Total circles area

From Rosetta Code
Revision as of 16:52, 15 September 2012 by rosettacode>Bearophile (+ C entry)
Total circles area is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

Given some partially overlapping circles on the plane, compute and show the total area covered by them, with four or six (or a little more) decimal digits of precision. The area covered by two or more disks needs to be counted only once.

One point of this Task is also to compare and discuss the relative merits of various solution strategies, their performance, precision and simplicity.

To allow a better comparison of the different implementations, solve the problem with this standard dataset, each line contains the x and y coordinates of the centers of the disks and their radii (11 disks are fully contained inside other disks):

      xc             yc        radius
 1.6417233788  1.6121789534 0.0848270516
-1.4944608174  1.2077959613 1.1039549836
 0.6110294452 -0.6907087527 0.9089162485
 0.3844862411  0.2923344616 0.2375743054
-0.2495892950 -0.3832854473 1.0845181219
 1.7813504266  1.6178237031 0.8162655711
-0.1985249206 -0.8343333301 0.0538864941
-1.7011985145 -0.1263820964 0.4776976918
-0.4319462812  1.4104420482 0.7886291537
 0.2178372997 -0.9499557344 0.0357871187
-0.6294854565 -1.3078893852 0.7653357688
 1.7952608455  0.6281269104 0.2727652452
 1.4168575317  1.0683357171 1.1016025378
 1.4637371396  0.9463877418 1.1846214562
-0.5263668798  1.7315156631 1.4428514068
-1.2197352481  0.9144146579 1.0727263474
-0.1389358881  0.1092805780 0.7350208828
 1.5293954595  0.0030278255 1.2472867347
-0.5258728625  1.3782633069 1.3495508831
-0.1403562064  0.2437382535 1.3804956588
 0.8055826339 -0.0482092025 0.3327165165
-0.6311979224  0.7184578971 0.2491045282
 1.4685857879 -0.8347049536 1.3670667538
-0.6855727502  1.6465021616 1.0593087096
 0.0152957411  0.0638919221 0.9771215985

According to one algorithm, the approximate solution is 21.5650366.

Beside solving the standard dataset, optionally solve a larger random dataset.

See also (idea originally from Steve132): http://www.reddit.com/r/dailyprogrammer/comments/zff9o/9062012_challenge_96_difficult_water_droplets/

C

This program uses a Montecarlo sampling. For this problem this is less efficient (converges more slowly) than a regular grid sampling, like in the Python entry. <lang c>#include <stdio.h>

  1. include <stdlib.h>

typedef struct { double x, y, r; } Circle;

const Circle circles[] = {

   { 1.6417233788,  1.6121789534, 0.0848270516},
   {-1.4944608174,  1.2077959613, 1.1039549836},
   { 0.6110294452, -0.6907087527, 0.9089162485},
   { 0.3844862411,  0.2923344616, 0.2375743054},
   {-0.2495892950, -0.3832854473, 1.0845181219},
   { 1.7813504266,  1.6178237031, 0.8162655711},
   {-0.1985249206, -0.8343333301, 0.0538864941},
   {-1.7011985145, -0.1263820964, 0.4776976918},
   {-0.4319462812,  1.4104420482, 0.7886291537},
   { 0.2178372997, -0.9499557344, 0.0357871187},
   {-0.6294854565, -1.3078893852, 0.7653357688},
   { 1.7952608455,  0.6281269104, 0.2727652452},
   { 1.4168575317,  1.0683357171, 1.1016025378},
   { 1.4637371396,  0.9463877418, 1.1846214562},
   {-0.5263668798,  1.7315156631, 1.4428514068},
   {-1.2197352481,  0.9144146579, 1.0727263474},
   {-0.1389358881,  0.1092805780, 0.7350208828},
   { 1.5293954595,  0.0030278255, 1.2472867347},
   {-0.5258728625,  1.3782633069, 1.3495508831},
   {-0.1403562064,  0.2437382535, 1.3804956588},
   { 0.8055826339, -0.0482092025, 0.3327165165},
   {-0.6311979224,  0.7184578971, 0.2491045282},
   { 1.4685857879, -0.8347049536, 1.3670667538},
   {-0.6855727502,  1.6465021616, 1.0593087096},
   { 0.0152957411,  0.0638919221, 0.9771215985}};

double min(const double a, const double b) { return a <= b ? a : b; }

double max(const double a, const double b) { return a >= b ? a : b; }

double uniform(const double a, const double b) {

   const double r01 = rand() / (double)RAND_MAX;
   return a + (b - a) * r01;

