Range consolidation

From Rosetta Code
Task
Range consolidation
You are encouraged to solve this task according to the task description, using any language you may know.

Define a range of numbers   R,   with bounds   b0   and   b1   covering all numbers between and including both bounds.


That range can be shown as:

[b0, b1]
   or equally as:
[b1, b0]


Given two ranges, the act of consolidation between them compares the two ranges:

  •   If one range covers all of the other then the result is that encompassing range.
  •   If the ranges touch or intersect then the result is   one   new single range covering the overlapping ranges.
  •   Otherwise the act of consolidation is to return the two non-touching ranges.


Given   N   ranges where   N > 2   then the result is the same as repeatedly replacing all combinations of two ranges by their consolidation until no further consolidation between range pairs is possible.

If   N < 2   then range consolidation has no strict meaning and the input can be returned.


Example 1
  Given the two ranges   [1, 2.5]   and   [3, 4.2]   then
  there is no common region between the ranges and the result is the same as the input.


Example 2
  Given the two ranges   [1, 2.5]   and   [1.8, 4.7]   then
  there is :   an overlap   [2.5, 1.8]   between the ranges and
  the result is the single range   [1, 4.7].
  Note that order of bounds in a range is not (yet) stated.


Example 3
  Given the two ranges   [6.1, 7.2]   and   [7.2, 8.3]   then
  they touch at   7.2   and
  the result is the single range   [6.1, 8.3].


Example 4
  Given the three ranges   [1, 2]   and   [4, 8]   and   [2, 5]
  then there is no intersection of the ranges   [1, 2]   and   [4, 8]
  but the ranges   [1, 2]   and   [2, 5]   overlap and
  consolidate to produce the range   [1, 5].
  This range, in turn, overlaps the other range   [4, 8],   and
  so consolidates to the final output of the single range   [1, 8].


Task

Let a normalized range display show the smaller bound to the left;   and show the range with the smaller lower bound to the left of other ranges when showing multiple ranges.

Output the normalized result of applying consolidation to these five sets of ranges:

           [1.1, 2.2]
           [6.1, 7.2], [7.2, 8.3]
           [4, 3], [2, 1]
           [4, 3], [2, 1], [-1, -2], [3.9, 10]
           [1, 3], [-6, -1], [-4, -5], [8, 2], [-6, -6]  

Show all output here.


See also



11l

Translation of: Python
F consolidate(ranges)
   F normalize(s)
      R sorted(s.filter(bounds -> !bounds.empty).map(bounds -> sorted(bounds)))

   V norm = normalize(ranges)
   L(&r1) norm
      V i = L.index
      I !r1.empty
         L(j) i + 1 .< norm.len
            V& r2 = norm[j]
            I !r2.empty & r1.last >= r2[0]
               r1 = [r1[0], max(r1.last, r2.last)]
               r2.clear()
   R norm.filter(rnge -> !rnge.empty)

L(s) [[[1.1, 2.2]],
      [[6.1, 7.2], [7.2, 8.3]],
      [[4.0, 3.0], [2.0, 1.0]],
      [[4.0, 3.0], [2.0, 1.0], [-1.0, -2.0], [3.9, 10.0]],
      [[1.0, 3.0], [-6.0, -1.0], [-4.0, -5.0], [8.0, 2.0], [-6.0, -6.0]]]
   print(String(s)[1 .< (len)-1]‘ => ’String(consolidate(s))[1 .< (len)-1])
Output:
[1.1, 2.2] => [1.1, 2.2]
[6.1, 7.2], [7.2, 8.3] => [6.1, 8.3]
[4, 3], [2, 1] => [1, 2], [3, 4]
[4, 3], [2, 1], [-1, -2], [3.9, 10] => [-2, -1], [1, 2], [3, 10]
[1, 3], [-6, -1], [-4, -5], [8, 2], [-6, -6] => [-6, -1], [1, 8]

Action!

INCLUDE "H6:REALMATH.ACT"

DEFINE PTR="CARD"
DEFINE RANGESIZE="12"
DEFINE LOW_="+0"
DEFINE HIGH_="+6"
TYPE Range=[CARD l1,l2,l3,h1,h2,h3]

PROC Inverse(Range POINTER r)
  REAL tmp

  RealAssign(r LOW_,tmp)
  RealAssign(r HIGH_,r LOW_)
  RealAssign(tmp,r HIGH_)
RETURN

PROC Normalize(Range POINTER r)
  IF RealLess(r HIGH_,r LOW_) THEN
    Inverse(r)
  FI
RETURN

INT FUNC Compare(Range Pointer r1,r2)
  IF RealLess(r1 LOW_,r2 LOW_) THEN
    RETURN (-1)
  ELSEIF RealLess(r2 LOW_,r1 LOW_) THEN
    RETURN (1)
  ELSEIF RealLess(r1 HIGH_,r2 HIGH_) THEN
    RETURN (-1)
  ELSEIF RealLess(r2 HIGH_,r1 HIGH_) THEN
    RETURN (1)
  FI
RETURN (0)

PTR FUNC GetItemAddr(PTR data INT index)
RETURN (data+index*RANGESIZE)

PROC Swap(Range POINTER r1,r2)
  REAL tmp

  RealAssign(r1 LOW_,tmp)
  RealAssign(r2 LOW_,r1 LOW_)
  RealAssign(tmp, r2 LOW_)
  RealAssign(r1 HIGH_,tmp)
  RealAssign(r2 HIGH_,r1 HIGH_)
  RealAssign(tmp, r2 HIGH_)
RETURN

PROC Sort(PTR data INT count)
  INT i,j,minpos
  Range POINTER r1,r2

  FOR i=0 TO count-2
  DO
    minpos=i
    FOR j=i+1 TO count-1
    DO
      r1=GetItemAddr(data,minpos)
      r2=GetItemAddr(data,j)
      IF Compare(r1,r2)>0 THEN
        minpos=j
      FI
    OD
    
    IF minpos#i THEN
      r1=GetItemAddr(data,minpos)
      r2=GetItemAddr(data,i)
      Swap(r1,r2)
    FI
  OD
RETURN

PROC Consolidate(PTR data INT POINTER count)
  INT i,j,newCount
  Range POINTER r1,r2

  FOR i=0 TO count^-1
  DO
    r1=GetItemAddr(data,i)
    Normalize(r1)
  OD
  Sort(data,count^)

  newCount=0 i=0
  WHILE i<count^
  DO
    j=i+1
    WHILE j<count^
    DO
      r1=GetItemAddr(data,i)
      r2=GetItemAddr(data,j)
      IF RealLess(r1 HIGH_,r2 LOW_) THEN
        EXIT
      ELSEIF RealLess(r1 HIGH_,r2 HIGH_) THEN
        RealAssign(r2 HIGH_,r1 HIGH_)
      FI
      j==+1
    OD
    r1=GetItemAddr(data,i)
    r2=GetItemAddr(data,newCount)
    RealAssign(r1 LOW_,r2 LOW_)
    RealAssign(r1 HIGH_,r2 HIGH_)
    newCount==+1
    i=j
  OD
  count^=newCount
RETURN

PROC PrintRanges(PTR data INT count)
  INT i
  Range POINTER r

  FOR i=0 TO count-1
  DO
    IF i>0 THEN Put(' ) FI
    r=GetItemAddr(data,i)
    Put('[) PrintR(r LOW_)
    Put(',) PrintR(r HIGH_) Put('])
  OD
RETURN

PROC Append(PTR data INT POINTER count
  CHAR ARRAY sLow,sHigh)
  Range POINTER r

  r=GetItemAddr(data,count^)
  ValR(sLow,r LOW_)
  ValR(sHigh,r High_)
  count^=count^+1
RETURN

INT FUNC InitData(BYTE case PTR data)
  INT count

  count=0
  IF case=0 THEN
    Append(data,@count,"1.1","2.2")
  ELSEIF case=1 THEN
    Append(data,@count,"6.1","7.2")
    Append(data,@count,"7.2","8.3")
  ELSEIF case=2 THEN
    Append(data,@count,"4","3")
    Append(data,@count,"2","1")
  ELSEIF case=3 THEN
    Append(data,@count,"4","3")
    Append(data,@count,"2","1")
    Append(data,@count,"-1","-2")
    Append(data,@count,"3.9","10")
  ELSEIF case=4 THEN
    Append(data,@count,"1","3")
    Append(data,@count,"-6","-1")
    Append(data,@count,"-4","-5")
    Append(data,@count,"8","2")
    Append(data,@count,"-6","-6")
  FI
RETURN (count)

PROC Main()
  BYTE ARRAY data(100)
  INT count
  BYTE i

  Put(125) PutE() ;clear the screen
  FOR i=0 TO 4
  DO
    count=InitData(i,data)
    PrintRanges(data,count)
    Print(" -> ")
    Consolidate(data,@count)
    PrintRanges(data,count)
    PutE() PutE()
  OD
RETURN
Output:

Screenshot from Atari 8-bit computer

[1.1,2.2] -> [1.1,2.2]

[6.1,7.2] [7.2,8.3] -> [6.1,8.3]

[4,3] [2,1] -> [1,2] [3,4]

[4,3] [2,1] [-1,-2] [3.9,10] -> [-2,-1] [1,2] [3,10]

[1,3] [-6,-1] [-4,-5] [8,2] [-6,-6] -> [-6,-1] [1,8]

Ada

with Ada.Text_IO;
with Ada.Containers.Vectors;

procedure Range_Consolidation is

   type Set_Type is record
      Left, Right : Float;
   end record;

   package Set_Vectors is
      new Ada.Containers.Vectors (Positive, Set_Type);

   procedure Normalize (Set : in out Set_Vectors.Vector) is

      function Less_Than (Left, Right : Set_Type) return Boolean is
         begin Return Left.Left < Right.Left; end;

      package Set_Sorting is
         new Set_Vectors.Generic_Sorting (Less_Than);
   begin
      for Elem of Set loop
         Elem := (Left  => Float'Min (Elem.Left,  Elem.Right),
                  Right => Float'Max (Elem.Left,  Elem.Right));
      end loop;
      Set_Sorting.Sort (Set);
   end Normalize;

   procedure Consolidate (Set : in out Set_Vectors.Vector) is
      use Set_Vectors;
      First : Cursor := Set.First;
      Last  : Cursor := Next (First);
   begin
      while Last /= No_Element loop
         if Element (First).Right < Element (Last).Left then      -- non-overlap
            First := Last;
            Last  := Next (Last);
         elsif Element (First).Right >= Element (Last).Left then  -- overlap
            Replace_Element (Set, First, (Left  => Element (First).Left,
                                          Right => Float'Max (Element (First).Right,
                                                              Element (Last) .Right)));
            Delete (Set, Last);
            Last := Next (First);
         end if;
      end loop;
   end Consolidate;

   procedure Put (Set : in Set_Vectors.Vector) is
      package Float_IO is
         new Ada.Text_IO.Float_IO (Float);
   begin
      Float_IO.Default_Exp  := 0;
      Float_IO.Default_Aft  := 1;
      Float_IO.Default_Fore := 3;
      for Elem of Set loop
         Ada.Text_IO.Put ("(");
         Float_IO.Put (Elem.Left);
         Float_IO.Put (Elem.Right);
         Ada.Text_IO.Put (") ");
      end loop;
   end Put;

   procedure Show (Set : in out Set_Vectors.Vector) is
      use Ada.Text_IO;
   begin
      Put (Set);
      Normalize (Set);
      Consolidate (Set);
      Set_Col (70);
      Put (Set);
      New_Line;
   end Show;

   use Set_Vectors;
   Set_0 : Set_Vectors.Vector := Empty_Vector;
   Set_1 : Set_Vectors.Vector := Empty_Vector & (1.1, 2.2);
   Set_2 : Set_Vectors.Vector := (6.1, 7.2) & (7.2, 8.3);
   Set_3 : Set_Vectors.Vector := (4.0, 3.0) & (2.0, 1.0);
   Set_4 : Set_Vectors.Vector := (4.0, 3.0) & (2.0, 1.0) & (-1.0, -2.0) & (3.9, 10.0);
   Set_5 : Set_Vectors.Vector := (1.0, 3.0) & (-6.0, -1.0) & (-4.0, -5.0) & (8.0, 2.0) & (-6.0, -6.0);
begin
   Show (Set_0);
   Show (Set_1);
   Show (Set_2);
   Show (Set_3);
   Show (Set_4);
   Show (Set_5);
end Range_Consolidation;
Output:
(  1.1  2.2)                                                         (  1.1  2.2)
(  6.1  7.2) (  7.2  8.3)                                            (  6.1  8.3)
(  4.0  3.0) (  2.0  1.0)                                            (  1.0  2.0) (  3.0  4.0)
(  4.0  3.0) (  2.0  1.0) ( -1.0 -2.0) (  3.9 10.0)                  ( -2.0 -1.0) (  1.0  2.0) (  3.0 10.0)
(  1.0  3.0) ( -6.0 -1.0) ( -4.0 -5.0) (  8.0  2.0) ( -6.0 -6.0)     ( -6.0 -1.0) (  1.0  8.0)

