Literals/Integer: Difference between revisions

From Rosetta Code
Content added Content deleted
(Added 11l)
(Added Quackery.)
Line 1,644: Line 1,644:


In Python 2.x you may also specify a <tt>long</tt> literal by adding an <tt>l</tt> or <tt>L</tt> (the latter form is preferred as the former looks like a "1") to the end (ex: <tt>574298540721727L</tt>), but this is optional, as integer literals that are too large for an <tt>int</tt> will be interpreted as a <tt>long</tt>.
In Python 2.x you may also specify a <tt>long</tt> literal by adding an <tt>l</tt> or <tt>L</tt> (the latter form is preferred as the former looks like a "1") to the end (ex: <tt>574298540721727L</tt>), but this is optional, as integer literals that are too large for an <tt>int</tt> will be interpreted as a <tt>long</tt>.

=={{header|Quackery}}==

The default base for the Quackery compiler is decimal. This can be overridden for a single hexadecimal number with the building word (compiler directive) <code>hex</code> like this; <code>hex DEFACEABADFACADE</code>.

The default base can be overridden for a section of code using the compiler directive <code>now!</code> like this;

<lang Quackery>[ 2 base put ] now!

( The Quackery compiler now expects numeric literals to be in binary )

[ base release ] now!

( The Quackery compiler now expects numeric literals to be whichever
base they were previously. The default base is decimal. )</lang>

If a new compiler directive akin to <code>hex</code> is required, say to allow occasional octal literals in the form <code>octal 45</code>, the compiler can be extended like this;

<lang Quackery> [ 8 base put
nextword dup
$ '' = if
[ $ '"octal" needs a number after it.'
message put bail ]
dup $->n iff
[ nip swap dip join ]
else
[ drop
char " swap join
$ '" is not octal.'
join message put bail ]
base release ] builds octal ( [ $ --> [ $ )</lang>


=={{header|R}}==
=={{header|R}}==

Revision as of 09:22, 23 January 2021

Task
Literals/Integer
You are encouraged to solve this task according to the task description, using any language you may know.

Some programming languages have ways of expressing integer literals in bases other than the normal base ten.


Task

Show how integer literals can be expressed in as many bases as your language allows.


Note:   this should not involve the calling of any functions/methods, but should be interpreted by the compiler or interpreter as an integer written to a given base.

Also show any other ways of expressing literals, e.g. for different types of integers.


Related task



11l

<lang 11l>print(255) // decimal literal print(0000'00FF) // hexadecimal literal print(00'FF) // short hexadecimal literal print(F'F) // ultrashort (single-byte) hexadecimal literal print(377o) // octal literal print(1111'1111b) // binary literal print(255'000) // decimal literal</lang>

Output:
255
255
255
255
255
255
255000

AArch64 Assembly

Supported integer literals may differ across assemblers.

GNU assembler supports decimal, binary (prefix 0b), octal (prefix 0), hexadecimal (prefix 0x), and ASCII value of a given character (a single quote followed by an ASCII character, no closing quote).

<lang ARM_Assembly>.equ STDOUT, 1 .equ SVC_WRITE, 64 .equ SVC_EXIT, 93

.text .global _start

_start: stp x29, x30, [sp, -16]! mov x29, sp mov x0, #123 // decimal bl print_uint64 mov x0, #0b01111011 // binary bl print_uint64 mov x0, #0173 // octal bl print_uint64 mov x0, #0x7b // hexadecimal bl print_uint64 mov x0, #'{ // ascii value bl print_uint64 mov x0, #'\{ // ascii value in another way bl print_uint64 ldp x29, x30, [sp], 16 mov x0, #0 b _exit // exit(0);

// void print_uint64(uint64_t x) - print an unsigned integer in base 10. print_uint64: // x0 = remaining number to convert // x1 = pointer to most significant digit // x2 = 10 // x3 = x0 / 10 // x4 = x0 % 10 // compute x0 divmod 10, store a digit, repeat if x0 > 0 ldr x1, =strbuf_end mov x2, #10 1: udiv x3, x0, x2 msub x4, x3, x2, x0 add x4, x4, #48 mov x0, x3 strb w4, [x1, #-1]! cbnz x0, 1b // compute the number of digits to print, then call write() ldr x3, =strbuf_end_newline sub x2, x3, x1 mov x0, #STDOUT b _write

