Numbers which are the cube roots of the product of their proper divisors: Difference between revisions

From Rosetta Code
Content added Content deleted
(added julia entry)
(Added Lua version)
Line 771: Line 771:
50000th: 223735
50000th: 223735
</pre>
</pre>

=={{header|Lua}}==
The OEIS page gives a formula of "1 together with numbers with 8 divisors", so that's what we test.
<syntaxhighlight lang="lua">function is_1_or_has_eight_divisors (n)
if n == 1 then return true end
local divCount, sqr = 2, math.sqrt(n)
for d = 2, sqr do
if n % d == 0 then
divCount = d == sqr and divCount + 1 or divCount + 2
end
if divCount > 8 then return false end
end
return divCount == 8
end

-- First 50
local count, x = 1, 0
while count <= 50 do
x = x + 1
if is_1_or_has_eight_divisors(x) then
io.write(x .. " ")
count = count + 1
end
end

-- 500th, 5,000th and 50,000th
while count <= 50000 do
x = x + 1
if is_1_or_has_eight_divisors(x) then
if count == 500 then print("\n\n500th: " .. x) end
if count == 5000 then print("5,000th: " .. x) end
count = count + 1
end
end
print("50,000th: " .. x)</syntaxhighlight>
{{out}}
<pre>1 24 30 40 42 54 56 66 70 78 88 102 104 105 110 114 128 130 135 136 138 152 154 165 170 174 182 184 186 189 190 195 222 230 231 232 238 246 248 250 255 258 266 273 282 285 286 290 296 297

500th: 2526
5,000th: 23118
50,000th: 223735</pre>


=={{header|Pascal}}==
=={{header|Pascal}}==

Revision as of 10:46, 6 April 2023

Task
Numbers which are the cube roots of the product of their proper divisors
You are encouraged to solve this task according to the task description, using any language you may know.
Example

Consider the number 24. Its proper divisors are: 1, 2, 3, 4, 6, 8 and 12. Their product is 13,824 and the cube root of this is 24. So 24 satisfies the definition in the task title.

Task

Compute and show here the first 50 positive integers which are the cube roots of the product of their proper divisors.

Also show the 500th and 5,000th such numbers.

Stretch

Compute and show the 50,000th such number.

Reference
Note

OEIS considers 1 to be the first number in this sequence even though, strictly speaking, it has no proper divisors. Please therefore do likewise.


11l

F product_of_proper_divisors(n)
   V prod = Int64(1)
   L(d) 2 .< Int(sqrt(n) + 1)
      I n % d == 0
         prod *= d
         V otherD = n I/ d
         I otherD != d
            prod *= otherD
   R prod

print(‘First 50 numbers which are the cube roots of the products of their proper divisors:’)
V found = 0
L(num) 1..
   I Int64(num) ^ 3 == product_of_proper_divisors(num)
      found++
      I found <= 50
         print(f:‘{num:3}’, end' I found % 10 == 0 {"\n"} E ‘ ’)
      E I found C (500, 5000, 50000)
         print(f:‘{commatize(found):6}th: {commatize(num)}’)
         I found == 50000
            L.break
Output:
First 50 numbers which are the cube roots of the products of their proper divisors:
  1  24  30  40  42  54  56  66  70  78
 88 102 104 105 110 114 128 130 135 136
138 152 154 165 170 174 182 184 186 189
190 195 222 230 231 232 238 246 248 250
255 258 266 273 282 285 286 290 296 297
   500th: 2,526
 5,000th: 23,118
50,000th: 223,735

ALGOL 68

As with the second Wren sample, uses the observation on the OEIS page to reduce the problem to finding numbers that are 1 or have 8 divisors (or 7 proper divisors).

BEGIN # find some numbers which are the cube roots of the product of their   #
      #      proper divisors                                                 #
      # the Online Encyclopedia of Integer Sequences states that these       #
      # numbers are 1 and those with eight divisors                          #
      # NB: numbers with 8 divisors have 7 proper divisors                   #
    INT max number = 500 000; # maximum number we will consider              #
    # form a table of proper divisor counts - assume the pdc of 1 is 7       #
    [ 1 : max number ]INT pdc; FOR i TO UPB pdc DO pdc[ i ] := 1 OD;
    pdc[ 1 ] := 7;
    FOR i FROM 2 TO UPB pdc DO
        FOR j FROM i + i BY i TO UPB pdc DO pdc[ j ] +:= 1 OD
    OD;
    # show the numbers which are the cube root of their proper divisor       #
    # product - equivalent to finding the numbers with a proper divisor      #
    # count of 7 ( we have "cheated" and set the pdc of 1 to 7 )             # 
    INT next show := 500;
    INT c count   := 0;
    FOR n TO UPB pdc DO
        IF pdc[ n ] = 7 THEN
            # found a suitable number                                        #
            IF ( c count +:= 1 ) <= 50 THEN
                print( ( " ", whole( n, -3 ) ) );
                IF c count MOD 10 = 0 THEN print( ( newline ) ) FI
            ELIF c count = next show THEN
                print( ( whole( c count, -9 ), "th: ", whole( n, 0 ), newline ) );
                next show *:= 10
            FI
        FI
    OD
END
Output:
   1  24  30  40  42  54  56  66  70  78
  88 102 104 105 110 114 128 130 135 136
 138 152 154 165 170 174 182 184 186 189
 190 195 222 230 231 232 238 246 248 250
 255 258 266 273 282 285 286 290 296 297
      500th: 2526
     5000th: 23118
    50000th: 223735

AppleScript

Like other solutions here, this checks for numbers having seven proper divisors rather than doing the multiplications, which saves time and avoids products that are too large for AppleScript numbers.

on properDivisors(n)
    set output to {}
    
    if (n > 1) then
        set sqrt to n ^ 0.5
        set limit to sqrt div 1
        if (limit = sqrt) then
            set end of output to limit
            set limit to limit - 1
        end if
        repeat with i from limit to 2 by -1
            if (n mod i is 0) then
                set beginning of output to i
                set end of output to n div i
            end if
        end repeat
        set beginning of output to 1
    end if
    
    return output
end properDivisors

on join(lst, delim)
    set astid to AppleScript's text item delimiters
    set AppleScript's text item delimiters to delim
    set txt to lst as text
    set AppleScript's text item delimiters to astid
    return txt
end join

