Arithmetic/Integer

From Rosetta Code
Task
Arithmetic/Integer
You are encouraged to solve this task according to the task description, using any language you may know.

Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.

You may see other such operations in the Basic Data Operations category, or:

Integer Operations
Arithmetic | Comparison

Boolean Operations
Bitwise | Logical

String Operations
Concatenation | Interpolation | Comparison | Matching

Memory Operations
Pointers & references | Addresses

Task

Get two integers from the user,   and then (for those two integers), display their:

  •   sum
  •   difference
  •   product
  •   integer quotient
  •   remainder
  •   exponentiation   (if the operator exists)


Don't include error handling.

For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.).

For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.

0815

<lang 0815> |~>|~#:end:> <:61:x<:3d:=<:20:$==$~$=${~>%<:2c:~$<:20:~$ <:62:x<:3d:=<:20:$==$~$=${~>%<:a:~$$ <:61:x<:2b:=<:20:$==$~$=$<:62:x<:3d:=<:20:$==$~$=${x{x~>~>~+%<:a:~$ <:61:x<:2d:=<:20:$==$~$=$<:62:x<:3d:=<:20:$==$~$=${x{x~>~>~-%<:a:~$ <:61:x<:2a:=<:20:$==$~$=$<:62:x<:3d:=<:20:$==$~$=${x{x~>~>~*%<:a:~$ <:61:x<:2f:=<:20:$==$~$=$<:62:x<:3d:=<:20:$==$~$=${x{x~>~>~/%<:a:~$ <:61:x<:25:=<:20:$==$~$=$<:62:x<:3d:=<:20:$==$~$=${x{x~>~>~/=%<:a:~$ {~>>{x<:1:-^:u: <:61:x<:5e:=<:20:$==$~$$=$<:62:x<:3D:=<:20:$==$~$=${{~%#:end: }:u:=>{x{=>~*>{x<:2:-#:ter: }:ml:x->{x{=>~*>{x<:1:-#:ter:^:ml: }:ter:<:61:x<:5e:=<:20:$==$~$$=$<:62:x<:3D:=<:20:$==$~$=${{~% </lang>

Output:
a = 6, b = 4

a + b = A
a - b = 2
a * b = 18
a / b = 1
a % b = 2
a ^^ b = 510

11l

<lang 11l>V a = Int(input()) V b = Int(input())

print(‘a + b = ’(a + b)) print(‘a - b = ’(a - b)) print(‘a * b = ’(a * b)) print(‘a / b = ’(a I/ b)) print(‘a % b = ’(a % b)) print(‘a ^ b = ’(a ^ b))</lang>

360 Assembly

From the principles of operation: Operands are signed and 32 bits long. Negative quantities are held in two's-complement form.
Multiplication:
The product of the multiplier (the second operand) and the multiplicand (the first operand) replaces the multiplicand. Both multiplier and multiplicand are 32-bit signed integers. The product is always a 64-bit signed integer and occupies an even/odd register pair.
Division:
The dividend (first operand) is divided by the divisor (second operand) and replaced by the quotient and remainder. The dividend is a 64-bit signed integer and occupies the even/odd pair of registers. A 32-bit signed remainder and a 32-bit signed quotient replace the dividend in the even-numbered and odd-numbered registers, respectively. The sign of the quotient is determined by the rules of algebra. The remainder has the same sign as the dividend. <lang 360asm>* Arithmetic/Integer 04/09/2015 ARITHINT CSECT

        USING  ARITHINT,R12
        LR     R12,R15

ADD L R1,A

        A      R1,B               r1=a+b
        XDECO  R1,BUF
        MVI    BUF,C'+'
        XPRNT  BUF,12

SUB L R1,A

        S      R1,B               r1=a-b
        XDECO  R1,BUF
        MVI    BUF,C'-'
        XPRNT  BUF,12

MUL L R1,A

        M      R0,B               r0r1=a*b
        XDECO  R1,BUF             so r1 has the lower part
        MVI    BUF,C'*'
        XPRNT  BUF,12

DIV L R0,A

        SRDA   R0,32              to shift the sign
        D      R0,B               r1=a/b and r0 has the remainder
        XDECO  R1,BUF             so r1 has quotient
        MVI    BUF,C'/'
        XPRNT  BUF,12

MOD L R0,A

        SRDA   R0,32              to shift the sign
        D      R0,B               r1=a/b and r0 has the remainder
        XDECO  R0,BUF             so r0 has the remainder
        MVI    BUF,C'R'
        XPRNT  BUF,12

RETURN XR R15,R15

        BR     R14
        CNOP   0,4

A DC F'53' B DC F'11' BUF DC CL12' '

        YREGS
        END    ARITHINT</lang>

Inputs are in the code: a=53, b=11

Output:
+         64
-         42
*        583
/          4
R          9

6502 Assembly

Code is called as a subroutine (i.e. JSR Arithmetic). Specific OS/hardware routines for user input and printing are left unimplemented. <lang 6502asm>Arithmetic: PHA ;push accumulator and X register onto stack TXA PHA JSR GetUserInput ;routine not implemented ;two integers now in memory locations A and B ;addition LDA A CLC ADC B JSR DisplayAddition ;routine not implemented

;subtraction LDA A SEC SBC B JSR DisplaySubtraction ;routine not implemented

;multiplication - overflow not handled LDA A LDX B Multiply: CLC ADC A DEX BNE Multiply JSR DisplayMultiply ;routine not implemented

;division - rounds up LDA A LDX #0 SEC Divide: INX SBC B BCS Divide TXA ;get result into accumulator JSR DisplayDivide ;routine not implemented

;modulus LDA A SEC Modulus: SBC B BCS Modulus ADC B JSR DisplayModulus ;routine not implemented

PLA ;restore accumulator and X register from stack TAX PLA RTS ;return from subroutine</lang> The 6502 has no opcodes for multiplication, division, or modulus; the routines for multiplication, division, and modulus given above can be heavily optimized at the expense of some clarity.

AArch64 Assembly

Works with: as version Raspberry Pi 3B version Buster 64 bits

<lang AArch64 Assembly> /* ARM assembly AARCH64 Raspberry PI 3B */ /* program arith64.s */

/*******************************************/ /* Constantes file */ /*******************************************/ /* for this file see task include a file in language AArch64 assembly*/ .include "../includeConstantesARM64.inc"

/***********************/ /* Initialized data */ /***********************/ .data szMessError: .asciz " Two numbers in command line please ! \n" // message szRetourLigne: .asciz "\n" szMessResult: .asciz "resultat : @ \n" // message result sMessValeur: .fill 12, 1, ' '

                     .asciz "\n"

szMessAddition: .asciz "Addition " szMessSoustraction: .asciz "soustraction :" szMessMultiplication: .asciz "multiplication :" szMessDivision: .asciz "division :" szMessReste: .asciz "remainder :"

/***********************/ /* No Initialized data */ /***********************/ .bss qValeur: .skip 8 // reserve 8 bytes in memory sZoneConv: .skip 30 .text .global main main:

   mov fp,sp                   // fp <- stack address
   ldr x0,[fp]                 // recup number of parameter in command line
   cmp x0,3
   blt error
   ldr x0,[fp,16]              // adresse of 1er number
   bl conversionAtoD
   mov x3,x0
   ldr x0,[fp,24]              // adresse of 2eme number
   bl conversionAtoD
   mov x4,x0
                               // addition
   add x0,x3,x4
   ldr x1,qAdrsZoneConv        // result in x0
   bl conversion10S            // call function with 2 parameter (x0,x1)
   ldr x0,qAdrszMessAddition
   bl affichageMess            // display message
   ldr x0,qAdrszMessResult
   ldr x1,qAdrsZoneConv
   bl strInsertAtCharInc       // insert result at @ character
   bl affichageMess            // display message
   ldr x0,qAdrsZoneConv
                               // soustraction
   sub x0,x3,x4
   ldr x1,qAdrsZoneConv        // result in x0
   bl conversion10S            // call function with 2 parameter (x0,x1)
   ldr x0,qAdrszMessSoustraction
   bl affichageMess            // display message
   ldr x0,qAdrszMessResult
   ldr x1,qAdrsZoneConv
   bl strInsertAtCharInc       // insert result at @ character
   bl affichageMess            // display message
   ldr x0,qAdrsZoneConv
                               // multiplication
   mul x0,x3,x4
   ldr x1,qAdrsZoneConv        // result in x0
   bl conversion10S            // call function with 2 parameter (x0,x1)
   ldr x0,qAdrszMessMultiplication
   bl affichageMess            // display message
   ldr x0,qAdrszMessResult
   ldr x1,qAdrsZoneConv
   bl strInsertAtCharInc       // insert result at @ character
   bl affichageMess            // display message
   ldr x0,qAdrsZoneConv
                               // division 
   mov x0,x3
   mov x1,x4
   udiv x0,x3,x4               // quotient
   msub x3,x0,x4,x3            // remainder x3 = x3 - (x0*x4)
   ldr x1,qAdrsZoneConv        // result in x0
   bl conversion10S            // call function with 2 parameter (x0,x1)
   ldr x0,qAdrszMessDivision
   bl affichageMess            // display message
   ldr x0,qAdrszMessResult
   ldr x1,qAdrsZoneConv
   bl strInsertAtCharInc       // insert result at @ character
   bl affichageMess            // display message
   ldr x0,qAdrsZoneConv
   mov x0,x3                   // remainder
   ldr x1,qAdrsZoneConv        // result in x0
   bl conversion10S            // call function with 2 parameter (x0,x1)
   ldr x0,qAdrszMessReste
   bl affichageMess            // display message
   ldr x0,qAdrszMessResult
   ldr x1,qAdrsZoneConv
   bl strInsertAtCharInc       // insert result at @ character
   bl affichageMess            // display message
   ldr x0,qAdrsZoneConv

   mov x0,0                    // return code
   b 100f

error:

   ldr x0,qAdrszMessError
   bl affichageMess            // call function with 1 parameter (x0)
   mov x0,1                    // return code

100: // end of program

   mov x8,EXIT                 // request to exit program
   svc 0                       // perform the system call

qAdrsMessValeur: .quad sMessValeur qAdrszMessResult: .quad szMessResult qAdrszMessError: .quad szMessError qAdrszMessAddition: .quad szMessAddition qAdrszMessSoustraction: .quad szMessSoustraction qAdrszMessMultiplication: .quad szMessMultiplication qAdrszMessDivision: .quad szMessDivision qAdrszMessReste: .quad szMessReste qAdrsZoneConv: .quad sZoneConv /********************************************************/ /* File Include fonctions */ /********************************************************/ /* for this file see task include a file in language AArch64 assembly */ .include "../includeARM64.inc" </lang> Template:Output :

pi@debian-buster-64:~/asm64/rosetta/asm3 $ arith64 101 25
Addition resultat : +126
soustraction :resultat : +76
multiplication :resultat : +2525
division :resultat : +4
remainder :resultat : +1

ABAP

<lang ABAP>report zz_arithmetic no standard page heading.

" Read in the two numbers from the user. selection-screen begin of block input.

 parameters: p_first type i,
             p_second type i.

selection-screen end of block input.

" Set the text value that is displayed on input request. at selection-screen output.

 %_p_first_%_app_%-text  = 'First Number: '.
 %_p_second_%_app_%-text = 'Second Number: '.

end-of-selection.

 data: lv_result type i.
 lv_result = p_first + p_second.
 write: / 'Addition:', lv_result.
 lv_result = p_first - p_second.
 write: / 'Substraction:', lv_result.
 lv_result = p_first * p_second.
 write: / 'Multiplication:', lv_result.
 lv_result = p_first div p_second.
 write: / 'Integer quotient:', lv_result. " Truncated towards zero.
 lv_result = p_first mod p_second.
 write: / 'Remainder:',  lv_result.</lang>

ACL2

<lang Lisp>

set-state-ok t

(defun get-two-nums (state)

  (mv-let (_ a state)
          (read-object *standard-oi* state)
     (declare (ignore _))
     (mv-let (_ b state)
             (read-object *standard-oi* state)
        (declare (ignore _))
        (mv a b state))))

(defun integer-arithmetic (state)

  (mv-let (a b state)
          (get-two-nums state)
     (mv state
         (progn$ (cw "Sum:        ~x0~%" (+ a b))
                 (cw "Difference: ~x0~%" (- a b))
                 (cw "Product:    ~x0~%" (* a b))
                 (cw "Quotient:   ~x0~%" (floor a b))
                 (cw "Remainder:  ~x0~%" (mod a b))))))</lang>

Ada

<lang ada>with Ada.Text_Io; with Ada.Integer_Text_IO;

procedure Integer_Arithmetic is

  use Ada.Text_IO;
  use Ada.Integer_Text_Io;
  A, B : Integer;

begin

  Get(A);
  Get(B);
  Put_Line("a+b = " & Integer'Image(A + B));
  Put_Line("a-b = " & Integer'Image(A - B));
  Put_Line("a*b = " & Integer'Image(A * B));
  Put_Line("a/b = " & Integer'Image(A / B));
  Put_Line("a mod b = " & Integer'Image(A mod B)); -- Sign matches B
  Put_Line("remainder of a/b = " & Integer'Image(A rem B)); -- Sign matches A
  Put_Line("a**b = " & Integer'Image(A ** B));  

end Integer_Arithmetic;</lang>

Aikido

<lang aikido>var a = 0 var b = 0 stdin -> a // read int from stdin stdin -> b // read int from stdin

println ("a+b=" + (a + b)) println ("a-b=" + (a - b)) println ("a*b=" + (a * b)) println ("a/b=" + (a / b)) println ("a%b=" + (a % b))</lang>

ALGOL 68

Translation of: C
Works with: ALGOL 68 version Revision 1 - no extensions to language used
Works with: ALGOL 68G version Any - tested with release 1.18.0-9h.tiny

<lang algol68>main:(

 LONG INT a=355, b=113;
 printf(($"a+b = "gl$, a + b));
 printf(($"a-b = "gl$, a - b));
 printf(($"a*b = a×b = "gl$, a * b));
 printf(($"a/b = "gl$, a / b));
 printf(($"a OVER b = a%b = a÷b = "gl$, a % b));
 printf(($"a MOD b = a%*b = a%×b = a÷×b = a÷*b = "gl$, a %* b));
 printf(($"a UP b = a**b = a↑b = "gl$, a ** b))

)</lang>

Output:
a+b =                                 +468
a-b =                                 +242
a*b = a×b =                               +40115
a/b = +3.141592920353982300884955752e  +0
a OVER b = a%b = a÷b =                                   +3
a MOD b = a%*b = a%×b = a÷×b = a÷*b =                                  +16
a UP b = a**b = a↑b = +1.499007808785573768814747570e+288

ALGOL 68R has the curious (and consequently non-standard) '/:=' operator. This operator is equivalent to the OVERAB operator of the revised report, except it delivers the remainder as a result. So a '/:=' b sets a to the quotient of a%b and returns the remainder of a%b as a result. Note that it must be "stropped" i.e. enclosed in single quotes. eg.

INT quotient:=355, remainder;
remainder := quotient '/:=' 113;

Giving a quotient of 3, and a remainder of 16.

ALGOL W

The Algol W integer division operator (called div) truncates towards zero.
The result of the modulo operator (called rem) has the sign of the first operand when the operands have different signs. <lang algolw>begin

   integer a, b;
   write( "Enter 2 integers> " );
   read( a, b );
   write( "a  +  b: ", a  +  b ); % addition         %
   write( "a  -  b: ", a  -  b ); % subtraction      %
   write( "a  *  b: ", a  *  b ); % multiplication   %
   write( "a  /  b: ", a div b ); % integer division %
   write( "a mod b: ", a rem b ); % modulo           %
   % the ** operator returns a real result even with integer operands  %
   % ( the right-hand operand must always be an integer, the left-hand %
   % operand can be integer, real or complex )                         %
   write( "a  ^  b: ", round( a ** b ) )

end.</lang>

AmigaE

<lang amigae>PROC main()

 DEF a, b, t
 WriteF('A = ')
 ReadStr(stdin, t)
 a := Val(t)
 WriteF('B = ')
 ReadStr(stdin, t)
 b := Val(t)
 WriteF('A+B=\d\nA-B=\d\n', a+b, a-b)
 WriteF('A*B=\d\nA/B=\d\n', a*b, a/b)
 /* * and / are 16 bit ops; Mul and Div are 32bit ops */
 WriteF('A*B=\d\nA/B=\d\n', Mul(a,b), Div(a,b))
 WriteF('A mod B =\d\n', Mod(a,b))

ENDPROC</lang>

APL

<lang apl>∇res ← integer_arithmetic; l; r

 l ← ⎕
 r ← ⎕
 res ← 6 2 ⍴ 'sum' (l+r) 'diff' (l-r) 'prod' (l×r) 'quot' (⌊l÷r) 'rem' (r|l) 'pow' (l*r)</lang>

Quotient will round down in this version.

ARM Assembly

Works with: as version Raspberry Pi

<lang ARM Assembly>

/* ARM assembly Raspberry PI */ /* program arith.s */ /* Constantes */ .equ STDOUT, 1 .equ WRITE, 4 .equ EXIT, 1

/***********************/ /* Initialized data */ /***********************/ .data szMessError: .asciz " Two numbers in command line please ! \n" @ message szRetourLigne: .asciz "\n" szMessResult: .asciz "Resultat " @ message result sMessValeur: .fill 12, 1, ' '

                  .asciz "\n"

szMessAddition: .asciz "addition :" szMessSoustraction: .asciz "soustraction :" szMessMultiplication: .asciz "multiplication :" szMessDivision: .asciz "division :" szMessReste: .asciz "reste :"

/***********************/ /* No Initialized data */ /***********************/ .bss iValeur: .skip 4 @ reserve 4 bytes in memory

.text .global main main:

   push {fp,lr}                @ save des  2 registres
   add fp,sp,#8                @ fp <- adresse début
   ldr r0,[fp]                 @ recup number of parameter in command line
   cmp r0,#3
   blt error
   ldr r0,[fp,#8]              @ adresse of 1er number
   bl conversionAtoD
   mov r3,r0
   ldr r0,[fp,#12]             @ adresse of 2eme number
   bl conversionAtoD
   mov r4,r0
   @ addition
   add r0,r3,r4
   ldr r1,iAdrsMessValeur      @ result in r0
   bl conversion10S            @ call function with 2 parameter (r0,r1)
   ldr r0,iAdrszMessResult
   bl affichageMess            @ display message
   ldr r0,iAdrszMessAddition
   bl affichageMess            @ display message
   ldr r0,iAdrsMessValeur
   bl affichageMess            @ display message
   @ soustraction
   sub r0,r3,r4
   ldr r1,=sMessValeur                 
   bl conversion10S            @ call function with 2 parameter (r0,r1)
   ldr r0,iAdrszMessResult
   bl affichageMess            @ display message
   ldr r0,iAdrszMessSoustraction
   bl affichageMess            @ display message
   ldr r0,iAdrsMessValeur
   bl affichageMess            @ display message
   @ multiplication
   mul r0,r3,r4
   ldr r1,=sMessValeur                 
   bl conversion10S            @ call function with 2 parameter (r0,r1)
   ldr r0,iAdrszMessResult
   bl affichageMess            @ display message
   ldr r0,iAdrszMessMultiplication
   bl affichageMess            @ display message
   ldr r0,iAdrsMessValeur
   bl affichageMess            @ display message
  
   @ division 
   mov r0,r3
   mov r1,r4
   bl division
   mov r0,r2                   @ quotient
   ldr r1,=sMessValeur                 
   bl conversion10S            @ call function with 2 parameter (r0,r1)
   ldr r0,iAdrszMessResult
   bl affichageMess            @ display message
   ldr r0,iAdrszMessDivision
   bl affichageMess            @ display message
   ldr r0,iAdrsMessValeur
   bl affichageMess            @ display message
   mov r0,r3                   @ remainder
   ldr r1,=sMessValeur                 
   bl conversion10S            @ call function with 2 parameter (r0,r1)
   ldr r0,iAdrszMessResult
   bl affichageMess            @ display message
   ldr r0,iAdrszMessReste
   bl affichageMess            @ display message
   ldr r0,iAdrsMessValeur
   bl affichageMess            @ display message

   mov r0, #0                  @ return code
   b 100f

error:

   ldr r0,iAdrszMessError
   bl affichageMess            @ call function with 1 parameter (r0)
   mov r0, #1                  @ return code