ALGOL 68

BEGIN # range consolidation                                                  #

    MODE RANGE = STRUCT( REAL lb, ub );

    # returns a with the bounds swapped if necessary, so lb OF a <= ub OF a  #
    OP   NORMALISE = ( RANGE a )RANGE:
         ( IF lb OF a < ub OF a THEN lb OF a ELSE ub OF a FI
         , IF ub OF a > lb OF a THEN ub OF a ELSE lb OF a FI
         ) # NORMALISE # ;
    # returns a with each element normalised                                 #
    OP   NORMALISE = ( []RANGE a )[]RANGE:
         BEGIN
            [ LWB a : UPB a ]RANGE result;
            FOR a pos FROM LWB a TO UPB a DO result[ a pos ] := NORMALISE a[ a pos ] OD;
            result
         END # NORMALISE # ;
    OP   < = ( RANGE a, b )BOOL: lb OF a < lb OF b;
    OP   > = ( RANGE a, b )BOOL: lb OF a > lb OF b;

    # sorts a into order of each element's lb                                #
    OP   SORT = ( []RANGE a )[]RANGE:
         BEGIN
            # in-place quick sort an array of RANGEs from element lb         #
            #                                                  to element ub #
            PROC quicksort = ( REF[]RANGE a, INT lb, ub )REF[]RANGE:
                 IF ub <= lb
                 THEN
                    # empty array or only 1 element                          #
                    a
                 ELSE
                    # more than one element, so must sort                    #
                    INT left   := lb;
                    INT right  := ub;
                    # choosing the middle element of the array as the pivot  #
                    RANGE pivot  := a[ left + ( ( right + 1 ) - left ) OVER 2 ];
                    WHILE
                        WHILE IF left  <= ub THEN a[ left  ] < pivot ELSE FALSE FI DO left  +:= 1 OD;
                        WHILE IF right >= lb THEN a[ right ] > pivot ELSE FALSE FI DO right -:= 1 OD;
                        left <= right
                    DO
                        RANGE t    := a[ left  ];
                        a[ left  ] := a[ right ];
                        a[ right ] := t;
                        left      +:= 1;
                        right     -:= 1
                    OD;
                    quicksort( a, lb,   right );
                    quicksort( a, left, ub    );
                    a
                 FI # quicksort # ;
            quicksort( HEAP[ LWB a : UPB a ]RANGE := a, LWB a, UPB a )
         END # SORT # ;

    # returns the consolidation of the ranges in a in                        #
    OP   CONSOLIDATE = ( []RANGE a in )[]RANGE:
         IF UPB a in <= LWB a in
         THEN a in                                            # 0 or 1 range #
         ELSE                                              # multiple ranges #
            []RANGE a = SORT NORMALISE a in;
            [ 1 : 2 * ( ( UPB a - LWB a ) + 1 ) ]RANGE result;
            INT r max := 1;
            result[ r max ] := a[ LWB a ];
            FOR a pos FROM LWB a + 1 TO UPB a DO
                RANGE m = result[ r max ], n = a[ a pos ];
                IF ub OF m < lb OF n THEN
                    result[ r max +:= 1 ] := n             # distinct ranges #
                ELSE
                    result[ r max ]                     # overlapping ranges #
                        := ( IF lb OF m < lb OF n THEN lb OF m ELSE lb OF n FI
                           , IF ub OF m > ub OF n THEN ub OF m ELSE ub OF n FI
                           )
                FI
            OD;
            result[ : r max ]
         FI # CONSOLIDATE # ;

    OP   FMT = ( REAL v )STRING:   # prints v with at most 3 decimal places #
         BEGIN
            STRING result := fixed( ABS v, 0, 3 );
            IF result[ LWB result ] = "." THEN "0" +=: result FI;
            WHILE result[ UPB result ] = "0" DO result := result[ : UPB result - 1 ] OD;
            IF result[ UPB result ] = "." THEN result := result[ : UPB result - 1 ] FI;
            IF v < 0 THEN "-" ELSE "" FI + result
         END # FMT # ;

    OP   TOSTRING = ( RANGE a )STRING: "[ " + FMT lb OF a + ", " + FMT ub OF a + " ]";
    OP   TOSTRING = ( []RANGE a )STRING:
         BEGIN
            STRING result := "[";
            STRING prefix := " ";
            FOR r pos FROM LWB a TO UPB a DO
                result +:= prefix + TOSTRING a[ r pos ];
                prefix := ", "
            OD;
            result + " ]"
         END # TOSTRING # ;
    PRIO PAD = 8;                 # right pads s with blanks to w characters #
    OP   PAD = ( STRING s, INT w )STRING:
         IF   INT len = ( UPB s - LWB s ) + 1;
              len >= w
         THEN s
         ELSE s + ( ( w - len ) * " " )
         FI # PAD # ;

    # task test cases                                                        #

    PROC test = ( []RANGE a )VOID:
         BEGIN print( ( ( TOSTRING a PAD 60 ), " -> ", TOSTRING CONSOLIDATE a, newline ) ) END;
    test( []RANGE( RANGE( 1.1, 2.2 )                                         ) );
    test( ( ( 6.1, 7.2 ), (  7.2, 8.3 )                                      ) );
    test( ( ( 4,   3   ), (  2,   1   )                                      ) );
    test( ( ( 4,   3   ), (  2,   1   ), ( -1, -2 ), ( 3.9, 10 )             ) );
    test( ( ( 1,   3   ), ( -6,  -1   ), ( -4, -5 ), ( 8,    2 ), ( -6, -6 ) ) )

END
Output:
[ [ 1.1, 2.2 ] ]                                             -> [ [ 1.1, 2.2 ] ]
[ [ 6.1, 7.2 ], [ 7.2, 8.3 ] ]                               -> [ [ 6.1, 8.3 ] ]
[ [ 4, 3 ], [ 2, 1 ] ]                                       -> [ [ 1, 2 ], [ 3, 4 ] ]
[ [ 4, 3 ], [ 2, 1 ], [ -1, -2 ], [ 3.9, 10 ] ]              -> [ [ -2, -1 ], [ 1, 2 ], [ 3, 10 ] ]
[ [ 1, 3 ], [ -6, -1 ], [ -4, -5 ], [ 8, 2 ], [ -6, -6 ] ]   -> [ [ -6, -1 ], [ 1, 8 ] ]

AutoHotkey

RangeConsolidation(arr){
	arr1 := [],	arr2 := [], result := []
	
	for i, obj in arr
		arr1[i,1] := min(arr[i]*), arr1[i,2] := max(arr[i]*)	; sort each range individually
	
	for i, obj in arr1
		if (obj.2 > arr2[obj.1])
			arr2[obj.1] := obj.2				; creates helper array sorted by range
	
	i := 1
	for start, stop in arr2
		if (i = 1) || (start > result[i-1, 2])			; first or non overlapping range
			result[i, 1] := start, result[i, 2] := stop, i++
		else							; overlapping range
			result[i-1, 2] := stop > result[i-1, 2] ? stop : result[i-1, 2]
	return result
}
Examples:
test1 := [[1.1, 2.2]]
test2 := [[6.1, 7.2], [7.2, 8.3]]
test3 := [[4, 3], [2, 1]]
test4 := [[4, 3], [2, 1], [-1, -2], [3.9, 10]]
test5 := [[1, 3], [-6, -1], [-4, -5], [8, 2], [-6, -6]]

result := ""
loop, 5
{
	output := ""
	for i, obj in RangeConsolidation(test%A_Index%)
		output .= "[" format("{:g}", obj.1) ", " format("{:g}", obj.2) "], "
	result .= Trim(output, ", ") "`n"
}
MsgBox % result
return
Output:
[1.1, 2.2]
[6.1, 8.3]
[1, 2], [3, 4]
[-2, -1], [1, 2], [3, 10]
[-6, -1], [1, 8]

C

#include <stdio.h>
#include <stdlib.h>

typedef struct range_tag {
    double low;
    double high;
} range_t;

void normalize_range(range_t* range) {
    if (range->high < range->low) {
        double tmp = range->low;
        range->low = range->high;
        range->high = tmp;
    }
}

int range_compare(const void* p1, const void* p2) {
    const range_t* r1 = p1;
    const range_t* r2 = p2;
    if (r1->low < r2->low)
        return -1;
    if (r1->low > r2->low)
        return 1;
    if (r1->high < r2->high)
        return -1;
    if (r1->high > r2->high)
        return 1;
    return 0;
}

void normalize_ranges(range_t* ranges, size_t count) {
    for (size_t i = 0; i < count; ++i)
        normalize_range(&ranges[i]);
    qsort(ranges, count, sizeof(range_t), range_compare);
}

// Consolidates an array of ranges in-place. Returns the
// number of ranges after consolidation.
size_t consolidate_ranges(range_t* ranges, size_t count) {
    normalize_ranges(ranges, count);
    size_t out_index = 0;
    for (size_t i = 0; i < count; ) {
        size_t j = i;
        while (++j < count && ranges[j].low <= ranges[i].high) {
            if (ranges[i].high < ranges[j].high)
                ranges[i].high = ranges[j].high;
        }
        ranges[out_index++] = ranges[i];
        i = j;
    }
    return out_index;
}

void print_range(const range_t* range) {
    printf("[%g, %g]", range->low, range->high);
}

void print_ranges(const range_t* ranges, size_t count) {
    if (count == 0)
        return;
    print_range(&ranges[0]);
    for (size_t i = 1; i < count; ++i) {
        printf(", ");
        print_range(&ranges[i]);
    }
}

void test_consolidate_ranges(range_t* ranges, size_t count) {
    print_ranges(ranges, count);
    printf(" -> ");
    count = consolidate_ranges(ranges, count);
    print_ranges(ranges, count);
    printf("\n");
}

#define LENGTHOF(a) sizeof(a)/sizeof(a[0])

int main() {
    range_t test1[] = { {1.1, 2.2} };
    range_t test2[] = { {6.1, 7.2}, {7.2, 8.3} };
    range_t test3[] = { {4, 3}, {2, 1} };
    range_t test4[] = { {4, 3}, {2, 1}, {-1, -2}, {3.9, 10} };
    range_t test5[] = { {1, 3}, {-6, -1}, {-4, -5}, {8, 2}, {-6, -6} };
    test_consolidate_ranges(test1, LENGTHOF(test1));
    test_consolidate_ranges(test2, LENGTHOF(test2));
    test_consolidate_ranges(test3, LENGTHOF(test3));
    test_consolidate_ranges(test4, LENGTHOF(test4));
    test_consolidate_ranges(test5, LENGTHOF(test5));
    return 0;
}
Output:
[1.1, 2.2] -> [1.1, 2.2]
[6.1, 7.2], [7.2, 8.3] -> [6.1, 8.3]
[4, 3], [2, 1] -> [1, 2], [3, 4]
[4, 3], [2, 1], [-1, -2], [3.9, 10] -> [-2, -1], [1, 2], [3, 10]
[1, 3], [-6, -1], [-4, -5], [8, 2], [-6, -6] -> [-6, -1], [1, 8]