on task()
    set output to {"First 50 numbers whose cubes are the products of their proper divisors", ¬
        "(and of course whose fourth powers are the products of ALL their positive divisors):"}
    set pad to "      "
    set n to 1
    set first50 to {"    1"}
    repeat 49 times
        set n to n + 1
        repeat until ((count properDivisors(n)) = 7)
            set n to n + 1
        end repeat
        set end of first50 to text -5 thru -1 of (pad & n)
    end repeat
    repeat with i from 1 to 41 by 10
        set end of output to join(first50's items i thru (i + 9), "")
    end repeat
    set |count| to 50
    repeat with target in {500, 5000, 50000}
        repeat with |count| from (|count| + 1) to target
            set n to n + 1
            repeat until ((count properDivisors(n)) = 7)
                set n to n + 1
            end repeat
        end repeat
        set end of output to text -6 thru -1 of (pad & |count|) & "th: " & text -6 thru -1 of (pad & n)
    end repeat
    
    return join(output, linefeed)
end task

task()
Output:
"First 50 numbers whose cubes are the products of their proper divisors
(and of course whose fourth powers are the products of ALL their positive divisors):
    1   24   30   40   42   54   56   66   70   78
   88  102  104  105  110  114  128  130  135  136
  138  152  154  165  170  174  182  184  186  189
  190  195  222  230  231  232  238  246  248  250
  255  258  266  273  282  285  286  290  296  297
   500th:   2526
  5000th:  23118
 50000th: 223735"

BASIC

BASIC256

Translation of: FreeBASIC
arraybase 1
limite = 500000
dim pdc(limite) fill 1
pdc[1] = 7
for i = 2 to pdc[?]
	for j = i + i to pdc[?] step i
		pdc[j] += 1
	next j
next i

n5 = 500
cont = 0
print "First 50 numbers which are the cube roots"
print "of the products of their proper divisors:"
for i = 1 to pdc[?]
	if pdc[i] = 7 then
		cont += 1
		if cont <= 50 then
			print rjust(string(i),5);
			if cont mod 10 = 0 then print
		else
			if cont = n5 then
				print
				print rjust(string(cont),9); "th: "; i;
				n5 *= 10
			end if
		end if
	end if
next i
Output:
Same as FreeBASIC entry.

True BASIC

Translation of: FreeBASIC
LET limite = 500000
DIM pdc(1 to 500000)
FOR i = 1 to ubound(pdc)
    LET pdc(i) = 1
NEXT i
LET pdc(1) = 7
FOR i = 2 to ubound(pdc)
    FOR j = i+i to ubound(pdc) step i
        LET pdc(j) = pdc(j)+1
    NEXT j
NEXT i

LET n5 = 500
LET count = 0
PRINT "First 50 numbers which are the cube roots"
PRINT "of the products of their proper divisors:"
FOR i = 1 to ubound(pdc)
    IF pdc(i) = 7 then
       LET count = count + 1
       IF count <= 50 THEN
          PRINT  using "####": i;
          IF remainder(count, 10) = 0 THEN PRINT
       ELSE
          IF count = n5 THEN
             PRINT
             PRINT USING "#########th:": count;
             PRINT i;
             LET n5 = n5*10
          END IF
       END IF
    END IF
NEXT i
END
Output:
Same as FreeBASIC entry.


XBasic

Works with: Windows XBasic
PROGRAM	"progname"
VERSION	"0.0000"

DECLARE FUNCTION  Entry ()

FUNCTION  Entry ()
limite = 500000
DIM pdc[limite] '(1 TO limite)
FOR i = 1 TO UBOUND(pdc[])
    pdc[i] = 1
NEXT i
pdc[1] = 7
FOR i = 2 TO UBOUND(pdc[])
    FOR j = i + i TO UBOUND(pdc[]) STEP i
        INC pdc[j]
    NEXT j
NEXT i

n5 = 500
cont = 0
PRINT "First 50 numbers which are the cube roots"
PRINT "of the products of their proper divisors:"
FOR i = 1 TO UBOUND(pdc[])
    IF pdc[i] = 7 THEN
        INC cont
        IF cont <= 50 THEN
            PRINT RJUST$ (STRING$(i), 4);
            IF cont MOD 10 = 0 THEN PRINT
        ELSE
            IF cont = n5 THEN
                PRINT "\n"; FORMAT$("#########", cont); "th: "; i;
                n5 = n5 * 10
            END IF
        END IF
    END IF
NEXT i

END FUNCTION
END PROGRAM
Output:
Same as FreeBASIC entry.

Yabasic

Translation of: FreeBASIC
limite = 500000
dim pdc(limite)

for i = 1 to arraysize(pdc(), 1)
    pdc(i) = 1 
next i
pdc(1) = 7
for i = 2 to arraysize(pdc(), 1)
    for j = i + i to arraysize(pdc(), 1) step i
        pdc(j) = pdc(j) + 1 
    next j
next i

n5 = 500
cont = 0
print "First 50 numbers which are the cube roots"
print "of the products of their proper divisors:"
for i = 1 to arraysize(pdc(), 1)
    if pdc(i) = 7 then
        cont = cont + 1
        if cont <= 50 then
            print i using("###");
            if mod(cont, 10) = 0  print
        else
		    if cont = n5 then
                print "\n", cont using("#########"), "th: ", i;
                n5 = n5 * 10
            end if
        end if
    end if
next i
Output:
Same as FreeBASIC entry.

C

Translation of: Wren

The faster version.

#include <stdio.h>
#include <locale.h>

int divisorCount(int n) {
    int i, j, count = 0, k = !(n%2) ? 1 : 2;
    for (i = 1; i*i <= n; i += k) {
        if (!(n%i)) {
            ++count;
            j = n/i;
            if (j != i) ++count;
        }
    }
    return count;
}

int main() {
    int i, numbers50[50], count = 0, n = 1, dc;
    printf("First 50 numbers which are the cube roots of the products of their proper divisors:\n");
    setlocale(LC_NUMERIC, "");
    while (1) {
        dc = divisorCount(n);
        if (n == 1|| dc == 8) {
            ++count;
            if (count <= 50) {
                numbers50[count-1] = n;
                if (count == 50) {
                    for (i = 0; i < 50; ++i) {
                        printf("%3d ", numbers50[i]);
                        if (!((i+1) % 10)) printf("\n");
                    }
                }
            } else if (count == 500) {
                printf("\n500th   : %'d\n", n);
            } else if (count == 5000) {
                printf("5,000th : %'d\n", n);
            } else if (count == 50000) {
                printf("50,000th: %'d\n", n);
                break;
            }
        }
        ++n;
    }
    return 0;
}
Output:
First 50 numbers which are the cube roots of the products of their proper divisors:
  1  24  30  40  42  54  56  66  70  78 
 88 102 104 105 110 114 128 130 135 136 
138 152 154 165 170 174 182 184 186 189 
190 195 222 230 231 232 238 246 248 250 
255 258 266 273 282 285 286 290 296 297 