100: /* end of program */

   mov r7, #EXIT               @ request to exit program
   swi 0                       @ perform the system call

iAdrsMessValeur: .int sMessValeur iAdrszMessResult: .int szMessResult iAdrszMessError: .int szMessError iAdrszMessAddition: .int szMessAddition iAdrszMessSoustraction: .int szMessSoustraction iAdrszMessMultiplication: .int szMessMultiplication iAdrszMessDivision: .int szMessDivision iAdrszMessReste: .int szMessReste /******************************************************************/ /* affichage des messages avec calcul longueur */ /******************************************************************/ /* r0 contient l adresse du message */ affichageMess:

   push {fp,lr}        /* save des  2 registres */ 
   push {r0,r1,r2,r7}  /* save des autres registres */
   mov r2,#0           /* compteur longueur */

1: /*calcul de la longueur */

   ldrb r1,[r0,r2]     /* recup octet position debut + indice */
   cmp r1,#0           /* si 0 c est fini */
   beq 1f
   add r2,r2,#1        /* sinon on ajoute 1 */
   b 1b

1: /* donc ici r2 contient la longueur du message */

   mov r1,r0           /* adresse du message en r1 */
   mov r0,#STDOUT      /* code pour écrire sur la sortie standard Linux */
   mov r7, #WRITE      /* code de l appel systeme 'write' */
   swi #0              /* appel systeme */
   pop {r0,r1,r2,r7}   /* restaur des autres registres */
   pop {fp,lr}         /* restaur des  2 registres */ 
   bx lr	        /* retour procedure */	

/***************************************************/ /* conversion registre en décimal signé */ /***************************************************/ /* r0 contient le registre */ /* r1 contient l adresse de la zone de conversion */ conversion10S:

   push {fp,lr}      /* save des  2 registres frame et retour */
   push {r0-r5}      /* save autres registres  */
   mov r2,r1         /* debut zone stockage */
   mov r5,#'+'       /* par defaut le signe est + */
   cmp r0,#0         /* nombre négatif ? */
   movlt r5,#'-'     /* oui le signe est - */
   mvnlt r0,r0       /* et inversion en valeur positive */
   addlt r0,#1
   mov r4,#10       /* longueur de la zone */

1: /* debut de boucle de conversion */

   bl divisionpar10 /* division  */
   add r1,#48       /* ajout de 48 au reste pour conversion ascii */	
   strb r1,[r2,r4]  /* stockage du byte en début de zone r5 + la position r4 */
   sub r4,r4,#1     /* position précedente */
   cmp r0,#0     
   bne 1b	     /* boucle si quotient different de zéro */
   strb r5,[r2,r4]  /* stockage du signe à la position courante */
   subs r4,r4,#1    /* position précedente */
   blt  100f        /* si r4 < 0  fin  */
                    /* sinon il faut completer le debut de la zone avec des blancs */
   mov r3,#' '      /* caractere espace */	

2:

   strb r3,[r2,r4]  /* stockage du byte  */
   subs r4,r4,#1    /* position précedente */
   bge 2b           /* boucle si r4 plus grand ou egal a zero */

100: /* fin standard de la fonction */

   pop {r0-r5}      /*restaur des autres registres */
   pop {fp,lr}      /* restaur des  2 registres frame et retour  */
   bx lr   

/***************************************************/ /* division par 10 signé */ /* Thanks to http://thinkingeek.com/arm-assembler-raspberry-pi/* /* and http://www.hackersdelight.org/ */ /***************************************************/ /* r0 contient le dividende */ /* r0 retourne le quotient */ /* r1 retourne le reste */ divisionpar10:

 /* r0 contains the argument to be divided by 10 */
  push {r2-r4}   /* save autres registres  */
  mov r4,r0 
  ldr r3, .Ls_magic_number_10 /* r1 <- magic_number */
  smull r1, r2, r3, r0   /* r1 <- Lower32Bits(r1*r0). r2 <- Upper32Bits(r1*r0) */
  mov r2, r2, ASR #2     /* r2 <- r2 >> 2 */
  mov r1, r0, LSR #31    /* r1 <- r0 >> 31 */
  add r0, r2, r1         /* r0 <- r2 + r1 */
  add r2,r0,r0, lsl #2   /* r2 <- r0 * 5 */
  sub r1,r4,r2, lsl #1   /* r1 <- r4 - (r2 * 2)  = r4 - (r0 * 10) */
  pop {r2-r4}
  bx lr                  /* leave function */
  .align 4

.Ls_magic_number_10: .word 0x66666667 /******************************************************************/ /* Conversion d une chaine en nombre stocké dans un registre */ /******************************************************************/ /* r0 contient l adresse de la zone terminée par 0 ou 0A */ conversionAtoD:

   push {fp,lr}      /* save des  2 registres */ 
   push {r1-r7}      /* save des autres registres */
   mov r1,#0
   mov r2,#10        /* facteur */
   mov r3,#0         /* compteur */
   mov r4,r0         /* save de l adresse dans r4 */
   mov r6,#0         /* signe positif par defaut */
   mov r0,#0         /* initialisation à 0 */ 

1: /* boucle d élimination des blancs du debut */

   ldrb r5,[r4,r3]   /* chargement dans r5 de l octet situé au debut + la position */
   cmp r5,#0         /* fin de chaine -> fin routine */
   beq 100f
   cmp r5,#0x0A      /* fin de chaine -> fin routine */
   beq 100f
   cmp r5,#' '       /* blanc au début */
   bne 1f            /* non on continue */
   add r3,r3,#1      /* oui on boucle en avançant d un octet */
   b 1b

1:

   cmp r5,#'-'       /* premier caracteres est -    */
   moveq r6,#1       /* maj du registre r6 avec 1 */
   beq 3f            /* puis on avance à la position suivante */

2: /* debut de boucle de traitement des chiffres */

   cmp r5,#'0'       /* caractere n est pas un chiffre */
   blt 3f
   cmp r5,#'9'       /* caractere n est pas un chiffre */
   bgt 3f
                     /* caractère est un chiffre */
   sub r5,#48
   ldr r1,iMaxi      /*verifier le dépassement du registre  */  
   cmp r0,r1
   bgt 99f
   mul r0,r2,r0     /* multiplier par facteur */
   add r0,r5        /* ajout à r0 */

3:

   add r3,r3,#1     /* avance à la position suivante */
   ldrb r5,[r4,r3]  /* chargement de l octet */
   cmp r5,#0        /* fin de chaine -> fin routine */
   beq 4f
   cmp r5,#10       /* fin de chaine -> fin routine */
   beq 4f
   b 2b             /* boucler */ 

4:

   cmp r6,#1        /* test du registre r6 pour le signe */
   bne 100f
   mov r1,#-1
   mul r0,r1,r0    /* si negatif, on multiplie par -1 */
   b 100f

99: /* erreur de dépassement */

   ldr r1,=szMessErrDep
   bl   afficheerreur 
   mov r0,#0       /* en cas d erreur on retourne toujours zero */

100:

   pop {r1-r7}     /* restaur des autres registres */
   pop {fp,lr}     /* restaur des  2 registres */ 
   bx lr           /* retour procedure */	

/* constante programme */ iMaxi: .int 1073741824 szMessErrDep: .asciz "Nombre trop grand : dépassement de capacite de 32 bits. :\n" .align 4 /*=============================================*/ /* division entiere non signée */ /*============================================*/ division:

   /* r0 contains N */
   /* r1 contains D */
   /* r2 contains Q */
   /* r3 contains R */
   push {r4, lr}
   mov r2, #0              /* r2 ? 0 */
   mov r3, #0              /* r3 ? 0 */
   mov r4, #32             /* r4 ? 32 */
   b 2f

1:

   movs r0, r0, LSL #1    /* r0 ? r0 << 1 updating cpsr (sets C if 31st bit of r0 was 1) */
   adc r3, r3, r3         /* r3 ? r3 + r3 + C. This is equivalent to r3 ? (r3 << 1) + C */

   cmp r3, r1             /* compute r3 - r1 and update cpsr */
   subhs r3, r3, r1       /* if r3 >= r1 (C=1) then r3 ? r3 - r1 */
   adc r2, r2, r2         /* r2 ? r2 + r2 + C. This is equivalent to r2 ? (r2 << 1) + C */

2:

   subs r4, r4, #1        /* r4 ? r4 - 1 */
   bpl 1b                 /* if r4 >= 0 (N=0) then branch to .Lloop1 */

   pop {r4, lr}
   bx lr	


</lang>

Arturo

<lang arturo>print "give me the first number  : ", a: toNumber|strip|input ~ print "give me the second number : ", b: toNumber|strip|input ~

print a + " + " + b + " = " + (a+b) print a + " - " + b + " = " + (a-b) print a + " * " + b + " = " + (a*b) print a + " / " + b + " = " + (a/b) print a + " % " + b + " = " + (a%b) print a + " ^ " + b + " = " + (a^b)</lang>

Output:
give me the first number  : 
33
give me the second number : 
6
33 + 6 = 39
33 - 6 = 27
33 * 6 = 198
33 / 6 = 5
33 % 6 = 3
33 ^ 6 = 12914679699

AutoHotkey

The quotient rounds towards 0 if both inputs are integers or towards negative infinity if either input is floating point. The sign of the remainder is always the same as the sign of the first parameter (dividend). <lang autohotkey>Gui, Add, Edit, va, 5 Gui, Add, Edit, vb, -3 Gui, Add, Button, Default, Compute Gui, Show Return

ButtonCompute:

 Gui, Submit
 MsgBox,%
 (Join`s"`n"
  a "+" b " = " a+b
  a "-" b " = " a-b
  a "*" b " = " a*b
  a "//" b " = " a//b " remainder " Mod(a,b)
  a "**" b " = " a**b
 )
fallthrough

GuiClose:

 ExitApp</lang>

AWK

<lang awk>/^[ \t]*-?[0-9]+[ \t]+-?[0-9]+[ \t]*$/ { print "add:", $1 + $2 print "sub:", $1 - $2 print "mul:", $1 * $2 print "div:", int($1 / $2) # truncates toward zero print "mod:", $1 % $2 # same sign as first operand print "exp:", $1 ^ $2 exit }</lang>

For division and modulus, Awk should act like C.

Exponentiation's note: With nawk or gawk, $1 ** $2 acts like $1 ^ $2. With mawk, $1 ** $2 is a syntax error. Nawk allows **, but its manual page only has ^. Gawk's manual warns, "The POSIX standard only specifies the use of `^' for exponentiation. For maximum portability, do not use the `**' operator."

BASIC

Applesoft BASIC

Same code as Commodore BASIC

BaCon

<lang freebasic>' Arthimetic/Integer DECLARE a%, b% INPUT "Enter integer A: ", a% INPUT "Enter integer B: ", b% PRINT

PRINT a%, " + ", b%, " is ", a% + b% PRINT a%, " - ", b%, " is ", a% - b% PRINT a%, " * ", b%, " is ", a% * b% PRINT a%, " / ", b%, " is ", a% / b%, ", trucation toward zero" PRINT "MOD(", a%, ", ", b%, ") is ", MOD(a%, b%), ", same sign as first operand" PRINT "POW(", a%, ", ", b%, ") is ", INT(POW(a%, b%))</lang>

Commodore BASIC

<lang basic>10 INPUT "ENTER A NUMBER"; A% 20 INPUT "ENTER ANOTHER NUMBER"; B% 30 PRINT "ADDITION:";A%;"+";B%;"=";A%+B% 40 PRINT "SUBTRACTION:";A%;"-";B%;"=";A%-B% 50 PRINT "MULTIPLICATION:";A%;"*";B%;"=";A%*B% 60 PRINT "INTEGER DIVISION:";A%;"/";B%;"=";INT(A%/B%) 70 PRINT "REMAINDER OR MODULO:";A%;"%";B%;"=";A%-INT(A%/B%)*B% 80 PRINT "POWER:";A%;"^";B%;"=";A%^B%</lang>

True BASIC

<lang basic> ! RosettaCode: Integer Arithmetic ! True BASIC v6.007 ! Translated from BaCon example. PROGRAM Integer_Arithmetic INPUT PROMPT "Enter integer A: ": a INPUT PROMPT "Enter integer B: ": b PRINT PRINT a;" + ";b;" is ";a+b PRINT a;" - ";b;" is ";a-b PRINT a;" * ";b;" is ";a*b PRINT a;" / ";b;" is ";INT(a/b); PRINT "MOD(";a;", ";b;") is "; MOD(a,b) PRINT "POW(";a;", ";b;") is ";INT(a^b) GET KEY done END </lang>

QBasic

Works with: QuickBasic version 4.5

<lang qbasic>function math(a!, b!) print a + b print a - b print a * b print a / b print a mod b end function</lang> Truncate towards: 0

Remainder sign matches: first operand

BASIC256

<lang BASIC256> input "enter a number ?", a input "enter another number ?", b

print "addition " + a + " + " + b + " = " + (a + b) print "subtraction " + a + " - " + b + " = " + (a - b) print "multiplication " + a + " * " + b + " = " + (a * b) print "integer division " + a + " \ " + b + " = " + (a \ b) print "remainder or modulo " + a + " % " + b + " = " + (a % b) print "power " + a + " ^ " + b + " = " + (a ^ b) </lang>

Batch File

Works with: Windows NT version 4 or later (includes Windows XP and onward)

<lang dos> @echo off set /P A=Enter 1st Number : set /P B=Enter 2nd Number : set D=%A% + %B% & call :printC set D=%A% - %B% & call :printC set D=%A% * %B% & call :printC set D=%A% / %B% & call :printC & rem truncates toward 0 set D=%A% %% %B% & call :printC & rem matches sign of 1st operand exit /b

printC

set /A C=%D% echo %D% = %C% </lang>

BBC BASIC

<lang bbcbasic> INPUT "Enter the first integer: " first%

     INPUT "Enter the second integer: " second%
     
     PRINT "The sum is " ; first% + second%
     PRINT "The difference is " ; first% - second%
     PRINT "The product is " ; first% * second%
     PRINT "The integer quotient is " ; first% DIV second% " (rounds towards 0)"
     PRINT "The remainder is " ; first% MOD second% " (sign matches first operand)"
     PRINT "The first raised to the power of the second is " ; first% ^ second%</lang>

bc

<lang bc>define f(a, b) { "add: "; a + b "sub: "; a - b "mul: "; a * b "div: "; a / b /* truncates toward zero */ "mod: "; a % b /* same sign as first operand */ "pow: "; a ^ b }</lang>

Befunge

<lang befunge>&&00p"=A",,:."=B ",,,00g.55+,v

       v,+55.+g00:,,,,"A+B="<
       >"=B-A",,,,:00g-.55+,v
       v,+55.*g00:,,,,"A*B="<
       >"=B/A",,,,:00g/.55+,v
        @,+55.%g00,,,,"A%B="<</lang>

Bracmat

The remainder returned by mod is non-negative. Furthermore, div$(!a.!d)*!d+mod$(!a.!d):!a for all integer !a and !d, !d:~0. <lang Bracmat> ( enter

 =     put$"Enter two integer numbers, separated by space:"
     & get':(~/#?k_~/#?m|quit:?k)
   |     out
       $ "You must enter two integer numbers! Enter \"quit\" if you don't know how to do that."
     & !enter
 )

& !enter & !k:~quit & out$("You entered" !k and !m ". Now look:") & out$("Sum:" !k+!m) & out$("Difference:" !k+-1*!m) & out$("Product:" !k*!m) & out$("Integer division:" div$(!k.!m)) & out$("Remainder:" mod$(!k.!m)) & out$("Exponentiation:" !k^!m) & done; </lang>

Brat

Inspired by the second VBScript version. <lang brat>x = ask("First number: ").to_i y = ask("Second number: ").to_i

  1. Division uses floating point
  2. Remainder uses sign of right hand side

[:+ :- :* :/ :% :^].each { op |

 p "#{x} #{op} #{y} = #{x.call_method op, y}"</lang>

C

<lang c>#include <stdio.h>

  1. include <stdlib.h>

int main(int argc, char *argv[]) {

 int a, b;
 if (argc < 3) exit(1);
 b = atoi(argv[--argc]);
 if (b == 0) exit(2);
 a = atoi(argv[--argc]);
 printf("a+b = %d\n", a+b);
 printf("a-b = %d\n", a-b);
 printf("a*b = %d\n", a*b);
 printf("a/b = %d\n", a/b); /* truncates towards 0 (in C99) */
 printf("a%%b = %d\n", a%b); /* same sign as first operand (in C99) */
 return 0;

}</lang>

C++

<lang cpp>#include <iostream>

int main() {

 int a, b;
 std::cin >> a >> b;
 std::cout << "a+b = " << a+b << "\n";
 std::cout << "a-b = " << a-b << "\n";
 std::cout << "a*b = " << a*b << "\n";
 std::cout << "a/b = " << a/b << ", remainder " << a%b << "\n";
 return 0;

}</lang>

C#

<lang csharp>using System;

class Program {

   static void Main(string[] args)
   {
       int a = Convert.ToInt32(args[0]);
       int b = Convert.ToInt32(args[1]);
       Console.WriteLine("{0} + {1} = {2}", a, b, a + b);
       Console.WriteLine("{0} - {1} = {2}", a, b, a - b);
       Console.WriteLine("{0} * {1} = {2}", a, b, a * b);
       Console.WriteLine("{0} / {1} = {2}", a, b, a / b); // truncates towards 0
       Console.WriteLine("{0} % {1} = {2}", a, b, a % b); // matches sign of first operand
       Console.WriteLine("{0} to the power of {1} = {2}", a, b, Math.Pow(a, b));
   }

}</lang>

Output:
5 + 3 = 8
5 - 3 = 2
5 * 3 = 15
5 / 3 = 1
5 % 3 = 2
5 to the power of 3 = 125

Chef

<lang Chef>Number Soup.

Only reads single values.

Ingredients. 1 g Numbers 3 g Water 5 g Soup

Method. Take Numbers from refrigerator. Take Soup from refrigerator. Put Numbers into 1st mixing bowl. Add Soup into the 1st mixing bowl. Pour contents of the 1st mixing bowl into 1st baking dish. Clean 1st mixing bowl. Put Numbers into 1st mixing bowl. Remove Soup from 1st mixing bowl. Pour contents of the 1st mixing bowl into 2nd baking dish. Clean 1st mixing bowl. Put Numbers into 1st mixing bowl. Combine Soup into 1st mixing bowl. Pour contents of the 1st mixing bowl into 3rd baking dish. Clean 1st mixing bowl. Put Numbers into 1st mixing bowl. Divide Soup into 1st mixing bowl. Pour contents of the 1st mixing bowl into 4th baking dish. Clean 1st mixing bowl. Put Water into 1st mixing bowl. Verb the Soup. Combine Numbers into 1st mixing bowl. Verb the Soup until verbed. Pour contents of the 1st mixing bowl into 5th baking dish. Clean 1st mixing bowl.

Serves 5.</lang>

Clipper

<lang visualfoxpro>procedure Test( a, b )

  ? "a+b", a + b
  ? "a-b", a - b
  ? "a*b", a * b
  // The quotient isn't integer, so we use the Int() function, which truncates it downward.
  ? "a/b", Int( a / b )
  // Remainder:
  ? "a%b", a % b
  // Exponentiation is also a base arithmetic operation
  ? "a**b", a ** b
  return</lang>

Clojure

<lang clojure>(defn myfunc []

 (println "Enter x and y")
 (let [x (read), y (read)]
   (doseq [op '(+ - * / Math/pow rem)]
     (let [exp (list op x y)]

(printf "%s=%s\n" exp (eval exp))))))</lang>

user=> (myfunc)
Enter x and y
3
6
(+ 3 6)=9
(- 3 6)=-3
(* 3 6)=18
(/ 3 6)=1/2
(Math/pow 3 6)=729.0
(rem 3 6)=3
nil

COBOL

<lang cobol> IDENTIFICATION DIVISION.