}

int main() {

   const size_t n_circles = sizeof(circles) / sizeof(Circle);
   // Initialize the bounding box of the circles.
   double x_min =  1e100;
   double x_max = -1e100;
   double y_min =  1e100;
   double y_max = -1e100;
   // Compute the bounding box of the circles.
   for (size_t i = 0; i < n_circles; i++) {
       const Circle c = circles[i];
       x_min = min(x_min, c.x - c.r);
       x_max = max(x_max, c.x + c.r);
       y_min = min(y_min, c.y - c.r);
       y_max = max(y_max, c.y + c.r);
   }
   // Montecarlo sampling.
   srand(1);
   const size_t n_samples = 100 * 1000 * 1000;
   size_t hits = 0;
   for (size_t i = 0; i < n_samples; i++) {
       const double x = uniform(x_min, x_max);
       const double y = uniform(y_min, y_max);
       for (size_t j = 0; j < n_circles; j++) {
           const double dx = x - circles[j].x;
           const double dy = y - circles[j].y;
           if ((dx * dx + dy * dy) <= (circles[j].r * circles[j].r)) {
               hits++;
               break;
           }
       }
   }
   printf("Approximated area: %.8f\n",
          (double)(x_max - x_min) *
          (double)(y_max - y_min) *
          ((double)hits / n_samples));
   return 0;

}</lang>

Output:
Approximated area: 21.56262288

Python

This implements a regular grid sampling. For this problems this is more efficient than a Montecarlo sampling. <lang python>from collections import namedtuple

Circle = namedtuple("Circle", "x y r")

circles = [

   Circle( 1.6417233788,  1.6121789534, 0.0848270516),
   Circle(-1.4944608174,  1.2077959613, 1.1039549836),
   Circle( 0.6110294452, -0.6907087527, 0.9089162485),
   Circle( 0.3844862411,  0.2923344616, 0.2375743054),
   Circle(-0.2495892950, -0.3832854473, 1.0845181219),
   Circle( 1.7813504266,  1.6178237031, 0.8162655711),
   Circle(-0.1985249206, -0.8343333301, 0.0538864941),
   Circle(-1.7011985145, -0.1263820964, 0.4776976918),
   Circle(-0.4319462812,  1.4104420482, 0.7886291537),
   Circle( 0.2178372997, -0.9499557344, 0.0357871187),
   Circle(-0.6294854565, -1.3078893852, 0.7653357688),
   Circle( 1.7952608455,  0.6281269104, 0.2727652452),
   Circle( 1.4168575317,  1.0683357171, 1.1016025378),
   Circle( 1.4637371396,  0.9463877418, 1.1846214562),
   Circle(-0.5263668798,  1.7315156631, 1.4428514068),
   Circle(-1.2197352481,  0.9144146579, 1.0727263474),
   Circle(-0.1389358881,  0.1092805780, 0.7350208828),
   Circle( 1.5293954595,  0.0030278255, 1.2472867347),
   Circle(-0.5258728625,  1.3782633069, 1.3495508831),
   Circle(-0.1403562064,  0.2437382535, 1.3804956588),
   Circle( 0.8055826339, -0.0482092025, 0.3327165165),
   Circle(-0.6311979224,  0.7184578971, 0.2491045282),
   Circle( 1.4685857879, -0.8347049536, 1.3670667538),
   Circle(-0.6855727502,  1.6465021616, 1.0593087096),
   Circle( 0.0152957411,  0.0638919221, 0.9771215985)]

def main():

   # compute the bounding box of the circles
   x_min = min(c.x - c.r for c in circles)
   x_max = max(c.x + c.r for c in circles)
   y_min = min(c.y - c.r for c in circles)
   y_max = max(c.y + c.r for c in circles)
   box_side = 500
   dx = (x_max - x_min) / box_side
   dy = (y_max - y_min) / box_side
   count = 0
   for r in xrange(box_side):
       y = y_min + r * dy
       for c in xrange(box_side):
           x = x_min + c * dx
           for circle in circles:
               if (x-circle.x)**2 + (y-circle.y)**2 <= (circle.r ** 2):
                   count += 1
                   break
   print "Approximated area:", count * dx * dy

main()</lang>

Output:
Approximated area: 21.561559772