500th   : 2,526
5,000th : 23,118
50,000th: 223,735

C++

#include <iomanip>
#include <iostream>

unsigned int divisor_count(unsigned int n) {
    unsigned int total = 1;
    for (; (n & 1) == 0; n >>= 1)
        ++total;
    for (unsigned int p = 3; p * p <= n; p += 2) {
        unsigned int count = 1;
        for (; n % p == 0; n /= p)
            ++count;
        total *= count;
    }
    if (n > 1)
        total *= 2;
    return total;
}

int main() {
    std::cout.imbue(std::locale(""));
    std::cout << "First 50 numbers which are the cube roots of the products of "
                 "their proper divisors:\n";
    for (unsigned int n = 1, count = 0; count < 50000; ++n) {
        if (n == 1 || divisor_count(n) == 8) {
            ++count;
            if (count <= 50)
                std::cout << std::setw(3) << n
                          << (count % 10 == 0 ? '\n' : ' ');
            else if (count == 500 || count == 5000 || count == 50000)
                std::cout << std::setw(6) << count << "th: " << n << '\n';
        }
    }
}
Output:
First 50 numbers which are the cube roots of the products of their proper divisors:
  1  24  30  40  42  54  56  66  70  78
 88 102 104 105 110 114 128 130 135 136
138 152 154 165 170 174 182 184 186 189
190 195 222 230 231 232 238 246 248 250
255 258 266 273 282 285 286 290 296 297
   500th: 2,526
 5,000th: 23,118
50,000th: 223,735

Factor

Works with: Factor version 0.99 2022-04-03
USING: formatting grouping io kernel lists lists.lazy math
prettyprint project-euler.common ;

: A111398 ( -- list )
    L{ 1 } 2 lfrom [ tau 8 = ] lfilter lappend-lazy ;

50 A111398 ltake list>array 10 group simple-table. nl
499 4999 49999
[ [ 1 + ] keep A111398 lnth "%5dth: %d\n" printf ] tri@
Output:
1   24  30  40  42  54  56  66  70  78
88  102 104 105 110 114 128 130 135 136
138 152 154 165 170 174 182 184 186 189
190 195 222 230 231 232 238 246 248 250
255 258 266 273 282 285 286 290 296 297

  500th: 2526
 5000th: 23118
50000th: 223735

FreeBASIC

Dim As Single limite = 500000
Dim As Integer pdc(1 To limite)
Dim As Integer i, j
For i = 1 To Ubound(pdc)
    pdc(i) = 1 
Next i
pdc(1) = 7
For i = 2 To Ubound(pdc)
    For j = i + i To Ubound(pdc) Step i
        pdc(j) += 1 
    Next j
Next i

Dim As Integer n5 = 500, cont = 0
Print "First 50 numbers which are the cube roots"
Print "of the products of their proper divisors:"
For i = 1 To Ubound(pdc)
    If pdc(i) = 7 Then
        cont += 1
        If cont <= 50 Then
            Print Using "####"; i;
            If cont Mod 10 = 0 Then Print
        Elseif cont = n5 Then
            Print Using !"\n#########th: &"; cont; i;
            n5 *= 10
        End If
    End If
Next i
Sleep
Output:
First 50 numbers which are the cube roots
of the products of their proper divisors:
   1  24  30  40  42  54  56  66  70  78
  88 102 104 105 110 114 128 130 135 136
 138 152 154 165 170 174 182 184 186 189
 190 195 222 230 231 232 238 246 248 250
 255 258 266 273 282 285 286 290 296 297

      500th: 2526
     5000th: 23118
    50000th: 223735

Forth

Works with: Gforth
Translation of: FreeBASIC
500000 constant limit
variable pdc limit cells allot

: main
  limit 0 do
    1 pdc i cells + !
  loop
  7 pdc !
  limit 2 +do
    limit i 2* 1- +do
      1 pdc i cells + +!
    j +loop
  loop
  ." First 50 numbers which are the cube roots" cr
  ." of the products of their proper divisors:" cr
  500 0
  limit 0 do
    pdc i cells + @ 7 = if
      1+
      dup 50 <= if
        i 1+ 3 .r
        dup 10 mod 0= if cr else space then
      else
        2dup = if
          cr over 5 .r ." th: " i 1+ .
          swap 10 * swap
        then
      then
    then
  loop
  2drop cr ;

main
bye
Output:
First 50 numbers which are the cube roots
of the products of their proper divisors:
  1  24  30  40  42  54  56  66  70  78
 88 102 104 105 110 114 128 130 135 136
138 152 154 165 170 174 182 184 186 189
190 195 222 230 231 232 238 246 248 250
255 258 266 273 282 285 286 290 296 297

  500th: 2526 
 5000th: 23118 
50000th: 223735 

Go

Translation of: Wren
Library: Go-rcu

The faster version.

package main

import (
    "fmt"
    "math"
    "rcu"
)

func divisorCount(n int) int {
    k := 1
    if n%2 == 1 {
        k = 2
    }
    count := 0
    sqrt := int(math.Sqrt(float64(n)))
    for i := 1; i <= sqrt; i += k {
        if n%i == 0 {
            count++
            j := n / i
            if j != i {
                count++
            }
        }
    }
    return count
}

func main() {
    var numbers50 []int
    count := 0
    for n := 1; count < 50000; n++ {
        dc := divisorCount(n)
        if n == 1 || dc == 8 {
            count++
            if count <= 50 {
                numbers50 = append(numbers50, n)
                if count == 50 {
                    rcu.PrintTable(numbers50, 10, 3, false)
                }
            } else if count == 500 {
                fmt.Printf("\n500th   : %s", rcu.Commatize(n))
            } else if count == 5000 {
                fmt.Printf("\n5,000th : %s", rcu.Commatize(n))
            } else if count == 50000 {
                fmt.Printf("\n50,000th: %s\n", rcu.Commatize(n))
            }
        }
    }
}
Output:
  1  24  30  40  42  54  56  66  70  78 
 88 102 104 105 110 114 128 130 135 136 
138 152 154 165 170 174 182 184 186 189 
190 195 222 230 231 232 238 246 248 250 
255 258 266 273 282 285 286 290 296 297 

500th   : 2,526
5,000th : 23,118
50,000th: 223,735

J

Note that the cube root of the product of the proper divisors is the fourth root of the product of all divisors of a positive integer. That said, we do not need to find roots here -- we only need to inspect the powers of the prime factors of the number:

F=: 1 8 e.~_ */@:>:@q:"0 ]

Task examples:

   N=: 1+I.F 1+i.2^18
   5 10$N
  1  24  30  40  42  54  56  66  70  78
 88 102 104 105 110 114 128 130 135 136
138 152 154 165 170 174 182 184 186 189
190 195 222 230 231 232 238 246 248 250
255 258 266 273 282 285 286 290 296 297
   499{N
2526
   4999{N
23118
   49999{N
223735