      PROGRAM-ID. Int-Arithmetic.
      DATA DIVISION.
      WORKING-STORAGE SECTION.
      01 A      PIC S9(10).
      01 B      PIC S9(10).
      01 Result PIC S9(10).
      PROCEDURE DIVISION.
          DISPLAY "First number: " WITH NO ADVANCING
          ACCEPT A
          DISPLAY "Second number: " WITH NO ADVANCING
          ACCEPT B
          
  • *> Note: The various ADD/SUBTRACT/etc. statements can be
  • *> replaced with COMPUTE statements, which allow those
  • *> operations to be defined similarly to other languages,
  • *> e.g. COMPUTE Result = A + B
          ADD A TO B GIVING Result
          DISPLAY "A + B = " Result
          SUBTRACT B FROM A GIVING Result
          DISPLAY "A - B = " Result
          MULTIPLY A BY B GIVING Result
          DISPLAY "A * B = " Result
  • *> Division here truncates towards zero. DIVIDE can take a
  • *> ROUNDED clause, which will round the result to the nearest
  • *> integer.
          DIVIDE A BY B GIVING Result
          DISPLAY "A / B = " Result
          COMPUTE Result = A ^ B
          DISPLAY "A ^ B = " Result
      
  • *> Matches sign of first argument.
          DISPLAY "A % B = " FUNCTION REM(A, B)
          GOBACK
          .</lang>

Common Lisp

<lang lisp>(defun arithmetic (&optional (a (read *query-io*)) (b (read *query-io*)))

 (mapc
   (lambda (op)
     (format t "~a => ~a~%" (list op a b) (funcall (symbol-function op) a b)))
   '(+ - * mod rem floor ceiling truncate round expt))
 (values))</lang>

Common Lisp's integer division functions are floor, ceiling, truncate, and round. They differ in how they round their quotient.

The function rounds its quotient towards
floor negative infinity
ceiling positive infinity
truncate zero
round the nearest integer (preferring the even integer if the mathematical quotient is equidistant from two integers)

Each function also returns a remainder as its secondary value, such that

 quotient * divisor + remainder = dividend .

(mod a b) and (rem a b) return numbers equal to the secondary values of (floor a b) and (truncate a b), respectively.

Component Pascal

Works with Gardens Point Component Pascal <lang oberon2> MODULE Arithmetic; IMPORT CPmain,Console,RTS;

VAR

  x,y	  : INTEGER;
  arg	  : ARRAY 128 OF CHAR;
  status : BOOLEAN;
  

PROCEDURE Error(IN str : ARRAY OF CHAR); BEGIN

  Console.WriteString(str);Console.WriteLn;
  HALT(1)

END Error;


BEGIN

  IF CPmain.ArgNumber() < 2 THEN Error("Give me two integers!") END;
  CPmain.GetArg(0,arg); RTS.StrToInt(arg,x,status);
  IF ~status THEN Error("Can't convert 	'"+arg+"' to Integer") END;
  CPmain.GetArg(1,arg); RTS.StrToInt(arg,y,status);
  IF ~status THEN Error("Can't convert '"+arg+"' to Integer") END;
  Console.WriteString("x + y >");Console.WriteInt(x + y,6);Console.WriteLn;
  Console.WriteString("x - y >");Console.WriteInt(x - y,6);Console.WriteLn;
  Console.WriteString("x * y >");Console.WriteInt(x * y,6);Console.WriteLn;
  Console.WriteString("x / y >");Console.WriteInt(x DIV y,6);Console.WriteLn;
  Console.WriteString("x MOD y >");Console.WriteInt(x MOD y,6);Console.WriteLn;

END Arithmetic. </lang> command: cprun Arithmetic 12 23

Output:
x + y >    35
x - y >   -11
x * y >   276
x / y >     0
x MOD y >    12

Works with BlackBox Component Builder <lang oberon2> MODULE Arithmetic; IMPORT StdLog,DevCommanders,TextMappers;

PROCEDURE DoArithmetic(x,y: INTEGER); BEGIN

       StdLog.String("x + y >");StdLog.Int(x + y);StdLog.Ln;
       StdLog.String("x - y >");StdLog.Int(x - y);StdLog.Ln;
       StdLog.String("x * y >");StdLog.Int(x * y);StdLog.Ln;
       StdLog.String("x / y >");StdLog.Int(x DIV y);StdLog.Ln;
       StdLog.String("x MOD y >");StdLog.Int(x MOD y);StdLog.Ln;

END DoArithmetic;

PROCEDURE Go*; VAR

               params: DevCommanders.Par;
               s: TextMappers.Scanner;
               p : ARRAY 2 OF INTEGER;
               current: INTEGER;

BEGIN

       current := 0;
       params := DevCommanders.par;
       s.ConnectTo(params.text);
       s.SetPos(params.beg);
       s.Scan;
       WHILE(~s.rider.eot) DO
               IF (s.type = TextMappers.int) THEN
                       p[current] := s.int; INC(current);
               END;
               s.Scan;
       END;
       IF current = 2 THEN DoArithmetic(p[0],p[1]) END;

END Go; END Arithmetic. </lang> Command: Arithmetic.Go 12 23 ~

Output:
x + y > 35
x - y > -11
x * y > 276
x / y > 0
x MOD y > 12

D

<lang d>import std.stdio, std.string, std.conv;

void main() {

   int a = 10, b = 20;
   try {
       a = readln().strip().to!int();
       b = readln().strip().to!int();
   } catch (StdioException e) {}
   writeln("a = ", a, ", b = ", b);
   writeln("a + b = ", a + b);
   writeln("a - b = ", a - b);
   writeln("a * b = ", a * b);
   writeln("a / b = ", a / b);
   writeln("a % b = ", a % b);
   writeln("a ^^ b = ", a ^^ b);

}</lang>

Output:
a = -16, b = 5
a + b = -11
a - b = -21
a * b = -80
a / b = -3
a % b = -1
a ^^ b = -1048576

Shorter Version

Same output. <lang d>import std.stdio, std.string, std.conv, std.meta;

void main() {

   int a = -16, b = 5;
   try {
       a = readln().strip().to!int();
       b = readln().strip().to!int();
   } catch (StdioException e) {}
   writeln("a = ", a, ", b = ", b);
   foreach (op; AliasSeq!("+", "-", "*", "/", "%", "^^"))
       mixin(`writeln("a ` ~ op ~ ` b = ", a` ~ op ~ `b);`);

}</lang> Division and modulus are defined as in C99.

dc

<lang dc>[Enter 2 integers on 1 line.

 Use whitespace to separate. Example: 2 3
 Use underscore for negative integers. Example: _10

]P ? sb sa [add: ]P la lb + p sz [sub: ]P la lb - p sz [mul: ]P la lb * p sz [div: ]P la lb / p sz [truncates toward zero]sz [mod: ]P la lb % p sz [sign matches first operand]sz [pow: ]P la lb ^ p sz</lang>

DCL

<lang DCL>$ inquire a "Enter first number" $ a = f$integer( a ) $ inquire b "Enter second number" $ b = f$integer( b ) $ write sys$output "a + b = ", a + b $ write sys$output "a - b = ", a - b $ write sys$output "a * b = ", a * b $ write sys$output "a / b = ", a / b  ! truncates down</lang>

Output:
$ @arithmetic_integer 
Enter first number: 2
Enter second number: 5
a + b = 7
a - b = -3
a * b = 10
a / b = 0
$ @arithmetic_integer 
Enter first number: -5
Enter second number: -2
a + b = -7
a - b = -3
a * b = 10
a / b = 2

Delphi

<lang Delphi>program IntegerArithmetic;

{$APPTYPE CONSOLE}

uses SysUtils, Math;

var

 a, b: Integer;

begin

 a := StrToInt(ParamStr(1));
 b := StrToInt(ParamStr(2));
 WriteLn(Format('%d + %d = %d', [a, b, a + b]));
 WriteLn(Format('%d - %d = %d', [a, b, a - b]));
 WriteLn(Format('%d * %d = %d', [a, b, a * b]));
 WriteLn(Format('%d / %d = %d', [a, b, a div b])); // rounds towards 0
 WriteLn(Format('%d %% %d = %d', [a, b, a mod b])); // matches sign of the first operand
 WriteLn(Format('%d ^ %d = %d', [a, b, Trunc(Power(a, b))]));

end.</lang>

DWScript

<lang delphi>var a := StrToInt(ParamStr(0)); var b := StrToInt(ParamStr(1));

PrintLn(Format('%d + %d = %d', [a, b, a + b])); PrintLn(Format('%d - %d = %d', [a, b, a - b])); PrintLn(Format('%d * %d = %d', [a, b, a * b])); PrintLn(Format('%d / %d = %d', [a, b, a div b])); PrintLn(Format('%d mod %d = %d', [a, b, a mod b])); PrintLn(Format('%d ^ %d = %d', [a, b, Trunc(Power(a, b))]));</lang>

Dyalect

Translation of: Swift

Dyalect has no operator for exponential.

<lang Dyalect>const a = 6 const b = 4

print("sum =\(a+b)") print("difference = \(a-b)") print("product = \(a*b)") print("Integer quotient = \(a/b)") print("Remainder = \(a%b)")</lang>

E

<lang e>def arithmetic(a :int, b :int) {

 return `$\
  Sum:        ${a + b}
  Difference: ${a - b}
  Product:    ${a * b}
  Quotient:   ${a // b}
  Remainder:  ${a % b}$\n`

}</lang>

EasyLang

<lang>a = number input b = number input print a + b print a - b print a * b print a / b print a mod b</lang>

ECL

<lang ECL> ArithmeticDemo(INTEGER A,INTEGER B) := FUNCTION

 ADDit       := A + B;
 SUBTRACTit  := A - B;
 MULTIPLYit  := A * B;
 INTDIVIDEit := A DIV B; //INTEGER DIVISION
 DIVIDEit    := A / B;   //standard division
 Remainder   := A % B;
 EXPit       := POWER(A,B);
 DS          := DATASET([{A,B,'A PLUS B is:',ADDit},
                         {A,B,'A MINUS B is:',SUBTRACTit},

{A,B,'A TIMES B is:',MULTIPLYit}, {A,B,'A INT DIVIDE BY B is:',INTDIVIDEit}, {A,B,'REMAINDER is:',Remainder}, {A,B,'A DIVIDE BY B is:',DIVIDEit}, {A,B,'A RAISED TO B:',EXPit}], {INTEGER AVal,INTEGER BVal,STRING18 valuetype,STRING val});

 RETURN DS;
 END;

ArithmeticDemo(1,1); ArithmeticDemo(2,2); ArithmeticDemo(50,5); ArithmeticDemo(10,3); ArithmeticDemo(-1,2);

/* NOTE:Division by zero defaults to generating a zero result (0),

  	rather than reporting a “divide by zero” error. 
  	This avoids invalid or unexpected data aborting a long job. 
  	This default behavior can be changed
  • /

</lang>

Efene

<lang efene>@public run = fn () {

   First = io.get_line("First number: ")
   Second = io.get_line("Second number: ")
   A = list_to_integer(lists.delete($\n, First))
   B = list_to_integer(lists.delete($\n, Second))
   io.format("Sum: ~p~n", [A + B])
   io.format("Difference: ~p~n", [A - B])
   io.format("Product: ~p~n", [A * B])
   io.format("Quotient: ~p~n", [A / B])
   io.format("Remainder: ~p~n", [A % B])

}</lang>

Eiffel

Works with: SmartEiffel version 2.4

In a file called main.e: <lang eiffel>class MAIN

   creation make
   feature make is
       local
           a, b: REAL;
       do
           print("a = ");
           io.read_real;
           a := io.last_real;
           print("b = ");
           io.read_real;
           b := io.last_real;
           print("a + b = ");
           io.put_real(a + b);
           print("%Na - b = ");
           io.put_real(a - b);
           print("%Na * b = ");
           io.put_real(a * b);
           print("%Na / b = ");
           io.put_real(a / b);
           print("%Na %% b = ");
           io.put_real(((a / b) - (a / b).floor) * b);
           print("%Na ^ b = ");
           io.put_real(a.pow(b));
           print("%N");
       end

end</lang> Note that there actually is a builtin modulo operator (\\). However, it seems impossible to use that instruction with SmartEiffel.

Elena

ELENA 4.x : <lang elena>import system'math; import extensions;

public program() {

   var a := console.loadLineTo(new Integer());
   var b := console.loadLineTo(new Integer());
   
   console.printLine(a," + ",b," = ",a + b);
   console.printLine(a," - ",b," = ",a - b);
   console.printLine(a," * ",b," = ",a * b);
   console.printLine(a," / ",b," = ",a / b);   // truncates towards 0
   console.printLine(a," % ",b," = ",a.mod:b); // matches sign of first operand

}</lang>

Elixir

Works with: Elixir version 1.4

<lang Elixir>defmodule Arithmetic_Integer do

 # Function to remove line breaks and convert string to int
 defp get_int(msg) do
   IO.gets(msg) |> String.strip |> String.to_integer
 end
 
 def task do
   # Get user input
   a = get_int("Enter your first integer: ") 
   b = get_int("Enter your second integer: ")
   
   IO.puts "Elixir Integer Arithmetic:\n"
   IO.puts "Sum:            #{a + b}"
   IO.puts "Difference:     #{a - b}"
   IO.puts "Product:        #{a * b}"
   IO.puts "True Division:  #{a / b}"                  # Float
   IO.puts "Division:       #{div(a,b)}"               # Truncated Towards 0
   IO.puts "Floor Division: #{Integer.floor_div(a,b)}" # floored integer division
   IO.puts "Remainder:      #{rem(a,b)}"               # Sign from first digit
   IO.puts "Modulo:         #{Integer.mod(a,b)}"       # modulo remainder (uses floored division)
   IO.puts "Exponent:       #{:math.pow(a,b)}"         # Float, using Erlang's :math
 end

end

Arithmetic_Integer.task</lang>

Output:
C:\Elixir>elixir Arithmetic_Integer.exs
Enter your first integer: 7
Enter your second integer: 3
Elixir Integer Arithmetic:

Sum:            10
Difference:     4
Product:        21
True Division:  2.3333333333333335
Division:       2
Floor Division: 2
Remainder:      1
Modulo:         1
Exponent:       343.0

C:\Elixir>elixir Arithmetic_Integer.exs
Enter your first integer: -7
Enter your second integer: 3
Elixir Integer Arithmetic:

Sum:            -4
Difference:     -10
Product:        -21
True Division:  -2.3333333333333335
Division:       -2
Floor Division: -3
Remainder:      -1
Modulo:         2
Exponent:       -343.0

C:\Elixir>elixir Arithmetic_Integer.exs
Enter your first integer: 7
Enter your second integer: -3
Elixir Integer Arithmetic:

Sum:            4
Difference:     10
Product:        -21
True Division:  -2.3333333333333335
Division:       -2
Floor Division: -3
Remainder:      1
Modulo:         -2
Exponent:       0.0029154518950437317

C:\Elixir>elixir Arithmetic_Integer.exs
Enter your first integer: -7
Enter your second integer: -3
Elixir Integer Arithmetic:

Sum:            -10
Difference:     -4
Product:        21
True Division:  2.3333333333333335
Division:       2
Floor Division: 2
Remainder:      -1
Modulo:         -1
Exponent:       -0.0029154518950437317

Erlang

<lang erlang>% Implemented by Arjun Sunel -module(arith). -export([start/0]).

start() ->

  case io:fread("","~d~d") of
      {ok, [A,B]} ->
          io:format("Sum = ~w~n",[A+B]),
          io:format("Difference = ~w~n",[A-B]),
          io:format("Product = ~w~n",[A*B]),
          io:format("Quotient = ~w~n",[A div B]),      % truncates towards zero
          io:format("Remainder= ~w~n",[A rem B]),    % same sign as the first operand
          halt()
  end.

</lang>

ERRE

<lang> PROGRAM INTEGER_ARITHMETIC

! ! for rosettacode.org !

!$INTEGER

BEGIN

 INPUT("Enter a number ",A)
 INPUT("Enter another number ",B)
 PRINT("Addition ";A;"+";B;"=";(A+B))
 PRINT("Subtraction ";A;"-";B;"=";(A-B))
 PRINT("Multiplication ";A;"*";B;"=";(A*B))
 PRINT("Integer division ";A;"div";B;"=";(A DIV B))
 PRINT("Remainder or modulo ";A;"mod";B;"=";(A MOD B))
 PRINT("Power ";A;"^";B;"=";(A^B))

END PROGRAM </lang>

Output:
Enter a number ? 12
Enter another number ? 5
Addition  12 + 5 = 17
Subtraction  12 - 5 = 7
Multiplication  12 * 5 = 60
Integer division  12 div 5 = 2
Remainder or modulo  12 mod 5 = 2
Power  12 ^ 5 = 248832

Truncate towards: 0

Remainder sign matches: first operand

In C-64 ERRE version you must use INT(A/B) for division and A-B*INT(A/B) for modulus.

Euphoria

<lang euphoria>include get.e

integer a,b

a = floor(prompt_number("a = ",{})) b = floor(prompt_number("b = ",{}))

printf(1,"a + b = %d\n", a+b) printf(1,"a - b = %d\n", a-b) printf(1,"a * b = %d\n", a*b) printf(1,"a / b = %g\n", a/b) -- does not truncate printf(1,"remainder(a,b) = %d\n", remainder(a,b)) -- same sign as first operand printf(1,"power(a,b) = %g\n", power(a,b))</lang>

Output:
a = 2
b = 3
a + b = 5
a - b = -1
a * b = 6
a / b = 0.666667
remainder(a,b) = 2
power(a,b) = 8

Excel

If the numbers are typed into cells A1 and B1

For sum, type in C1 <lang excel> =$A1+$B1 </lang>

For difference, type in D1 <lang excel> =$A1-$B1 </lang>

For product, type in E1 <lang excel> =$A1*$B1 </lang>

For quotient, type in F1 <lang excel> =QUOTIENT($A1,$B1) </lang>

For remainder, type in G1 <lang excel> =MOD($A1,$B1) </lang>

For exponentiation, type in H1 <lang excel> =$A1^$B1 </lang>

Factor

<lang factor>USING: combinators io kernel math math.functions math.order math.parser prettyprint ;

"a=" "b=" [ write readln string>number ] bi@ {

   [ + "sum: " write . ]
   [ - "difference: " write . ] 
   [ * "product: " write . ]
   [ / "quotient: " write . ]
   [ /i "integer quotient: " write . ]
   [ rem "remainder: " write . ]
   [ mod "modulo: " write . ]
   [ max "maximum: " write . ]
   [ min "minimum: " write . ]
   [ gcd "gcd: " write . drop ]
   [ lcm "lcm: " write . ]

} 2cleave</lang>

Output:
a=8
b=12
sum: 20
difference: -4
product: 96
quotient: 2/3
integer quotient: 0
remainder: 8
modulo: 8
maximum: 12
minimum: 8
gcd: 4
lcm: 24

This example illustrates the use of cleave and apply combinators to alleviate the usage of shuffle words in a concatenative language. bi@ applies a quotation to 2 inputs and 2cleave applies a sequence of quotations to 2 inputs.