C#

Works with: C sharp version 7
using static System.Math;
using System.Linq;
using System;

public static class RangeConsolidation
{
    public static void Main() {
        foreach (var list in new [] {
            new[] { (1.1, 2.2) }.ToList(),
            new[] { (6.1, 7.2), (7.2, 8.3) }.ToList(),
            new[] { (4d, 3d), (2, 1) }.ToList(),
            new[] { (4d, 3d), (2, 1), (-1, 2), (3.9, 10) }.ToList(),
            new[] { (1d, 3d), (-6, -1), (-4, -5), (8, 2), (-6, -6) }.ToList()
        })
        {
            for (int z = list.Count-1; z >= 1; z--) {
                for (int y = z - 1; y >= 0; y--) {
                    if (Overlap(list[z], list[y])) {
                        list[y] = Consolidate(list[z], list[y]);
                        list.RemoveAt(z);
                        break;
                    }
                }
            }
            Console.WriteLine(string.Join(", ", list.Select(Normalize).OrderBy(range => range.s)));
        }
    }

    private static bool Overlap((double s, double e) left, (double s, double e) right) =>
        Max(left.s, left.e) > Max(right.s, right.e)
        ? Max(right.s, right.e) >= Min(left.s, left.e)
        : Max(left.s, left.e) >= Min(right.s, right.e);

    private static (double s, double e) Consolidate((double s, double e) left, (double s, double e) right) =>
        (Min(Min(left.s, left.e), Min(right.s, right.e)), Max(Max(left.s, left.e), Max(right.s, right.e)));
    
    private static (double s, double e) Normalize((double s, double e) range) =>
        (Min(range.s, range.e), Max(range.s, range.e));
}
Output:
(1.1, 2.2)
(6.1, 8.3)
(1, 2), (3, 4)
(-1, 2), (3, 10)
(-6, -1), (1, 8)

C++

#include <algorithm>
#include <iostream>
#include <utility>
#include <vector>

// A range is represented as std::pair<from, to>

template <typename iterator>
void normalize_ranges(iterator begin, iterator end) {
    for (iterator i = begin; i != end; ++i) {
        if (i->second < i->first)
            std::swap(i->first, i->second);
    }
    std::sort(begin, end);
}

// Merges a range of ranges in-place. Returns an iterator to the
// end of the resulting range, similarly to std::remove.
template <typename iterator>
iterator merge_ranges(iterator begin, iterator end) {
    iterator out = begin;
    for (iterator i = begin; i != end; ) {
        iterator j = i;
        while (++j != end && j->first <= i->second)
            i->second = std::max(i->second, j->second);
        *out++ = *i;
        i = j;
    }
    return out;
}

template <typename iterator>
iterator consolidate_ranges(iterator begin, iterator end) {
    normalize_ranges(begin, end);
    return merge_ranges(begin, end);
}

template <typename pair>
void print_range(std::ostream& out, const pair& range) {
    out << '[' << range.first << ", " << range.second << ']';
}

template <typename iterator>
void print_ranges(std::ostream& out, iterator begin, iterator end) {
    if (begin != end) {
        print_range(out, *begin++);
        for (; begin != end; ++begin) {
            out << ", ";
            print_range(out, *begin);
        }
    }
}

int main() {
    std::vector<std::pair<double, double>> test_cases[] = {
        { {1.1, 2.2} },
        { {6.1, 7.2}, {7.2, 8.3} },
        { {4, 3}, {2, 1} },
        { {4, 3}, {2, 1}, {-1, -2}, {3.9, 10} },
        { {1, 3}, {-6, -1}, {-4, -5}, {8, 2}, {-6, -6} }
    };
    for (auto&& ranges : test_cases) {
        print_ranges(std::cout, std::begin(ranges), std::end(ranges));
        std::cout << " -> ";
        auto i = consolidate_ranges(std::begin(ranges), std::end(ranges));
        print_ranges(std::cout, std::begin(ranges), i);
        std::cout << '\n';
    }
    return 0;
}
Output:
[1.1, 2.2] -> [1.1, 2.2]
[6.1, 7.2], [7.2, 8.3] -> [6.1, 8.3]
[4, 3], [2, 1] -> [1, 2], [3, 4]
[4, 3], [2, 1], [-1, -2], [3.9, 10] -> [-2, -1], [1, 2], [3, 10]
[1, 3], [-6, -1], [-4, -5], [8, 2], [-6, -6] -> [-6, -1], [1, 8]


Clojure

(defn normalize [r]
  (let [[n1 n2] r]
    [(min n1 n2) (max n1 n2)]))

(defn touch? [r1 r2]
  (let [[lo1 hi1] (normalize r1)
        [lo2 hi2] (normalize r2)]
    (or (<= lo2 lo1 hi2)
        (<= lo2 hi1 hi2))))

(defn consolidate-touching-ranges [rs]
  (let [lows  (map #(apply min %) rs)
        highs (map #(apply max %) rs)]
    [ (apply min lows) (apply max highs) ]))

(defn consolidate-ranges [rs]
  (loop [res []
         rs  rs]
    (if (empty? rs)
      res
      (let [r0 (first rs)
            touching (filter #(touch? r0 %) rs)
            remove-used (fn [rs used]
                          (remove #(contains? (set used) %) rs))]
        (recur (conj res (consolidate-touching-ranges touching))
               (remove-used (rest rs) touching))))))
Output:
  (def test-data [ [[1.1 2.2]]
                   [[6.1 7.2] [7.2 8.3]]
                   [[4 3] [2 1]]
                   [[4 3] [2 1] [-1 -2] [3.9 10]]
                   [[1 3] [-6 -1] [-4 -5] [8 2] [-6 -6]] ])

  (map consolidate-ranges test-data)
  ;; ==>   ([[1.1 2.2]]
            [[6.1 8.3]]
            [[3 4] [1 2]]
            [[3 10] [1 2] [-2 -1]]
            [[1 8] [-6 -1] [-5 -4]]))

Dyalect

Translation of: C#
type Pt(s, e) with Lookup
 
func Pt.Min() => min(this.s, this.e)
func Pt.Max() => max(this.s, this.e)
func Pt.ToString() => "(\(this.s), \(this.e))"
 
let rng = [
    [ Pt(1.1, 2.2) ],
    [ Pt(6.1, 7.2), Pt(7.2, 8.3) ],
    [ Pt(4.0, 3.0), Pt(2, 1) ],
    [ Pt(4.0, 3.0), Pt(2, 1),  Pt(-1, 2),  Pt(3.9, 10) ],
    [ Pt(1.0, 3.0), Pt(-6, -1), Pt(-4, -5), Pt(8,   2), Pt(-6, -6) ]
]
 
func overlap(left, right) =>
    left.Max() > right.Max() ? right.Max() >= left.Min()
    : left.Max() >= right.Min()
 
func consolidate(left, right) => Pt(min(left.Min(), right.Min()), max(left.Max(), right.Max()))
 
func normalize(range) => Pt(range.Min(), range.Max())
 
for list in rng {
    var z = list.Length() - 1
 
    while z >= 1 {
        for y in (z - 1)^-1..0 when overlap(list[z], list[y]) {
            list[y] = consolidate(list[z], list[y])
            break list.RemoveAt(z)
        }
        z -= 1
    }
 
    for i in list.Indices() {
        list[i] = normalize(list[i])
    }
 
    list.Sort((x,y) => x.s - y.s)
    print(list)
}
Output:
[(1.1, 2.2)]
[(6.1, 8.3)]
[(1, 2), (3, 4)]
[(-1, 2), (3, 10)]
[(-6, -1), (1, 8)]

Factor

Works with: Factor version 0.99 2021-06-02
USING: arrays combinators formatting kernel math.combinatorics
math.order math.statistics sequences sets sorting ;

: overlaps? ( pair pair -- ? )
    2dup swap [ [ first2 between? ] curry any? ] 2bi@ or ;

: merge ( seq -- newseq ) concat minmax 2array 1array ;

: merge1 ( seq -- newseq )
    dup 2 [ first2 overlaps? ] find-combination
    [ [ without ] keep merge append ] when* ;

: normalize ( seq -- newseq ) [ natural-sort ] map ;

: consolidate ( seq -- newseq )
    normalize [ merge1 ] to-fixed-point natural-sort ;

{
    { { 1.1 2.2 } }
    { { 6.1 7.2 } { 7.2 8.3 } }
    { { 4 3 } { 2 1 } }
    { { 4 3 } { 2 1 } { -1 -2 } { 3.9 10 } }
    { { 1 3 } { -6 -1 } { -4 -5 } { 8 2 } { -6 -6 } }
} [ dup consolidate "%49u => %u\n" printf ] each
Output:
                                  { { 1.1 2.2 } } => { { 1.1 2.2 } }
        { { 6.1 7.2 } { 7.2 8.300000000000001 } } => { { 6.1 8.300000000000001 } }
                              { { 4 3 } { 2 1 } } => { { 1 2 } { 3 4 } }
         { { 4 3 } { 2 1 } { -1 -2 } { 3.9 10 } } => { { -2 -1 } { 1 2 } { 3 10 } }
{ { 1 3 } { -6 -1 } { -4 -5 } { 8 2 } { -6 -6 } } => { { -6 -1 } { 1 8 } }

FreeBASIC

Translation of: Yabasic
Dim Shared As Integer i
Dim Shared As Single items, temp = 10^30

Sub ordenar(tabla() As Single)
    Dim As Integer t1, t2
    Dim As Boolean s
    
    Do
        s = True
        For i = 1 To Ubound(tabla)-1
            If tabla(i, 1) > tabla(i+1, 1) Then
                t1 = tabla(i, 1) : t2 = tabla(i, 2)
                tabla(i, 1) = tabla(i + 1, 1) : tabla(i, 2) = tabla(i + 1, 2)
                tabla(i + 1, 1) = t1 : tabla(i + 1, 2) = t2
                s = False
            End If
        Next i
    Loop Until(s)
End Sub

Sub normalizar(tabla() As Single)
    Dim As Integer t
    
    For i = 1 To Ubound(tabla)
        If tabla(i, 1) > tabla(i, 2) Then
            t = tabla(i, 1)
            tabla(i, 1) = tabla(i, 2)
            tabla(i, 2) = t
        End If
    Next i
    
    ordenar(tabla())
End Sub

Sub consolidar(tabla() As Single)
    
    normalizar(tabla())
    
    For i = 1 To Ubound(tabla)-1
        If tabla(i + 1, 1) <= tabla(i, 2) Then
            tabla(i + 1, 1) = tabla(i, 1)
            If tabla(i + 1, 2) <= tabla(i, 2) Then
                tabla(i + 1, 2) = tabla(i, 2)
            End If
            tabla(i, 1) = temp : tabla(i, 2) = temp
        End If
    Next i
End Sub

Data 1, 1.1, 2.2
Data 2, 6.1, 7.2, 7.2, 8.3
Data 2, 4, 3, 2, 1
Data 4, 4, 3, 2, 1, -1, -2, 3.9, 10
Data 5, 1,3, -6,-1, -4,-5, 8,2, -6,-6

For j As Byte = 1 To 5
    Read items
    
    Dim As Single tabla(items,  2)
    For i = 1 To items
        Read tabla(i, 1), tabla(i, 2)
    Next i
    
    consolidar(tabla())
    
    For i = 1 To items
        If tabla(i, 1) <> temp Then Print "[";tabla(i, 1); ", "; tabla(i, 2); "] ";
    Next i
    Print
Next j
Sleep