Julia

using Printf

function proper_divisors(n::Integer)
    uptosqr = 1:isqrt(n)
    divs = Iterators.filter(uptosqr) do m
        n % m == 0
    end
    pd_pairs = Iterators.map(divs) do d1
        d2 = div(n, d1)
        (d1 == d2 || d1 == 1) ? (d1,) : (d1, d2)
    end
    return Iterators.flatten(pd_pairs)
end

function show_divisors_print(n::Integer, found::Integer)
    if found <= 50
        @printf "%5i" n
        if found % 10 == 0
            println()
        end
    elseif found in (500, 5_000, 50_000)
        th = "$(found)th: "
        @printf "%10s%i\n" th n
    end
end

function show_divisors()
    found = 0
    n = 1
    while found <= 50_000
        pds = proper_divisors(n)
        if n^3 == prod(pds)
            found += 1
            show_divisors_print(n, found)
        end
        n += 1
    end
end

show_divisors()
Output:
    1   24   30   40   42   54   56   66   70   78
   88  102  104  105  110  114  128  130  135  136
  138  152  154  165  170  174  182  184  186  189
  190  195  222  230  231  232  238  246  248  250
  255  258  266  273  282  285  286  290  296  297
   500th: 2526
  5000th: 23118
 50000th: 223735

jq

Works with: jq

(subject to IEEE 754 limitations)

Also works with gojq, the Go implementation of jq (without such limitations)

Generic utilities

# Notice that `prod(empty)` evaluates to 1.
def prod(s): reduce s as $x (1; . * $x);

# Output: the unordered stream of proper divisors of .
def proper_divisors:
  . as $n
  | if $n > 1 then 1,
      ( range(2; 1 + (sqrt|floor)) as $i
        | if ($n % $i) == 0 then $i,
            (($n / $i) | if . == $i then empty else . end)
         else empty
         end)
    else empty
    end;

The Task

# Emit a stream beginning with 1 and followed by the integers that are
# cube-roots of their proper divisors
def numbers_being_cube_roots_of_their_proper_divisors:
  range(1; infinite)
    | select(prod(proper_divisors) == .*.*.);

# print first 50 and then the 500th, 5000th, and $limit-th
def harness(generator; $limit):
  label $out
  | foreach generator as $n (
      { numbers50: [],
        count: 0 };
      .emit = null
      | .count += 1
      | if .count > $limit
        then break $out
        else if .count <= 50
             then .numbers50 += [$n]
             else .
             end
        | if .count == 50 
          then .emit = .numbers50
          elif .count | IN(500, 5000, $limit)
          then .emit = "\(.count)th: \($n)"
          else .
          end
        end )
  | .emit // empty ;

"First 50 numbers which are the cube roots of the products of their proper divisors:",
harness(numbers_being_cube_roots_of_their_proper_divisors; 50000)
Output:
First 50 numbers which are the cube roots of the products of their proper divisors:
[1,24,30,40,42,54,56,66,70,78,88,102,104,105,110,114,128,130,135,136,138,152,154,165,170,174,182,184,186,189,190,195,222,230,231,232,238,246,248,250,255,258,266,273,282,285,286,290,296,297]
500th: 2526
5000th: 23118
50000th: 223735

Lua

The OEIS page gives a formula of "1 together with numbers with 8 divisors", so that's what we test.

function is_1_or_has_eight_divisors (n)
    if n == 1 then return true end
    local divCount, sqr = 2, math.sqrt(n)
    for d = 2, sqr do
        if n % d == 0 then
            divCount = d == sqr and divCount + 1 or divCount + 2
        end
        if divCount > 8 then return false end
    end
    return divCount == 8
end

-- First 50
local count, x = 1, 0
while count <= 50 do
    x = x + 1
    if is_1_or_has_eight_divisors(x) then
        io.write(x .. " ")
        count = count + 1
    end
end

-- 500th, 5,000th and 50,000th
while count <= 50000 do
    x = x + 1
    if is_1_or_has_eight_divisors(x) then
        if count == 500 then print("\n\n500th: " .. x) end
        if count == 5000 then print("5,000th: " .. x) end
        count = count + 1
    end
end
print("50,000th: " .. x)
Output:
1 24 30 40 42 54 56 66 70 78 88 102 104 105 110 114 128 130 135 136 138 152 154 165 170 174 182 184 186 189 190 195 222 230 231 232 238 246 248 250 255 258 266 273 282 285 286 290 296 297

500th: 2526
5,000th: 23118
50,000th: 223735

Pascal

Free Pascal

As stated, the result are the numbers with 8 = 2^3 divisors.Therefor only numbers with prime decomposition of the form:
8 = 2^3 ( all powers+1 must be a power of 2 )
a^7 , a^3*b ( a <> b) and a*b*c (a>b>c ( oBdA ) ), of cause all prime
Avoid sorting by using an array of limit size for only marking those numbers.

program Root3rd_divs_n.pas;
{$IFDEF FPC}
  {$MODE DELPHI}  {$OPTIMIZATION ON,ALL}  {$COPERATORS ON}
{$ENDIF}
{$IFDEF WINDOWS}
  {$APPTYPE CONSOLE}
{$ENDIF}
uses
  sysutils
{$IFDEF WINDOWS},Windows{$ENDIF}
  ;
const
  limit = 110*1000 *1000;
var
  sol : array [0..limit] of byte;
  primes : array of Uint32;
  gblCount: Uint64;

procedure SievePrimes(lmt:Uint32);
var
  sieve : array of byte;
  p,i,delta : NativeInt;
Begin
  setlength(sieve,lmt DIV 2);
  //estimate count of prime
  i := trunc(lmt/(ln(lmt)-1.1));
  setlength(primes,i);
  p := 1;
  repeat
    delta := 2*p+1;
    // ((2*p+1)^2 ) -1)/ 2 = ((4*p*p+4*p+1) -1)/2 = 2*p*(p+1)
    i := 2*p*(p+1);
    if i>High(sieve) then
      BREAK;
    while i <= High(sieve) do
    begin
      sieve[i] := 1;
      i += delta;
    end;
    repeat
      inc(p);
    until sieve[p] = 0;
  until false;

  primes[0] := 2;
  i := 1;
  For p := 1 to High(sieve) do
    if  sieve[p] = 0 then
    begin
      primes[i] := 2*p+1;
      inc(i);
    end;
  setlength(primes,i);
end;

procedure Get_a7;
var
  q3,n : UInt64;
  i : nativeInt;
begin
  sol[1] := 1;
  gblCount +=1;
  For i := 0 to High(primes) do
  begin
    q3 := primes[i];
    n := sqr(sqr(sqr(q3))) DIV q3;
    if n > limit then
      break;
    sol[n] := 1;
    gblCount +=1;
  end;
end;