FALSE

<lang false>12 7 \$@$@$@$@$@$@$@$@$@$@\ { 6 copies } "sum = "+." difference = "-." product = "*." quotient = "/." modulus = "/*-." "</lang>

Forth

To keep the example simple, the word takes the two numbers from the stack. /mod returns two results; the stack effect is ( a b -- a%b a/b ). <lang forth>: arithmetic ( a b -- )

 cr ." a=" over . ." b=" dup .
 cr ." a+b=" 2dup + .
 cr ." a-b=" 2dup - .
 cr ." a*b=" 2dup * .
 cr ." a/b=" /mod .
 cr ." a mod b = " . cr ;</lang>

Different host systems have different native signed division behavior. ANS Forth defines two primitive double-precision signed division operations, from which the implementation may choose the most natural to implement the basic divide operations ( / , /mod , mod , */ ). This is partly due to differing specifications in the two previous standards, Forth-79 and Forth-83.

<lang forth>FM/MOD ( d n -- mod div ) \ floored SM/REM ( d n -- rem div ) \ symmetric M* ( n n -- d )</lang>

In addition, there are unsigned variants.

<lang forth>UM/MOD ( ud u -- umod udiv ) UM* ( u u -- ud )</lang>

Fortran

In ANSI FORTRAN 77 or later: <lang fortran> INTEGER A, B

PRINT *, 'Type in two integer numbers separated by white space',

+ ' and press ENTER'

READ *, A, B
PRINT *, '   A + B = ', (A + B)
PRINT *, '   A - B = ', (A - B)
PRINT *, '   A * B = ', (A * B)
PRINT *, '   A / B = ', (A / B)
PRINT *, 'MOD(A,B) = ', MOD(A,B)
PRINT *
PRINT *, 'Even though you did not ask, ',

+ 'exponentiation is an intrinsic op in Fortran, so...'

PRINT *, '  A ** B = ', (A ** B)
END</lang>

FreeBASIC

<lang freebasic>' FB 1.05.0 Win64

Dim As Integer i, j Input "Enter two integers separated by a comma"; i, j Print i;" + "; j; " = "; i + j Print i;" - "; j; " = "; i - j Print i;" * "; j; " = "; i * j Print i;" / "; j; " = "; i \ j Print i;" % "; j; " = "; i Mod j Print i;" ^ "; j; " = "; i ^ j Sleep

' Integer division (for which FB uses the '\' operator) rounds towards zero

' Remainder (for which FB uses the Mod operator) will, if non-zero, match the sign ' of the first operand</lang>

Sample input and output:-

Output:
Enter two integers separated by a comma? -12, 7
-12 +  7 = -5
-12 -  7 = -19
-12 *  7 = -84
-12 /  7 = -1
-12 %  7 = -5
-12 ^  7 = -35831808

F#

As F# is a functional language, we can easily create a list of pairs of the string name of a function and the function itself to iterate over printing the operation and applying the function to obtain the result: <lang fsharp> do

 let a, b = int Sys.argv.[1], int Sys.argv.[2]
 for str, f in ["+", ( + ); "-", ( - ); "*", ( * ); "/", ( / ); "%", ( % )] do
   printf "%d %s %d = %d\n" a str b (f a b)

</lang> For example, the output with the arguments 4 and 3 is: <lang fsharp> 4 + 3 = 7 4 - 3 = 1 4 * 3 = 12 4 / 3 = 1 4 % 3 = 1 </lang>


friendly interactive shell

<lang fishshell> read a read b echo 'a + b =' (math "$a + $b") # Sum echo 'a - b =' (math "$a - $b") # Difference echo 'a * b =' (math "$a * $b") # Product echo 'a / b =' (math "$a / $b") # Integer quotient echo 'a % b =' (math "$a % $b") # Remainder echo 'a ^ b =' (math "$a ^ $b") # Exponentation </lang>

Frink

This demonstrates normal division (which produces rational numbers when possible), div, and mod. div rounds toward negative infinity (defined as floor[x/y]). mod uses the sign of the second number (defined as x - y * floor[x/y]). All operators automatically produce big integers or exact rational numbers when necessary. <lang frink> [a,b] = input["Enter numbers",["a","b"]] ops=["+", "-", "*", "/", "div" ,"mod" ,"^"] for op = ops {

  str = "$a $op $b"
  println["$str = " + eval[str]]

} </lang>

Output:

<lang frink> 10 + 20 = 30 10 - 20 = -10 10 * 20 = 200 10 / 20 = 1/2 (exactly 0.5) 10 div 20 = 0 10 mod 20 = 10 10 ^ 20 = 100000000000000000000 </lang>


FutureBasic

<lang futurebasic> include "ConsoleWindow"

dim as Str31 a, b dim as long i1, i2

input "Enter the first integer: "; a print input "Enter the second integer: "; b print : print

i1 = val(a) : i2 = val(b)

print " Number 1:"; i1 print " Number 2:"; i2 print print " Add: "; i1; " +"; i2; " ="; i1 + i2 print " Subtract: "; i1; " -"; i2; " ="; i1 - i2 print " Multiply: "; i1; " *"; i2; " ="; i1 * i2

if i2 != 0

  print "   Divide: "; i1; " /"; i2; " ="; i1 / i2
  print i1; " mod"; i2; " ="; i1 MOD i2; " remainder"
  print i1; " raised to power of"; i2; " ="; i1 ^ i2
else
  print "Cannot divide by zero."

end if </lang>

Output:

Enter the first integer: 25
Enter the second integer: 53

  Number 1: 25
  Number 2: 53

      Add:  25 + 53 = 78
 Subtract:  25 - 53 =-28
 Multiply:  25 * 53 = 1325
   Divide:  25 / 53 = 0
 25 mod 53 = 25 remainder
 25 raised to power of 53 = 1.23259516e+74

GAP

<lang gap>run := function()

 local a, b, f;
 f := InputTextUser();
 Print("a =\n");
 a := Int(Chomp(ReadLine(f)));
 Print("b =\n");
 b := Int(Chomp(ReadLine(f)));
 Display(Concatenation(String(a), " + ", String(b), " = ", String(a + b)));
 Display(Concatenation(String(a), " - ", String(b), " = ", String(a - b)));
 Display(Concatenation(String(a), " * ", String(b), " = ", String(a * b)));
 Display(Concatenation(String(a), " / ", String(b), " = ", String(QuoInt(a, b)))); # toward 0
 Display(Concatenation(String(a), " mod ", String(b), " = ", String(RemInt(a, b)))); # nonnegative
 Display(Concatenation(String(a), " ^ ", String(b), " = ", String(a ^ b)));
 CloseStream(f);

end;</lang>

Genie

Note: Using init:int and the return from the init block was introduced in release 0.43.92, February 2019.

<lang genie>[indent=4] /*

  Arithmethic/Integer, in Genie
  valac arithmethic-integer.gs
  • /

init:int

   a:int = 0
   b:int = 0
   if args.length > 2 do b = int.parse(args[2])
   if args.length > 1 do a = int.parse(args[1])
   print @"a+b: $a plus  $b is $(a+b)"
   print @"a-b: $a minus $b is $(a-b)"
   print @"a*b: $a times $b is $(a*b)"
   print @"a/b: $a by    $b quotient is  $(a/b)  (rounded mode is TRUNCATION)"
   print @"a%b: $a by    $b remainder is $(a%b)  (sign matches first operand)"
   print "\nGenie does not include a raise to power operator"
   return 0</lang>
Output:
prompt$ valac arithmetic-integer.gs
prompt$ ./arithmetic-integer -390 100
a+b: -390 plus  100 is -290
a-b: -390 minus 100 is -490
a*b: -390 times 100 is -39000
a/b: -390 by    100 quotient is  -3  (rounded mode is TRUNCATION)
a%b: -390 by    100 remainder is -90  (sign matches first operand)

Genie does not include a raise to power operator

GEORGE

<lang GEORGE>R (m) ; R (n) ; m n + P; m n - P; m n × P; m n div P; m n rem P;</lang>

Go

int

<lang go>package main

import "fmt"

func main() {

   var a, b int
   fmt.Print("enter two integers: ")
   fmt.Scanln(&a, &b)
   fmt.Printf("%d + %d = %d\n", a, b, a+b)
   fmt.Printf("%d - %d = %d\n", a, b, a-b)
   fmt.Printf("%d * %d = %d\n", a, b, a*b)
   fmt.Printf("%d / %d = %d\n", a, b, a/b)  // truncates towards 0
   fmt.Printf("%d %% %d = %d\n", a, b, a%b) // same sign as first operand
   // no exponentiation operator

}</lang>

Example run:
enter two integers: -5 3
-5 + 3 = -2
-5 - 3 = -8
-5 * 3 = -15
-5 / 3 = -1
-5 % 3 = -2

big.Int

<lang go>package main

import (

   "fmt"
   "math/big"

)

func main() {

   var a, b, c big.Int
   fmt.Print("enter two integers: ")
   fmt.Scan(&a, &b)
   fmt.Printf("%d + %d = %d\n", &a, &b, c.Add(&a, &b))
   fmt.Printf("%d - %d = %d\n", &a, &b, c.Sub(&a, &b))
   fmt.Printf("%d * %d = %d\n", &a, &b, c.Mul(&a, &b))
   // Quo, Rem functions work like Go operators on int:
   // quo truncates toward 0,
   // and a non-zero rem has the same sign as the first operand.
   fmt.Printf("%d quo %d = %d\n", &a, &b, c.Quo(&a, &b))
   fmt.Printf("%d rem %d = %d\n", &a, &b, c.Rem(&a, &b))
   // Div, Mod functions do Euclidean division:
   // the result m = a mod b is always non-negative,
   // and for d = a div b, the results d and m give d*y + m = x.
   fmt.Printf("%d div %d = %d\n", &a, &b, c.Div(&a, &b))
   fmt.Printf("%d mod %d = %d\n", &a, &b, c.Mod(&a, &b))
   // as with int, no exponentiation operator

}</lang>

Example run:
enter two integers: -5 3
-5 + 3 = -2
-5 - 3 = -8
-5 * 3 = -15
-5 quo 3 = -1
-5 rem 3 = -2
-5 div 3 = -2
-5 mod 3 = 1

Groovy

Solution: <lang groovy>def arithmetic = { a, b ->

   println """
      a + b =        ${a} + ${b} = ${a + b}
      a - b =        ${a} - ${b} = ${a - b}
      a * b =        ${a} * ${b} = ${a * b}
      a / b =        ${a} / ${b} = ${a / b}   !!! Converts to floating point!

(int)(a / b) = (int)(${a} / ${b}) = ${(int)(a / b)}  !!! Truncates downward after the fact

a.intdiv(b) =  ${a}.intdiv(${b}) = ${a.intdiv(b)}              !!! Behaves as if truncating downward, actual implementation varies
      a % b =        ${a} % ${b} = ${a % b}

Exponentiation is also a base arithmetic operation in Groovy, so:

     a ** b =       ${a} ** ${b} = ${a ** b}

""" }</lang>

Test: <lang groovy>arithmetic(5,3)</lang>

Output:
       a + b =        5 + 3 = 8
       a - b =        5 - 3 = 2
       a * b =        5 * 3 = 15
       a / b =        5 / 3 = 1.6666666667   !!! Converts to floating point!
(int)(a / b) = (int)(5 / 3) = 1              !!! Truncates downward after the fact
 a.intdiv(b) =  5.intdiv(3) = 1              !!! Behaves as if truncating downward, actual implementation varies
       a % b =        5 % 3 = 2

Exponentiation is also a base arithmetic operation in Groovy, so:
      a ** b =       5 ** 3 = 125

Harbour

<lang visualfoxpro>procedure Test( a, b )

  ? "a+b", a + b
  ? "a-b", a - b
  ? "a*b", a * b
  // The quotient isn't integer, so we use the Int() function, which truncates it downward.
  ? "a/b", Int( a / b )
  // Remainder:
  ? "a%b", a % b
  // Exponentiation is also a base arithmetic operation
  ? "a**b", a ** b
  return</lang>

Haskell

<lang haskell>main = do

 a <- readLn :: IO Integer
 b <- readLn :: IO Integer
 putStrLn $ "a + b = " ++ show (a + b)
 putStrLn $ "a - b = " ++ show (a - b)
 putStrLn $ "a * b = " ++ show (a * b)
 putStrLn $ "a to the power of b = " ++ show (a ** b)
 putStrLn $ "a to the power of b = " ++ show (a ^ b)
 putStrLn $ "a to the power of b = " ++ show (a ^^ b)
 putStrLn $ "a `div` b = "  ++ show (a `div` b)  -- truncates towards negative infinity
 putStrLn $ "a `mod` b = "  ++ show (a `mod` b)  -- same sign as second operand
 putStrLn $ "a `divMod` b = "  ++ show (a `divMod` b)
 putStrLn $ "a `quot` b = " ++ show (a `quot` b) -- truncates towards 0
 putStrLn $ "a `rem` b = "  ++ show (a `rem` b)  -- same sign as first operand
 putStrLn $ "a `quotRem` b = "  ++ show (a `quotRem` b)</lang>

Haxe

<lang haxe>class BasicIntegerArithmetic {

   public static function main() {
       var args =Sys.args();
       if (args.length < 2) return;
       var a = Std.parseFloat(args[0]);
       var b = Std.parseFloat(args[1]);
       trace("a+b = " + (a+b));
       trace("a-b = " + (a-b));
       trace("a*b = " + (a*b));
       trace("a/b = " + (a/b));
       trace("a%b = " + (a%b));
   }

}</lang>

HicEst

All numeric is 8-byte-float. Conversions are by INT, NINT, FLOOR, CEILING, or Formatted IO <lang hicest>DLG(Edit=A, Edit=B, TItle='Enter numeric A and B') WRITE(Name) A, B WRITE() ' A + B = ', A + B WRITE() ' A - B = ', A - B WRITE() ' A * B = ', A * B WRITE() ' A / B = ', A / B  ! no truncation WRITE() 'truncate A / B = ', INT(A / B)  ! truncates towards 0 WRITE() 'round next A / B = ', NINT(A / B)  ! truncates towards next integer WRITE() 'round down A / B = ', FLOOR(A / B)  ! truncates towards minus infinity WRITE() 'round up A / B = ', CEILING(A / B) ! truncates towards plus infinity WRITE() 'remainder of A / B = ', MOD(A, B)  ! same sign as A WRITE() 'A to the power of B = ', A ^ B WRITE() 'A to the power of B = ', A ** B</lang> <lang hicest>A=5; B=-4;

             A + B = 1 
             A - B = 9 
             A * B = -20 
             A / B = -1.25 

truncate A / B = -1 round next A / B = -1 round down A / B = -2 round up A / B = -1 remainder of A / B = 1 A to the power of B = 16E-4 A to the power of B = 16E-4 </lang>

HolyC

<lang holyc>I64 *a, *b; a = Str2I64(GetStr("Enter your first number: ")); b = Str2I64(GetStr("Enter your second number: "));

if (b == 0)

 Print("Error: The second number must not be zero.\n");

else {

 Print("a + b = %d\n", a + b);
 Print("a - b = %d\n", a - b);
 Print("a * b = %d\n", a * b);
 Print("a / b = %d\n", a / b); /* rounds down */
 Print("a % b = %d\n", a % b); /* same sign as first operand */
 Print("a ` b = %d\n", a ` b);

}</lang>

i

<lang i>main a $= integer(in(' ')); ignore b $= integer(in('\n')); ignore

print("Sum:" , a + b) print("Difference:", a - b) print("Product:" , a * b) print("Quotient:" , a / b) // rounds towards zero print("Modulus:" , a % b) // same sign as first operand print("Exponent:" , a ^ b) }</lang>

Icon and Unicon

<lang Icon>procedure main() writes("Input 1st integer a := ") a := integer(read()) writes("Input 2nd integer b := ") b := integer(read())

write(" a + b = ",a+b) write(" a - b = ",a-b) write(" a * b = ",a*b) write(" a / b = ",a/b, " rounds toward 0") write(" a % b = ",a%b, " remainder sign matches a") write(" a ^ b = ",a^b) end</lang>

Inform 7

<lang inform7>Enter Two Numbers is a room.

Numerically entering is an action applying to one number. Understand "[number]" as numerically entering.

The first number is a number that varies.

After numerically entering for the first time: now the first number is the number understood.

After numerically entering for the second time: let A be the first number; let B be the number understood; say "[A] + [B] = [A + B]."; [operator syntax] say "[A] - [B] = [A minus B]."; [English syntax] let P be given by P = A * B where P is a number; [inline equation] say "[A] * [B] = [P]."; let Q be given by the Division Formula; [named equation] say "[A] / [B] = [Q]."; say "[A] mod [B] = [remainder after dividing A by B]."; end the story.

Equation - Division Formula Q = A / B where Q is a number, A is a number, and B is a number.</lang>

This solution shows four syntaxes: mathematical operators, English operators, inline equations, and named equations. Division rounds toward zero, and the remainder has the same sign as the quotient.

J

<lang j>calc =: + , - , * , <.@% , |~ , ^</lang> The function calc constructs a list of numeric results for this task. The implementation of integer division we use here (<.@%.) rounds down (towards negative infinity), and this is compatible with the remainder implementation we use here. <lang j> 17 calc 3 20 14 51 5 2 4913</lang>

The function bia assembles these results, textually:

<lang j>labels =: ];.2 'Sum: Difference: Product: Quotient: Remainder: Exponentiation: ' combine =: ,. ":@,. bia =: labels combine calc

  17 bia 3

Sum: 20 Difference: 14 Product: 51 Quotient: 5 Remainder: 2 Exponentiation: 4913</lang>

Java

<lang java>import java.util.Scanner;

public class IntegerArithmetic {

   public static void main(String[] args) {
       // Get the 2 numbers from command line arguments
       Scanner sc = new Scanner(System.in);
       int a = sc.nextInt();
       int b = sc.nextInt();
       int sum = a + b;        // The result of adding 'a' and 'b' (Note: integer addition is discouraged in print statements due to confusion with string concatenation)
       int difference = a - b; // The result of subtracting 'b' from 'a'
       int product = a * b;    // The result of multiplying 'a' and 'b'
       int division = a / b;   // The result of dividing 'a' by 'b' (Note: 'division' does not contain the fractional result)
       int remainder = a % b;  // The remainder of dividing 'a' by 'b'
       System.out.println("a + b = " + sum);
       System.out.println("a - b = " + difference);
       System.out.println("a * b = " + product);
       System.out.println("quotient of a / b = " + division);   // truncates towards 0
       System.out.println("remainder of a / b = " + remainder);   // same sign as first operand
   }

}</lang>

JavaScript

WScript

Works with: JScript
Works with: SpiderMonkey

Note that the operators work the same in all versions of JavaScript; the requirement for specific implementations is in order to get user input. <lang javascript>var a = parseInt(get_input("Enter an integer"), 10); var b = parseInt(get_input("Enter an integer"), 10);

WScript.Echo("a = " + a); WScript.Echo("b = " + b); WScript.Echo("sum: a + b = " + (a + b)); WScript.Echo("difference: a - b = " + (a - b)); WScript.Echo("product: a * b = " + (a * b)); WScript.Echo("quotient: a / b = " + (a / b | 0)); // "| 0" casts it to an integer WScript.Echo("remainder: a % b = " + (a % b));

function get_input(prompt) {

   output(prompt);
   try {
       return WScript.StdIn.readLine();
   } catch(e) {
       return readline();
   }

} function output(prompt) {

   try {
       WScript.Echo(prompt);
   } catch(e) {
       print(prompt);
   }

}</lang>

Output:
Enter an integer
-147
Enter an integer
63
a = -147
b = 63
sum: a + b = -84
difference: a - b = -210
product: a * b = -9261
quotient: a / b = -2
remainder: a % b = -21

Node.JS

<lang javascript>// Invoked as node script_name.js <a> . Positions 0 and 1 in the argv array contain 'node' and 'script_name.js' respectively var a = parseInt(process.argv[2], 10); var b = parseInt(process.argv[3], 10);

var sum = a + b; var difference = a - b; var product = a * b; var division = a / b; var remainder = a % b; // This produces the remainder after dividing 'b' into 'a'. The '%' operator is called the 'modulo' operator

console.log('a + b = %d', sum); // The %d syntax is a placeholder that is replaced by the sum console.log('a - b = %d', difference); console.log('a * b = %d', product); console.log('a / b = %d', division); console.log('a % b = %d', remainder);</lang>

Output:
a + b = 17
a - b = 3
a * b = 70
a / b = 1.4285714285714286
a % b = 3

jq

<lang jq># Lines which do not have two integers are skipped:

def arithmetic:

 split(" ") | select(length > 0) | map(tonumber)
 | if length > 1 then
   .[0] as $a | .[1] as $b
   | "For a = \($a) and b = \($b):\n" +
     "a + b = \($a + $b)\n" +
     "a - b = \($a - $b)\n" +
     "a * b = \($a * $b)\n" +
     "a/b|floor = \($a / $b | floor)\n" +
     "a % b = \($a % $b)\n" +
     "a | exp = \($a | exp)\n"
   else empty
   end ;

arithmetic </lang>

Output:
$ jq -R -r -f arithmetic.jq
7 -2
For a = 7 and b = -2:
a + b = 5
a - b = 9
a * b = -14
a/b|floor = -4
a % b = 1
a | exp = 1096.6331584284585

2 -7
For a = 2 and b = -7:
a + b = -5
a - b = 9
a * b = -14
a/b|floor = -1
a % b = 2
a | exp = 7.38905609893065

-2 -7
For a = -2 and b = -7:
a + b = -9
a - b = 5
a * b = 14
a/b|floor = 0
a % b = -2
a | exp = 0.1353352832366127

Jsish

<lang javascript>"use strict"; /* Arthimetic/Integer, in Jsish */ var line = console.input(); var nums = line.match(/^\s*([+-]?[0-9]+)\s+([+-]?[0-9]+)\s*/); var a = Number(nums[1]); var b = Number(nums[2]);

puts("A is ", a, ", B is ", b); puts("Sum A + B is ", a + b); puts("Difference A - B is ", a - b); puts("Product A * B is ", a * b); puts("Integer quotient A / B is ", a / b | 0, " truncates toward 0"); puts("Remainder A % B is ", a % b, " sign follows first operand"); puts("Exponentiation A to the power B is ", Math.pow(a, b));

/*

!INPUTSTART!

