5**a) negated. 
Transcript show:'(-5**b) negated => '; showCR: (-5**b) negated. 
Transcript show:'-5 negated**2 => '; showCR: -5 negated**2. "negates the negative 5"
Transcript show:'-5 negated**3 => '; showCR: -5 negated**3.
Output:
-5**2 => 25
-5**a => 25
-5**b => -125
5**2 => 25
5**a => 25
5**b => 125
5 negated**2 => 25
5 negated**3 => -125
5**2 negated => (1/25)
5**3 negated => (1/125)
5 negated**a => 25
5 negated**b => -125
5**a negated => (1/25)
5**b negated => (1/125)
(5**a) negated => -25
(5**b) negated => -125
(-5**a) negated => -25
(-5**b) negated => 125
-5 negated**2 => 25
-5 negated**3 => 125

Wren

Library: Wren-fmt

Wren uses the pow() method for exponentiation of numbers and, whilst it supports operator overloading, there is no way of adding a suitable infix operator to the existing Num class or inheriting from that class.

However, what we can do is to wrap Num objects in a new Num2 class and then add exponentiation and unary minus operators to that.

Ideally what we'd like to do is to use a new operator such as '**' for exponentiation (because '^' is the bitwise exclusive or operator) but we can only overload existing operators with their existing precedence and so, for the purposes of this task, '^' is the only realistic choice.

import "./fmt" for Fmt

class Num2 {
    construct new(n) { _n = n }

    n { _n}

    ^(exp) {
        if (exp is Num2) exp = exp.n
        return Num2.new(_n.pow(exp))
    }

    - { Num2.new(-_n) }

    toString { _n.toString }
}

var ops = ["-x^p", "-(x)^p", "(-x)^p", "-(x^p)"]  
for (x in [Num2.new(-5), Num2.new(5)]) {
    for (p in [Num2.new(2), Num2.new(3)]) {
        Fmt.write("x = $2s p = $s | ", x, p)
        Fmt.write("$s = $4s | ", ops[0], -x^p)
        Fmt.write("$s = $4s | ", ops[1], -(x)^p)
        Fmt.write("$s = $4s | ", ops[2], (-x)^p)
        Fmt.print("$s = $4s",    ops[3], -(x^p))
    }
}
Output:
x = -5 p = 2 | -x^p =   25 | -(x)^p =   25 | (-x)^p =   25 | -(x^p) =  -25
x = -5 p = 3 | -x^p =  125 | -(x)^p =  125 | (-x)^p =  125 | -(x^p) =  125
x =  5 p = 2 | -x^p =   25 | -(x)^p =   25 | (-x)^p =   25 | -(x^p) =  -25
x =  5 p = 3 | -x^p = -125 | -(x)^p = -125 | (-x)^p = -125 | -(x^p) = -125