Go

package main

import (
    "fmt"
    "math"
    "sort"
)

type Range struct{ Lower, Upper float64 }

func (r Range) Norm() Range {
    if r.Lower > r.Upper {
        return Range{r.Upper, r.Lower}
    }
    return r
}

func (r Range) String() string {
    return fmt.Sprintf("[%g, %g]", r.Lower, r.Upper)
}

func (r1 Range) Union(r2 Range) []Range {
    if r1.Upper < r2.Lower {
        return []Range{r1, r2}
    }
    r := Range{r1.Lower, math.Max(r1.Upper, r2.Upper)}
    return []Range{r}
}

func consolidate(rs []Range) []Range {
    for i := range rs {
        rs[i] = rs[i].Norm()
    }
    le := len(rs)
    if le < 2 {
        return rs
    }
    sort.Slice(rs, func(i, j int) bool {
        return rs[i].Lower < rs[j].Lower
    })
    if le == 2 {
        return rs[0].Union(rs[1])
    }
    for i := 0; i < le-1; i++ {
        for j := i + 1; j < le; j++ {
            ru := rs[i].Union(rs[j])
            if len(ru) == 1 {
                rs[i] = ru[0]
                copy(rs[j:], rs[j+1:])
                rs = rs[:le-1]
                le--
                i--
                break
            }
        }
    }
    return rs
}

func main() {
    rss := [][]Range{
        {{1.1, 2.2}},
        {{6.1, 7.2}, {7.2, 8.3}},
        {{4, 3}, {2, 1}},
        {{4, 3}, {2, 1}, {-1, -2}, {3.9, 10}},
        {{1, 3}, {-6, -1}, {-4, -5}, {8, 2}, {-6, -6}},
    }
    for _, rs := range rss {
        s := fmt.Sprintf("%v", rs)
        fmt.Printf("%40s => ", s[1:len(s)-1])
        rs2 := consolidate(rs)
        s = fmt.Sprintf("%v", rs2)
        fmt.Println(s[1 : len(s)-1])
    }
}
Output:
                              [1.1, 2.2] => [1.1, 2.2]
                   [6.1, 7.2] [7.2, 8.3] => [6.1, 8.3]
                           [4, 3] [2, 1] => [1, 2] [3, 4]
        [4, 3] [2, 1] [-1, -2] [3.9, 10] => [-2, -1] [1, 2] [3, 10]
[1, 3] [-6, -1] [-4, -5] [8, 2] [-6, -6] => [-6, -1] [1, 8]

Haskell

import Data.List (intercalate, maximumBy, sort)
import Data.Ord (comparing)

------------------- RANGE CONSOLIDATION ------------------

consolidated :: [(Float, Float)] -> [(Float, Float)]
consolidated = foldr go [] . sort . fmap ab
  where
    go xy [] = [xy]
    go xy@(x, y) abetc@((a, b) : etc)
      | y >= b = xy : etc
      | y >= a = (x, b) : etc
      | otherwise = xy : abetc
    ab (a, b)
      | a <= b = (a, b)
      | otherwise = (b, a)


--------------------------- TEST -------------------------
tests :: [[(Float, Float)]]
tests =
  [ [],
    [(1.1, 2.2)],
    [(6.1, 7.2), (7.2, 8.3)],
    [(4, 3), (2, 1)],
    [(4, 3), (2, 1), (-1, -2), (3.9, 10)],
    [(1, 3), (-6, -1), (-4, -5), (8, 2), (-6, -6)]
  ]

main :: IO ()
main =
  putStrLn $
    tabulated
      "Range consolidations:"
      showPairs
      showPairs
      consolidated
      tests

-------------------- DISPLAY FORMATTING ------------------

tabulated ::
  String ->
  (a -> String) ->
  (b -> String) ->
  (a -> b) ->
  [a] ->
  String
tabulated s xShow fxShow f xs =
  let w =
        length $
          maximumBy
            (comparing length)
            (xShow <$> xs)
      rjust n c s = drop (length s) (replicate n c <> s)
   in unlines $
        s :
        fmap
          ( ((<>) . rjust w ' ' . xShow)
              <*> ((" -> " <>) . fxShow . f)
          )
          xs

showPairs :: [(Float, Float)] -> String
showPairs xs
  | null xs = "[]"
  | otherwise =
    '[' :
    intercalate
      ", "
      (showPair <$> xs)
      <> "]"

showPair :: (Float, Float) -> String
showPair (a, b) =
  '(' :
  showNum a
    <> ", "
    <> showNum b
    <> ")"

showNum :: Float -> String
showNum n
  | 0 == (n - fromIntegral (round n)) = show (round n)
  | otherwise = show n
Output:
Range consolidations:
                                            [] -> []
                                  [(1.1, 2.2)] -> [(1.1, 2.2)]
                      [(6.1, 7.2), (7.2, 8.3)] -> [(6.1, 8.3)]
                              [(4, 3), (2, 1)] -> [(1, 2), (3, 4)]
         [(4, 3), (2, 1), (-1, -2), (3.9, 10)] -> [(-2, -1), (1, 2), (3, 10)]
[(1, 3), (-6, -1), (-4, -5), (8, 2), (-6, -6)] -> [(-6, -1), (1, 8)]

J

Solution:

ensure2D=: ,:^:(1 = #@$)                 NB. if list make 1 row table
normalise=: ([: /:~ /:~"1)@ensure2D      NB. normalises list of ranges
merge=: ,:`(<.&{. , >.&{:)@.(>:/&{: |.)  NB. merge ranges x and y
consolidate=: (}.@] ,~ (merge {.)) ensure2D

Required Examples:

   tests=:  <@".;._2 noun define
1.1 2.2
6.1 7.2 ,: 7.2 8.3
4 3 ,: 2 1
4 3 , 2 1 , _1 _2 ,: 3.9 10
1 3 , _6 _1 , _4 _5 , 8 2 ,: _6 _6
)

   consolidate/@normalise&.> tests
+-------+-------+---+-----+-----+
|1.1 2.2|6.1 8.3|1 2|_2 _1|_6 _1|
|       |       |3 4| 1  2| 1  8|
|       |       |   | 3 10|     |
+-------+-------+---+-----+-----+

Java

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;

public class RangeConsolidation {

    public static void main(String[] args) {
        displayRanges( Arrays.asList(new Range(1.1, 2.2)));
        displayRanges( Arrays.asList(new Range(6.1, 7.2), new Range(7.2, 8.3)));
        displayRanges( Arrays.asList(new Range(4, 3), new Range(2, 1)));
        displayRanges( Arrays.asList(new Range(4, 3), new Range(2, 1), new Range(-1, -2), new Range(3.9, 10)));
        displayRanges( Arrays.asList(new Range(1, 3), new Range(-6, -1), new Range(-4, -5), new Range(8, 2), new Range(-6, -6)));
        displayRanges( Arrays.asList(new Range(1, 1), new Range(1, 1)));
        displayRanges( Arrays.asList(new Range(1, 1), new Range(1, 2)));
        displayRanges( Arrays.asList(new Range(1, 2), new Range(3, 4), new Range(1.5, 3.5), new Range(1.2, 2.5)));
    }
    
    private static final void displayRanges(List<Range> ranges) {
        System.out.printf("ranges = %-70s, colsolidated = %s%n", ranges, Range.consolidate(ranges));
    }
    
    private static final class RangeSorter implements Comparator<Range> {
        @Override
        public int compare(Range o1, Range o2) {
            return (int) (o1.left - o2.left);
        }        
    }

    private static class Range {
        double left;
        double right;
        
        public Range(double left, double right) {
            if ( left <= right ) {
                this.left = left;
                this.right = right;
            }
            else {
                this.left = right;
                this.right = left;
            }
        }
        
        public Range consolidate(Range range) {
            //  no overlap
            if ( this.right < range.left ) {
                return null;
            }
            //  no overlap
            if ( range.right < this.left ) {
                return null;
            }
            //  contained
            if ( this.left <= range.left && this.right >= range.right ) {
                return this;
            }
            //  contained
            if ( range.left <= this.left && range.right >= this.right ) {
                return range;
            }
            //  overlap
            if ( this.left <= range.left && this.right <= range.right ) {
                return new Range(this.left, range.right);
            }
            //  overlap
            if ( this.left >= range.left && this.right >= range.right ) {
                return new Range(range.left, this.right);
            }
            throw new RuntimeException("ERROR:  Logic invalid.");
        }
        
        @Override
        public String toString() {
            return "[" + left + ", " + right + "]";
        }
        
        private static List<Range> consolidate(List<Range> ranges) {
            List<Range> consolidated = new ArrayList<>();
            
            Collections.sort(ranges, new RangeSorter());
            
            for ( Range inRange : ranges ) {
                Range r = null;
                Range conRange = null;
                for ( Range conRangeLoop : consolidated ) {
                    r = inRange.consolidate(conRangeLoop);
                    if (r != null ) {
                        conRange = conRangeLoop;
                        break;
                    }
                }
                if ( r == null ) {
                    consolidated.add(inRange);
                }
                else {
                    consolidated.remove(conRange);
                    consolidated.add(r);                    
                }
            }
            
            Collections.sort(consolidated, new RangeSorter());
            
            return consolidated;
        }
    }

}
Output:

Required and other examples.

ranges = [[1.1, 2.2]]                                                          , consolidated = [[1.1, 2.2]]
ranges = [[6.1, 7.2], [7.2, 8.3]]                                              , consolidated = [[6.1, 8.3]]
ranges = [[1.0, 2.0], [3.0, 4.0]]                                              , consolidated = [[1.0, 2.0], [3.0, 4.0]]
ranges = [[-2.0, -1.0], [1.0, 2.0], [3.0, 4.0], [3.9, 10.0]]                   , consolidated = [[-2.0, -1.0], [1.0, 2.0], [3.0, 10.0]]
ranges = [[-6.0, -1.0], [-6.0, -6.0], [-5.0, -4.0], [1.0, 3.0], [2.0, 8.0]]    , consolidated = [[-6.0, -1.0], [1.0, 8.0]]
ranges = [[1.0, 1.0], [1.0, 1.0]]                                              , consolidated = [[1.0, 1.0]]
ranges = [[1.0, 1.0], [1.0, 2.0]]                                              , consolidated = [[1.0, 2.0]]
ranges = [[1.0, 2.0], [1.5, 3.5], [1.2, 2.5], [3.0, 4.0]]                      , consolidated = [[1.0, 4.0]]

JavaScript

Translation of: Haskell
Translation of: Python
(() => {
    'use strict';

    const main = () => {

        // consolidated :: [(Float, Float)] -> [(Float, Float)]
        const consolidated = xs =>
            foldl((abetc, xy) =>
                0 < abetc.length ? (() => {
                    const
                        etc = abetc.slice(1),
                        [a, b] = abetc[0],
                        [x, y] = xy;

                    return y >= b ? (
                        cons(xy, etc)
                    ) : y >= a ? (
                        cons([x, b], etc)
                    ) : cons(xy, abetc);
                })() : [xy],
                [],
                sortBy(flip(comparing(fst)),
                    map(([a, b]) => a < b ? (
                            [a, b]
                        ) : [b, a],
                        xs
                    )
                )
            );

        // TEST -------------------------------------------
        console.log(
            tabulated(
                'Range consolidations:',
                JSON.stringify,
                JSON.stringify,
                consolidated,
                [
                    [
                        [1.1, 2.2]
                    ],
                    [
                        [6.1, 7.2],
                        [7.2, 8.3]
                    ],
                    [
                        [4, 3],
                        [2, 1]
                    ],
                    [
                        [4, 3],
                        [2, 1],
                        [-1, -2],
                        [3.9, 10]
                    ],
                    [
                        [1, 3],
                        [-6, -1],
                        [-4, -5],
                        [8, 2],
                        [-6, -6]
                    ]
                ]
            )
        );
    };

    // GENERIC FUNCTIONS ----------------------------

    // comparing :: (a -> b) -> (a -> a -> Ordering)
    const comparing = f =>
        (x, y) => {
            const
                a = f(x),
                b = f(y);
            return a < b ? -1 : (a > b ? 1 : 0);
        };

    // compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
    const compose = (f, g) => x => f(g(x));

    // cons :: a -> [a] -> [a]
    const cons = (x, xs) => [x].concat(xs);

    // flip :: (a -> b -> c) -> b -> a -> c
    const flip = f =>
        1 < f.length ? (
            (a, b) => f(b, a)
        ) : (x => y => f(y)(x));

    // foldl :: (a -> b -> a) -> a -> [b] -> a
    const foldl = (f, a, xs) => xs.reduce(f, a);

    // fst :: (a, b) -> a
    const fst = tpl => tpl[0];

    // justifyRight :: Int -> Char -> String -> String
    const justifyRight = (n, cFiller, s) =>
        n > s.length ? (
            s.padStart(n, cFiller)
        ) : s;

    // Returns Infinity over objects without finite length.
    // This enables zip and zipWith to choose the shorter
    // argument when one is non-finite, like cycle, repeat etc