procedure Get_a3_b;
var
  i,j,q3,n : nativeInt;
begin
  For i := 0 to High(primes) do
  begin
    q3 := primes[i];
    q3 := q3*q3*q3;
    if q3 > limit then
      BREAK;
    For j := 0 to High(primes) do
    begin
      if j = i then
        continue;
      n := Primes[j]*q3;
      if n > limit then
        BREAK;
      sol[n] := 1;
      gblCount +=1;
    end;
  end;
end;

procedure Get_a_b_c;
var
  i,j,k,q1,q2,n : nativeInt;
begin
  For i := 0 to High(primes)-2 do
  begin
    q1 := primes[i];
    For j := i+1 to High(primes)-1 do
    Begin
      q2:= q1*Primes[j];
      if q2 > limit then
        BREAK;
      For k := j+1 to High(primes) do
      Begin
        n:= q2*Primes[k];
        if n > limit then
          BREAK;
        sol[n] := 1;
        gblCount +=1;
      end;
    end;
  end;
end;

var
  i,cnt,lmt : Int32;
begin
  SievePrimes(limit DIV 8);// 2^3 * (prime > 2)

  gblCount := 0;
  Get_a7;
  Get_a3_b;
  Get_a_b_c;

  Writeln('First 50 numbers which are the cube roots of the products of their proper divisors:');
  cnt := 0;
  i := 1;

  while cnt < 50 do
  begin
    if sol[i] <> 0 then
    begin
      write(i:5);
      cnt +=1;
      if cnt mod 10 = 0 then writeln;
    end;
    inc(i);
  end;
  dec(i);
  lmt := 500;
  repeat
    while cnt < lmt do
    begin
      inc(i);
      if sol[i] <> 0 then
        cnt +=1;
      if i > limit then
        break;
    end;
    if i > limit then
      break;
    writeln(lmt:8,'.th:',i:12);
    lmt *= 10;
  until lmt> limit;
  writeln('Total found: ', gblCount, ' til ',limit);
end.
@TIO.RUN:
First 50 numbers which are the cube roots of the products of their proper divisors:
    1   24   30   40   42   54   56   66   70   78
   88  102  104  105  110  114  128  130  135  136
  138  152  154  165  170  174  182  184  186  189
  190  195  222  230  231  232  238  246  248  250
  255  258  266  273  282  285  286  290  296  297
     500.th:        2526
    5000.th:       23118
   50000.th:      223735
Total found: 243069 til 1100000

Real time: 0.144 s CPU share: 99.00 %
..
  500000.th:     2229229
 5000000.th:    22553794
Total found: 23797493 til 110000000

Real time: 1.452 s CPU share: 99.05 %

Perl

Library: ntheory
use v5.36;
use ntheory 'divisors';
use List::Util <max product>;

sub table ($c, @V) { my $t = $c * (my $w = 2 + length max @V); ( sprintf( ('%'.$w.'d')x@V, @V) ) =~ s/.{1,$t}\K/\n/gr }
sub proper_divisors ($n) { my @d = divisors($n); pop @d; @d }

sub is_N ($n) {
    state @N = 1;
    state $p = 1;
    do { push @N, $p if ++$p**3 == product proper_divisors($p); } until $N[$n];
    $N[$n-1]
}

say table 10, map { is_N $_ } 1..50;
printf "%5d %d\n", $_, is_N $_ for 500, 5000, 50000;
Output:
    1   24   30   40   42   54   56   66   70   78
   88  102  104  105  110  114  128  130  135  136
  138  152  154  165  170  174  182  184  186  189
  190  195  222  230  231  232  238  246  248  250
  255  258  266  273  282  285  286  290  296  297

  500 2526
 5000 23118
50000 223735

Phix

with javascript_semantics
sequence n50 = {}
integer count = 0, n = 1, n5 = 500
atom t0 = time()
printf(1,"First 50 numbers which are the cube roots\n")
printf(1," of the products of their proper divisors:\n")
while count<500000 do
--  if product(factors(n))=n*n*n then
    if n=1 or length(factors(n))=6 then -- safer/smidge faster
        count += 1
        if count<=50 then
            n50 &= n
            if count=50 then
                printf(1,"%s\n",join_by(n50,1,10,"",fmt:="%4d"))
            end if
        elsif count=n5 then
            printf(1,"%,8dth: %,d (%s)\n",{n5,n,elapsed(time()-t0)})
            n5 *= 10
        end if
    end if
    n += 1
end while

By default factors() does not include 1 and n, or I could use length(factors(n,1))=8, both 25% faster than using product(), which exceeds precision limits on 32-bit for n=180, and on 64bit for n=240, though since you'll get exactly the same precision error on the n*n*n it kinda "worked by chance".

Output:
First 50 numbers which are the cube roots
 of the products of their proper divisors:
   1  24  30  40  42  54  56  66  70  78
  88 102 104 105 110 114 128 130 135 136
 138 152 154 165 170 174 182 184 186 189
 190 195 222 230 231 232 238 246 248 250
 255 258 266 273 282 285 286 290 296 297

     500th: 2,526 (0.0s)
   5,000th: 23,118 (0.0s)
  50,000th: 223,735 (0.6s)
 500,000th: 2,229,229 (14.1s)

For comparison, the gcc/C++ entry gets the 500kth about 8* faster, roughly about what I'd expect... 🤥

PL/M

Solves the basic task by counting the proper divisors as per the OEIS page (the 50 000th number is too large for 16 bits).

Works with: 8080 PL/M Compiler

... under CP/M (or an emulator)

100H: /* FIND NUMBERS THAT ARE THE CUBE ROOT OF THEIR PROPER DIVISORS        */

   DECLARE FALSE LITERALLY '0', TRUE LITERALLY '0FFH';

   /* CP/M SYSTEM CALL AND I/O ROUTINES                                      */
   BDOS:      PROCEDURE( FN, ARG ); DECLARE FN BYTE, ARG ADDRESS; GOTO 5; END;
   PR$CHAR:   PROCEDURE( C ); DECLARE C BYTE;    CALL BDOS( 2, C );  END;
   PR$STRING: PROCEDURE( S ); DECLARE S ADDRESS; CALL BDOS( 9, S );  END;
   PR$NL:     PROCEDURE;   CALL PR$CHAR( 0DH ); CALL PR$CHAR( 0AH ); END;
   PR$NUMBER: PROCEDURE( N ); /* PRINTS A NUMBER IN THE MINIMUN FIELD WIDTH  */
      DECLARE N ADDRESS;
      DECLARE V ADDRESS, N$STR ( 6 )BYTE, W BYTE;
      V = N;
      W = LAST( N$STR );
      N$STR( W ) = '$';
      N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
      DO WHILE( ( V := V / 10 ) > 0 );
         N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
      END;
      CALL PR$STRING( .N$STR( W ) );
   END PR$NUMBER;
   /* END SYSTEM CALL AND I/O ROUTINES                                       */