.data strbuf: .space 31 strbuf_end: .ascii "\n" strbuf_end_newline: .align 4

.text //////////////// system call wrappers // ssize_t _write(int fd, void *buf, size_t count) _write: stp x29, x30, [sp, -16]! mov x8, #SVC_WRITE mov x29, sp svc #0 ldp x29, x30, [sp], 16 ret

// void _exit(int retval) _exit: mov x8, #SVC_EXIT svc #0</lang>

Ada

In Ada integer literals may have the form <base>#<numeral>#. Here <base> can be from the range 2..16. For example: <lang ada>with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Test_Literals is begin

  Put (16#2D7#);
  Put (10#727#);
  Put (8#1_327#);
  Put (2#10_1101_0111#);

end Test_Literals;</lang>

Output:
        727        727        727        727

Aime

<lang aime>if ((727 == 0x2d7) && (727 == 01327)) {

   o_text("true\n");

} else {

   o_text("false\n");

}</lang>

ALGOL 68

Works with: ALGOL 68 version Revision 1 - no extensions to language used
Works with: ALGOL 68G version Any - tested with release 1.18.0-9h.tiny
Works with: ELLA ALGOL 68 version Any (with appropriate job cards) - tested with release 1.8-8d

Binary literals are of type BITS, and need to be converted to INT using the operator ABS. <lang algol68>main:(

 SHORT SHORT INT ssdec = SHORT SHORT 727,
           sshex = ABS SHORT SHORT 16r2d7,
           ssoct = ABS SHORT SHORT 8r1327,
           ssbin = ABS SHORT SHORT 2r1011010111;
 SHORT INT sdec = SHORT 727,
           shex = ABS SHORT 16r2d7,
           soct = ABS SHORT 8r1327,
           sbin = ABS SHORT 2r1011010111;
 INT dec = 727,
     hex = ABS 16r2d7,
     oct = ABS 8r1327,
     bin = ABS 2r1011010111;

 LONG INT ldec = LONG 727,
          lhex = ABS LONG 16r2d7,
          loct = ABS LONG 8r1327,
          lbin = ABS LONG 2r1011010111;

CO

 LONG LONG INT lldec = LONG LONG 727,
          llhex = ABS LONG LONG 16r2d7,
          lloct = ABS LONG LONG 8r1327,
          llbin = ABS LONG LONG 2r1011010111
  1. etc ... #

END CO

 print(("SHORT SHORT INT:", ssdec, sshex, ssoct, ssbin, new line));
 print(("      SHORT INT:", sdec, shex, soct, sbin, new line));
 print(("            INT:", dec, hex, oct, bin, new line));
 print(("       LONG INT:", ldec, lhex, loct, lbin, new line))

CO LONG LONG INT not supported by ELLA ALGOL 68RS

 print(("LONG LONG INT:", new line, lldec, new line, llhex, new line, lloct, new line, llbin, new line))
  1. etc ... #

END CO

)</lang> algol68g output:

SHORT SHORT INT:       +727       +727       +727       +727
      SHORT INT:       +727       +727       +727       +727
            INT:       +727       +727       +727       +727
       LONG INT:                                +727                                +727                                +727                                +727

algol68toc output:

SHORT SHORT INT:  -41  -41  -41  -41
      SHORT INT:   +727   +727   +727   +727
            INT:        +727        +727        +727        +727
       LONG INT:                 +727                 +727                 +727                 +727

ALGOL W

Algol W has only decimal integer literals. Hexadecimal values can be written (prefixed with #) but these are of type "bits" and the standard number function must be used to "convert" them to an integer. <lang algolw>begin

   write( 16, number( #10 ) )

end.</lang>

Output:
            16              16

AmigaE

<lang amigae>PROC main()

 IF ($2d7 = 727) AND (%001011010111 = 727) THEN WriteF('true\n')

ENDPROC</lang>

ARM Assembly

Works with: as version Raspberry Pi

<lang ARM Assembly> /* ARM assembly Raspberry PI */ /* program integer.s */

/* Constantes */ .equ STDOUT, 1 @ Linux output console .equ EXIT, 1 @ Linux syscall .equ WRITE, 4 @ Linux syscall

/*********************************/ /* Initialized data */ /*********************************/ .data iNumberBinaire: .int 0b1100100 iNumberOctal: .int 0144 iNumberDecimal: .int 100 iNumberHexa: .int 0x64


szMessResult: .ascii "Resultat = " @ message result sMessValeur: .fill 12, 1, ' '

                  .asciz "\n"