7 4

!INPUTEND!

  • /


/*

!EXPECTSTART!

A is 7 , B is 4 Sum A + B is 11 Difference A - B is 3 Product A * B is 28 Integer quotient A / B is 1 truncates toward 0 Remainder A % B is 3 sign follows first operand Exponentiation A to the power B is 2401

!EXPECTEND!

  • /</lang>
Output:
prompt$ jsish -u arithmeticInteger.jsi
[PASS] arithmeticInteger.jsi

Julia

<lang Julia>function arithmetic (a = parse(Int, readline()), b = parse(Int, readline()))

 for op in  [+,-,*,div,rem]
   println("a $op b = $(op(a,b))")
 end

end</lang>

Output:
julia> arithmetic()
4
5
a + b = 9
a - b = -1
a * b = 20
a div b = 0
a rem b = 4

Kotlin

<lang scala>// version 1.1

fun main(args: Array<String>) {

   val r = Regex("""-?\d+[ ]+-?\d+""")
   while(true) {
       print("Enter two integers separated by space(s) or q to quit: ")
       val input: String = readLine()!!.trim()
       if (input == "q" || input == "Q") break
       if (!input.matches(r)) {
           println("Invalid input, try again")
           continue
       }
       val index = input.lastIndexOf(' ')
       val a = input.substring(0, index).trimEnd().toLong()
       val b = input.substring(index + 1).toLong()
       println("$a + $b = ${a + b}")
       println("$a - $b = ${a - b}")
       println("$a * $b = ${a * b}")
       if (b != 0L) {
           println("$a / $b = ${a / b}")  // rounds towards zero
           println("$a % $b = ${a % b}")  // if non-zero, matches sign of first operand
       }
       else {
           println("$a / $b = undefined")
           println("$a % $b = undefined")
       }
       val d = Math.pow(a.toDouble(), b.toDouble())
       print("$a ^ $b = ")
       if (d % 1.0 == 0.0) {
           if (d >= Long.MIN_VALUE.toDouble() && d <= Long.MAX_VALUE.toDouble())
               println("${d.toLong()}")
           else
               println("out of range")
       }
       else if (!d.isFinite())
           println("not finite")
       else
           println("not integral")
       println()
   }

}</lang>

Output:
Enter two integers separated by space(s) or q to quit: 2 63
2 + 63 = 65
2 - 63 = -61
2 * 63 = 126
2 / 63 = 0
2 % 63 = 2
2 ^ 63 = 9223372036854775807

Enter two integers separated by space(s) or q to quit: -3 50
-3 + 50 = 47
-3 - 50 = -53
-3 * 50 = -150
-3 / 50 = 0
-3 % 50 = -3
-3 ^ 50 = out of range

Enter two integers separated by space(s) or q to quit: q

LabVIEW

This image is a VI Snippet, an executable image of LabVIEW code. The LabVIEW version is shown on the top-right hand corner. You can download it, then drag-and-drop it onto the LabVIEW block diagram from a file browser, and it will appear as runnable, editable code.


Lasso

<lang Lasso>local(a = 6, b = 4)

  1. a + #b // 10
  2. a - #b // 2
  3. a * #b // 24
  4. a / #b // 1
  5. a % #b // 2

math_pow(#a,#b) // 1296 math_pow(#b,#a) // 4096</lang>

LFE

<lang lisp> (defmodule arith

 (export all))

(defun demo-arith ()

 (case (: io fread '"Please enter two integers: " '"~d~d")
   ((tuple 'ok (a b))
     (: io format '"~p + ~p = ~p~n" (list a b (+ a b)))
     (: io format '"~p - ~p = ~p~n" (list a b (- a b)))
     (: io format '"~p * ~p = ~p~n" (list a b (* a b)))
     (: io format '"~p^~p = ~p~n" (list a b (: math pow a b)))
     ; div truncates towards zero
     (: io format '"~p div ~p = ~p~n" (list a b (div a b)))
     ; rem's result takes the same sign as the first operand
     (: io format '"~p rem ~p = ~p~n" (list a b (rem a b))))))

</lang>

Usage from the LFE REPL: <lang lisp> > (slurp '"arith.lfe")

  1. (ok arith)

> (demo-arith) Please enter two integers: 2 8 2 + 8 = 10 2 - 8 = -6 2 * 8 = 16 2^8 = 256.0 2 div 8 = 0 2 rem 8 = 2 ok </lang>

Liberty BASIC

Note that raising to a power can display very large integers without going to approximate power-of-ten notation. <lang lb> input "Enter the first integer: "; first input "Enter the second integer: "; second

print "The sum is " ; first + second print "The difference is " ; first -second print "The product is " ; first *second if second <>0 then print "The integer quotient is " ; int( first /second); " (rounds towards 0)" else print "Division by zero not allowed." print "The remainder is " ; first MOD second; " (sign matches first operand)" print "The first raised to the power of the second is " ; first ^second </lang>

LIL

<lang tcl># Arithmetic/Integer, in LIL write "Enter two numbers separated by space: " if {[canread]} {set line [readline]} print

set a [index $line 0] set b [index $line 1] print "A is $a"", B is $b" print "Sum A + B is [expr $a + $b]" print "Difference A - B is [expr $a - $b]" print "Product A * B is [expr $a * $b]" print "Integer Quotient A \\ B is [expr $a \ $b], truncates toward zero" print "Remainder A % B is [expr $a % $b], sign follows first operand" print "LIL has no exponentiation expression operator"</lang>

Output:
prompt$ echo '7 4' | lil arithmeticInteger.lil  
Enter two numbers separated by space: 
A is 7, B is 4
Sum               A + B is 11
Difference        A - B is 3
Product           A * B is 28
Integer Quotient  A \ B is 1, truncates toward zero
Remainder         A % B is 3, sign follows first operand
LIL has no exponentiation expression operator

prompt$ echo '-7 4' | lil arithmeticInteger.lil
Enter two numbers separated by space:
A is -7, B is 4
Sum               A + B is -3
Difference        A - B is -11
Product           A * B is -28
Integer Quotient  A \ B is -1, truncates toward zero
Remainder         A % B is -3, sign follows first operand
LIL has no exponentiation expression operator

Lingo

<lang Lingo>-- X, Y: 2 editable field members, shown as sprites in the current GUI x = integer(member("X").text) y = integer(member("Y").text)

put "Sum: " , x + y put "Difference: ", x - y put "Product: " , x * y put "Quotient: " , x / y -- Truncated towards zero put "Remainder: " , x mod y -- Result has sign of left operand put "Exponent: " , power(x, y)</lang>

Little

<lang C># Maybe you need to import the mathematical funcions

  1. from Tcl with:
  2. eval("namespace path ::tcl::mathfunc");

void main() {

   int a, b; 
   puts("Enter two integers:");
   a = (int)(gets(stdin)); 
   b = (int)(gets(stdin)); 
   puts("${a} + ${b} = ${a+b}");
   puts("${a} - ${b} = ${a-b}");
   puts("${a} * ${b} = ${a*b}");
   puts("${a} / ${b} = ${a/b}, remainder ${a%b}");
   puts("${a} to the power of ${b} = ${(int)pow(a,b)}");

}</lang>

LiveCode

<lang LiveCode>ask "enter 2 numbers (comma separated)" if it is not empty then

   put item 1 of it into n1
   put item 2 of it into n2
   put sum(n1,n2) into ai["sum"]
   put n1 * n2 into ai["product"]
   put n1 div n2 into ai["quotient"]  -- truncates
   put n1 mod n2 into ai["remainder"]
   put n1^n2 into ai["power"]
   combine ai using comma and colon
   put ai

end if</lang> Examples<lang>-2,4 - power:16,product:-8,quotient:0,remainder:-2,sum:2 2,-4 - power:0.0625,product:-8,quotient:0,remainder:2,sum:-2 -2,-4 - power:0.0625,product:8,quotient:0,remainder:-2,sum:-6 2,4 - power:16,product:8,quotient:0,remainder:2,sum:6 11,4 - power:14641,product:44,quotient:2,remainder:3,sum:15</lang>

<lang logo>to operate :a :b

 (print [a =] :a)
 (print [b =] :b)
 (print [a + b =] :a + :b)
 (print [a - b =] :a - :b)
 (print [a * b =] :a * :b)
 (print [a / b =] int :a / :b)
 (print [a mod b =] modulo :a :b)

end</lang>

Each infix operator also has a prefix synonym (sum, difference, product, quotient). Sum and product can also have arity greater than two when used in parentheses (sum 1 2 3). Infix operators in general have high precedence; you may need to enclose their arguments in parentheses to obtain the correct expression.

LSE64

<lang lse64>over : 2 pick 2dup : over over

arithmetic : \

 " A=" ,t over , sp " B=" ,t dup , nl \
 " A+B=" ,t 2dup + , nl \
 " A-B=" ,t 2dup - , nl \
 " A*B=" ,t 2dup * , nl \
 " A/B=" ,t 2dup / , nl \
 " A%B=" ,t      % , nl</lang>

Lua

<lang lua>local x = io.read() local y = io.read()

print ("Sum: " , (x + y)) print ("Difference: ", (x - y)) print ("Product: " , (x * y)) print ("Quotient: " , (x / y)) -- Does not truncate print ("Remainder: " , (x % y)) -- Result has sign of right operand print ("Exponent: " , (x ^ y))</lang>

M2000 Interpreter

We can use variables with %, which are double inside with no decimal part. These can have 17 digits. Also A%=1.5 make it 2, not 1. This has a tricky situation: A%=1/2 give 1 to A%. We can use FLOOR() or INT() is the same, or CEIL(), and there is a BANK() which is a Banker Round: BANK(2.5)=2 and BANK(3.5)=4.



<lang M2000 Interpreter> MODULE LikeCommodoreBasic {

     \\ ADDITION: EUCLIDEAN DIV# & MOD# AND ** FOR POWER INCLUDING ^
     10 INPUT "ENTER A NUMBER:"; A%
     20 INPUT "ENTER ANOTHER NUMBER:"; B%
     30 PRINT "ADDITION:";A%;"+";B%;"=";A%+B%
     40 PRINT "SUBTRACTION:";A%;"-";B%;"=";A%-B%
     50 PRINT "MULTIPLICATION:";A%;"*";B%;"=";A%*B%
     60 PRINT "INTEGER DIVISION:";A%;"DIV";B%;"=";A% DIV B%
     65 PRINT "INTEGER EUCLIDEAN DIVISION:";A%;"DIV";B%;"=";A% DIV# B%
     70 PRINT "REMAINDER OR MODULO:";A%;"MOD";B%;"=";A% MOD B%
     75 PRINT "EUCLIDEAN REMAINDER OR MODULO:";A%;"MOD#";B%;"=";A% MOD# B%
     80 PRINT "POWER:";A%;"^";B%;"=";A%^B%
     90 PRINT "POWER:";A%;"**";B%;"=";A%**B%

} LikeCommodoreBasic


Module IntegerTypes {

     a=12% ' Integer 16 bit
     b=12& ' Long 32 bit
     c=12@' Decimal (29 digits)
     Def ExpType$(x)=Type$(x)
     Print ExpType$(a+1)="Double"
     Print ExpType$(a+1%)="Integer"
     Print ExpType$(a div 5)="Double"
     Print ExpType$(a div 5%)="Double"
     Print ExpType$(a mod 5)="Double"
     Print ExpType$(a mod 5%)="Double"
     Print ExpType$(a**2)="Double"
     
     Print ExpType$(b+1)="Double"
     Print ExpType$(b+1&)="Long"
     Print ExpType$(b div 5)="Double"
     Print ExpType$(b div 5&)="Double"
     Print ExpType$(b mod 5)="Double"
     Print ExpType$(b mod 5&)="Double"
     Print ExpType$(b**2)="Double"
     Print ExpType$(c+1)="Decimal"
     Print ExpType$(c+1@)="Decimal"
     Print ExpType$(c div 5)="Decimal"
     Print ExpType$(c div 5@)="Decimal"
     Print ExpType$(c mod 5)="Decimal"
     Print ExpType$(c mod 5@)="Decimal"     
     Print ExpType$(c**2)="Double"

} IntegerTypes </lang>

M4

Because of the particular nature of M4, the only user-input is the code itself. Anyway the following code can be used: <lang m4>eval(A+B) eval(A-B) eval(A*B) eval(A/B) eval(A%B)</lang>

once saved in a file, e.g. operations.m4:

m4 -DA=4 -DB=6 operations.m4

or using a sort of driver:

<lang m4>define(`A', 4)dnl define(`B', 6)dnl include(`operations.m4')</lang>

Maple

These operations are all built-in. As all operations are exact, there are no rounding issues involved. <lang Maple> DoIt := proc()

       local a := readstat( "Input an integer: " ):
       local b := readstat( "Input another integer: " ):
       printf( "Sum = %d\n",  a + b ):
       printf( "Difference = %d\n",  a - b ):
       printf( "Product = %d\n",  a * b ):
       printf( "Quotient = %d\n",  iquo( a, b, 'c' ) ):
       printf( "Remainder = %d\n", c ); # or irem( a, b )
       NULL # quiet return

end proc: </lang> Here is an example of calling DoIt. <lang Maple> > DoIt(); Input an integer: 15; Input another integer: 12; Sum = 27 Difference = 3 Product = 180 Quotient = 1 Remainder = 3 > </lang>

Mathematica

Mathematica has all the function built-in to handle this task. Example: <lang Mathematica>a = Input["Give me an integer please!"]; b = Input["Give me another integer please!"]; Print["You gave me ", a, " and ", b]; Print["sum: ", a + b]; Print["difference: ", a - b]; Print["product: ", a b]; Print["integer quotient: ", IntegerPart[a/b]]; Print["remainder: ", Mod[a, b]]; Print["exponentiation: ", a^b];</lang> gives back for input 17 and 3: <preMathematica>You gave me 17 and 3 sum: 20 difference: 14 product: 51 integer quotient: 5 remainder: 2

exponentiation: 4913

MATLAB / Octave

<lang octave>disp("integer a: "); a = scanf("%d", 1); disp("integer b: "); b = scanf("%d", 1); a+b a-b a*b floor(a/b) mod(a,b) a^b</lang>

Maxima

<lang maxima>block(

  [a: read("a"), b: read("b")],
  print(a + b),
  print(a - b),
  print(a * b),
  print(a / b),
  print(quotient(a, b)),
  print(remainder(a, b)),
  a^b

);</lang>

MAXScript

<lang maxscript>x = getKBValue prompt:"First number" y = getKBValue prompt:"Second number:"

format "Sum: %\n" (x + y) format "Difference: %\n" (x - y) format "Product: %\n" (x * y) format "Quotient: %\n" (x / y) format "Remainder: %\n" (mod x y)</lang>

Mercury

<lang>

- module arith_int.
- interface.
- import_module io.
- pred main(io::di, io::uo) is det.
- implementation.
- import_module int, list, string.

main(!IO) :-

   io.command_line_arguments(Args, !IO),
   ( if
       Args = [AStr, BStr],
       string.to_int(AStr, A),
       string.to_int(BStr, B)
     then
       io.format("A + B = %d\n", [i(A + B)], !IO),
       io.format("A - B = %d\n", [i(A - B)], !IO),
       io.format("A * B = %d\n", [i(A * B)], !IO),
       % Division: round towards zero.
       %
       io.format("A / B = %d\n", [i(A / B)], !IO),
       % Division: round towards minus infinity.
       %
       io.format("A div B = %d\n", [i(A div B)], !IO), 
   
       % Modulus: X mod Y = X - (X div Y) * Y.
       %
       io.format("A mod B = %d\n", [i(A mod B)], !IO),
       % Remainder: X rem Y = X - (X / Y) * Y.
       %
       io.format("A rem B = %d\n", [i(A rem B)], !IO),
       % Exponentiation is done using the function int.pow/2.
       %
       io.format("A `pow` B = %d\n", [i(A `pow` B)], !IO)
     else
       io.set_exit_status(1, !IO)
   ).

</lang>

Metafont

<lang metafont>string s[]; message "input number a: "; s1 := readstring; message "input number b: "; s2 := readstring; a := scantokens s1; b := scantokens s2;

def outp(expr op) =

 message "a " & op & " b = " & decimal(a scantokens(op) b) enddef;

outp("+"); outp("-"); outp("*"); outp("div"); outp("mod");

end</lang>

min

Works with: min version 0.19.3

<lang min>(concat dup -> ' prepend "$1 -> $2" swap % puts!) :show

("Enter an integer" ask int) 2 times ' prepend ('+ '- '* 'div 'mod) quote-map ('show concat) map cleave</lang>

Output:
Enter an integer: -3
Enter an integer: 5
(-3 5 +) -> 2
(-3 5 -) -> -8
(-3 5 *) -> -15
(-3 5 div) -> 0
(-3 5 mod) -> -3

МК-61/52

<lang>П1 <-> П0 + С/П ИП0 ИП1 - С/П ИП0 ИП1 * С/П ИП0 ИП1 / [x] С/П ИП0 ^ ИП1 / [x] ИП1 * - С/П ИП1 ИП0 x^y С/П</lang>

ML/I

ML/I will read two integers from 'standard input' or similar, and then output the results to 'standard output' or similar.