   DECLARE PDC  ( 5000 )ADDRESS;
   DECLARE ( I, I2, J, COUNT ) ADDRESS;

   DO I = 1 TO LAST( PDC ); PDC( I ) = 1; END;
   DO I = 2 TO LAST( PDC );
      I2 = I + I;
      DO J = I2 TO LAST( PDC ) BY I;
         PDC( J ) = PDC( J ) + 1;
      END;
   END;
   PDC( 1 ) = 7;

   COUNT, I = 0;
   DO WHILE COUNT < 500 AND I < LAST( PDC );
      I = I  + 1;
      IF PDC( I ) = 7 THEN DO;
         IF ( COUNT := COUNT + 1 ) < 51 THEN DO;
            CALL PR$CHAR( ' ' );
            IF I <   10 THEN CALL PR$CHAR( ' ' );
            IF I <  100 THEN CALL PR$CHAR( ' ' );
            IF I < 1000 THEN CALL PR$CHAR( ' ' );
            CALL PR$NUMBER( I );
            IF COUNT MOD 10 = 0 THEN CALL PR$NL;
            END;
         ELSE IF COUNT = 500 THEN DO;
            CALL PR$NUMBER( COUNT );
            CALL PR$STRING( .'TH: $' );
            CALL PR$NUMBER( I );
            CALL PR$NL;
         END;
      END;
   END;

EOF
Output:
    1   24   30   40   42   54   56   66   70   78
   88  102  104  105  110  114  128  130  135  136
  138  152  154  165  170  174  182  184  186  189
  190  195  222  230  231  232  238  246  248  250
  255  258  266  273  282  285  286  290  296  297
500TH: 2526

Alternative version, calculating the proper divisor products and cubes modulo 65536 (as PL/M uses unsigned 16 bit arithmetic and doesn't check for overflow, all calculations are modulo 65536). This is sufficient to detect the numbers apart from those where the product/cube is 0 mod 65536. To handle the zero cases, it uses Rdm's hints (see J sample and Discussion page) that if x = n^3 then the prime factors of x must be the same as the prime factors of n and the prime factors of x must have powers three times those of n - additionally, we don't have to calclate the product of the proper divisors, we only need to factorise them and aggregate their powers.
Using this technique, the first 50 numbers can be found in a few seconds but to find the 5000th takes several minutes. As the candidates increase, the proportion that have cubes that are 0 mod 65536 increases and the factorisation and aggregation is quite expensive (the code could doubtless be improved).

Works with: 8080 PL/M Compiler

... under CP/M (or an emulator)

100H: /* FIND NUMBERS THAT ARE THE CUBE ROOT OF THEIR PROPER DIVISORS        */

   DECLARE FALSE LITERALLY '0', TRUE LITERALLY '0FFH';

   /* CP/M SYSTEM CALL AND I/O ROUTINES                                      */
   BDOS:      PROCEDURE( FN, ARG ); DECLARE FN BYTE, ARG ADDRESS; GOTO 5; END;
   PR$CHAR:   PROCEDURE( C ); DECLARE C BYTE;    CALL BDOS( 2, C );  END;
   PR$STRING: PROCEDURE( S ); DECLARE S ADDRESS; CALL BDOS( 9, S );  END;
   PR$NL:     PROCEDURE;   CALL PR$CHAR( 0DH ); CALL PR$CHAR( 0AH ); END;
   PR$NUMBER: PROCEDURE( N ); /* PRINTS A NUMBER IN THE MINIMUN FIELD WIDTH  */
      DECLARE N ADDRESS;
      DECLARE V ADDRESS, N$STR ( 6 )BYTE, W BYTE;
      V = N;
      W = LAST( N$STR );
      N$STR( W ) = '$';
      N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
      DO WHILE( ( V := V / 10 ) > 0 );
         N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
      END;
      CALL PR$STRING( .N$STR( W ) );
   END PR$NUMBER;
   /* END SYSTEM CALL AND I/O ROUTINES                                       */

   DECLARE MAX$PF LITERALLY '200';

   /* SETS PF$A AND PFC$A TO THE PRIME FACTORS AND COUNTS OF F, THE NUMBER   */
   /* NUMBER OF FACTORS IS RETURNED IN PF$POS$PTR                            */
   /* PF$POS$PTR MUST BE INITIALISED BEFORE THE CALL                         */
   FACTORISE: PROCEDURE( F, PF$POS$PTR, PF$A, PFC$A );
      DECLARE ( F, PF$POS$PTR, PF$A, PFC$A ) ADDRESS;
      DECLARE PF$POS BASED PF$POS$PTR ADDRESS;
      DECLARE PF  BASED PF$A  ( 0 )ADDRESS;
      DECLARE PFC BASED PFC$A ( 0 )ADDRESS;

      DECLARE ( FF, V, POWER ) ADDRESS;

      /* START WITH 2                                                        */
      V  = F;
      FF = 2;
      DO WHILE V > 1;
         IF V MOD FF = 0 THEN DO;
            /* FF IS A PRIME FACTOR OF V                                     */
            DECLARE P ADDRESS;
            POWER = 0;
            DO WHILE V MOD FF = 0;
               POWER = POWER + 1;
               V     = V / FF;
            END;
            P = 0;
            DO WHILE P < PF$POS AND PF( P ) <> FF;
               P = P + 1;
            END;
            IF P >= PF$POS THEN DO;
               /* FIRST TIME FF HAS APPEARED AS A PRIME FACTOR               */
               P        = PF$POS;
               PFC( P ) = 0;
               PF$POS   = PF$POS + 1;
            END;
            PF(  P ) = FF;
            PFC( P ) = PFC( P ) + POWER;
         END;
         IF FF = 2 THEN FF = 3; ELSE FF = FF + 2;
      END;
   END FACTORISE;

   /* RETURNS TRUE  THE PRODUCT OF THE PROPER DIVISORS OF N IS THE CUBE OF N */
   /*         FALSE OTHERWISE                                                */
   PD$PRODUCT$IS$CUBE: PROCEDURE( N )ADDRESS;
      DECLARE N ADDRESS;
      DECLARE IS$CUBE BYTE;

      IF N < 2
      THEN IS$CUBE = TRUE;
      ELSE DO;
         DECLARE ( I, PF$POS, NF$POS ) ADDRESS;
         DECLARE ( PF, PFC, NF, NFC ) ( MAX$PF ) ADDRESS;