/*********************************/ /* UnInitialized data */ /*********************************/ .bss /*********************************/ /* code section */ /*********************************/ .text .global main main: @ entry of program

   push {fp,lr}      @ saves 2 registers 
   ldr r0,iAdriNumberBinaire   @ number address 
   ldr r0,[r0]                     @ load number
   ldr r1,iAdrsMessValeur                
   bl conversion10       @ call function with 2 parameter (r0,r1)
   ldr r0,iAdrszMessResult
   bl affichageMess            @ display message
   ldr r0,iAdriNumberOctal
   ldr r0,[r0]
   ldr r1,iAdrsMessValeur                
   bl conversion10       @ call function with 2 parameter (r0,r1)
   ldr r0,iAdrszMessResult
   bl affichageMess            @ display message
  ldr r0,iAdriNumberDecimal
   ldr r0,[r0]
   ldr r1,iAdrsMessValeur                
   bl conversion10       @ call function with 2 parameter (r0,r1)
   ldr r0,iAdrszMessResult
   bl affichageMess            @ display message
   ldr r0,iAdriNumberHexa
   ldr r0,[r0]
   ldr r1,iAdrsMessValeur                
   bl conversion10       @ call function with 2 parameter (r0,r1)
   ldr r0,iAdrszMessResult
   bl affichageMess            @ display message

100: @ standard end of the program

   mov r0, #0                  @ return code
   pop {fp,lr}                 @restaur 2 registers
   mov r7, #EXIT              @ request to exit program
   svc #0                       @ perform the system call

iAdriNumberBinaire: .int iNumberBinaire iAdriNumberOctal: .int iNumberOctal iAdriNumberDecimal: .int iNumberDecimal iAdriNumberHexa: .int iNumberHexa iAdrsMessValeur: .int sMessValeur iAdrszMessResult: .int szMessResult

/******************************************************************/ /* display text with size calculation */ /******************************************************************/ /* r0 contains the address of the message */ affichageMess:

   push {r0,r1,r2,r7,lr}    			/* save  registres */ 
   mov r2,#0   				/* counter length */

1: /* loop length calculation */

   ldrb r1,[r0,r2]  			/* read octet start position + index */
   cmp r1,#0       			/* if 0 its over */
   addne r2,r2,#1   			/* else add 1 in the length */
   bne 1b          			/* and loop */
                               /* so here r2 contains the length of the message */
   mov r1,r0        			/* address message in r1 */
   mov r0,#STDOUT      		/* code to write to the standard output Linux */
   mov r7, #WRITE             /* code call system "write" */
   svc #0                      /* call systeme */
   pop {r0,r1,r2,r7,lr}    				/* restaur des  2 registres */ 
   bx lr	        			/* return  */

/******************************************************************/ /* Converting a register to a decimal */ /******************************************************************/ /* r0 contains value and r1 address area */ conversion10:

   push {r1-r4,lr}    /* save registers */ 
   mov r3,r1
   mov r2,#10

1: @ start loop

   bl divisionpar10 @ r0 <- dividende. quotient ->r0 reste -> r1
   add r1,#48        @ digit	
   strb r1,[r3,r2]  @ store digit on area
   sub r2,#1         @ previous position
   cmp r0,#0         @ stop if quotient = 0 */
   bne 1b	          @ else loop
   @ and move spaves in first on area
   mov r1,#' '   @ space	

2:

   strb r1,[r3,r2]  @ store space in area
   subs r2,#1       @ @ previous position
   bge 2b           @ loop if r2 >= zéro 

100:

   pop {r1-r4,lr}    @ restaur registres 
   bx lr	          @return

/***************************************************/ /* division par 10 signé */ /* Thanks to http://thinkingeek.com/arm-assembler-raspberry-pi/* /* and http://www.hackersdelight.org/ */ /***************************************************/ /* r0 dividende */ /* r0 quotient */ /* r1 remainder */ divisionpar10:

 /* r0 contains the argument to be divided by 10 */
  push {r2-r4}   /* save registers  */
  mov r4,r0 
  ldr r3, .Ls_magic_number_10 /* r1 <- magic_number */
  smull r1, r2, r3, r0   /* r1 <- Lower32Bits(r1*r0). r2 <- Upper32Bits(r1*r0) */
  mov r2, r2, ASR #2     /* r2 <- r2 >> 2 */
  mov r1, r0, LSR #31    /* r1 <- r0 >> 31 */
  add r0, r2, r1         /* r0 <- r2 + r1 */
  add r2,r0,r0, lsl #2   /* r2 <- r0 * 5 */
  sub r1,r4,r2, lsl #1   /* r1 <- r4 - (r2 * 2)  = r4 - (r0 * 10) */
  pop {r2-r4}
  bx lr                  /* leave function */
  .align 4