<lang ML/I>MCSKIP "WITH" NL "" Arithmetic/Integer "" assumes macros on input stream 1, terminal on stream 2 MCSKIP MT,<> MCINS %. MCDEF SL SPACES NL AS <MCSET T1=%A1. MCSET T2=%A2. a + b = %%T1.+%T2.. a - b = %%T1.-%T2.. a * b = %%T1.*%T2.. a / b = %%T1./%T2.. a rem b = %%T1.-%%%T1./%T2..*%T2... Division is truncated to the greatest integer that does not exceed the exact result. Remainder matches the sign of the second operand, if the signs differ.</lang>

Modula-2

<lang modula2>MODULE ints;

IMPORT InOut;

VAR a, b  : INTEGER;

BEGIN

 InOut.WriteString ("Enter two integer numbers : ");   InOut.WriteBf;
 InOut.ReadInt (a);
 InOut.ReadInt (b);
 InOut.WriteString ("a + b   = ");  InOut.WriteInt (a + b, 9);    InOut.WriteLn;
 InOut.WriteString ("a - b   = ");  InOut.WriteInt (a - b, 9);    InOut.WriteLn;
 InOut.WriteString ("a * b   = ");  InOut.WriteInt (a * b, 9);    InOut.WriteLn;
 InOut.WriteString ("a / b   = ");  InOut.WriteInt (a DIV b, 9);  InOut.WriteLn;
 InOut.WriteString ("a MOD b = ");  InOut.WriteInt (a MOD b, 9);  InOut.WriteLn;
 InOut.WriteLn;

END ints.</lang>Producing:

$$ ints
Enter two integer numbers : 12 7
a + b   =        19
a - b   =         5
a * b   =        84
a / b   =         1
a MOD b =         5

$$ ints
Enter two integer numbers : 123 -111
a + b   =        12
a - b   =       234
a * b   =    -13653
a / b   =        -1
a MOD b =        12

Modula-3

<lang modula3>MODULE Arith EXPORTS Main;

IMPORT IO, Fmt;

VAR a, b: INTEGER;

BEGIN

 a := IO.GetInt();
 b := IO.GetInt();
 IO.Put("a+b = " & Fmt.Int(a + b) & "\n");
 IO.Put("a-b = " & Fmt.Int(a - b) & "\n");
 IO.Put("a*b = " & Fmt.Int(a * b) & "\n");
 IO.Put("a DIV b = " & Fmt.Int(a DIV b) & "\n");
 IO.Put("a MOD b = " & Fmt.Int(a MOD b) & "\n");

END Arith.</lang>

MUMPS

Note: M[UMPS] has an operator called "modulo". When both operands are positive numbers, "modulo" has a result that looks a lot like "remainder"; however, there is an important difference.

To better understand the intricacies of "modulo" and how it is different from "remainder", see Donald Knuth's definition (Volume 1 of the "big books"), or find out the beauty of cyclic algebra as formulated by Niels Henrik Abel (August 5, 1802 – April 6, 1829).

<lang MUMPS>Arith(first,second) ; Mathematical operators Write "Plus",?12,first,"+",second,?25," = ",first+second,! Write "Minus",?12,first,"-",second,?25," = ",first-second,! Write "Multiply",?12,first,"*",second,?25," = ",first*second,! Write "Divide",?12,first,"/",second,?25," = ",first/second,! Write "Int Divide",?12,first,"\",second,?25," = ",first\second,! Write "Power",?12,first,"**",second,?25," = ",first**second,! Write "Modulo",?12,first,"#",second,?25," = ",first#second,! Write "And",?12,first,"&",second,?25," = ",first&second,! Write "Or",?12,first,"!",second,?25," = ",first!second,! Quit

Do Arith(2,3) Plus 2+3 = 5 Minus 2-3 = -1 Multiply 2*3 = 6 Divide 2/3 = .6666666666666666667 Int Divide 2\3 = 0 Power 2**3 = 8 Modulo 2#3 = 2 And 2&3 = 1 Or 2!3 = 1

Do Arith(16,0.5) Plus 16+.5 = 16.5 Minus 16-.5 = 15.5 Multiply 16*.5 = 8 Divide 16/.5 = 32 Int Divide 16\.5 = 32 Power 16**.5 = 4 Modulo 16#.5 = 0 And 16&.5 = 1 Or 16!.5 = 1

Do Arith(0,2) Plus 0+2 = 2 Minus 0-2 = -2 Multiply 0*2 = 0 Divide 0/2 = 0 Int Divide 0\2 = 0 Power 0**2 = 0 Modulo 0#2 = 0 And 0&2 = 0 Or 0!2 = 1</lang>


Nanoquery

Translation of: Python

<lang Nanoquery>print "Number 1: " x = int(input()) print "Number 2: " y = int(input())

println format("Sum: %d", x + y) println format("Difference: %d", x - y) println format("Product: %d", x * y) println format("Quotient: %f", x / y)

println format("Remainder: %d", x % y) println format("Power: %d", x ^ y)</lang>

Output:
Number 1: 5
Number 2: 6
Sum: 11
Difference: -1
Product: 30
Quotient: 0.833333
Remainder: 5
Power: 15625


Nemerle

Adapted nearly verbatim from C# solution above. Note that I've used the exponentiation operator (**), but Math.Pow() as used in the C# solution would also work. <lang Nemerle>using System;

class Program {

   static Main(args : array[string]) : void
   {
       def a = Convert.ToInt32(args[0]);
       def b = Convert.ToInt32(args[1]);

       Console.WriteLine("{0} + {1} = {2}", a, b, a + b);
       Console.WriteLine("{0} - {1} = {2}", a, b, a - b);
       Console.WriteLine("{0} * {1} = {2}", a, b, a * b);
       Console.WriteLine("{0} / {1} = {2}", a, b, a / b); // truncates towards 0
       Console.WriteLine("{0} % {1} = {2}", a, b, a % b); // matches sign of first operand
       Console.WriteLine("{0} ** {1} = {2}", a, b, a ** b);
   }

}</lang>

NetRexx

Translation of: REXX

<lang NetRexx>/* NetRexx */

options replace format comments java crossref symbols binary

say "enter 2 integer values separated by blanks" parse ask a b say a "+" b "=" a + b say a "-" b "=" a - b say a "*" b "=" a * b say a "/" b "=" a % b "remaining" a // b "(sign from first operand)" say a "^" b "=" a ** b

return </lang>

Output:
enter 2 integer values separated by blanks
17 -4
17 + -4 = 13
17 - -4 = 21
17 * -4 = -68
17 / -4 = -4 remaining 1 (sign from first operand)
17 ^ -4 = 0.0000119730367

NewLISP

<lang NewLISP>; integer.lsp

oofoe 2012-01-17

(define (aski msg) (print msg) (int (read-line))) (setq x (aski "Please type in an integer and press [enter]: ")) (setq y (aski "Please type in another integer  : "))

Note that +, -, *, / and % are all integer operations.

(println) (println "Sum: " (+ x y)) (println "Difference: " (- x y)) (println "Product: " (* x y)) (println "Integer quotient (rounds to 0): " (/ x y)) (println "Remainder: " (setq r (% x y)))

(println "Remainder sign matches: " (cond ((= (sgn r) (sgn x) (sgn y)) "both") ((= (sgn r) (sgn x)) "first") ((= (sgn r) (sgn y)) "second")))

(println) (println "Exponentiation: " (pow x y))

(exit) ; NewLisp normally goes to listener after running script. </lang>

Output:
Please type in an integer and press [enter]: 17
Please type in another integer             : -4

Sum: 13
Difference: 21
Product: -68
Integer quotient (rounds to 0): -4
Remainder: 1
Remainder sign matches: first

Exponentiation: 1.197303672e-005

Nial

Example tested with Q'Nial7.

Define new operator using an atlas of operators: <lang nial> arithmetic is OP A B{[first,last,+,-,*,quotient,mod,power] A B}</lang>

Test new operator: <lang nial> -23 arithmetic 7 -23 7 -16 -30 -161 -4 5 -3404825447</lang>

Negative divisors are not accepted for integer quotient quotient or remainder mod, and in both cases the result is an error with the message ?negative divisor.

For quotient, if the divisor B is zero, the result is zero.

For mod, if the divisor B is zero, the result is A.

The quotient on division by a positive integer B is always an integer on the same side of the origin as A.

Nial definition of quotient:

<lang nial>A quotient B =f= floor (A / B)</lang>

floor rounds towards negative infinity (next lower integer).

Nim

<lang nim>

import parseopt, strutils

var

 opt: OptParser = initOptParser()
 str = opt.cmdLineRest.split
 a: int = 0
 b: int = 0

try:

 a = parseInt(str[0])
 b = parseInt(str[1])

except ValueError:

 quit("Invalid params. Two integers are expected.")


echo("a  : " & $a) echo("b  : " & $b) echo("a + b  : " & $(a+b)) echo("a - b  : " & $(a-b)) echo("a * b  : " & $(a*b)) echo("a div b: " & $(a div b)) echo("a mod b: " & $(a mod b)) </lang> Execute: Aritmint 10 23
/

Output:
a      : 10
b      : 23
a + b  : 33
a - b  : -13
a * b  : 230
a div b: 0
a mod b: 10

NSIS

All Arithmetic in NSIS is handled by the IntOp instruction. It is beyond the scope of this task to implement user input (a fairly involved task), so I will be providing hard-coded values simulating the user input, with the intention of later adding the user-input piece. <lang nsis>Function Arithmetic Push $0 Push $1 Push $2 StrCpy $0 21 StrCpy $1 -2

IntOp $2 $0 + $1 DetailPrint "$0 + $1 = $2" IntOp $2 $0 - $1 DetailPrint "$0 - $1 = $2" IntOp $2 $0 * $1 DetailPrint "$0 * $1 = $2" IntOp $2 $0 / $1 DetailPrint "$0 / $1 = $2" DetailPrint "Rounding is toward negative infinity" IntOp $2 $0 % $1 DetailPrint "$0 % $1 = $2" DetailPrint "Sign of remainder matches the first number"

Pop $2 Pop $1 Pop $0 FunctionEnd</lang>

Oberon-2

Oxford Oberon-2 <lang oberon2> MODULE Arithmetic; IMPORT In, Out; VAR

       x,y:INTEGER;

BEGIN

       Out.String("Give two numbers: ");In.Int(x);In.Int(y);
       Out.String("x + y >");Out.Int(x + y,6);Out.Ln;
       Out.String("x - y >");Out.Int(x - y,6);Out.Ln;
       Out.String("x * y >");Out.Int(x * y,6);Out.Ln;
       Out.String("x / y >");Out.Int(x DIV y,6);Out.Ln;
       Out.String("x MOD y >");Out.Int(x MOD y,6);Out.Ln;

END Arithmetic. </lang>

Output:
Give two numbers: 12 23
x + y >    35
x - y >   -11
x * y >   276
x / y >     0
x MOD y >    12

Objeck

<lang objeck>bundle Default {

 class Arithmetic {
   function : Main(args : System.String[]) ~ Nil {
     DoArithmetic();
   }
   function : native : DoArithmetic() ~ Nil {
     a := IO.Console->GetInstance()->ReadString()->ToInt();
     b := IO.Console->GetInstance()->ReadString()->ToInt();
 
     IO.Console->GetInstance()->Print("a+b = ")->PrintLine(a+b);
     IO.Console->GetInstance()->Print("a-b = ")->PrintLine(a-b);
     IO.Console->GetInstance()->Print("a*b = ")->PrintLine(a*b);
     IO.Console->GetInstance()->Print("a/b = ")->PrintLine(a/b);
   }
 }

}</lang>

OCaml

<lang ocaml>let _ =

 let a = read_int ()
 and b = read_int () in
 Printf.printf "a + b = %d\n" (a + b);
 Printf.printf "a - b = %d\n" (a - b);
 Printf.printf "a * b = %d\n" (a * b);
 Printf.printf "a / b = %d\n" (a / b);    (* truncates towards 0 *)
 Printf.printf "a mod b = %d\n" (a mod b) (* same sign as first operand *)</lang>

Oforth

<lang Oforth>: integers (a b -- )

  "a + b ="   . a b + .cr
  "a - b ="   . a b - .cr
  "a * b ="   . a b * .cr
  "a / b ="   . a b / .cr
  "a mod b =" . a b mod .cr 
  "a pow b =" . a b pow .cr
</lang>
Output:
>12 23 integers
a + b = 35
a - b = -11
a * b = 276
a / b = 0
a mod b = 12
a pow b = 6624737266949237011120128
ok

Ol

<lang scheme> (define a 8) (define b 12)

(print "(+ " a " " b ") => " (+ a b)) (print "(- " a " " b ") => " (- a b)) (print "(* " a " " b ") => " (* a b)) (print "(/ " a " " b ") => " (/ a b))

(print "(quotient " a " " b ") => " (quot a b)) ; same as (quotient a b) (print "(remainder " a " " b ") => " (rem a b)) ; same as (remainder a b) (print "(modulo " a " " b ") => " (mod a b)) ; same as (modulo a b)

(import (owl math-extra)) (print "(expt " a " " b ") => " (expt a b)) </lang>

Output:
(+ 8 12) => 20
(- 8 12) => -4
(* 8 12) => 96
(/ 8 12) => 2/3
(quotient 8 12) => 0
(remainder 8 12) => 8
(modulo 8 12) => 8
(expt 8 12) => 68719476736

Additional features: <lang ol>

you can use more than two arguments for +,-,*,/ functions

(print (+ 1 3 5 7 9)) ; ==> 25 (print (- 1 3 5 7 9)) ; ==> -23 (print (* 1 3 5 7 9)) ; ==> 945 - same as (1*3*5*7*9) (print (/ 1 3 5 7 9)) ; ==> 1/945 - same as (((1/3)/5)/7)/9 </lang>

Onyx

<lang onyx># Most of this long script is mere presentation.

  1. All you really need to do is push two integers onto the stack
  2. and then execute add, sub, mul, idiv, or pow.

$ClearScreen { # Using ANSI terminal control

 `\e[2J\e[1;1H' print flush

} bind def

$Say { # string Say -

 `\n' cat print flush

} bind def

$ShowPreamble { `To show how integer arithmetic in done in Onyx,' Say `we\'ll use two numbers of your choice, which' Say `we\'ll call A and B.\n' Say } bind def

$Prompt { # stack: string --

 stdout exch write pop flush

} def

$GetInt { # stack: name -- integer

 dup cvs `Enter integer ' exch cat `: ' cat
 Prompt stdin readline pop cvx eval def

} bind def

$Template { # arithmetic_operator_name label_string Template result_string

 A cvs ` ' B cvs ` ' 5 ncat over cvs ` gives ' 3 ncat exch
 A B dn cvx eval cvs `.' 3 ncat Say

} bind def

$ShowResults {

 $add `Addition: ' Template
 $sub `Subtraction: ' Template
 $mul `Multiplication: ' Template
 $idiv `Division: ' Template
 `Note that the result of integer division is rounded toward zero.' Say
 $pow `Exponentiation: ' Template
 `Note that the result of raising to a negative power always gives a real number.' Say

} bind def

ClearScreen ShowPreamble $A GetInt $B GetInt ShowResults</lang>

Output:
To show how integer arithmetic in done in Onyx,
we'll use two numbers of your choice, which
we'll call A and B.

Enter integer A: 34
Enter integer B: 2
Addition: 34 2 add gives 36.
Subtraction: 34 2 sub gives 32.
Multiplication: 34 2 mul gives 68.
Division: 34 2 idiv gives 17.
Note that the result of integer division is rounded toward zero.
Exponentiation: 34 2 pow gives 1156.
Note that the result of raising to a negative power always gives a real number.

Openscad

<lang openscad>echo (a+b); /* Sum */ echo (a-b); /* Difference */ echo (a*b); /* Product */ echo (a/b); /* Quotient */ echo (a%b); /* Modulus */</lang>

Oz

<lang oz>declare

 StdIn = {New class $ from Open.file Open.text end init(name:stdin)}
 fun {ReadInt}
    {String.toInt {StdIn getS($)}}
 end
 A = {ReadInt}
 B = {ReadInt}

in

 {ForAll
  ["A+B = "#A+B
   "A-B = "#A-B
   "A*B = "#A*B
   "A/B = "#A div B  %% truncates towards 0
   "remainder "#A mod B  %% has the same sign as A
   "A^B = "#{Pow A B}
  ]
  System.showInfo}</lang>

PARI/GP

Integer division with \ rounds to . There also exists the \/ round-to-nearest (ties to ) operator. Ordinary division / does not round but returns rationals if given integers with a non-integral quotient. <lang parigp>arith(a,b)={

 print(a+b);
 print(a-b);
 print(a*b);
 print(a\b);
 print(a%b);
 print(a^b);

};</lang>

Panda

Use reflection to get all functions defined on numbers taking number and returning number. <lang panda>a=3 b=7 func:_bbf__number_number_number =>f.name. '(' a b ')' ' => ' f(a b) nl</lang>

Output:
atan2 ( 3 7 ) => 0.40489178628508343 
divide ( 3 7 ) => 0.42857142857142855 
gt ( 3 7 ) => UNDEFINED! 
gte ( 3 7 ) => UNDEFINED! 
lt ( 3 7 ) => 3 
lte ( 3 7 ) => 3 
max ( 3 7 ) => 7 
min ( 3 7 ) => 3 
minus ( 3 7 ) => -4 
mod ( 3 7 ) => 3 
plus ( 3 7 ) => 10 
pow ( 3 7 ) => 2187

Pascal

<lang pascal>program arithmetic(input, output)

var

a, b: integer;

begin

readln(a, b);
writeln('a+b = ', a+b);
writeln('a-b = ', a-b);
writeln('a*b = ', a*b);
writeln('a/b = ', a div b, ', remainder ', a mod b);

end.</lang>

Perl

Works with: Perl version 5.x

<lang perl>my $a = <>; my $b = <>;

print

   "sum:              ", $a + $b, "\n",
   "difference:       ", $a - $b, "\n",
   "product:          ", $a * $b, "\n",
   "integer quotient: ", int($a / $b), "\n",
   "remainder:        ", $a % $b, "\n",
   "exponent:         ", $a ** $b, "\n"
   ;</lang>

Perl 6

Works with: Rakudo version 2015.09

<lang perl6>my Int $a = get.floor; my Int $b = get.floor;

say 'sum: ', $a + $b; say 'difference: ', $a - $b; say 'product: ', $a * $b; say 'integer quotient: ', $a div $b; say 'remainder: ', $a % $b; say 'exponentiation: ', $a**$b;</lang>

Note that div doesn't always do integer division; it performs the operation "most appropriate to the operand types". Synopsis 3 guarantees that div "on built-in integer types is equivalent to taking the floor of a real division". If you want integer division with other types, say floor($a/$b).

Phix

<lang Phix>integer a = floor(prompt_number("a = ",{})) integer b = floor(prompt_number("b = ",{}))

printf(1,"a + b = %d\n", a+b) printf(1,"a - b = %d\n", a-b) printf(1,"a * b = %d\n", a*b) printf(1,"a / b = %g\n", a/b) -- does not truncate printf(1,"remainder(a,b) = %d\n", remainder(a,b)) -- same sign as first operand printf(1,"power(a,b) = %g\n", power(a,b))</lang>

Output:
a = 2
b = 3
a + b = 5
a - b = -1
a * b = 6
a / b = 0.666667
remainder(a,b) = 2
power(a,b) = 8

PHL

<lang phl>module arith;

extern printf; extern scanf;

@Integer main [ @Pointer<@Integer> a = alloc(4); @Pointer<@Integer> b = alloc(4); scanf("%i %i", a, b);

printf("a + b = %i\n", a::get + b::get); printf("a - b = %i\n", a::get - b::get); printf("a * b = %i\n", a::get * b::get); printf("a / b = %i\n", a::get / b::get); printf("a % b = %i\n", a::get % b::get); printf("a ** b = %i\n", a::get ** b::get);

return 0; ]</lang>

PHP

<lang php><?php $a = fgets(STDIN); $b = fgets(STDIN);

echo

   "sum:                 ", $a + $b, "\n",
   "difference:          ", $a - $b, "\n",
   "product:             ", $a * $b, "\n",
   "truncating quotient: ", (int)($a / $b), "\n",
   "flooring quotient:   ", floor($a / $b), "\n",
   "remainder:           ", $a % $b, "\n",
   "power:               ", $a ** $b, "\n"; // PHP 5.6+ only

?></lang>

PicoLisp

<lang PicoLisp>(de math (A B)

  (prinl "Add      " (+ A B))
  (prinl "Subtract " (- A B))
  (prinl "Multiply " (* A B))
  (prinl "Divide   " (/ A B))        # Trucates towards zero
  (prinl "Div/rnd  " (*/ A B))       # Rounds to next integer
  (prinl "Modulus  " (% A B))        # Sign of the first operand
  (prinl "Power    " (** A B)) )</lang>

Piet



command   stack
in(int)   A
duplicate AA
duplicate AAA
duplicate AAAA
duplicate AAAAA
in(int)   BAAAAA
duplicate BBAAAAA
duplicate BBBAAAAA
duplicate BBBBAAAAA
duplicate BBBBBAAAAA
push 9    9BBBBBAAAAA
push 1    19BBBBBAAAAA
roll      BBBBAAAABA
push 7    7BBBBAAAABA
push 1    17BBBBAAAABA
roll      BBBAAABABA
push 5    5BBBAAABABA
push 1    15BBBAAABABA
roll      BBAABABABA
push 3    3BBAABABABA
push 1    13BBAABABABA
roll      BABABABABA
add       (A+B)BABABABA
out(int)  BABABABA
sub       (A-B)BABABA
out(int)  BABABA
mult      (A*B)BABA
out(int)  BABA
divide    (A/B)BA
out(int)  BA
mod       (A%B)
out(int)  NULL
push 1    1
exit

How rounding is handled is up to the interpreter, but I believe the intent was round towards 0.

