Sturmian word

From Rosetta Code
Revision as of 23:13, 31 January 2024 by imported>CosmiaNebula
Task
Sturmian word
You are encouraged to solve this task according to the task description, using any language you may know.

A Sturmian word is a binary sequence, finite or infinite, that makes up the cutting sequence for a positive real number x, as shown in the picture.

Example Sturmian word when x = 0.618..., the golden ratio.

The Sturmian word can be computed thus as an algorithm:

  • If , then it is the inverse of the Sturmian word for . So we have reduced to the case of .
  • Iterate over
  • If is an integer, then the program terminates. Else, if , then the program outputs 0, else, it outputs 10.

The problem:

  • Given a positive rational number , specified by two positive integers , output its entire Sturmian word.
  • Given a quadratic real number , specified by three positive integers , where is not a perfect square, output the first letters of its Sturmian word when given a positive number .

(If the programming language can represent infinite data structures, then that works too.)

Stretch goal: calculate the Sturmian word for other kinds of definable real numbers, such as cubic roots.

The key difficulty is accurately calculating for large . Floating point arithmetic would lose precision. One can either do this simply by directly searching for some integer such that , or by more trickly methods, such as the continued fraction approach.

First calculate the continued fraction representation of , then obtaining the convergent sequence to . Let be a convergent to , such that , then since the convergent sequence is the best rational approximant for denominators up to that point, we know for sure that, if we write out , the sequence would stride right across the gap . Thus, we can take the largest such that , and we would know for sure that .

In summary,

where is the first continued fraction approximant to with a denominator