    // length :: [a] -> Int
    const length = xs =>
        (Array.isArray(xs) || 'string' === typeof xs) ? (
            xs.length
        ) : Infinity;

    // map :: (a -> b) -> [a] -> [b]
    const map = (f, xs) =>
        (Array.isArray(xs) ? (
            xs
        ) : xs.split('')).map(f);

    // maximumBy :: (a -> a -> Ordering) -> [a] -> a
    const maximumBy = (f, xs) =>
        0 < xs.length ? (
            xs.slice(1)
            .reduce((a, x) => 0 < f(x, a) ? x : a, xs[0])
        ) : undefined;

    // sortBy :: (a -> a -> Ordering) -> [a] -> [a]
    const sortBy = (f, xs) =>
        xs.slice()
        .sort(f);

    // tabulated :: String -> (a -> String) ->
    //                        (b -> String) ->
    //           (a -> b) -> [a] -> String
    const tabulated = (s, xShow, fxShow, f, xs) => {
        // Heading -> x display function ->
        //           fx display function ->
        //    f -> values -> tabular string
        const
            ys = map(xShow, xs),
            w = maximumBy(comparing(x => x.length), ys).length,
            rows = zipWith(
                (a, b) => justifyRight(w, ' ', a) + ' -> ' + b,
                ys,
                map(compose(fxShow, f), xs)
            );
        return s + '\n' + unlines(rows);
    };

    // take :: Int -> [a] -> [a]
    // take :: Int -> String -> String
    const take = (n, xs) =>
        'GeneratorFunction' !== xs.constructor.constructor.name ? (
            xs.slice(0, n)
        ) : [].concat.apply([], Array.from({
            length: n
        }, () => {
            const x = xs.next();
            return x.done ? [] : [x.value];
        }));

    // unlines :: [String] -> String
    const unlines = xs => xs.join('\n');

    // zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
    const zipWith = (f, xs, ys) => {
        const
            lng = Math.min(length(xs), length(ys)),
            as = take(lng, xs),
            bs = take(lng, ys);
        return Array.from({
            length: lng
        }, (_, i) => f(as[i], bs[i], i));
    };

    // MAIN ---
    return main();
})();
Output:
Range consolidations:
                          [[1.1,2.2]] -> [[1.1,2.2]]
                [[6.1,7.2],[7.2,8.3]] -> [[6.1,8.3]]
                        [[4,3],[2,1]] -> [[1,2],[3,4]]
       [[4,3],[2,1],[-1,-2],[3.9,10]] -> [[-2,-1],[1,2],[3,10]]
[[1,3],[-6,-1],[-4,-5],[8,2],[-6,-6]] -> [[-6,-1],[1,8]]

jq

Translation of: Julia
Works with: jq

Works with gojq, the Go implementation of jq

def normalize: map(sort) | sort;
 
def consolidate:
  normalize
  | length as $length
  | reduce range(0; $length) as $i (.;
      .[$i] as $r1
      | if $r1 != []
        then reduce range($i+1; $length) as $j (.;
               .[$j] as $r2
               | if $r2 != [] and ($r1[-1] >= $r2[0])     # intersect?
                 then .[$i] = [$r1[0], ([$r1[-1], $r2[-1]]|max)]
                 | .[$j] = []
                 else .
                 end )
        else .
        end )
  | map(select(. != [])) ;
 
def testranges:
  [[1.1, 2.2]],
  [[6.1, 7.2], [7.2, 8.3]],
  [[4, 3], [2, 1]],
  [[4, 3], [2, 1], [-1, -2], [3.9, 10]],
  [[1, 3], [-6, -1], [-4, -5], [8, 2], [-6, -6]]
  | "\(.) => \(consolidate)"
;
 
testranges
Output:
[[1.1,2.2]] => [[1.1,2.2]]
[[6.1,7.2],[7.2,8.3]] => [[6.1,8.3]]
[[4,3],[2,1]] => [[1,2],[3,4]]
[[4,3],[2,1],[-1,-2],[3.9,10]] => [[-2,-1],[1,2],[3,10]]
[[1,3],[-6,-1],[-4,-5],[8,2],[-6,-6]] => [[-6,-1],[-5,-4],[1,8]]


Julia

In Julia, a Range is a type of iterator, generally one over a specified interval. The task as specified is orthogonal to the iteration purpose of a Julia Range, since the task is about merging sets of numbers, not iterations. Therefore, a translation of the Python code is done, rather than using a native Julia Range.

Translation of: Python
normalize(s) = sort([sort(bounds) for bounds in s])

function consolidate(ranges)
    norm = normalize(ranges)
    for (i, r1) in enumerate(norm)
        if !isempty(r1)
            for r2 in norm[i+1:end]
                if !isempty(r2) && r1[end] >= r2[1]     # intersect?
                    r1 .= [r1[1], max(r1[end], r2[end])]
                    empty!(r2)
                end
            end
        end
    end
    [r for r in norm if !isempty(r)]
end

function testranges()
    for s in [[[1.1, 2.2]], [[6.1, 7.2], [7.2, 8.3]], [[4, 3], [2, 1]],
              [[4, 3], [2, 1], [-1, -2], [3.9, 10]],
              [[1, 3], [-6, -1], [-4, -5], [8, 2], [-6, -6]]]
        println("$s => $(consolidate(s))")
    end
end

testranges()
Output:
Array{Float64,1}[[1.1, 2.2]] => Array{Float64,1}[[1.1, 2.2]]
Array{Float64,1}[[6.1, 7.2], [7.2, 8.3]] => Array{Float64,1}[[6.1, 8.3]]
Array{Float64,1}[[4.0, 3.0], [2.0, 1.0]] => Array{Float64,1}[[1.0, 2.0], [3.0, 4.0]]
Array{Float64,1}[[4.0, 3.0], [2.0, 1.0], [-1.0, -2.0], [3.9, 10.0]] => Array{Float64,1}[[-2.0, -1.0], [1.0, 2.0], [3.0, 10.0]]
Array{Float64,1}[[1.0, 3.0], [-6.0, -1.0], [-4.0, -5.0], [8.0, 2.0], [-6.0, -6.0]] => Array{Float64,1}[[-6.0, -1.0], [1.0, 8.0]]

Kotlin

fun <T> consolidate(ranges: Iterable<ClosedRange<T>>): List<ClosedRange<T>> where T : Comparable<T>
{
    return ranges
        .sortedWith(compareBy({ it.start }, { it.endInclusive }))
        .asReversed()
        .fold(mutableListOf<ClosedRange<T>>()) {
            consolidatedRanges, range ->
            if (consolidatedRanges.isEmpty())
            {
                consolidatedRanges.add(range)
            }
            // Keep in mind the reverse-sorting applied above:
            // If the end of the current-range is higher, than it must start at a lower value,
            else if (range.endInclusive >= consolidatedRanges[0].endInclusive)
            {
                consolidatedRanges[0] = range
            }
            else if (range.endInclusive >= consolidatedRanges[0].start)
            {
                consolidatedRanges[0] = range.start .. consolidatedRanges[0].endInclusive
            }
            else
            {
                consolidatedRanges.add(0, range)
            }

            return@fold consolidatedRanges
        }
        .toList()
}

// What a bummer! Kotlin's range syntax (a..b) doesn't meet the task requirements when b < b,
// and on the other hand, the syntax for constructing lists, arrays and pairs isn't close enough
// to the range notation. Instead then, here's a *very* naive parser. Don't take it seriously.
val rangeRegex = Regex("""\[(.+),(.+)\]""")
fun parseDoubleRange(rangeStr: String): ClosedFloatingPointRange<Double> {
    val parts = rangeRegex
        .matchEntire(rangeStr)
        ?.groupValues
        ?.drop(1)
        ?.map { it.toDouble() }
        ?.sorted()
    if (parts == null) throw IllegalArgumentException("Unable to parse range $rangeStr")
    return parts[0] .. parts[1]
}

fun serializeRange(range: ClosedRange<*>) = "[${range.start}, ${range.endInclusive}]"

// See above. In practice you'd probably use consolidate directly
fun consolidateDoubleRanges(rangeStrings: Iterable<String>): List<String>
{
    return consolidate(rangeStrings.asSequence().map(::parseDoubleRange).toList()).map(::serializeRange)
}


fun main() {
    val inputRanges = listOf(
        listOf("[1.1, 2.2]"),
        listOf("[6.1, 7.2]", "[7.2, 8.3]"),
        listOf("[4, 3]", "[2, 1]"),
        listOf("[4, 3]", "[2, 1]", "[-1, -2]", "[3.9, 10]"),
        listOf("[1, 3]", "[-6, -1]", "[-4, -5]", "[8, 2]", "[-6, -6]")
    )

    inputRanges.associateBy(Any::toString, ::consolidateDoubleRanges).forEach({ println("${it.key} => ${it.value}") })
}
Output:
[[1.1, 2.2]] => [[1.1, 2.2]]
[[6.1, 7.2], [7.2, 8.3]] => [[6.1, 8.3]]
[[4, 3], [2, 1]] => [[1.0, 2.0], [3.0, 4.0]]
[[4, 3], [2, 1], [-1, -2], [3.9, 10]] => [[-2.0, -1.0], [1.0, 2.0], [3.0, 10.0]]
[[1, 3], [-6, -1], [-4, -5], [8, 2], [-6, -6]] => [[-6.0, -1.0], [1.0, 8.0]]

Mathematica/Wolfram Language

Using the Wolfram Language's built-in Interval operations:

data={{{1.1,2.2}},
{{6.1,7.2},{7.2,8.3}},
{{4,3},{2,1}},
{{4,3},{2,1},{-1,-2},{3.9,10}},
{{1,3},{-6,-1},{-4,-5},{8,2},{-6,-6}}};
Column[IntervalUnion@@@Map[Interval,data,{2}]]
Output:
Interval[{1.1,2.2}]
Interval[{6.1,8.3}]
Interval[{1,2},{3,4}]
Interval[{-2,-1},{1,2},{3,10}]
Interval[{-6,-1},{1,8}]

Nim

import algorithm, strutils

# Definition of a range of values of type T.
type Range[T] = array[2, T]

proc `<`(a, b: Range): bool {.inline.} =
  ## Check if range "a" is less than range "b". Needed for sorting.
  if a[0] == b[0]:
    a[1] < b[1]
  else:
    a[0] < b[0]


proc consolidate[T](rangeList: varargs[Range[T]]): seq[Range[T]] =
  ## Consolidate a list of ranges of type T.

