Two sum

From Rosetta Code
Two sum is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
Task

Given a sorted array of single positive integers, is it possible to find a pair of integers from that array that sum up to a given sum? If so, return indices of the two integers or an empty array if not.


Example

Given numbers = [0, 2, 11, 19, 90], sum = 21,
Because numbers[1] + numbers[3] = 2 + 19 = 21,
return [1, 3].


Source

Stack Overflow: Find pair of numbers in array that add to given sum

C#

<lang csharp>public static int[] TwoSum(int[] numbers, int sum) {

   var map = new Dictionary<int, int>();
   for (var i = 0; i < numbers.Length; i++)
   {
      	var key = sum - numbers[i];
      	if (map.ContainsKey(key))
           return new[] { map[key], i };
       map.Add(numbers[i], i);
   }
   return Array.Empty<int>();

}</lang>

Output:
[1,3]

Elixir

<lang elixir>defmodule RC do

 def two_sum(numbers, sum) do
   Enum.with_index(numbers) |>
   Enum.reduce_while([], fn {x,i},acc ->
     y = sum - x
     case Enum.find_index(numbers, &(&1 == y)) do
       nil -> {:cont, acc}
       j   -> {:halt, [i,j]}
     end
   end)
 end

end

numbers = [0, 2, 11, 19, 90] IO.inspect RC.two_sum(numbers, 21) IO.inspect RC.two_sum(numbers, 25)</lang>

Output:
[1, 3]
[]

J

So, first off, our basic approach will be to find the sums: <lang J> =+/~0 2 11 19 90

0  2  11  19  90
2  4  13  21  92

11 13 22 30 101 19 21 30 38 109 90 92 101 109 180</lang>

And, check if any of them are our desired value: <lang J> 21=+/~0 2 11 19 90 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0</lang>

Except, we want indices here, so let's toss the structure so we can get those: <lang J> ,21=+/~0 2 11 19 90 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

  I.,21=+/~0 2 11 19 90

8 16</lang>

Except, we really needed that structure - in this case, since we had a five by five table, we want to interpret this result as a base five pair of numbers:

<lang J> $21=+/~0 2 11 19 90 5 5

  5 5#:I.,21=+/~0 2 11 19 90

1 3 3 1</lang>

Or, taking advantage of being able to use verbs to represent combining their results, when we use three of them: <lang J> ($ #: I.@,)21=+/~0 2 11 19 90 1 3 3 1</lang>

But to be more like the other task implementations here, we don't want all the results, we just want zero or one result. We can't just take the first result, though, because that would fill in a 0 0 result if there were none, and 0 0 could have been a valid result which does not make sense for the failure case. So, instead, let's package things up so we can add an empty to the end and take the first of those:

<lang J> ($ <@#: I.@,)21=+/~0 2 11 19 90 ┌───┬───┐ │1 3│3 1│ └───┴───┘

  a:,~($ <@#: I.@,)21=+/~0 2 11 19 90

┌───┬───┬┐ │1 3│3 1││ └───┴───┴┘

  {.a:,~($ <@#: I.@,)21=+/~0 2 11 19 90

┌───┐ │1 3│ └───┘

  ;{.a:,~($ <@#: I.@,)21=+/~0 2 11 19 90

1 3</lang>

Finally, let's start pulling our arguments out using that three verbs combining form:

<lang J>  ;{.a:,~($ <@#: I.@,) 21([ = +/~@])0 2 11 19 90 1 3

  ;{.a:,~21 ($ <@#: I.@,)@([ = +/~@])0 2 11 19 90

1 3</lang>

a: is not a verb, but we can use a noun as the left verb of three as an implied constant verb whose result is itself: <lang J>  ;{. 21 (a:,~ ($ <@#: I.@,)@([ = +/~@]))0 2 11 19 90 1 3</lang>

And, let's finish the job, give this a name, and test it out: <lang J> twosum=: ;@{.@(a:,~ ($ <@#: I.@,)@([ = +/~@]))

  21 twosum 0 2 11 19 90

1 3</lang>

Except that looks like a bit of a mess. A lot of the reason for this is that ascii is ugly to look at. (Another issue, though, is that a lot of people are not used to architecting control flow as expressions.)