.Ls_magic_number_10: .word 0x66666667


</lang>

Arturo

<lang arturo>num: 18966</lang>

AutoHotkey

<lang AutoHotkey>If (727 == 0x2d7) MsgBox true</lang>

Avail

Avail's built-in lexers recognize "traditional" binary, octal, and hexadecimal prefixes 0b, 0o, and 0x respectively: <lang Avail>Print: "0b11001101 = " ++ “0b11001101”; Print: "0o755 = " ++ “0o755”; Print: "0xDEADBEEF = " ++ “0xDEADBEEF”;</lang> Arbitrary integer bases from 2 to 36 are supported with the format digits r base. As additional digit characters are needed, they are taken from the latin alphabet in order. <lang Avail>Print: "ZZr36 = " ++ “ZZr36”;</lang> While the task limits examples to those understood by the compiler and "not involve the calling of any functions/methods", the line is not so clear cut in Avail. For example, one could define new lexers to understand new integer formats which are then accepted by the compiler, allowing for an unlimited array of integer literal kinds.

AWK

Awk has decimal literals, using the digits from 0 to 9. Literals/Floating point#AWK describes the format of these literals.

As an extension to the language, some Awk implementations also have octal or hexadecimal literals. GNU awk (gawk) has both octal and hexadecimal literals, like C. The One True Awk (nawk) only has decimal literals.

Works with: gawk version 3.1.7

<lang awk>BEGIN {

   if ( (0x2d7 == 727) &&
        (01327 == 727) ) {
       print "true with GNU awk"
   }

}</lang>

nawk parses 01327 as 1327, and parses 0x2d7 as 0 x2d7 (which is the string concatentation of "0" and variable x2d7).

<lang awk>BEGIN {

   x2d7 = "Goodbye, world!"
   print 0x2d7  # gawk prints "727", nawk prints "0Goodbye, world!"
   print 01327  # gawk prints "727", nawk prints "1327"

}</lang>

Axe

In addition to decimal integer literals, Axe supports hexadecimal and binary integers using a leading exponent operator or pi, respectively. Note that the leading E below is the small-caps E. <lang axe>123 ᴇFACE π101010</lang>

BASIC

&O = octal; &H = hexadecimal. Some flavors of BASIC also support &B = binary, but they're somewhat rare.

<lang qbasic>PRINT 17 PRINT &O21 PRINT &H11</lang> Output:

17
17
17

BaCon

BaCon allows (as it converts to C) C style integer literals. zero prefix Octal, 0x prefix Hexadecimal, no prefix Decimal, and if supported by the underlying compiler, 0b prefix for Binary. 0x and 0b can be upper case 0X and 0B. <lang freebasic>' literal integers PRINT 10 PRINT 010 PRINT 0x10 ' C compiler dependent, GCC extension PRINT 0b10</lang>

Output:
prompt$ bacon literal-integer.bac
Converting 'literal-integer.bac'... done, 6 lines were processed in 0.002 seconds.
Compiling 'literal-integer.bac'... cc  -c literal-integer.bac.c
cc -o literal-integer literal-integer.bac.o -lbacon -lm
Done, program 'literal-integer' ready.
prompt$ ./literal-integer
10
8
16
2

BBC BASIC

<lang bbcbasic> PRINT 1234 : REM Decimal

     PRINT &4D2 : REM Hexadecimal
     PRINT %10011010010 : REM Binary</lang>

Output:

      1234
      1234
      1234

IS-BASIC

<lang IS-BASIC>PRINT 17 PRINT BIN(10001) PRINT ORD(HEX$("11"))</lang>

bc

Numeric literals use the digits 0-9 and A-F (only the uppercase letters). The minus sign '-' and radix point '.' are optional. When the program encounters a numeric literal, it uses the current value of ibase.

This example shows the literal -727 in all bases from 2 to 16. (It never prints "Impossible!")