         PFC( 0 ), PF( 0 ), PF$POS, NFC( 0 ), NF( 0 ), NF$POS = 0;

         /* FACTORISE N                                                      */
         CALL FACTORISE( N, .NF$POS, .NF, .NFC );
         /* COPY FACTORS BUT ZERO THE COUNTS SO WE CAN EASILY CHECK THE      */
         /* FACTORS OF N ARE THE SAME AS THOSE OF THE PROPER DIVISOR PRODUCT */
         DO I = 0 TO NF$POS - 1;
            PF(  I ) = NF( I );
            PFC( I ) = 0;
         END;

         /* FIND THE PROPER DIVISORS AND FACTORISE THEM, ACCUMULATING THE    */
         /* PRIME FACTOR COUNTS                                              */
         I = 2;
         DO WHILE I * I <= N;
            IF N MOD I = 0 THEN DO;
               /* I IS A DIVISOR OF N                                        */
               DECLARE ( F, G ) ADDRESS;
               F = I;                                        /* FIRST FACTOR */
               G = N / F;                                   /* SECOND FACTOR */
               /* FACTORISE F, COUNTING THE PRIME FACTORS                    */
               CALL FACTORISE( F, .PF$POS, .PF, .PFC );
               /* FACTORISE G, IF IT IS NOT THE SAME AS F                    */
               IF F <> G THEN CALL FACTORISE( G, .PF$POS, .PF, .PFC );
            END;
            I = I + 1;
         END;

         IS$CUBE = PF$POS = NF$POS;
         IF IS$CUBE THEN DO;
            /* N AND ITS PROPER DIVISOR PRODUCT HAVE THE SAME PRIME FACTOR   */
            /* COUNT - CHECK THE PRIME FACTLORS ARE THE SAME AND THAT THE    */
            /* PRODUCTS FACTORS APPEAR 3 TIMEs THOSE OF N                    */
            I = 0;
            DO WHILE I < PF$POS AND IS$CUBE;
               IS$CUBE = ( PF(  I ) = NF(  I )     )
                     AND ( PFC( I ) = NFC( I ) * 3 );
               I = I + 1;
            END;
         END;
      END;
      RETURN IS$CUBE;
   END;

   /* RETURNS THE PROPER DIVISOR PRODUCT OF N, MOD 65536                     */
   PDP: PROCEDURE( N )ADDRESS;
      DECLARE N ADDRESS;
      DECLARE ( I, I2, PRODUCT ) ADDRESS;

      PRODUCT = 1;
      I       = 2;
      DO WHILE ( I2 := I * I ) <= N;
         IF N MOD I = 0 THEN DO;
            PRODUCT = PRODUCT * I;
            IF I2 <> N THEN DO;
               PRODUCT = PRODUCT * ( N / I );
            END;
         END;
         I = I + 1;
      END;
      RETURN PRODUCT;
   END PDP;

   DECLARE ( I, I3, J, COUNT ) ADDRESS;

   COUNT, I = 0;
   DO WHILE COUNT < 5$000;
      I  = I  + 1;
      I3 = I * I * I;
      IF PDP( I ) = I3 THEN DO;
         /* THE PROPER DIVISOR PRODUCT MOD 65536 IS THE SAME AS N CUBED ALSO */
         /* MOD 65536, IF THE CUBE IS 0 MOD 65536, WE NEED TO CHECK THE      */
         /* PRIME FACTORS                                                    */
         DECLARE IS$NUMBER BYTE;
         IF I3 <> 0 THEN IS$NUMBER = TRUE;
                    ELSE IS$NUMBER = PD$PRODUCT$IS$CUBE( I );
         IF IS$NUMBER THEN DO;
            IF ( COUNT := COUNT + 1 ) < 51 THEN DO;
               CALL PR$CHAR( ' ' );
               IF I <   10 THEN CALL PR$CHAR( ' ' );
               IF I <  100 THEN CALL PR$CHAR( ' ' );
               IF I < 1000 THEN CALL PR$CHAR( ' ' );
               CALL PR$NUMBER( I );
               IF COUNT MOD 10 = 0 THEN CALL PR$NL;
               END;
            ELSE IF COUNT = 500 OR COUNT = 5000 THEN DO;
               IF COUNT < 1000 THEN CALL PR$CHAR( ' ' );
               CALL PR$STRING( .'    $' );
               CALL PR$NUMBER( COUNT );
               CALL PR$STRING( .'TH: $' );
               CALL PR$NUMBER( I );
               CALL PR$NL;
            END;
         END;
      END;
   END;

EOF
Output:
    1   24   30   40   42   54   56   66   70   78
   88  102  104  105  110  114  128  130  135  136
  138  152  154  165  170  174  182  184  186  189
  190  195  222  230  231  232  238  246  248  250
  255  258  266  273  282  285  286  290  296  297
     500TH: 2526
    5000TH: 23118

Python

''' Rosetta code rosettacode.org/wiki/Numbers_which_are_the_cube_roots_of_the_product_of_their_proper_divisors '''

from functools import reduce
from sympy import divisors


FOUND = 0
for num in range(1, 1_000_000):
    divprod = reduce(lambda x, y: x * y, divisors(num)[:-1])if num > 1 else 1
    if num * num * num == divprod:
        FOUND += 1
        if FOUND <= 50:
            print(f'{num:5}', end='\n' if FOUND % 10 == 0 else '')
        if FOUND == 500:
            print(f'\nFive hundreth: {num:,}')
        if FOUND == 5000:
            print(f'\nFive thousandth: {num:,}')
        if FOUND == 50000:
            print(f'\nFifty thousandth: {num:,}')
            break
Output:
    1   24   30   40   42   54   56   66   70   78
   88  102  104  105  110  114  128  130  135  136
  138  152  154  165  170  174  182  184  186  189
  190  195  222  230  231  232  238  246  248  250
  255  258  266  273  282  285  286  290  296  297

Five hundreth: 2,526

Five thousandth: 23,118

Fifty thousandth: 223,735

OEIS algorithm (see talk pages)

from sympy import divisors

numfound = 0
for num in range(1, 1_000_000):
    if num == 1 or len(divisors(num)) == 8:
        numfound += 1
        if numfound <= 50:
            print(f'{num:5}', end='\n' if numfound % 10 == 0 else '')
        if numfound == 500:
            print(f'\nFive hundreth: {num:,}')
        if numfound == 5000:
            print(f'\nFive thousandth: {num:,}')
        if numfound == 50000:
            print(f'\nFifty thousandth: {num:,}')
            break

Output same as first algorithm.

Quackery

factors is defined at Factors of an integer#Quackery.