So... let's do this over again, using a more traditional implementation where we name intermediate results. (We're going to stick with our architecture, though, because changing the architecture to the more traditional approach would change the space/time tradeoff to require more time.)

<lang J>two_sum=:dyad define

 sums=. +/~ y
 matches=.  x = sums
 sum_inds=. I. , matches
 pair_inds=. ($matches) #: sum_inds
 ; {. a: ,~ <"1 pair_inds

)</lang>

And, testing:

<lang J> 21 two_sum 0 2 11 19 90 1 3</lang>

Or, we could go slightly more traditional and instead of doing that boxing at the end, use an if/else statement:

<lang J>two_sum=:dyad define

 sums=. +/~ y
 matches=.  x = sums
 sum_inds=. I. , matches
 pair_inds=. ($matches) #: sum_inds
 if. #pair_inds do.
   {.pair_inds
 else.
   i.0
 end.

)</lang>

Then again, most people don't read J anyways, so maybe just stick with the earlier implementation:

<lang J>twosum=: ;@{.@(a:,~ ($ <@#: I.@,)@([ = +/~@]))</lang>

Java

Translation of: Lua

<lang java>import java.util.Arrays;

public class TwoSum {

   public static void main(String[] args) {
       long sum = 21;
       int[] arr = {0, 2, 11, 19, 90};
       System.out.println(Arrays.toString(twoSum(arr, sum)));
   }
   public static int[] twoSum(int[] a, long target) {
       int i = 0, j = a.length - 1;
       while (i < j) {
           long sum = a[i] + a[j];
           if (sum == target)
               return new int[]{i, j};
           if (sum < target) i++;
           else j--;
       }
       return null;
   }

}</lang>

[1, 3]


JavaScript

ES5

Nesting concatMap yields the cartesian product of the list with itself, and functions passed to Array.map() have access to the array index in their second argument. Returning [] where the y index is lower than then x index ignores the 'lower triangle' of the cartesian grid, so mirror-image number pairs are not considered. Returning [] where a sum condition is not met similarly acts as a filter – all of the empty lists in the map are eliminated by the concat.

<lang JavaScript>(function () {

   var concatMap = function (f, xs) {
       return [].concat.apply([], xs.map(f))
   };
   return function (n, xs) {
       return concatMap(function (x, ix) {
           return concatMap(function (y, iy) {
               return iy < ix ? [] : x + y === n ? [
                   [ix, iy]
               ] : []
           }, xs)
       }, xs)
   }(21, [0, 2, 11, 19, 90]);

})(); </lang>

Output:

<lang JavaScript>1,3</lang>

ES6

First quickly composing a function from generic primitives like concatMap, cartesianProduct, nubBy.

<lang JavaScript>(() => {

   'use strict';
   let summingPairIndices = (n, xs) => nubBy(
           ([x, y], [x1, y1]) => x === x1 && y === y1,
           concatMap(
               ([x, y]) =>
                   x === y ? [] : (x + y === n ? x, y : []),
               cartesianProduct(xs, xs)
           ).map(xs => xs.sort())
       ).map(([x, y]) => [xs.indexOf(y), xs.indexOf(x)]);


   // GENERIC LIBRARY FUNCTIONS
   // concatMap :: (a -> [b]) -> [a] -> [b]
   let concatMap = (f, xs) => [].concat.apply([], xs.map(f)),
       // cartesianProduct :: [a] -> [b] -> [(a, b)]
       cartesianProduct = (xs, ys) =>
           concatMap(x => concatMap(y => x, y, ys), xs),
       // nubBy :: (a -> a -> Bool) -> [a] -> [a]
       nubBy = (p, xs) => {
           let x = xs.length ? xs[0] : undefined;
           return x !== undefined ? [x].concat(
               nubBy(p, xs.slice(1).filter(y => !p(x, y)))
           ) : [];
       };


   return summingPairIndices(21, [0, 2, 11, 19, 90]);

})(); </lang>

Output:

<lang JavaScript>[1,3]</lang>


and then fusing it down to something smaller and a little more efficient, expressed purely in terms of concatMap