<lang bc>ibase = 2 b[10] = -1011010111 ibase = 11 /* 3 */ b[10] = -222221 ibase = 11 /* 4 */ b[10] = -23113 ibase = 11 /* 5 */ b[10] = -10402 ibase = 11 /* 6 */ b[10] = -3211 ibase = 11 /* 7 */ b[10] = -2056 ibase = 11 /* 8 */ b[10] = -1327 ibase = 11 /* 9 */ b[10] = -887 ibase = 11 /* 10 */ b[10] = -727 ibase = 11 /* 11 */ b[10] = -601 ibase = 11 /* 12 */ b[10] = -507 ibase = 11 /* 13 */ b[10] = -43C ibase = 11 /* 14 */ b[10] = -39D ibase = 11 /* 15 */ b[10] = -337 ibase = 11 /* 16 */ b[10] = -2D7

ibase = A for (i = 2; i <= 16; i++) if (b[i] != -727) "Impossible! " quit</lang>

The digits 0-9 and A-F are valid with all input bases. For example, FF from base 2 is 45 (because 15 * 2 + 15 is 45), and FF from base 10 is 165 (because 15 * 10 + 15 is 45). Most importantly, ibase = A always switches to base ten.

Befunge

While Befunge doesn't directly support numbers aside from 0-9 (base 10), characters in strings are essentially treated as base-256 numbers.

<lang befunge>" ~"..@</lang>

Output:

126 32

Bracmat

Bracmat only supports specification of numbers in base ten.

C

Leading 0 means octal, 0x or 0X means hexadecimal. Otherwise, it is just decimal.

<lang c>#include <stdio.h>

int main(void) {

 printf("%s\n",
        ( (727 == 0x2d7) && 
          (727 == 01327)    ) ? "true" : "false");
 return 0;

}</lang>

GCC supports specifying integers in binary using the 0b prefix syntax, but it's not standard. Standard C has no way of specifying integers in binary.

To specify a literal of an unsigned integer, you add the suffix "u" or "U". To specify a literal of a "long" integer, you add the suffix "l" or "L". In C99, to specify a literal of a "long long" integer, you add the suffix "ll" or "LL". (The "l" and "ll" forms are discouraged as "l" looks like the digit "1"). The "u" suffixes can be combined with "l" or "ll" suffixes for unsigned long or unsigned long long integers.

C#

C# has decimal and hexadecimal integer literals, the latter of which are prefixed with 0x: <lang csharp>int a = 42; int b = 0x2a;</lang> Literals of either form can be suffixed with U and/or L. U will cause the literal to be interpreted as an unsigned type (necessary for numbers exceeding 231 or hex literals that have a first digit larger than 7) and L signifies the use of a long type – using UL or LU as suffix will then use ulong. C# has no syntactic notion of expressing integer literals of smaller types than Int32; it is a compile-time error to have an assignment such as <lang csharp>byte x = 500;</lang> Update
As of C#7, integer literals can be written in binary with the prefix 0b. Furthermore, underscores can be used as separators: <lang csharp> int x = 0b1100_1001_1111_0000; </lang>

C++

The same comments apply as to the C example.

<lang cpp>#include <iostream>

int main() {

 std::cout << ( (727 == 0x2d7) && 
                (727 == 01327)     ? "true" : "false")
           << std::endl;

 return 0;

}</lang>

Clojure

Clojure uses the Java octal (0...) and hexadecimal (0x...) notation; for any other base, nR... is used, 2 <= n <= 36.

<lang lisp>user=> 2r1001 9 user=> 8r64 52 user=> 064 52 user=> 16r4b 75 user=> 0x4b 75 user=></lang>

COBOL

Standard COBOL accepts signed base 10 integer literals, but does allow for BOOLEAN and Hexadecimal alphanumeric literals, that can be treated as numeric values in code.

ACUCOBOL added extensions that allow base-2 (B#), base-8 (O#), base-16 (with both H# and X# prefix) integer literals.

With GnuCOBOL these extensions are allowed by configuration

prompt$ cobc -x -cb_conf=acucobol-literals:ok

<lang COBOL> display B#10 ", " O#01234567 ", " -0123456789 ", "

       H#0123456789ABCDEF ", " X#0123456789ABCDEF ", " 1;2;3;4

</lang>

Output:
2, 342391, 0123456789, 81985529216486895, 81985529216486895, 1234

Some characters are removed by the COBOL text manipulation facility, and are allowed in numeric literals. These symbols are stripped out, along with comment lines, before seen by the compiler proper.

<lang cobol> if 1234 = 1,2,3,4 then display "Decimal point is not comma" end-if if 1234 = 1;2;3;4 then display "literals are equal, semi-colons ignored" end-if </lang>

Comma is a special case, as COBOL can be compiled with DECIMAL POINT IS COMMA in the CONFIGURATION SECTION. The 1,2,3,4 comparison test above would cause a compile time syntax error when DECIMAL POINT IS COMMA is in effect.