  # Build a sorted list of normalized ranges.
  var list: seq[Range[T]]
  for item in rangeList:
    list.add if item[0] <= item[1]: item else: [item[1], item[0]]
  list.sort()

  # Build the consolidated list starting from "smallest" range.
  result.add list[0]
  for i in 1..list.high:
    let rangeMin = result[^1]
    let rangeMax = list[i]
    if rangeMax[0] <= rangeMin[1]:
      result[^1] = [rangeMin[0], max(rangeMin[1], rangeMax[1])]
    else:
      result.add rangeMax


proc `$`[T](r: Range[T]): string {.inline.} =
  # Return the string representation of a range.
  when T is SomeFloat:
    "[$1, $2]".format(r[0].formatFloat(ffDecimal, 1), r[1].formatFloat(ffDecimal, 1))
  else:
    "[$1, $2]".format(r[0], r[1])

proc `$`[T](s: seq[Range[T]]): string {.inline.} =
  ## Return the string representation of a sequence of ranges.
  s.join(", ")


when isMainModule:

  proc test[T](rangeList: varargs[Range[T]]) =
    echo ($(@rangeList)).alignLeft(52), "→   ", consolidate(rangeList)

  test([1.1, 2.2])
  test([6.1, 7.2], [7.2, 8.3])
  test([4, 3], [2, 1])
  test([4.0, 3.0], [2.0, 1.0], [-1.0, -2.0], [3.9, 10.0])
  test([1, 3], [-6, -1], [-4, -5], [8, 2], [-6, -6])
Output:
[1.1, 2.2]                                          →   [1.1, 2.2]
[6.1, 7.2], [7.2, 8.3]                              →   [6.1, 8.3]
[4, 3], [2, 1]                                      →   [1, 2], [3, 4]
[4.0, 3.0], [2.0, 1.0], [-1.0, -2.0], [3.9, 10.0]   →   [-2.0, -1.0], [1.0, 2.0], [3.0, 10.0]
[1, 3], [-6, -1], [-4, -5], [8, 2], [-6, -6]        →   [-6, -1], [1, 8]

Perl

Note: the output is shown in the standard Perl notation for Ranges.

use strict;
use warnings;

use List::Util qw(min max);

sub consolidate {
    our @arr; local *arr = shift;
    my @sorted = sort { @$a[0] <=> @$b[0] } map { [sort { $a <=> $b } @$_] } @arr;
    my @merge = shift @sorted;
    for my $i (@sorted) {
        if ($merge[-1][1] >= @$i[0]) {
            $merge[-1][0] = min($merge[-1][0], @$i[0]);
            $merge[-1][1] = max($merge[-1][1], @$i[1]);
        } else {
            push @merge, $i;
        }
    }
    return @merge;
}

for my $intervals (
    [[1.1, 2.2],],
    [[6.1, 7.2], [7.2, 8.3]],
    [[4, 3], [2, 1]],
    [[4, 3], [2, 1], [-1, -2], [3.9, 10]],
    [[1, 3], [-6, -1], [-4, -5], [8, 2], [-6, -6]]) {
        my($in,$out);
        $in   = join ', ', map { '[' . join(', ', @$_) . ']' } @$intervals;
        $out .= join('..', @$_). ' ' for consolidate($intervals);
        printf "%44s => %s\n", $in, $out;
}
Output:
                                  [1.1, 2.2] => 1.1..2.2
                      [6.1, 7.2], [7.2, 8.3] => 6.1..8.3
                              [4, 3], [2, 1] => 1..2 3..4
         [4, 3], [2, 1], [-1, -2], [3.9, 10] => -2..-1 1..2 3..10
[1, 3], [-6, -1], [-4, -5], [8, 2], [-6, -6] => -6..-1 1..8

Phix

with javascript_semantics
function consolidate(sequence sets)
    integer l = length(sets)
    sequence res = repeat(0,l)
    for i=1 to l do
        atom {rs,re} = sets[i]
        res[i] = iff(rs>re?{re,rs}:{rs,re})
    end for
    for i=l to 1 by -1 do
        atom {il,ih} = res[i]
        for j=l to i+1 by -1 do
            atom {jl,jh} = res[j]
            bool overlap = iff(il<=jl?jl<=ih:il<=jh)
            if overlap then
                {il,ih} = {min(il,jl),max(ih,jh)}
                res[j] = res[l]
                l -= 1
            end if
        end for
        res[i] = {il,ih}
    end for
    res = sort(res[1..l])
    return res
end function
 
procedure test(sequence set)
    printf(1,"%40v => %v\n",{set,consolidate(set)})
end procedure
 
test({{1.1,2.2}})
test({{6.1,7.2},{7.2,8.3}})
test({{4,3},{2,1}})
test({{4,3},{2,1},{-1,-2},{3.9,10}})
test({{1,3},{-6,-1},{-4,-5},{8,2},{-6,-6}})
Output:
                             {{1.1,2.2}} => {{1.1,2.2}}
                   {{6.1,7.2},{7.2,8.3}} => {{6.1,8.3}}
                           {{4,3},{2,1}} => {{1,2},{3,4}}
          {{4,3},{2,1},{-1,-2},{3.9,10}} => {{-2,-1},{1,2},{3,10}}
   {{1,3},{-6,-1},{-4,-5},{8,2},{-6,-6}} => {{-6,-1},{1,8}}

Prolog

Works with: SWI Prolog
consolidate_ranges(Ranges, Consolidated):-
    normalize(Ranges, Normalized),
    sort(Normalized, Sorted),
    merge(Sorted, Consolidated).

normalize([], []):-!.
normalize([r(X, Y)|Ranges], [r(Min, Max)|Normalized]):-
    (X > Y -> Min = Y, Max = X; Min = X, Max = Y),
    normalize(Ranges, Normalized).

merge([], []):-!.
merge([Range], [Range]):-!.
merge([r(Min1, Max1), r(Min2, Max2)|Rest], Merged):-
    Min2 =< Max1,
    !,
    Max is max(Max1, Max2),
    merge([r(Min1, Max)|Rest], Merged).
merge([Range|Ranges], [Range|Merged]):-
    merge(Ranges, Merged).

write_range(r(Min, Max)):-
    writef('[%w, %w]', [Min, Max]).

write_ranges([]):-!.
write_ranges([Range]):-
    !,
    write_range(Range).
write_ranges([Range|Ranges]):-
    write_range(Range),
    write(', '),
    write_ranges(Ranges).

test_case([r(1.1, 2.2)]).
test_case([r(6.1, 7.2), r(7.2, 8.3)]).
test_case([r(4, 3), r(2, 1)]).
test_case([r(4, 3), r(2, 1), r(-1, -2), r(3.9, 10)]).
test_case([r(1, 3), r(-6, -1), r(-4, -5), r(8, 2), r(-6, -6)]).

main:-
    forall(test_case(Ranges),
           (consolidate_ranges(Ranges, Consolidated),
            write_ranges(Ranges), write(' -> '),
            write_ranges(Consolidated), nl)).
Output:
[1.1, 2.2] -> [1.1, 2.2]
[6.1, 7.2], [7.2, 8.3] -> [6.1, 8.3]
[4, 3], [2, 1] -> [1, 2], [3, 4]
[4, 3], [2, 1], [-1, -2], [3.9, 10] -> [-2, -1], [1, 2], [3, 10]
[1, 3], [-6, -1], [-4, -5], [8, 2], [-6, -6] -> [-6, -1], [1, 8]

Python

Procedural

def normalize(s):
    return sorted(sorted(bounds) for bounds in s if bounds)

def consolidate(ranges):
    norm = normalize(ranges)
    for i, r1 in enumerate(norm):
        if r1:
            for r2 in norm[i+1:]:
                if r2 and r1[-1] >= r2[0]:     # intersect?
                    r1[:] = [r1[0], max(r1[-1], r2[-1])]
                    r2.clear()
    return [rnge for rnge in norm if rnge]

if __name__ == '__main__':
    for s in [
            [[1.1, 2.2]],
            [[6.1, 7.2], [7.2, 8.3]],
            [[4, 3], [2, 1]],
            [[4, 3], [2, 1], [-1, -2], [3.9, 10]],
            [[1, 3], [-6, -1], [-4, -5], [8, 2], [-6, -6]],
            ]:
        print(f"{str(s)[1:-1]} => {str(consolidate(s))[1:-1]}")
Output:
[1.1, 2.2] => [1.1, 2.2]
[6.1, 7.2], [7.2, 8.3] => [6.1, 8.3]
[4, 3], [2, 1] => [1, 2], [3, 4]
[4, 3], [2, 1], [-1, -2], [3.9, 10] => [-2, -1], [1, 2], [3, 10]
[1, 3], [-6, -1], [-4, -5], [8, 2], [-6, -6] => [-6, -1], [1, 8]


Functional

Defining consolidation as a fold over a list of tuples:

Translation of: Haskell
Works with: Python version 3.7
'''Range consolidation'''

from functools import reduce


# consolidated :: [(Float, Float)] -> [(Float, Float)]
def consolidated(xs):
    '''A consolidated list of
       [(Float, Float)] ranges.'''

    def go(abetc, xy):
        '''A copy of the accumulator abetc,
           with its head range ab either:
           1. replaced by or
           2. merged with
           the next range xy, or
           with xy simply prepended.'''
        if abetc:
            a, b = abetc[0]
            etc = abetc[1:]
            x, y = xy
            return [xy] + etc if y >= b else (   # ab replaced.
                [(x, b)] + etc if y >= a else (  # xy + ab merged.
                    [xy] + abetc                 # xy simply prepended.
                )
            )
        else:
            return [xy]

    def tupleSort(ab):
        a, b = ab
        return ab if a <= b else (b, a)

    return reduce(
        go,
        sorted(map(tupleSort, xs), reverse=True),
        []
    )


# TEST ----------------------------------------------------
# main :: IO ()
def main():
    '''Tests'''

    print(
        tabulated('Consolidation of numeric ranges:')(str)(str)(
            consolidated
        )([
            [(1.1, 2.2)],
            [(6.1, 7.2), (7.2, 8.3)],
            [(4, 3), (2, 1)],
            [(4, 3), (2, 1), (-1, -2), (3.9, 10)],
            [(1, 3), (-6, -1), (-4, -5), (8, 2), (-6, -6)]
        ])
    )


# GENERIC FUNCTIONS FOR DISPLAY ---------------------------


# compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
def compose(g):
    '''Right to left function composition.'''
    return lambda f: lambda x: g(f(x))


# tabulated :: String -> (a -> String) ->
#                        (b -> String) ->
#                        (a -> b) -> [a] -> String
def tabulated(s):
    '''Heading -> x display function -> fx display function ->
          f -> value list -> tabular string.'''
    def go(xShow, fxShow, f, xs):
        w = max(map(compose(len)(xShow), xs))
        return s + '\n' + '\n'.join([
            xShow(x).rjust(w, ' ') + ' -> ' + fxShow(f(x)) for x in xs
        ])
    return lambda xShow: lambda fxShow: (
        lambda f: lambda xs: go(
            xShow, fxShow, f, xs
        )
    )


# MAIN ---
if __name__ == '__main__':
    main()
Output:
Consolidation of numeric ranges:
                                  [(1.1, 2.2)] -> [(1.1, 2.2)]
                      [(6.1, 7.2), (7.2, 8.3)] -> [(6.1, 8.3)]
                              [(4, 3), (2, 1)] -> [(1, 2), (3, 4)]
         [(4, 3), (2, 1), (-1, -2), (3.9, 10)] -> [(-2, -1), (1, 2), (3, 10)]
[(1, 3), (-6, -1), (-4, -5), (8, 2), (-6, -6)] -> [(-6, -1), (1, 8)]

Racket

#lang racket

;; Racket's max and min allow inexact numbers to contaminate exact numbers
;; Use argmax and argmin instead, as they don't have this problem

(define (max . xs) (argmax identity xs))
(define (min . xs) (argmin identity xs))

;; a bag is a list of disjoint intervals

(define ((irrelevant? x y) item) (or (< (second item) x) (> (first item) y)))

(define (insert bag x y)
  (define-values (irrelevant relevant) (partition (irrelevant? x y) bag))
  (cons (list (apply min x (map first relevant))
              (apply max y (map second relevant))) irrelevant))

(define (solve xs)
  (sort (for/fold ([bag '()]) ([x (in-list xs)])
          (insert bag (apply min x) (apply max x))) < #:key first))

(define inputs '(([1.1 2.2])
                 ([6.1 7.2] [7.2 8.3])
                 ([4 3] [2 1])
                 ([4 3] [2 1] [-1 -2] [3.9 10])
                 ([1 3] [-6 -1] [-4 -5] [8 2] [-6 -6])))

(for ([xs (in-list inputs)]) (printf "~a => ~a\n" xs (solve xs)))
Output:
((1.1 2.2)) => ((1.1 2.2))
((6.1 7.2) (7.2 8.3)) => ((6.1 8.3))
((4 3) (2 1)) => ((1 2) (3 4))
((4 3) (2 1) (-1 -2) (3.9 10)) => ((-2 -1) (1 2) (3 10))
((1 3) (-6 -1) (-4 -5) (8 2) (-6 -6)) => ((-6 -1) (1 8))

Raku

(formerly Perl 6)

Works with: Rakudo version 2020.08.1

In Raku, a Range is a first class object with its own specialized notation. Raku Ranges allow for exclusion of the boundary numbers. This example doesn't since it isn't a requirement in this task. Much of the logic is lifted from the Set_of_real_numbers task with simplified logic for the much simpler requirements.

Note: the output is in standard Raku notation for Ranges.