<lang JavaScript>(() => {

   'use strict';
   // concatMap :: (a -> [b]) -> [a] -> [b]
   let concatMap = (f, xs) => [].concat.apply([], xs.map(f));
   // summingPairIndices :: -> Int -> [Int] -> [(Int, Int)]
   let summingPairIndices = (n, xs) =>
           // Javascript map functions have access to the array index
           // in their second argument.
           concatMap((x, ix) => concatMap((y, iy) =>
               iy < ix ? [] : ( //  Ignoring mirror-image tuples by
                                //  skipping the 'lower triangle' (y < x)
                                //  of the cartesian product grid
                   x + y === n ? [
                       [ix, iy]
                   ] : []
               ), xs), xs);
   return summingPairIndices(21, [0, 2, 11, 19, 90]);

})(); </lang>

Output:

<lang JavaScript>1,3</lang>

Lua

Lua uses one-based indexing. <lang lua>function twoSum (numbers, sum)

   local i, j, s = 1, #numbers
   while i < j do
       s = numbers[i] + numbers[j]
       if s == sum then
           return {i, j}
       elseif s < sum then
           i = i + 1
       else
           j = j - 1
       end
   end
   return {}

end

print(table.concat(twoSum({0,2,11,19,90}, 21), ","))</lang>

Output:
2,4

ooRexx

<lang oorexx>a=.array~of(0, 2, 11, 19, 90) x=21 do i=1 To a~items

 If a[i]>x Then Leave
 Do j=i+1 To a~items
   s=a[i]
   s+=a[j]
   Select
     When s=x Then Leave i
     When s>x Then Leave j
     Otherwise Nop
     End
   End
 End

If s=x Then Do

 i-=1            /* array a's index starts with 1, so adjust */
 j-=1
 Say '['i','j']'
 End

Else

 Say '[] - no items found'</lang>
Output:
[1,3]

Pascal

A little bit lengthy. Implemented an unsorted Version with quadratic runtime too and an extra test case with 83667 elements that needs 83667*86666/2 ~ 3.5 billion checks ( ~1 cpu-cycles/check, only if data in cache ). <lang pascal>program twosum; {$IFDEF FPC}{$MODE DELPHI}{$ELSE}{$APPTYPE CONSOLE}{$ENDIF} uses

 sysutils;

type

 tSolRec = record
             SolRecI,
             SolRecJ : NativeInt;
           end;  
 tMyArray = array of NativeInt;

const // just a gag using unusual index limits

 ConstArray :array[-17..-13] of NativeInt = (0, 2, 11, 19, 90);

function Check2SumUnSorted(const A :tMyArray;

                                sum:NativeInt;
                          var   Sol:tSolRec):boolean;

//Check every possible sum A[max] + A[max-1..0] //than A[max-1] + A[max-2..0] etc pp. //quadratic runtime: maximal (max-1)*max/ 2 checks //High(A) always checked for dynamic array, even const //therefore run High(A) to low(A), which is always 0 for dynamic array label

 SolFound;

var

 i,j,tmpSum: NativeInt;

Begin

 Sol.SolRecI:=0;
 Sol.SolRecJ:=0;
 i := High(A);
 while i > low(A) do
 Begin
   tmpSum := sum-A[i]; 
   j := i-1;
   while j >= low(A) do
   begin
     //Goto is bad, but fast...
     if tmpSum = a[j] Then  
       GOTO SolFound;
     dec(j);
   end;  
   dec(i);
 end;
 result := false;
 exit;

SolFound:

 Sol.SolRecI:=j;Sol.SolRecJ:=i;
 result := true;      

end;

function Check2SumSorted(const A :tMyArray;

                               sum:NativeInt;
                        var    Sol:tSolRec):boolean;

var

 i,j,tmpSum: NativeInt;

Begin

 Sol.SolRecI:=0;
 Sol.SolRecJ:=0;
 i := low(A);
 j := High(A);
 while(i < j) do
 Begin
   tmpSum := a[i] + a[j];
   if tmpSum = sum then  
   Begin
     Sol.SolRecI:=i;Sol.SolRecJ:=j;
     result := true;      
     EXIT;
   end;   
   if tmpSum < sum then 
   begin
     inc(i);
     continue;
   end;
   //if tmpSum > sum then     
   dec(j);
 end;
 writeln(i:10,j:10);  
 result := false;

end;

var

 Sol :tSolRec;
 CheckArr : tMyArray;
 MySum,i : NativeInt;
 