Comal

<lang Comal>IF 37=$25 THEN PRINT "True" IF 37=%00100101 THEN PRINT "True" </lang>

Common Lisp

(This is an interactive common lisp session)

binary: #b, octal: #o, hexadecimal: #x, any base from 2 to 36: #Nr <lang lisp>>(= 727 #b1011010111) T >(= 727 #o1327) T >(= 727 #x2d7) T >(= 727 #20r1g7) T</lang>

D

D besides hexadecimal, has also binary base. Additionally you can use _ to separate digits in integer (and FP) literals. Octal number literals are library-based to avoid bugs caused by the leading zero. <lang d>import std.stdio, std.conv;

void main() {

   writeln("oct: ", octal!777);
   writeln("bin: ", 0b01011010);
   writeln("hex: ", 0xBADF00D);
   writeln("dec: ", 1000000000);
   writeln("dec: ", 1_000_000_000);
   writeln();
   writeln(typeid(typeof(0)));
   writeln(typeid(typeof(0u)));
   // writeln(typeid(typeof(0l))); // 'l' suffix is deprecated
   writeln(typeid(typeof(0L)));
   writeln(typeid(typeof(0uL)));
   writeln(typeid(typeof(0LU)));
   writeln();
   writefln("%x", 0xFEE1_BAD_CAFE_BABEuL);

}</lang>

Output:
oct: 511
bin: 90
hex: 195948557
dec: 1000000000
dec: 1000000000

int
uint
long
ulong
ulong

fee1badcafebabe

DCL

<lang DCL>$ decimal1 = 123490 $ decimal2 = %D123490 $ octal = %O12370 $ hex = %X1234AF0</lang>

Delphi

<lang Delphi>const

 INT_VALUE = 256;
 HEX_VALUE = $100;</lang>

DWScript

DWScript has decimal and hexadecimal integer literals, the latter of which are prefixed with $: <lang delphi>var a : Integer := 42; var b : Integer := $2a;</lang> Both notations can also be used for character codes (when prefixed by #).

Dyalect

Dyalect has decimal and hexadecimal integer literals, the latter of which are prefixed with 0x:

<lang Dyalect>var a = 42 var b = 0x2a</lang>

Dylan

<lang Dylan>42 // a decimal integer

  1. x2A // a hexadecimal integer
  2. o52 // an octal integer
  3. b101010 // a binary integer</lang>

E

<lang e>? 256

  1. value: 256

? 0x100

  1. value: 256

? 0123

  1. syntax error: Octal is no longer supported: 0123</lang>

Efene

<lang efene>@public run = fn () {

   io.format("0xff  : ~B~n", [0xff])
   io.format("0xFF  : ~B~n", [0xFF])
   io.format("0o777 : ~B~n", [0o777])
   io.format("0b1011: ~B~n", [0b1011])

} </lang>

Eiffel

Integer literals can be specified in decimal, hexadecimal, octal and binary. Only decimal literals can have an optional sign. Underscores may also be used as separators, but cannot begin or end the literal. Literals are case insensitive.<lang Eiffel> 123 -- decimal -1_2_3 -- decimal 0x7b -- hexadecimal 0c173 -- octal 0b111_1011 -- binary </lang>

Literals are by default interpreted as type INTEGER, where INTEGER is a synonym for either INTEGER_32 or INTEGER_64 (depending on the compiler option) but can be explicitly converted to another type.<lang Eiffel> {NATURAL_8} 255 {INTEGER_64} 2_147_483_648 </lang>

Elena

<lang elena>

  var n := 1234; // decimal number
  var x := 1234h; // hexadecimal number

</lang>

Elixir

<lang elixir>1234 #=> 1234 1_000_000 #=> 1000000 0010 #=> 10 0b111 #=> 7 0o10 #=> 8 0x1f #=> 31

0B10 #=> syntax error before: B10 0X10 #=> syntax error before: X10 0xFF #=> 255</lang>

Emacs Lisp

<lang Lisp>123  ;; decimal all Emacs

  1. b101  ;; binary Emacs 21 up, XEmacs 21
  2. o77  ;; octal Emacs 21 up, XEmacs 21
  3. xFF  ;; hex Emacs 21 up, XEmacs 21
  4. 3r210  ;; any radix 2-36 Emacs 21 up (but not XEmacs 21.4)</lang>

The digits and the radix character can both be any mixture of upper and lower case. See GNU Elisp reference manual "Integer Basics".