# Union
sub infix:<∪> (Range $a, Range $b) { Range.new($a.min,max($a.max,$b.max)) }

# Intersection
sub infix:<∩> (Range $a, Range $b) { so $a.max >= $b.min }

multi consolidate() { () }

multi consolidate($this is copy, **@those) {
    gather {
        for consolidate |@those -> $that {
            if $this$that { $this ∪= $that }
            else             { take $that }
        }
        take $this;
    }
}

for [[1.1, 2.2],],
    [[6.1, 7.2], [7.2, 8.3]],
    [[4, 3], [2, 1]],
    [[4, 3], [2, 1], [-1, -2], [3.9, 10]],
    [[1, 3], [-6, -1], [-4, -5], [8, 2], [-6, -6]]
-> @intervals {
    printf "%46s => ", @intervals.raku;
    say reverse consolidate |@intervals.grep(*.elems)».sort.sort({ [.[0], .[*-1]] }).map: { Range.new(.[0], .[*-1]) }
}
Output:
                                 [[1.1, 2.2],] => (1.1..2.2)
                      [[6.1, 7.2], [7.2, 8.3]] => (6.1..8.3)
                              [[4, 3], [2, 1]] => (1..2 3..4)
         [[4, 3], [2, 1], [-1, -2], [3.9, 10]] => (-2..-1 1..2 3..10)
[[1, 3], [-6, -1], [-4, -5], [8, 2], [-6, -6]] => (-6..-1 1..8)

REXX

Most of the REXX code was testing (and rebuilding) the syntax (insuring blanks after commas), and handling of a null set.

The actual logic for the range consolidation is marked with the comments:     /*■■■■►*/

/*REXX program performs range consolidation (they can be [equal] ascending/descending). */
#.=                                              /*define the default for range sets.   */
parse arg #.1                                    /*obtain optional arguments from the CL*/
if #.1=''  then do                               /*Not specified?  Then use the defaults*/
                #.1= '[1.1, 2.2]'
                #.2= '[6.1, 7.2], [7.2, 8.3]'
                #.3= '[4, 3], [2, 1]'
                #.4= '[4, 3], [2, 1], [-1, -2], [3.9, 10]'
                #.5= '[1, 3], [-6, -1], [-4, -5], [8, 2], [-6, -6]'
                #.6= '[]'
                end

       do j=1  while #.j\=='';   $= #.j          /*process each of the range sets.      */
       say copies('═', 75)                       /*display a fence between range sets.  */
       say '         original ranges:'     $     /*display the original range set.      */
       $= order($)                               /*order low and high ranges; normalize.*/
       call xSort  words($)                      /*sort the ranges using a simple sort. */
       $= merge($)                               /*consolidate the ranges.              */
       say '     consolidated ranges:'     $     /*display the consolidated range set.  */
       end   /*j*/
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
merge: procedure expose @.; parse arg y
       if words(y)<2  then signal build          /*Null or only 1 range?  Skip merging. */

          do j=1  to @.0-1;         if @.j==''  then iterate      /*skip deleted ranges.*/
            do k=j+1  to  @.0;      if @.k==''  then iterate      /*  "     "       "   */
            parse var  @.j  a   b;  parse var  @.k  aa  bb        /*extract low and high*/
/*■■■■►*/   if a<=aa & b>=bb  then  do; @.k=;  iterate;            end  /*within a range*/
/*■■■■►*/   if a<=aa & b>=aa  then  do; @.j= a bb; @.k=; iterate;  end  /*abutted ranges*/
            end   /*k*/
          end     /*j*/
build: z=
             do r=1  for @.0;  z= z translate(@.r, ',', " ");  end   /*r*/   /*add comma*/
       f=;   do s=1  for words(z);   f= f '['word(z, s)"], ";  end   /*s*/   /*add [ ], */
       if f==''  then return '[]'                                            /*null set.*/
       return space( changestr(',',  strip( space(f), 'T', ","), ", ") )     /*add blank*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
order: procedure expose @.; parse arg y,,z;  @.= /*obtain arguments from the invocation.*/
       y= space(y, 0)                            /*elide superfluous blanks in the sets.*/
          do k=1  while y\==''  &  y\=='[]'      /*process ranges while range not blank.*/
          y= strip(y, 'L', ",")                  /*elide commas between sets of ranges. */
          parse var  y   '['  L  ","  H  ']'   y /*extract  the "low" and "high" values.*/
          if H<L  then parse value  L H with H L /*order     "    "    "     "      "   */
          L= L / 1;     H= H / 1                 /*normalize the  L  and the  H  values.*/
          @.k= L H;     z= z L','H               /*re─build the set w/o and with commas.*/
          end   /*k*/                            /* [↓]  at this point, K is one to big.*/
       @.0= k - 1                                /*keep track of the number of ranges.  */
       return strip(z)                           /*elide the extra leading blank in set.*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
xSort: procedure expose @.; parse arg n          /*a simple sort for small set of ranges*/
          do j=1  to n-1;                        _= @.j
            do k=j+1  to n; if word(@.k,1)>=word(_,1)  then iterate; @.j=@.k; @.k=_; _=@.j
            end   /*k*/
          end     /*j*/;        return
output   when using the default inputs:
═══════════════════════════════════════════════════════════════════════════
         original ranges: [1.1, 2.2]
     consolidated ranges: [1.1, 2.2]
═══════════════════════════════════════════════════════════════════════════
         original ranges: [6.1, 7.2], [7.2, 8.3]
     consolidated ranges: [6.1, 8.3]
═══════════════════════════════════════════════════════════════════════════
         original ranges: [4, 3], [2, 1]
     consolidated ranges: [1, 2], [3, 4]
═══════════════════════════════════════════════════════════════════════════
         original ranges: [4, 3], [2, 1], [-1, -2], [3.9, 10]
     consolidated ranges: [-2, -1], [1, 2], [3, 10]
═══════════════════════════════════════════════════════════════════════════
         original ranges: [1, 3], [-6, -1], [-4, -5], [8, 2], [-6, -6]
     consolidated ranges: [-6, -1], [1, 8]
═══════════════════════════════════════════════════════════════════════════
         original ranges: []
     consolidated ranges: []

Rust

Most of the implementation below belongs to the test and formatting support. If the output might be more arbitrary, the source would be quite small. The algorithm relies on normalizing the ranges and folding a sorted sequence of them.

use std::fmt::{Display, Formatter};

// We could use std::ops::RangeInclusive, but we would have to extend it to
// normalize self (not much trouble) and it would not have to handle pretty
// printing for it explicitly. So, let's make rather an own type.

#[derive(Clone, Debug, PartialEq, PartialOrd)]
pub struct ClosedRange<Idx> {
    start: Idx,
    end: Idx,
}

impl<Idx> ClosedRange<Idx> {
    pub fn start(&self) -> &Idx {
        &self.start
    }

    pub fn end(&self) -> &Idx {
        &self.end
    }
}

impl<Idx: PartialOrd> ClosedRange<Idx> {
    pub fn new(start: Idx, end: Idx) -> Self {
        if start <= end {
            Self { start, end }
        } else {
            Self {
                end: start,
                start: end,
            }
        }
    }
}

// To make test input more compact
impl<Idx: PartialOrd> From<(Idx, Idx)> for ClosedRange<Idx> {
    fn from((start, end): (Idx, Idx)) -> Self {
        Self::new(start, end)
    }
}

// For the required print format
impl<Idx: Display> Display for ClosedRange<Idx> {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        write!(f, "[{}, {}]", self.start, self.end)
    }
}

fn consolidate<Idx>(a: &ClosedRange<Idx>, b: &ClosedRange<Idx>) -> Option<ClosedRange<Idx>>
where
    Idx: PartialOrd + Clone,
{
    if a.start() <= b.start() {
        if b.end() <= a.end() {
            Some(a.clone())
        } else if a.end() < b.start() {
            None
        } else {
            Some(ClosedRange::new(a.start().clone(), b.end().clone()))
        }
    } else {
        consolidate(b, a)
    }
}

fn consolidate_all<Idx>(mut ranges: Vec<ClosedRange<Idx>>) -> Vec<ClosedRange<Idx>>
where
    Idx: PartialOrd + Clone,
{
    // Panics for incomparable elements! So no NaN for floats, for instance.
    ranges.sort_by(|a, b| a.partial_cmp(b).unwrap());
    let mut ranges = ranges.into_iter();
    let mut result = Vec::new();

    if let Some(current) = ranges.next() {
        let leftover = ranges.fold(current, |mut acc, next| {
            match consolidate(&acc, &next) {
                Some(merger) => {
                    acc = merger;
                }

                None => {
                    result.push(acc);
                    acc = next;
                }
            }

            acc
        });

        result.push(leftover);
    }

    result
}

#[cfg(test)]
mod tests {
    use super::{consolidate_all, ClosedRange};
    use std::fmt::{Display, Formatter};

    struct IteratorToDisplay<F>(F);

    impl<F, I> Display for IteratorToDisplay<F>
    where
        F: Fn() -> I,
        I: Iterator,
        I::Item: Display,
    {
        fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
            let mut items = self.0();

            if let Some(item) = items.next() {
                write!(f, "{}", item)?;
                for item in items {
                    write!(f, ", {}", item)?;
                }
            }

            Ok(())
        }
    }

    macro_rules! parameterized {
        ($($name:ident: $value:expr,)*) => {
            $(
                #[test]
                fn $name() {
                    let (input, expected) = $value;
                    let expected: Vec<_> = expected.into_iter().map(ClosedRange::from).collect();
                    let output = consolidate_all(input.into_iter().map(ClosedRange::from).collect());
                    println!("{}: {}", stringify!($name), IteratorToDisplay(|| output.iter()));
                    assert_eq!(expected, output);
                }
            )*
        }
    }

    parameterized! {
        single: (vec![(1.1, 2.2)], vec![(1.1, 2.2)]),
        touching: (vec![(6.1, 7.2), (7.2, 8.3)], vec![(6.1, 8.3)]),
        disjoint: (vec![(4, 3), (2, 1)], vec![(1, 2), (3, 4)]),
        overlap: (vec![(4.0, 3.0), (2.0, 1.0), (-1.0, -2.0), (3.9, 10.0)], vec![(-2.0, -1.0), (1.0, 2.0), (3.0, 10.0)]),
        integer: (vec![(1, 3), (-6, -1), (-4, -5), (8, 2), (-6, -6)], vec![(-6, -1), (1, 8)]),
    }
}

fn main() {
    // To prevent dead code and to check empty input
    consolidate_all(Vec::<ClosedRange<usize>>::new());

    println!("Run: cargo test -- --nocapture");
}
Output:
running 5 tests
integer: [-6, -1], [1, 8]
disjoint: [1, 2], [3, 4]
single: [1.1, 2.2]
touching: [6.1, 8.3]
overlap: [-2, -1], [1, 2], [3, 10]
test tests::integer ... ok
test tests::disjoint ... ok
test tests::single ... ok
test tests::touching ... ok
test tests::overlap ... ok

test result: ok. 5 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

SQL

Works with: ORACLE 19c

This is not a particularly efficient solution, but it gets the job done.