Begin

 randomize;
 setlength(CheckArr,High(ConstArray)-Low(ConstArray)+1);
 For i := High(CheckArr) downto low(CheckArr) do
   CheckArr[i] := ConstArray[i+low(ConstArray)];  
 MySum  := 21;  
 IF Check2SumSorted(CheckArr,MySum,Sol) then
   writeln('[',Sol.SolRecI,',',Sol.SolRecJ,'] sum to ',MySum)
 else
   writeln('No solution found'); 
    
 //now test a bigger sorted array..
 setlength(CheckArr,83667);
 For i := High(CheckArr) downto 0 do
   CheckArr[i] := i;  
 MySum := CheckArr[Low(CheckArr)]+CheckArr[Low(CheckArr)+1];
 writeln(#13#10,'Now checking array of ',length(CheckArr),
         ' elements',#13#10);
 //runtime about 1 second
 IF Check2SumUnSorted(CheckArr,MySum,Sol) then
   writeln('[',Sol.SolRecI,',',Sol.SolRecJ,'] sum to ',MySum)
 else
   writeln('No solution found');  
 //runtime not measurable
 IF Check2SumSorted(CheckArr,MySum,Sol) then
   writeln('[',Sol.SolRecI,',',Sol.SolRecJ,'] sum to ',MySum)
 else
   writeln('No solution found');    

end.</lang>

Output:
[1,3] sum to 21

Now checking array of 83667 elements

[0,1] sum to 1
[0,1] sum to 1

real    0m1.013s

Perl 6

Translation of: zkl

<lang perl6>sub two_sum ( @numbers, $sum ) {

   die '@numbers is not sorted' unless [<=] @numbers;
   my ( $i, $j ) = 0, @numbers.end;
   while $i < $j {
       given $sum <=> @numbers[$i,$j].sum {
           when Order::More { $i += 1 }
           when Order::Less { $j -= 1 }
           when Order::Same { return $i, $j }
       }
   }
   return;

}

say two_sum ( 0, 2, 11, 19, 90 ), 21; say two_sum ( 0, 2, 11, 19, 90 ), 25;</lang>

Output:
(1 3)
Nil

REXX

<lang rexx>list=0 2 11 19 90 Do i=0 By 1 Until list=

 Parse Var list a.i list
 End

n=i-1 x=21 do i=1 To n

 If a.i>x Then Leave
 Do j=i+1 To n
   s=a.i
   s=s+a.j
   Select
     When s=x Then Leave i
     When s>x Then Leave j
     Otherwise Nop
     End
   End
 End

If s=x Then

 Say '['i','j']'

Else

 Say '[] - no items found'</lang>
Output:
[1,3]

Ruby

<lang ruby>def two_sum(numbers, sum)

 numbers.each_with_index do |x,i|
   if j = numbers.index(sum - x) then return [i,j] end
 end
 []

end

numbers = [0, 2, 11, 19, 90] p two_sum(numbers, 21) p two_sum(numbers, 25)</lang>

Output:
[1, 3]
[]

When the size of the Array is bigger, the following is more suitable. <lang ruby>def two_sum(numbers, sum)

 numbers.each_with_index do |x,i|
   key = sum - x
   if j = numbers.bsearch_index{|y| key<=>y}
     return [i,j]
   end
 end
 []

end</lang>

zkl

The sorted O(n) no external storage solution: <lang zkl>fcn twoSum(sum,ns){

  i,j:=0,ns.len()-1;
  while(i<j){
     if((s:=ns[i] + ns[j]) == sum) return(i,j);
     else if(s<sum) i+=1;
     else if(s>sum) j-=1;
  }

}</lang> <lang zkl>twoSum2(21,T(0,2,11,19,90)).println(); twoSum2(25,T(0,2,11,19,90)).println();</lang>

Output:
L(1,3)
False

The unsorted O(n!) all solutions solution: <lang zkl>fcn twoSum2(sum,ns){

  Utils.Helpers.combosKW(2,ns).filter('wrap([(a,b)]){ a+b==sum })  // lazy combos
  .apply('wrap([(a,b)]){ return(ns.index(a),ns.index(b)) })

}</lang> <lang zkl>twoSum2(21,T(0,2,11,19,90,21)).println(); twoSum2(25,T(0,2,11,19,90,21)).println();</lang>

Output:
L(L(0,5),L(1,3))
L()