  ' [ 1 ] 1
  [ 1+ dup
    factors size 8 = until
    tuck join swap
    over size 50000 = until ]
  drop
  dup 50 split drop echo cr cr
  dup 499 peek echo cr cr
  dup 4999 peek echo cr cr
      49999 peek echo
Output:
[ 1 24 30 40 42 54 56 66 70 78 88 102 104 105 110 114 128 130 135 136 138 152 154 165 170 174 182 184 186 189 190 195 222 230 231 232 238 246 248 250 255 258 266 273 282 285 286 290 296 297 ]

2526

23118

223735

Raku

use Prime::Factor;
use Lingua::EN::Numbers;
my @cube-div = lazy 1, |(2..∞).hyper.grep: { .³ == [×] .&proper-divisors }

put "First 50 numbers which are the cube roots of the products of their proper divisors:\n" ~
  @cube-div[^50]».fmt("%3d").batch(10).join: "\n";

printf "\n%16s: %s\n", .Int.&ordinal.tc, comma @cube-div[$_ - 1] for 5e2, 5e3, 5e4;
Output:
First 50 numbers which are the cube roots of the products of their proper divisors:
  1  24  30  40  42  54  56  66  70  78
 88 102 104 105 110 114 128 130 135 136
138 152 154 165 170 174 182 184 186 189
190 195 222 230 231 232 238 246 248 250
255 258 266 273 282 285 286 290 296 297

  Five hundredth: 2,526

 Five thousandth: 23,118

Fifty thousandth: 223,735

Ruby

require 'prime'

def tau(n) = n.prime_division.inject(1){|res, (d, exp)| res *= exp+1}
a111398 = [1].chain (1..).lazy.select{|n| tau(n) == 8}

puts "The first 50 numbers which are the cube roots of the products of their proper divisors:"
p a111398.first(50)
[500, 5000, 50000].each{|n| puts "#{n}th: #{a111398.drop(n-1).next}" }
Output:
The first 50 numbers which are the cube roots of the products of their proper divisors:
[1, 24, 30, 40, 42, 54, 56, 66, 70, 78, 88, 102, 104, 105, 110, 114, 128, 130, 135, 136, 138, 152, 154, 165, 170, 174, 182, 184, 186, 189, 190, 195, 222, 230, 231, 232, 238, 246, 248, 250, 255, 258, 266, 273, 282, 285, 286, 290, 296, 297]
500th: 2526
5000th: 23118
50000th: 223735

Wren

Library: Wren-math
Library: Wren-long
Library: Wren-fmt
import "./math" for Int, Nums
import "./long" for ULong, ULongs
import "./fmt" for Fmt

var numbers50 = []
var count = 0
var n = 1
var ln
var maxSafe = Num.maxSafeInteger.cbrt.floor
System.print("First 50 numbers which are the cube roots of the products of their proper divisors:")
while (true) {
    var pd = Int.properDivisors(n)
    if ((n <= maxSafe && Nums.prod(pd) == n * n * n) ||
        (ULongs.prod(pd.map { |f| ULong.new(f) }) == (ln = ULong.new(n)) * ln * ln )) {
        count = count + 1
        if (count <= 50) {
            numbers50.add(n)
            if (count == 50) Fmt.tprint("$3d", numbers50, 10)
        } else if (count == 500) {
            Fmt.print("\n500th   : $,d", n)
        } else if (count == 5000) {
            Fmt.print("5,000th : $,d", n)
        } else if (count == 50000) {
            Fmt.print("50,000th: $,d", n)
            break
        }
    }
    n = n + 1
}
Output:
First 50 numbers which are the cube roots of the products of their proper divisors:
  1  24  30  40  42  54  56  66  70  78 
 88 102 104 105 110 114 128 130 135 136 
138 152 154 165 170 174 182 184 186 189 
190 195 222 230 231 232 238 246 248 250 
255 258 266 273 282 285 286 290 296 297 

500th   : 2,526
5,000th : 23,118
50,000th: 223,735

Alternatively and a bit quicker, inspired by the C++ entry and the OEIS comment that (apart from 1) n must have exactly 8 divisors:

import "./fmt" for Fmt

var divisorCount = Fn.new { |n|
    var i = 1
    var k = (n%2 == 0) ? 1 : 2
    var count = 0
    while (i <= n.sqrt) {
        if (n%i == 0) {
            count = count + 1
            var j = (n/i).floor
            if (j != i) count = count + 1
        }
        i = i + k
    }
    return count
}

var numbers50 = []
var count = 0
var n = 1
System.print("First 50 numbers which are the cube roots of the products of their proper divisors:")
while (true) {
    var dc = divisorCount.call(n)
    if (n == 1 || dc == 8) {
        count = count + 1
        if (count <= 50) {
            numbers50.add(n)
            if (count == 50) Fmt.tprint("$3d", numbers50, 10)
        } else if (count == 500) {
            Fmt.print("\n500th   : $,d", n)
        } else if (count == 5000) {
            Fmt.print("5,000th : $,d", n)
        } else if (count == 50000) {
            Fmt.print("50,000th: $,d", n)
            break
        }
    }
    n = n + 1
}
Output:
Same as first version.

XPL0

Translation of: C++
func DivisorCount(N);           \Return count of divisors
int N, Total, P, Count;
[Total:= 1;
while (N&1) = 0 do
    [Total:= Total+1;
    N:= N>>1;
    ];
P:= 3;
while P*P <= N do
    [Count:= 1;
    while rem(N/P) = 0 do
        [Count:= Count+1;
        N:= N/P;
        ];
    Total:= Total*Count;
    P:= P+2;
    ];
if N > 1 then
    Total:= Total*2;
return Total;
];

int N, Count;
[Text(0, "First 50 numbers which are the cube roots of the products of ");
 Text(0, "their proper divisors:^m^j");
N:= 1;  Count:= 0;
repeat  if N = 1 or DivisorCount(N) = 8 then
            [Count:= Count+1;
            if Count <= 50 then
                [Format(4, 0);
                RlOut(0, float(N));
                if rem(Count/10) = 0 then CrLf(0);
                ]
            else if Count = 500 or Count = 5000 or Count = 50000 then
                [Format(6, 0);
                RlOut(0, float(Count));
                Text(0, "th: ");
                IntOut(0, N);
                CrLf(0);
                ];
            ];                  
        N:= N+1;
until   Count >= 50000;
]
Output:
First 50 numbers which are the cube roots of the products of their proper divisors:
   1  24  30  40  42  54  56  66  70  78
  88 102 104 105 110 114 128 130 135 136
 138 152 154 165 170 174 182 184 186 189
 190 195 222 230 231 232 238 246 248 250
 255 258 266 273 282 285 286 290 296 297
   500th: 2526
  5000th: 23118
 50000th: 223735