/*
This code is an implementation of "Range consolidation" in SQL ORACLE 19c 
p_list_of_sets -- input string  
delimeter by default "|"
*/
with 
function range_consolidation(p_list_of_sets in varchar2)
return varchar2 is
   --
   v_list_of_sets varchar2(32767) := p_list_of_sets;
   v_output       varchar2(32767);
   v_set_1        varchar2(2000);
   v_set_2        varchar2(2000);
   v_pos_set_1    pls_integer;       
   v_pos_set_2    pls_integer;   
   v_set_1_min    number;       
   v_set_1_max    number;       
   v_set_2_min    number;       
   v_set_2_max    number;   
   --
   function sort_set(p_in_str varchar2) 
   return varchar2 is
      v_out varchar2(32767) := p_in_str;
   begin
     --
     with out_tab as
        (select to_number(regexp_substr(str, '[^,]+', 1, rownum, 'c', 0)) elem
           from
              (select p_in_str as str
                 from dual
              )
              connect by level <= regexp_count(str, '[^,]+')
        )
     select min(elem)||','||max(elem) end 
       into v_out
       from out_tab;
     -- 
     return v_out;
   end;
   --
   function sort_output(p_in_str varchar2) 
   return varchar2 is
      v_out varchar2(32767) := p_in_str;
   begin
     --
     with out_tab as
        (select to_number(regexp_substr(regexp_substr(str, '[^|]+', 1, rownum, 'c', 0), '[^,]+', 1, 1)) low_range
              , regexp_substr(str, '[^|]+', 1, rownum, 'c', 0) range_def
           from
              (select p_in_str as str
                 from dual
              )
              connect by level <= regexp_count(str, '[^|]+')
        )
     select listagg(range_def, '|') within group(order by low_range)
       into v_out
       from out_tab;
     -- 
     return v_out;
   end;
   --
begin
   --
   execute immediate ('alter session set NLS_NUMERIC_CHARACTERS = ''.,''');
   --   
   --cleaning
   v_list_of_sets := ltrim(v_list_of_sets, '[');  
   v_list_of_sets := rtrim(v_list_of_sets, ']');
   v_list_of_sets := replace(v_list_of_sets, ' ', '');
   --set delimeter "|"
   v_list_of_sets := regexp_replace(v_list_of_sets, '\]\,\[', '|', 1, 0);
   --
   <<loop_through_sets>>
   while regexp_count(v_list_of_sets, '[^|]+') > 0
   loop
      v_set_1 := regexp_substr(v_list_of_sets, '[^|]+', 1, 1);
      v_list_of_sets := regexp_replace(v_list_of_sets, v_set_1, sort_set(v_set_1), 1, 1);     
      v_set_1 := sort_set(v_set_1);      
      v_pos_set_1 := regexp_instr(v_list_of_sets, '[^|]+', 1, 1);
      --
      v_set_1_min := least(to_number(regexp_substr(v_set_1, '[^,]+', 1, 1)),to_number(regexp_substr(v_set_1, '[^,]+', 1, 2))); 
      v_set_1_max := greatest(to_number(regexp_substr(v_set_1, '[^,]+', 1, 1)),to_number(regexp_substr(v_set_1, '[^,]+', 1, 2)));
      --
      <<loop_for>>
      for i in 1..regexp_count(v_list_of_sets, '[^|]+')-1
      loop
         --
         v_set_2 := regexp_substr(v_list_of_sets, '[^|]+', 1, i+1);
         v_list_of_sets := regexp_replace(v_list_of_sets, v_set_2, sort_set(v_set_2), 1, 1);     
         v_set_2 := sort_set(v_set_2);         
         v_pos_set_2 := regexp_instr(v_list_of_sets, '[^|]+', 1, i+1);
         v_set_2_min := least(to_number(regexp_substr(v_set_2, '[^,]+', 1, 1)),to_number(regexp_substr(v_set_2, '[^,]+', 1, 2))); 
         v_set_2_max := greatest(to_number(regexp_substr(v_set_2, '[^,]+', 1, 1)),to_number(regexp_substr(v_set_2, '[^,]+', 1, 2)));        
         --
        if greatest(v_set_1_min,v_set_2_min)-least(v_set_1_max,v_set_2_max) <= 0 then  --overlapping
           v_list_of_sets := regexp_replace(v_list_of_sets, v_set_1, ''||least(v_set_1_min,v_set_2_min)||','||greatest(v_set_1_max,v_set_2_max),v_pos_set_1,1);             
           v_list_of_sets := regexp_replace(v_list_of_sets, v_set_2, '', v_pos_set_2, 1);
           continue loop_through_sets;
         end if;
         --
      end loop loop_for;
      --
      v_output := ltrim(v_output||'|'||least(v_set_1_min,v_set_1_max)||', '||greatest(v_set_1_min,v_set_1_max),'|');
      --
      v_output := sort_output(v_output);
      v_list_of_sets := regexp_replace(v_list_of_sets,v_set_1,'',1,1);
      --
   end loop loop_through_sets;
   --
   return '['||replace(v_output,'|','], [')||']';
end;

--Test
select lpad('[]',50) || ' ==> ' || range_consolidation('[]') as output from dual
union all  
select lpad('[],[]',50) || ' ==> ' || range_consolidation('[],[]') as output from dual
union all
select lpad('[],[1,1]',50) || ' ==> ' || range_consolidation('[],[1,1]') as output from dual
union all  
select lpad('[1.3]',50) || ' ==> ' || range_consolidation('[1.3]') as output from dual
union all
select lpad('[2,2],[1]',50) || ' ==> ' || range_consolidation('[2,2],[1]') as output from dual
union all
select lpad('[4,-1,0,1,5,7,7,7],[9,6,9,6,9]',50) || ' ==> ' || range_consolidation('[4,-1,0,1,5,7,7,7],[9,6,9,6,9]') as output from dual
union all
--Test RosettaCode
select '-- Test RosettaCode' as output from dual
union all  
select lpad('[1.1, 2.2]',50) || ' ==> ' || range_consolidation('[1.1, 2.2]') as output from dual
union all  
select lpad('[6.1, 7.2], [7.2, 8.3]',50) || ' ==> ' || range_consolidation('[6.1, 7.2], [7.2, 8.3]') as output from dual
union all  
select lpad('[4, 3], [2, 1]',50) || ' ==> ' || range_consolidation('[4, 3], [2, 1]') as output from dual
union all 
select lpad('[4, 3], [2, 1], [-1, -2], [3.9, 10]',50) || ' ==> ' || range_consolidation('[4, 3], [2, 1], [-1, -2], [3.9, 10]') as output from dual
union all 
select lpad('[1, 3], [-6, -1], [-4, -5], [8, 2], [-6, -6]',50) || ' ==> ' || range_consolidation('[1, 3], [-6, -1], [-4, -5], [8, 2], [-6, -6]') as output from dual
union all 
select lpad('1,3|-6,-1|-4,-5|8,2|-6,-6',50) || ' ==> ' || range_consolidation('1,3|-6,-1|-4,-5|8,2|-6,-6') as output from dual
/
;
/
Output:
                                                [] ==> []
                                             [],[] ==> []
                                          [],[1,1] ==> [1, 1]
                                             [1.3] ==> [1.3, 1.3]
                                         [2,2],[1] ==> [1, 1], [2, 2]
                    [4,-1,0,1,5,7,7,7],[9,6,9,6,9] ==> [-1, 9]
-- Test RosettaCode
                                        [1.1, 2.2] ==> [1.1, 2.2]
                            [6.1, 7.2], [7.2, 8.3] ==> [6.1, 8.3]
                                    [4, 3], [2, 1] ==> [1, 2], [3, 4]
               [4, 3], [2, 1], [-1, -2], [3.9, 10] ==> [-2, -1], [1, 2], [3, 10]
      [1, 3], [-6, -1], [-4, -5], [8, 2], [-6, -6] ==> [-6, -1], [1, 8]
                         1,3|-6,-1|-4,-5|8,2|-6,-6 ==> [-6, -1], [1, 8]

Wren

As Wren already has a built-in Range class (which is not quite the same as what's required here), we create a Span class instead.

class Span {
    construct new(r) {
        if (r.type != Range || !r.isInclusive) Fiber.abort("Argument must be an inclusive range.")
        _low = r.from
        _high = r.to
        if (_low > _high) {
            _low = r.to
            _high = r.from
        }
    }

    low  { _low }
    high { _high }

    consolidate(r) {
         if (r.type != Span) Fiber.abort("Argument must be a Span.")
         if (_high < r.low) return [this, r]
         if (r.high < _low) return [r, this]
         return [Span.new(_low.min(r.low).._high.max(r.high))]         
    }

    toString { "[%(_low), %(_high)]" }
}

var spanLists = [
    [Span.new(1.1..2.2)],
    [Span.new(6.1..7.2), Span.new(7.2..8.3)],
    [Span.new(4..3), Span.new(2..1)],
    [Span.new(4..3), Span.new(2..1), Span.new(-1..-2), Span.new(3.9..10)],
    [Span.new(1..3), Span.new(-6..-1), Span.new(-4..-5), Span.new(8..2), Span.new(-6..-6)]
]

for (spanList in spanLists) {
    if (spanList.count == 1) {
        System.print(spanList.toString[1..-2])
    } else if (spanList.count == 2) {
        System.print(spanList[0].consolidate(spanList[1]).toString[1..-2])
    } else {
        var first = 0
        while (first < spanList.count-1) {
            var next = first + 1
            while (next < spanList.count) {
                var res = spanList[first].consolidate(spanList[next])
                spanList[first] = res[0]
                if (res.count == 2) {
                    spanList[next] = res[1]
                    next = next + 1
                } else {
                    spanList.removeAt(next)
                }
            }
            first = first + 1
        }
        System.print(spanList.toString[1..-2])
    } 
}
Output:
[1.1, 2.2]
[6.1, 8.3]
[1, 2], [3, 4]
[-2, -1], [1, 2], [3, 10]
[-6, -1], [1, 8]

Yabasic

sub sort(tabla())
    local items, i, t1, t2, s
    
    items = arraysize(tabla(), 1)
    
    repeat
        s = true
        for i = 1 to items-1
            if tabla(i, 1) > tabla(i+1, 1) then
                t1 = tabla(i, 1) : t2 = tabla(i, 2)
                tabla(i, 1) = tabla(i + 1, 1) : tabla(i, 2) = tabla(i + 1, 2)
                tabla(i + 1, 1) = t1 : tabla(i + 1, 2) = t2
                s = false
            end if
        next
    until(s)
end sub

sub normalize(tabla())
    local items, i, t

    items = arraysize(tabla(), 1)
    
    for i = 1 to items
        if tabla(i, 1) > tabla(i, 2) then
            t = tabla(i, 1)
            tabla(i, 1) = tabla(i, 2)
            tabla(i, 2) = t
        end if
    next
    
    sort(tabla())
end sub

sub consolidate(tabla())
    local items, i

    normalize(tabla())
    items = arraysize(tabla(), 1)
    
    for i = 1 to items - 1
        if tabla(i + 1, 1) <= tabla(i, 2) then
            tabla(i + 1, 1) = tabla(i, 1)
            if tabla(i + 1, 2) <= tabla(i, 2) then
                tabla(i + 1, 2) = tabla(i, 2)
            end if
            tabla(i, 1) = void : tabla(i, 2) = void
        end if
    next
end sub

// data 1, 1.1, 2.2
// data 2, 6.1, 7.2, 7.2, 8.3
// data 2, 4, 3, 2, 1
// data 4, 4, 3, 2, 1, -1, -2, 3.9, 10
 data 5, 1,3, -6,-1, -4,-5, 8,2, -6,-6

void = 10^30
read items

dim tabla(items,  2)

for i = 1 to items
    read tabla(i, 1), tabla(i, 2)
next

consolidate(tabla())

for i = 1 to items
    if tabla(i, 1) <> void print tabla(i, 1), "..", tabla(i, 2);
next

zkl

fcn consolidate(rs){
   (s:=List()).append(
      normalize(rs).reduce('wrap(ab,cd){
     if(ab[1]>=cd[0]) L(ab[0],ab[1].max(cd[1])); // consolidate
     else{ s.append(ab); cd }            // no overlap
      }) )
}
fcn normalize(s){ s.apply("sort").sort(fcn(a,b){ a[0]<b[0] }) }
foreach rs in (L(
   L(L(1.1, 2.2)),    L(L(6.1, 7.2), L(7.2, 8.3)),    L(L(4, 3), L(2, 1)),
   L(L(4.0, 3.0), L(2.0, 1.0), L(-1.0, -2.0), L(3.9, 10.0)),
   L(L(1, 3), L(-6, -1), L(-4, -5), L(8, 2), L(-6, -6)),
 )){ println(ppp(rs),"--> ",ppp(consolidate(rs))) }
fcn ppp(ll){ ll.pump(String,fcn(list){ list.concat(", ",  "[",  "] ") }) }
Output:
[1.1, 2.2] --> [1.1, 2.2] 
[6.1, 7.2] [7.2, 8.3] --> [6.1, 8.3] 
[4, 3] [2, 1] --> [1, 2] [3, 4] 
[4, 3] [2, 1] [-1, -2] [3.9, 10] --> [-2, -1] [1, 2] [3, 10] 
[1, 3] [-6, -1] [-4, -5] [8, 2] [-6, -6] --> [-6, -1] [1, 8]