PL/I

<lang PL/I> get list (a, b); put skip list (a+b); put skip list (a-b); put skip list (a*b); put skip list (trunc(a/b)); /* truncates towards zero. */ put skip list (mod(a, b)); /* Remainder is always positive. */ put skip list (rem(a, b)); /* Sign can be negative. */</lang>

Pop11

<lang pop11>;;; Setup token reader vars itemrep; incharitem(charin) -> itemrep;

read the numbers

lvars a = itemrep(), b = itemrep();

Print results

printf(a + b, 'a + b = %p\n'); printf(a - b, 'a - b = %p\n'); printf(a * b, 'a * b = %p\n'); printf(a div b, 'a div b = %p\n'); printf(a mod b, 'a mod b = %p\n');</lang>

PostScript

<lang ps>/arithInteger {

  /x exch def
  /y exch def
  x y add =
  x y sub =
  x y mul =
  x y idiv =
  x y mod =
  x y exp =

} def</lang>

PowerShell

<lang powershell>$a = [int] (Read-Host First Number) $b = [int] (Read-Host Second Number)

Write-Host "Sum: $($a + $b)" Write-Host "Difference: $($a - $b)" Write-Host "Product: $($a * $b)" Write-Host "Quotient: $($a / $b)" Write-Host "Quotient, round to even: $([Math]::Round($a / $b))" Write-Host "Remainder, sign follows first: $($a % $b)"</lang> Numbers are automatically converted to accomodate for the result. This means not only that Int32 will be expanded to Int64 but also that a non-integer quotient will cause the result to be of a floating-point type.

The remainder has the sign of the first operand.

No exponentiation operator exists, but can be worked around with the .NET BCL: <lang powershell>[Math]::Pow($a, $b)</lang>

ProDOS

<lang ProDOS>IGNORELINE Note: This example includes the math module. include arithmeticmodule

a

editvar /newvar /value=a /title=Enter first integer: editvar /newvar /value=b /title=Enter second integer: editvar /newvar /value=c do add -a-,-b-=-c- printline -c- do subtract a,b printline -c- do multiply a,b printline -c- do divide a,b printline -c- do modulus a,b printline -c- editvar /newvar /value=d /title=Do you want to calculate more numbers? if -d- /hasvalue yes goto :a else goto :end

end</lang>

<lang ProDOS>IGNORELINE Note: This example does not use the math module.

a

editvar /newvar /value=a /title=Enter first integer: editvar /newvar /value=b /title=Enter second integer: editvar /newvar /value=-a-+-b-=-c- printline -c- editvar /newvar /value=a*b=c printline -c- editvar /newvar /value=a/b=c printline -c- editvar /newvar /value=a %% b=c printline -c- editvar /newvar /value=d /title=Do you want to calculate more numbers? if -d- /hasvalue yes goto :a else goto :end

end</lang>

Prolog

Integer quotient (`//`) rounds towards 0.

Remainder (`rem`) matches the sign of its first operand.

<lang prolog>

print_expression_and_result(M, N, Operator) :-

   Expression =.. [Operator, M, N],
   Result is Expression,
   format('~w ~8|is ~d~n', [Expression, Result]).

arithmetic_integer :-

   read(M),
   read(N),
   maplist( print_expression_and_result(M, N), [+,-,*,//,rem,^] ).

</lang>

Use thus:

<lang prolog> ?- arithmetic_integer. |: 5. |: 7. 5+7 is 12 5-7 is -2 5*7 is 35 5//7 is 0 5 rem 7 is 5 5^7 is 78125 true. </lang>

PureBasic

<lang purebasic>OpenConsole()

Define a, b

Print("Number 1: "): a = Val(Input()) Print("Number 2: "): b = Val(Input())

PrintN("Sum: " + Str(a + b)) PrintN("Difference: " + Str(a - b)) PrintN("Product: " + Str(a * b)) PrintN("Quotient: " + Str(a / b)) ; Integer division (rounding mode=truncate) PrintN("Remainder: " + Str(a % b)) PrintN("Power: " + Str(Pow(a, b)))

Input()

CloseConsole()</lang>

Python

<lang python>x = int(raw_input("Number 1: ")) y = int(raw_input("Number 2: "))

print "Sum: %d" % (x + y) print "Difference: %d" % (x - y) print "Product: %d" % (x * y) print "Quotient: %d" % (x / y) # or x // y for newer python versions.

                                  # truncates towards negative infinity

print "Remainder: %d" % (x % y) # same sign as second operand print "Quotient: %d with Remainder: %d" % divmod(x, y) print "Power: %d" % x**y

    1. Only used to keep the display up when the program ends

raw_input( )</lang>

Notes: In Python3 raw_input() will be renamed to input() (the old input() built-in will go away, though one could use eval(input()) to emulate the old ... and ill-advised ... behavior). Also a better program would wrap the attempted int() conversions in a try: ... except ValueError:... construct such as:

<lang python>def getnum(prompt):

   while True: # retrying ...
       try:
           n = int(raw_input(prompt))
       except ValueError:
           print "Input could not be parsed as an integer. Please try again."\
           continue
       break
   return n

x = getnum("Number1: ") y = getnum("Number2: ") ...</lang>

(In general it's good practice to perform parsing of all input in exception handling blocks. This is especially true of interactive user input, but also applies to data read from configuration and other files, and marshaled from other processes via any IPC mechanism).

Python also has the procedure divmod that returns both quotient and remainder. eg

quotient, remainder = divmod(355,113)

Giving a quotient of 3, and a remainder of 16.

Python 3.0 compatible code

<lang python>def arithmetic(x, y):

   for op in "+ - * // % **".split():
       expr = "%(x)s %(op)s %(y)s" % vars()
       print("%s\t=> %s" % (expr, eval(expr)))


arithmetic(12, 8) arithmetic(input("Number 1: "), input("Number 2: "))</lang>

Output:
12 + 8  => 20
12 - 8  => 4
12 * 8  => 96
12 // 8 => 1
12 % 8  => 4
12 ** 8	=> 429981696
Number 1: 20
Number 2: 4
20 + 4  => 24
20 - 4  => 16
20 * 4  => 80
20 // 4 => 5
20 % 4  => 0
20 ** 4 => 160000

R

<lang R>cat("insert number ") a <- scan(nmax=1, quiet=TRUE) cat("insert number ") b <- scan(nmax=1, quiet=TRUE) print(paste('a+b=', a+b)) print(paste('a-b=', a-b)) print(paste('a*b=', a*b)) print(paste('a%/%b=', a%/%b)) print(paste('a%%b=', a%%b)) print(paste('a^b=', a^b)) </lang>

Racket

<lang racket>

  1. lang racket/base

(define (arithmetic x y)

 (for ([op (list + - * / quotient remainder modulo max min gcd lcm)])
   (printf "~s => ~s\n" `(,(object-name op) ,x ,y) (op x y))))

(arithmetic 8 12) </lang>

Output:
(+ 8 12) => 20
(- 8 12) => -4
(* 8 12) => 96
(/ 8 12) => 2/3
(quotient 8 12) => 0
(remainder 8 12) => 8
(modulo 8 12) => 8
(max 8 12) => 12
(min 8 12) => 8
(gcd 8 12) => 4
(lcm 8 12) => 24

Raven

<lang raven>' Number 1: ' print expect 0 prefer as x ' Number 2: ' print expect 0 prefer as y

x y + " sum: %d\n" print x y - "difference: %d\n" print x y * " product: %d\n" print x y / " quotient: %d\n" print x y % " remainder: %d\n" print</lang>

REBOL

<lang rebol>REBOL [ Title: "Integer" URL: http://rosettacode.org/wiki/Arithmetic/Integer ]

x: to-integer ask "Please type in an integer, and press [enter]: " y: to-integer ask "Please enter another integer: " print ""

print ["Sum:" x + y] print ["Difference:" x - y] print ["Product:" x * y]

print ["Integer quotient (coercion)  :" to-integer x / y] print ["Integer quotient (away from zero)  :" round x / y] print ["Integer quotient (halves round towards even digits)  :" round/even x / y] print ["Integer quotient (halves round towards zero)  :" round/half-down x / y] print ["Integer quotient (round in negative direction)  :" round/floor x / y] print ["Integer quotient (round in positive direction)  :" round/ceiling x / y] print ["Integer quotient (halves round in positive direction):" round/half-ceiling x / y]

print ["Remainder:" r: x // y]

REBOL evaluates infix expressions from left to right. There are no
precedence rules -- whatever is first gets evaluated. Therefore when
performing this comparison, I put parens around the first term
("sign? a") of the expression so that the value of /a/ isn't
compared to the sign of /b/. To make up for it, notice that I don't
have to use a specific return keyword. The final value in the
function is returned automatically.

match?: func [a b][(sign? a) = sign? b]

result: copy [] if match? r x [append result "first"] if match? r y [append result "second"]

You can evaluate arbitrary expressions in the middle of a print, so
I use a "switch" to provide a more readable result based on the
length of the /results/ list.

print [ "Remainder sign matches:" switch length? result [ 0 ["neither"] 1 [result/1] 2 ["both"] ] ]

print ["Exponentiation:" x ** y]</lang>

Output:
Please type in an integer, and press [enter]: 17
Please enter another integer: -4

Sum: 13
Difference: 21
Product: -68
Integer quotient (coercion)                          : -4
Integer quotient (away from zero)                    : -4
Integer quotient (halves round towards even digits)  : -4
Integer quotient (halves round towards zero)         : -4
Integer quotient (round in negative direction)       : -5
Integer quotient (round in positive direction)       : -4
Integer quotient (halves round in positive direction): -4
Remainder: 1
Remainder sign matches: first
Exponentiation: 1.19730367213036E-5

Retro

Retro's arithmetic functions are based on those in Forth. The example is an adaption of the one from Forth.

<lang Retro>:arithmetic (ab-)

 over       '\na_______=_%n s:put
 dup        '\nb_______=_%n s:put
 dup-pair + '\na_+_b___=_%n s:put
 dup-pair - '\na_-_b___=_%n s:put
 dup-pair * '\na_*_b___=_%n s:put
 /mod       '\na_/_b___=_%n s:put
            '\na_mod_b_=_%n\n" s:put ;</lang>

REXX

All operators automatically produce integers where appropriate   (up to twenty decimal digits in the program below),
or numbers in exponential format when necessary.   (The REXX default is nine decimal digits.)

For division that produces a floating point number, the result is rounded to the nearest number that can be expressed
within the current number of decimal digits   (in the example program below, it is twenty decimal digits). <lang rexx>/*REXX program obtains two integers from the C.L. (a prompt); displays some operations.*/ numeric digits 20 /*#s are round at 20th significant dig.*/ parse arg x y . /*maybe the integers are on the C.L. */

 do while \datatype(x,'W') | \datatype(y,'W')   /*both   X  and  Y   must be integers. */
 say "─────Enter two integer values  (separated by blanks):"
 parse pull x y .                               /*accept two thingys from command line.*/
 end   /*while*/
                                                /* [↓]  perform this  DO  loop twice.  */
    do j=1  for 2                               /*show  A  oper  B,   then  B  oper  A.*/
    call show 'addition'          ,  "+",   x+y
    call show 'subtraction'       ,  "-",   x-y
    call show 'multiplication'    ,  "*",   x*y
    call show 'int  division'     ,  "%",   x%y,  '    [rounds down]'
    call show 'real division'     ,  "/",   x/y
    call show 'division remainder',  "//",  x//y, '    [sign from 1st operand]'
    call show 'power'             ,  "**",  x**y
    parse value  x  y    with    y  x           /*swap the two values and perform again*/
    if j==1  then say copies('═', 79)           /*display a fence after the 1st round. */
    end   /*j*/

exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ show: parse arg c,o,#,?; say right(c,25)' ' x center(o,4) y " ───► " #  ?; return</lang>

output   when using the input of:     4   -17
                 addition  4  +   -17  ───►  -13
              subtraction  4  -   -17  ───►  21
           multiplication  4  *   -17  ───►  -68
            int  division  4  %   -17  ───►  0     [rounds down]
            real division  4  /   -17  ───►  -0.23529411764705882353
       division remainder  4  //  -17  ───►  4     [sign from 1st operand]
                    power  4  **  -17  ───►  5.8207660913467407227E-11
═══════════════════════════════════════════════════════════════════════════════
                 addition  -17  +   4  ───►  -13
              subtraction  -17  -   4  ───►  -21
           multiplication  -17  *   4  ───►  -68
            int  division  -17  %   4  ───►  -4     [rounds down]
            real division  -17  /   4  ───►  -4.25
       division remainder  -17  //  4  ───►  -1     [sign from 1st operand]
                    power  -17  **  4  ───►  83521

Ring

<lang ring> func Test a,b

  see "a+b" + ( a + b ) + nl
  see "a-b" + ( a - b ) + nl
  see "a*b" + ( a * b ) + nl
  // The quotient isn't integer, so we use the Ceil() function, which truncates it downward.
  see "a/b" + Ceil( a / b ) + nl
  // Remainder:
  see "a%b" + ( a % b ) + nl
  see "a**b" +  pow(a,b )  + nl

</lang>

Robotic

<lang robotic> input string "Enter number 1:" set "a" to "input" input string "Enter number 2:" set "b" to "input"

[ "Sum: ('a' + 'b')" [ "Difference: ('a' - 'b')" [ "Product: ('a' * 'b')" [ "Integer Quotient: ('a' / 'b')" [ "Remainder: ('a' % 'b')" [ "Exponentiation: ('a'^'b')" </lang>

Ruby

<lang ruby>puts 'Enter x and y' x = gets.to_i # to check errors, use x=Integer(gets) y = gets.to_i

puts "Sum: #{x+y}",

    "Difference: #{x-y}",
    "Product: #{x*y}",
    "Quotient: #{x/y}",       # truncates towards negative infinity
    "Quotient: #{x.fdiv(y)}", # float
    "Remainder: #{x%y}",      # same sign as second operand
    "Exponentiation: #{x**y}"</lang>

Run BASIC

<lang runbasic>input "1st integer: "; i1 input "2nd integer: "; i2

print " Sum"; i1 + i2 print " Diff"; i1 - i2 print " Product"; i1 * i2 if i2 <>0 then print " Quotent "; int( i1 / i2); else print "Cannot divide by zero." print "Remainder"; i1 MOD i2 print "1st raised to power of 2nd"; i1 ^ i2</lang>

Rust

Note that this code cannot be run within the Rust playpen as it does not support console input. <lang rust>use std::env;

fn main() {

   let args: Vec<_> = env::args().collect();
   let a = args[1].parse::<i32>().unwrap();
   let b = args[2].parse::<i32>().unwrap();
   println!("sum:              {}", a + b);
   println!("difference:       {}", a - b);
   println!("product:          {}", a * b);
   println!("integer quotient: {}", a / b); // truncates towards zero
   println!("remainder:        {}", a % b); // same sign as first operand

}</lang>

Sass/SCSS

<lang coffeescript> @function arithmetic($a,$b) { @return $a + $b, $a - $b, $a * $b, ($a - ($a % $b))/$b, $a % $b; } </lang> Which you use with: <lang coffeescript> nth(arithmetic(10,3),1); </lang> Or each of the functions separately: <lang coffeescript> @function sum($a,$b) { @return $a + $b; }

@function difference($a,$b) { @return $a - $b; }

@function product($a,$b) { @return $a * $b; }

@function integer-division($a,$b) { @return ($a - ($a % $b))/$b; }

@function remainder($a,$b) { @return $a % $b; }

@function float-division($a,$b) { @return $a / $b; } </lang>

Scala

<lang scala>val a = Console.readInt val b = Console.readInt

val sum = a + b //integer addition is discouraged in print statements due to confusion with String concatenation println("a + b = " + sum) println("a - b = " + (a - b)) println("a * b = " + (a * b)) println("quotient of a / b = " + (a / b)) // truncates towards 0 println("remainder of a / b = " + (a % b)) // same sign as first operand</lang>

Scheme

<lang scheme>(define (arithmetic x y)

 (for-each (lambda (op)
             (write  (list op x y))
             (display " => ")
             (write ((eval op) x y))
             (newline))
           '(+ - * / quotient remainder modulo max min gcd lcm)))
          

(arithmetic 8 12)</lang> quotient - truncates towards 0 remainder - same sign as first operand modulo - same sign as second operand

 prints this:

(+ 8 12) => 20
(- 8 12) => -4
(* 8 12) => 96
(/ 8 12) => 2/3
(quotient 8 12) => 0
(remainder 8 12) => 8
(modulo 8 12) => 8
(max 8 12) => 12
(min 8 12) => 8
(gcd 8 12) => 4
(lcm 8 12) => 24

Seed7

<lang seed7>$ include "seed7_05.s7i";

const proc: main is func

 local
   var integer: a is 0;
   var integer: b is 0;
 begin
   write("a = ");
   readln(a);
   write("b = ");
   readln(b);

   writeln("a + b = " <& a + b);
   writeln("a - b = " <& a - b);
   writeln("a * b = " <& a * b);
   writeln("a div b = " <& a div b);    # Rounds towards zero
   writeln("a rem b = " <& a rem b);    # Sign of the first operand
   writeln("a mdiv b = " <& a mdiv b);  # Rounds towards negative infinity
   writeln("a mod b = " <& a mod b);    # Sign of the second operand
 end func;</lang>

SenseTalk

<lang sensetalk>ask "Enter the first number:" put it into number1

ask "Enter the second number:" put it into number2

put "Sum: " & number1 plus number2 put "Difference: " & number1 minus number2 put "Product: " & number1 multiplied by number2 put "Integer quotient: " & number1 div number2 -- Rounding towards 0 put "Remainder: " & number1 rem number2 put "Exponentiation: " & number1 to the power of number2</lang>

Sidef

<lang ruby>var a = Sys.scanln("First number: ").to_i; var b = Sys.scanln("Second number: ").to_i;

%w'+ - * // % ** ^ | & << >>'.each { |op|

   "#{a} #{op} #{b} = #{a.$op(b)}".say;

}</lang>

Output:
First number: 1234
Second number: 7
1234 + 7 = 1241
1234 - 7 = 1227
1234 * 7 = 8638
1234 // 7 = 176
1234 % 7 = 2
1234 ** 7 = 4357186184021382204544
1234 ^ 7 = 1237
1234 | 7 = 1239
1234 & 7 = 2
1234 << 7 = 157952
1234 >> 7 = 9

Slate

<lang slate>[| :a :b | inform: (a + b) printString. inform: (a - b) printString. inform: (a * b) printString. inform: (a / b) printString. inform: (a // b) printString. inform: (a \\ b) printString.