Erlang

Erlang allows integer literals in bases 2 through 36. The format is Base#Number. For bases greater than 10, the values 10-35 are represented by A-Z or a-z. <lang erlang> > 2#101. 5 > 101. 101 > 16#F. 15 > 36#3z. 143 </lang>

ERRE

% = binary, & = octal; $ = hexadecimal. <lang ERRE> PRINT(17) PRINT(&21) PRINT($11) PRINT(%1001) </lang> Output:

17
17
17
17

Euphoria

<lang euphoria> printf(1,"Decimal:\t%d, %d, %d, %d\n",{-10,10,16,64}) printf(1,"Hex:\t%x, %x, %x, %x\n",{-10,10,16,64}) printf(1,"Octal:\t%o, %o, %o, %o\n",{-10,10,16,64}) printf(1,"Exponential:\t%e, %e, %e, %e\n",{-10,10,16,64.12}) printf(1,"Floating Point\t%3.3f, %3.3f, %+3.3f\n",{-10,10.2,16.25,64.12625}) printf(1,"Floating Point or Exponential: %g, %g, %g, %g\n",{10,16,64,123456789.123}) </lang>

Output:
Decimal:    -10, 10, 16, 64
Hex:    FFFFFFFFFFFFFFF6, A, 10, 40
Octal:  1777777777777777777766, 12, 20, 100
Exponential:    -1.000000e+001, 1.000000e+001, 1.600000e+001, 6.412000e+001
Floating Point  -10.000, 10.000, +16.250, 64.126
Floating Point or Exponential:  10, 16, 64, 1.23457e+008

F#

Base prefixes

Binary numbers begin with 0b, octal numbers with 0o, and hexadecimal numbers with 0x. The hexadecimal digits A-F may be in any case. <lang fsharp>0b101 // = 5 0o12 // = 10 0xF // = 16</lang>

Type suffixes

Most type suffixes can be preceded with a 'u', which indicates the type is unisgned. <lang fsharp>10y // 8-bit 'g'B // Character literals can be turned into unsigned 8-bit literals 10s // 16-bit 10l // 32-bit (suffix is optional) 10L // 64-bit 10I // Bigint (cannot be preceded by a 'u')

10un // Unsigned native int (used to represent pointers)</lang>

Factor

<lang factor>10 . ! decimal 0b10 . ! binary -0o10 . ! octal 0x10 . ! hexadecimal</lang>

Output:
10
2
-8
16

Factor also supports the arbitrary use of commas in integer literals: <lang factor>1,234,567 . 1,23,4,567 .</lang>

Output:
1234567
1234567

Forth

The standard method for entering numbers of a particular base is to set the user variable BASE to the desired radix from 2 to 36. There are also convenience words for setting the base to DECIMAL and HEX. <lang forth>HEX FEEDFACE 2 BASE ! 1011001 DECIMAL 1234

mask var @ [ base @ hex ] 3fff and [ base ! ] var ! ;</lang>

The Forth numeric parser will look for symbols embedded within the stream of digits to determine whether to interpret it as a single cell, double cell, or floating point literal ('e'). <lang forth>1234 ( n ) 123.4 ( l h ) 123e4 ( F: n )</lang>

Base prefixes

Works with: GNU Forth

In addition, many Forths have extensions for using a prefix to temporarily override BASE when entering an integer literal. These are the prefixes supported by GNU Forth. <lang forth>$feedface \ hexadecimal &1234 \ decimal %1001101 \ binary 'a \ base 256 (ASCII literal)</lang> Some Forths also support "0xABCD" hex literals for compatibility with C-like languages.

Fortran

<lang fortran>program IntegerLiteral

 implicit none
 integer, parameter   :: dec = 727
 integer, parameter   :: hex = Z'2d7'
 integer, parameter   :: oct = O'1327'
 integer, parameter   :: bin = B'1011010111' 
 print *, dec, hex, oct, bin

end program IntegerLiteral</lang>

Outputs:

         727         727         727         727

FreeBASIC

<lang freebasic>' FB 1.05.0 Win64

' The following all print 64 to the console

' integer literals of unspecified type - actual type is inferred from size or context (8, 16, 32 or 64 bit signed/unsigned) Print 64 Decimal literal Print &H40 Hexadecimal literal Print &O100 Octal Literal Print &B1000000 Binary literal

' integer literals of specific types ' Integer type is 4 bytes on 32 bit and 8 bytes on 64 bit platform Print 64% Decimal signed 4/8 byte integer (Integer) Print 64L Decimal signed 4 byte integer (Long) Print 64& Decimal signed 4 byte integer (Long) - alternative suffix Print 64LL Decimal unsigned 4 byte integer (ULong) Print 64LL Decimal signed 8 byte integer (LongInt) Print 64ULL Decimal unsigned 8 byte integer (ULongInt)

