Simple turtle graphics

From Rosetta Code
Revision as of 14:34, 31 July 2021 by PureFox (talk | contribs) (→‎{{header|Wren}}: Minor simplification.)
Simple turtle graphics is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

The first turtle graphic discussed in Mindstorms: Children, Computers, and Powerful Ideas by Seymour Papert is a simple drawing of a house. It is a square with a triangle on top for the roof.

For a slightly more advanced audience, a more practical introduction to turtle graphics might be to draw a bar chart.

See image here: https://i.imgur.com/B7YbTbZ.png

Task
  • Create a function (or subroutine) that uses turtle graphics to draw a house of a specified size as described above. Optionally make it lovely by adding details such as, for example, doors and windows.
  • Create a function (or subroutine) that takes a list (array, vector) of numbers and draws a bar chart from them, scaled to fit exactly in a square of a specified size. The enclosing square need not be drawn.
  • Both functions should return the turtle to the location it was at and facing in the same direction as it was immediately before the function was executed.

Quackery

<lang Quackery> [ $ "turtleduck.qky" loadfile ] now!

 [ behead do
   rot witheach
     [ do 2over 2over
       v< if 2swap 
       2drop ] ]                 is largest   (       [ --> n/d )
 [ 2 times 
   [ 2dup walk
     -1 4 turn
     2over walk 
     -1 4 turn ] 
   2drop 2drop ]                 is rectangle ( n/d n/d -->     ) 
 [ 2dup rectangle ]              is square    (     n/d -->     )
 [ 3 times 
    [ 2dup walk 
      1 3 turn ] 
   2drop ]                       is triangle  (    n/d  -->     )
 [ 1 2 turn 
   2dup square triangle 
   1 2 turn ]                    is house     (     n/d -->     )
 [ stack ]                       is bar.width (         --> s   )
 [ stack ]                       is bar.scale (         --> s   )
 [ join temp put
   dup size n->v 
   temp share do v/ 1/v
   join bar.width put
   dup largest
   temp share do v/
   join bar.scale put    
   witheach 
     [ do 
       bar.scale share do v/
       bar.width share do
       rectangle
       bar.width share do fly ]
   temp take do -v fly
   bar.width release
   bar.scale release ]          is barchart  (   [ n/d -->     )
  turtle
  150 1 house
  10 1 fly
  ' [ [ 1 2 ] [ 1 3 ] [ 2 1 ] [ 13 10 ] [ 1 2 ] ] 200 1 barchart
  -10 1 fly</lang>
Output:

https://imgur.com/B7YbTbZ

Wren

Library: DOME
Library: Wren-turtle

<lang ecmascript>import "dome" for Window import "graphics" for Canvas, Color import "./turtle" for Turtle

class Main {

   construct new(width, height) {
       Window.resize(width, height)
       Canvas.resize(width, height)
       Window.title = "Simple turtle graphics"
       _w = width
       _h = height
   }
   init() {
       Canvas.cls(Color.white)
       _t = Turtle.new()
       drawHouse(_w/4)
       barChart([15, 10, 50, 35, 20], _w/3)
   }
   drawHouse(size) {
       // save initial turtle position and direction
       var saveX = _t.x
       var saveY = _t.y
       var saveD = _t.dir

       _t.pen.width = 2
       // draw house
       _t.drawRect(_w/4, _h/2, size, size)
       // draw roof
       _t.right(30)
       _t.walk(size)
       _t.right(120)
       _t.walk(size)
       // draw door
       var doorWidth  = (size/4).floor
       var doorHeight = (size/2).floor
       _t.drawRect(_w/4 + doorWidth/2, _h/2 + doorHeight, doorWidth, doorHeight)
       // draw window
       var windWidth  = (size/3).floor
       var windHeight = (size/4).floor
       _t.drawRect(_w/4 + size/2, _h/2 + size/2, windWidth, windHeight)
       // restore initial turtle position and direction
       _t.x = saveX
       _t.y = saveY
       _t.dir = saveD
   }
   // nums assumed to be all non-negative
   barChart(nums, size) {
       // save intial turtle position and direction
       var saveX = _t.x
       var saveY = _t.y
       var saveD = _t.dir
       // find maximum
       var max = 0
       for (n in nums) if (n > max) max = n
       // scale to fit within a square with sides 'size' and draw chart
       var barWidth = (size / nums.count).floor
       var startX = _w / 2 + 20
       var startY = _h / 2
       for (i in 0...nums.count) {
           var barHeight = (nums[i] * size / max).round
           _t.drawRect(startX, startY - barHeight, barWidth, barHeight)
           startX = startX + barWidth
       }
       // restore intial turtle position and direction
       _t.x = saveX
       _t.y = saveY
       _t.dir = saveD
   }
   update() {}
   draw(alpha) {}

}

var Game = Main.new(600, 600)</lang>

Output:
Similar to Quackery image except that the house has a door and a single window.