] applyTo: {Integer readFrom: (query: 'Enter a: '). Integer readFrom: (query: 'Enter b: ')}.</lang>

Smalltalk

Works with: GNU Smalltalk

<lang smalltalk>| a b | 'Input number a: ' display. a := (stdin nextLine) asInteger. 'Input number b: ' display. b := (stdin nextLine) asInteger. ('a+b=%1' % { a + b }) displayNl. ('a-b=%1' % { a - b }) displayNl. ('a*b=%1' % { a * b }) displayNl. ('a/b=%1' % { a // b }) displayNl. ('a%%b=%1' % { a \\ b }) displayNl.</lang>

smart BASIC

<lang qbasic>INPUT "Enter first number.":first INPUT "Enter second number.":second PRINT "The sum of";first;"and";second;"is ";first+second&"." PRINT "The difference between";first;"and";second;"is ";ABS(first-second)&"." PRINT "The product of";first;"and";second;"is ";first*second&"." IF second THEN

   PRINT "The integer quotient of";first;"and";second;"is ";INTEG(first/second)&"."

ELSE

   PRINT "Division by zero not cool."

ENDIF PRINT "The remainder being...";first%second&"." PRINT STR$(first);"raised to the power of";second;"is ";first^second&"."</lang>

NOTES: Some curious aspects of smart BASIC to note in this code example:

  1. In smart BASIC, The command INTEG is a true integer function providing only the value of the characteristic. The smart BASIC INT command calculates as a rounding function. This differs from some other versions of BASIC.
  2. smart BASIC automatically inserts spaces ahead of and behind numbers. This can cause unexpected formatting issues when combining output from numeric variables with text. In order to suppress the trailing space, you must use the ampersand (&) to concatenate the numeric value with the following text (in this case, a period at the end of each sentence). In the case of leading spaces, you must convert the numeric value to text using the STR$ command (as with the last line of the code).

SNOBOL4

<lang snobol4>

       output = "Enter first integer:"
 	first = input

output = "Enter second integer:" second = input output = "sum = " first + second output = "diff = " first - second output = "prod = " first * second output = "quot = " (qout = first / second) output = "rem = " first - (qout * second) end</lang>

SNUSP

As a BF derivative, SNUSP only has increment and decrement as native operations. Here are routines for other basic arithmetic upon single digit numbers and results.

See also: Ethiopian Multiplication <lang SNUSP>$\

,
@
\=@@@-@-----#  atoi
>
,
@
\=@@@-@-----#
<
@     #        4 copies
\=!/?!/->>+>>+>>+>>+<<<<<<<<?\#
>  | #\?<<<<<<<<+>>+>>+>>+>>-/
@  |
\==/
\>>>>\
/>>>>/
@
\==!/===?\#    add
<   \>+<-/
@
\=@@@+@+++++#  itoa
.
<
@
\==!/===?\#    subtract
<   \>-<-/
@
\=@@@+@+++++#
.
!
/\
?-             multiply
\/ #/?<<+>+>-==\     /==-<+<+>>?\#    /==-<<+>>?\#
<   \->+>+<<!/?/#   #\?\!>>+<+<-/    #\?\!>>+<<-/
@         /==|=========|=====\   /-\    |
\======<?!/>@/<-?!\>>>@/<<<-?\=>!\?/>!/@/<#
<         \=======|==========/   /-\  |
@                 \done======>>>!\?/<=/
\=@@@+@+++++#
.
!
/\
?-  zero
\/
<              divmod
@    /-\
\?\<!\?/#!===+<<<\      /-\
| \<==@\>@\>>!/?!/=<?\>!\?/<<#
|      |  |  #\->->+</
|      \=!\=?!/->>+<<?\#
@            #\?<<+>>-/
\=@@@+@+++++#
.
<
@
\=@@@+@+++++#
.
#</lang>

SQL

Works with: Oracle

<lang sql> -- test.sql -- Tested in SQL*plus

drop table test;

create table test (a integer, b integer);

insert into test values ('&&A','&&B');

commit;

select a-b difference from test;

select a*b product from test;

select trunc(a/b) integer_quotient from test;

select mod(a,b) remainder from test;

select power(a,b) exponentiation from test; </lang>

SQL> @test.sql

Table dropped.


Table created.

Enter value for a: 3
Enter value for b: 4
old   1: insert into test values ('&&A','&&B')
new   1: insert into test values ('3','4')

1 row created.


Commit complete.


DIFFERENCE
----------
        -1


   PRODUCT
----------
        12


INTEGER_QUOTIENT
----------------
               0


 REMAINDER
----------
         3


EXPONENTIATION
--------------
            81
   

SSEM

The only operation that the SSEM supports natively is substraction. This program uses the 001 Sub. instruction to find the difference between a and b, assuming they are loaded into storage addresses 20 and 21 respectively. <lang ssem>00101000000000100000000000000000 0. -20 to c 10100000000001100000000000000000 1. c to 5 10100000000000100000000000000000 2. -5 to c 10101000000000010000000000000000 3. Sub. 21 00000000000001110000000000000000 4. Stop 00000000000000000000000000000000 5. 0</lang> The routine is slightly more complicated than it would otherwise be, because the SSEM cannot load a value into the accumulator (c register) from storage without negating it in the process—so we have to shuffle the negation of a back out into storage and then negate it again before we can subtract b from it. This does, however, make it easy to implement addition using negation and subtraction. In this program, we first negate a; then subtract b, and store the result; and finally negate that result, thereby obtaining the sum of the two integers. <lang ssem>00101000000000100000000000000000 0. -20 to c 10101000000000010000000000000000 1. Sub. 21 10100000000001100000000000000000 2. c to 5 10100000000000100000000000000000 3. -5 to c 00000000000001110000000000000000 4. Stop 00000000000000000000000000000000 5. 0</lang> A multiplication program will be found at Function definition#SSEM, and one that performs integer division at Loops/For with a specified step#SSEM.

Standard ML

<lang sml>val () = let

 val a = valOf (Int.fromString (valOf (TextIO.inputLine TextIO.stdIn)))
 val b = valOf (Int.fromString (valOf (TextIO.inputLine TextIO.stdIn)))

in

 print ("a + b = "   ^ Int.toString (a + b)   ^ "\n");
 print ("a - b = "   ^ Int.toString (a - b)   ^ "\n");
 print ("a * b = "   ^ Int.toString (a * b)   ^ "\n");
 print ("a div b = " ^ Int.toString (a div b) ^ "\n");         (* truncates towards negative infinity *)
 print ("a mod b = " ^ Int.toString (a mod b) ^ "\n");         (* same sign as second operand *)
 print ("a quot b = " ^ Int.toString (Int.quot (a, b)) ^ "\n");(* truncates towards 0 *)
 print ("a rem b = " ^ Int.toString (Int.rem (a, b)) ^ "\n");  (* same sign as first operand *)
 print ("~a = "      ^ Int.toString (~a)      ^ "\n")          (* unary negation, unusual notation compared to other languages *)

end</lang>

Swift

<lang swift> let a = 6 let b = 4

print("sum =\(a+b)") print("difference = \(a-b)") print("product = \(a*b)") print("Integer quotient = \(a/b)") print("Remainder = (a%b)") print("No operator for Exponential") </lang>

Tcl

<lang tcl>puts "Please enter two numbers:"

set x [expr {int([gets stdin])}]; # Force integer interpretation set y [expr {int([gets stdin])}]; # Force integer interpretation

puts "$x + $y = [expr {$x + $y}]" puts "$x - $y = [expr {$x - $y}]" puts "$x * $y = [expr {$x * $y}]" puts "$x / $y = [expr {$x / $y}]" puts "$x mod $y = [expr {$x % $y}]" puts "$x 'to the' $y = [expr {$x ** $y}]"</lang>

Since Tcl doesn't really know about the "type" of a variable, the "expr" command is used to declare whatever follows as an "expression". This means there is no such thing as "integer arithmetic" and hence the kludge with int([gets stdin]).

Often, these operations would be performed in a different way from what is shown here. For example, to increase the variable "x" by the value of the variable "y", one would write

<lang tcl>incr x $y</lang>

Also, it's important to surround the arguments to the expr in braces, especially when any of the parts of the expression are not literal constants. Discussion of this is on The Tcler's Wiki.

TI-83 BASIC

Pauses added due to TI-83's lack of screen size. <lang ti83b> Prompt A,B Disp "SUM" Pause A+B Disp "DIFFERENCE" Pause A-B Disp "PRODUCT" Pause AB Disp "INTEGER QUOTIENT" Pause int(A/B) Disp "REMAINDER" Pause A-B*int(A/B) </lang>

TI-89 BASIC

<lang ti89b>Local a, b Prompt a, b Disp "Sum: " & string(a + b) Disp "Difference: " & string(a - b) Disp "Product: " & string(a * b) Disp "Integer quotient: " & string(intDiv(a, b)) Disp "Remainder: " & string(remain(a, b))</lang>

Toka

<lang toka>[ ( a b -- )

 2dup ." a+b = " + . cr  
 2dup ." a-b = " - . cr  
 2dup ." a*b = " * . cr  
 2dup ." a/b = " / . ." remainder " mod . cr  

] is mathops</lang>

TUSCRIPT

<lang tuscript> $$ MODE TUSCRIPT a=5 b=3 c=a+b c=a-b c=a*b c=a/b c=a%b </lang>

Output:
a=5
b=3
c=a+b
c            = 8
c=a-b
c            = 2
c=a*b
c            = 15
c=a/b
c            = 1
c=a%b
c            = 2

UNIX Shell

The Unix shell does not directly support arithmetic operations, so external tools, such as expr are used to perform arithmetic calculations when required:

Works with: Bourne Shell
Works with: Almquist SHell

<lang bash>#!/bin/sh read a; read b; echo "a+b = " `expr $a + $b` echo "a-b = " `expr $a - $b` echo "a*b = " `expr $a \* $b` echo "a/b = " `expr $a / $b` # truncates towards 0 echo "a mod b = " `expr $a  % $b` # same sign as first operand</lang>

Notes: Using the ` (backtick operators, also available in most Bourne shells via the $(...) syntax) allows us to keep the results on their labels in the most efficient and portable way. The spaces around the operators in the expr command line arguments are required and the shell requires us to quote or escape the * character has shown, to prevent any possible "globbing" --- filename expansion of the * as a wildcard character.

With SUSv3 parameter expansions:

Works with: Bourne Again SHell version 3.2
Works with: pdksh version 5.2.14
Works with: Z SHell

<lang bash>#!/bin/sh read a; read b; echo "a+b = $((a+b))" echo "a-b = $((a-b))" echo "a*b = $((a*b))" echo "a/b = $((a/b))" # truncates towards 0 echo "a mod b = $((a%b))" # same sign as first operand</lang>

Note: spaces inside the $((...)) are optional and not required; the $((...)) can be inside or outside the double quotes, but the `...` expressions from the previous example can also be inside or outside the double quotes.

Ursa

<lang ursa>#

  1. integer arithmetic

decl int x y out "number 1: " console set x (in int console) out "number 2: " console set y (in int console)

out "\nsum:\t" (int (+ x y)) endl console out "diff:\t" (int (- x y)) endl console out "prod:\t" (int (* x y)) endl console

  1. quotient doesn't round at all, but the int function rounds up

out "quot:\t" (int (/ x y)) endl console

  1. mod takes the sign of x

out "mod:\t" (int (mod x y)) endl console</lang>

Sample session:

number 1: 15
number 2: 7

sum:	22
diff:	8
prod:	105
quot:	2
mod:	1

VBA

<lang vb> 'Arithmetic - Integer Sub RosettaArithmeticInt() Dim opr As Variant, a As Integer, b As Integer On Error Resume Next

a = CInt(InputBox("Enter first integer", "XLSM | Arithmetic")) b = CInt(InputBox("Enter second integer", "XLSM | Arithmetic"))

Debug.Print "a ="; a, "b="; b, vbCr For Each opr In Split("+ - * / \ mod ^", " ")

   Select Case opr
       Case "mod":     Debug.Print "a mod b", a; "mod"; b, a Mod b
       Case "\":       Debug.Print "a \ b", a; "\"; b, a \ b
       Case Else:      Debug.Print "a "; opr; " b", a; opr; b, Evaluate(a & opr & b)
   End Select

Next opr End Sub </lang>

VBScript

VBScript's variables are all Variants. What starts out as an integer may be converted to something else if the need arises.

Implementation

<lang vb>option explicit dim a, b wscript.stdout.write "A? " a = wscript.stdin.readline wscript.stdout.write "B? " b = wscript.stdin.readline

a = int( a ) b = int( b )

wscript.echo "a + b=", a + b wscript.echo "a - b=", a - b wscript.echo "a * b=", a * b wscript.echo "a / b=", a / b wscript.echo "a \ b=", a \ b wscript.echo "a mod b=", a mod b wscript.echo "a ^ b=", a ^ b</lang>

Another Implementation

Gives the same output for the same input. Inspired by Python version. <lang vb>option explicit dim a, b wscript.stdout.write "A? " a = wscript.stdin.readline wscript.stdout.write "B? " b = wscript.stdin.readline

a = int( a ) b = int( b )

dim op for each op in split("+ - * / \ mod ^", " ") wscript.echo "a",op,"b=",eval( "a " & op & " b") next</lang>

Invocation

C:\foo>arithmetic.vbs
A? 45
B? 11
a + b= 4511
a - b= 34
a * b= 495
a / b= 4.09090909090909
a \ b= 4
a mod b= 1
a ^ b= 1.5322783012207E+18

Vedit macro language

<lang vedit>#1 = Get_Num("Give number a: ")

  1. 2 = Get_Num("Give number b: ")

Message("a + b = ") Num_Type(#1 + #2) Message("a - b = ") Num_Type(#1 - #2) Message("a * b = ") Num_Type(#1 * #2) Message("a / b = ") Num_Type(#1 / #2) Message("a % b = ") Num_Type(#1 % #2)</lang>

Vim Script

<lang vim>let a = float2nr(input("Number 1: ") + 0) let b = float2nr(input("Number 2: ") + 0) echo "\nSum: " . (a + b) echo "Difference: " . (a - b) echo "Product: " . (a * b) " The result of an integer division is truncated echo "Quotient: " . (a / b) " The sign of the result of the remainder operation matches the sign of " the first operand echo "Remainder: " . (a % b)</lang>

Visual Basic .NET

<lang vbnet>Imports System.Console Module Module1

 Sub Main
   Dim a = CInt(ReadLine)
   Dim b = CInt(ReadLine)
   WriteLine("Sum " & a + b)
   WriteLine("Difference " & a - b)
   WriteLine("Product " & a - b)
   WriteLine("Quotient " & a / b)
   WriteLine("Integer Quotient " & a \ b)
   WriteLine("Remainder " & a Mod b)
   WriteLine("Exponent " & a ^ b)
 End Sub

End Module</lang>

Wart

<lang python>a <- (read) b <- (read) prn "sum: " a+b prn "difference: " a-b prn "product: " a*b prn "quotient: " a/b prn "integer quotient: " (int a/b) prn "remainder: " a%b prn "exponent: " a^b</lang>

Wren

<lang wren> import "io" for Stdin var a = Num.fromString(Stdin.readLine()) var b = Num.fromString(Stdin.readLine()) System.print("sum:  %(a + b)") System.print("difference:  %(a - b)") System.print("product:  %(a * b)") System.print("integer quotient: %((a / b).floor)") System.print("remainder:  %(a % b)") </lang>

x86 Assembly

Input and output would be OS-specific and are not implemented. This routine works on the 16-bit 8086, as well as on its 32-bit and 64-bit successors: it could be trivially modified to perform 32-bit or 64-bit arithmetic on machines where those are supported. The quotient is truncated towards zero; the remainder takes its sign from the first operand. <lang asm>arithm: mov cx, a

       mov      bx,          b
       xor      dx,          dx
       
       mov      ax,          cx
       add      ax,          bx
       mov      sum,         ax
       
       mov      ax,          cx
       imul     bx
       mov      product,     ax
       
       mov      ax,          cx
       sub      ax,          bx
       mov      difference,  ax
       
       mov      ax,          cx
       idiv     bx
       mov      quotient,    ax
       mov      remainder,   dx
       ret</lang>

XLISP

<lang xlisp>(DEFUN INTEGER-ARITHMETIC ()

   (DISPLAY "Enter two integers separated by a space.")
   (NEWLINE)
   (DISPLAY "> ")
   (DEFINE A (READ))
   (DEFINE B (READ))
   (DISPLAY `(SUM ,(+ A B)))
   (NEWLINE)
   (DISPLAY `(DIFFERENCE ,(- A B)))
   (NEWLINE)
   (DISPLAY `(PRODUCT ,(* A B)))
   (NEWLINE)
   (DISPLAY `(QUOTIENT ,(QUOTIENT A B))) ; truncates towards zero
   (NEWLINE)
   (DISPLAY `(REMAINDER ,(REM A B))) ; takes sign of first operand
   (NEWLINE)
   (DISPLAY `(EXPONENTIATION ,(EXPT A B))))</lang>

XPL0

<lang XPL0>include c:\cxpl\codes; int A, B; [A:= IntIn(0);

B:= IntIn(0);

IntOut(0, A+B); CrLf(0); IntOut(0, A-B); CrLf(0); IntOut(0, A*B); CrLf(0); IntOut(0, A/B); CrLf(0); \truncates toward zero IntOut(0, rem(0)); CrLf(0); \remainder's sign matches first operand (A) ]</lang>

XSLT

<lang xml><xsl:template name="arithmetic">

 <xsl:param name="a">5</xsl:param>
 <xsl:param name="b">2</xsl:param>
 <fo:block>a + b = <xsl:value-of select="$a + $b"/></fo:block>
 <fo:block>a - b = <xsl:value-of select="$a - $b"/></fo:block>
 <fo:block>a * b = <xsl:value-of select="$a * $b"/></fo:block>
 <fo:block>a / b = <xsl:value-of select="round($a div $b)"/></fo:block>
 <fo:block>a mod b = <xsl:value-of select="$a mod $b"/></fo:block>
</xsl:template></lang>

Yorick

<lang yorick>x = y = 0; read, x, y; write, "x + y =", x + y; write, "x - y =", x - y; write, "x * y =", x * y; write, "x / y =", x / y; // rounds toward zero write, "x % y =", x % y; // remainder; matches sign of first operand when operands' signs differ write, "x ^ y =", x ^ y; // exponentiation</lang>

zkl

<lang zkl>x,y:=ask("Two ints: ").split(" ").apply("toInt"); println("x+y = ",x + y); println("x-y = ",x - y); println("x*y = ",x * y); println("x/y = ",x / y); // rounds toward zero println("x%y = ",x % y); // remainder; matches sign of first operand when operands' signs differ println("x.divr(y) = ",x.divr(y)); // (x/y,remainder); sign as above</lang>

zonnon

<lang zonnon> module Main; var i,j: integer; begin write("A integer?:");readln(i); write("another?: ");readln(j); writeln("sum: ",i + j); writeln("difference: ", i - j); writeln("product: ", i * j); writeln("quotient: ", i div j); writeln("remainder: ", i mod j); end Main. </lang>

Output:
A integer?:2
another?: 3
sum:                    5
difference:                   -1
product:                    6
quotient:                    0
remainder:                    2

ZX Spectrum Basic

<lang zxbasic>5 LET a=5: LET b=3 10 PRINT a;" + ";b;" = ";a+b 20 PRINT a;" - ";b;" = ";a-b 30 PRINT a;" * ";b;" = ";a*b 40 PRINT a;" / ";b;" = ";INT (a/b) 50 PRINT a;" mod ";b;" = ";a-INT (a/b)*b 60 PRINT a;" to the power of ";b;" = ";a^b </lang>