Sleep</lang>

Frink

Bases from 2 to 36 are allowed in Frink. All literals can be arbitrarily large. Frink does not subscribe to the insanity that a leading 0 implies octal. <lang frink> 123456789123456789 // (a number in base 10) 123_456_789_123_456_789 // (the same number in base 10 with underscores for readability) 1 quadrillion // (named numbers are fine in Frink.) 1ee39 // (exact exponent, an integer with exact value 10^39) 100001000101111111101101\\2 // (a number in base 2) 1000_0100_0101_1111_1110_1101\\2 // (a number in base 2 with underscores for readability) 845FED\\16 // (a number in base 16... bases from 2 to 36 are allowed) 845fed\\16 // (The same number in base 16... upper or lowercase are allowed.) 845_fed\\16 // (a number in base 16 with underscores for readability) FrinkRulesYou\\36 // (a number in base 36) 0x845fed // (Common hexadecimal notation) 0x845FED // (Common hexadecimal notation) 0xFEED_FACE // (Hexadecimal with underscores for readability) 0b100001000101111111101101 // (Common binary notation) 0b1000_0100_0101_1111_1110_1101 // (Binary with underscores for readability) </lang>

FutureBasic

<lang futurebasic> include "ConsoleWindow"

def tab 2

print " Decimal 100:", 100 print " Hexadecimal &h64:", &h64, hex$(100) print " Octal &o144:", &o144, oct$(100) print " Binary &x1100100:", &x1100100, bin$(100) </lang> Output:

      Decimal 100:   100
 Hexadecimal &h64:   100  00000064
      Octal &o144:   100  00000000144
 Binary &x1100100:   100  00000000000000000000000001100100

GAP

<lang gap># Only decimal integers, but of any length 31415926 1606938044258990275541962092341162602522202993782792835301376</lang>

Go

For integer literals, octal is represented by a leading 0 or the prefix 0o. 0x or 0X means hexadecimal. 0b or 0B is binary. Otherwise, it is just decimal.

Character literals though, also specify integer values. Go source is specified to be UTF-8 encoded. The value of a character literal is the Unicode value of the UTF-8 encoded character.

There is no size or type specification with an integer literal, they are of arbitrary precision and do not overflow (compilers are required to represent integer constants with at least 256 bits and give an error if unable to represent an integer constant precisely). Constant expressions are evaluated at compile time at an arbitrary precision. It is only when a constant is assigned to a variable that it is given a type and an error produced if the constant value cannot be represented as a value of the respective type. <lang go>package main

import "fmt"

func main() { fmt.Println(727 == 0x2d7) // prints true fmt.Println(727 == 01327) // prints true fmt.Println(727 == 0b10110_10111) // prints true fmt.Println(727 == '˗') // prints true } </lang>

Groovy

Solution: <lang groovy>println 025 // octal println 25 // decimal integer println 25l // decimal long println 25g // decimal BigInteger println 0x25 // hexadecimal</lang>

Output:

21
25
25
25
37

Harbour

Hexademical integer literals are supported - the leading symbols must be 0x or 0X: <lang visualfoxpro>? 0x1f</lang> Output:

31

Haskell

(This is an interactive ghci session)

Oct(leading 0o or 0O), Hex(leading 0x or 0X) <lang haskell>Prelude> 727 == 0o1327 True Prelude> 727 == 0x2d7 True</lang>

hexiscript

<lang hexiscript># All equal to 15 println 15 println 000015 # Leading zeros are ignored println 0b1111 println 0o17 println 0xf</lang>

HicEst

HicEst only supports decimal integer literals.

HolyC

HolyC supports various integer sizes.

<lang holyc>U8 i; // 8 bit integer U16 i; // 16 bit integer U32 i; // 32 bit integer U64 i; // 64 bit integer</lang>

By default all integers are decimal. Leading "0x" implies hexadecimal. <lang holyc>U16 i = 727; // decimal U16 i = 0x2d7; // hexadecimal</lang>

Icon and Unicon

Icon/Unicon supports digit literals of the form <base>r<value> with base being from 2-36 and the digits being from 0..9 and a..z. <lang Icon>procedure main() L := [1, 2r10, 3r10, 4r10, 5r10, 6r10, 7r10, 8r10, 9r10, 10r10, 11r10, 12r10, 13r10, 14r10,

     15r10, 16r10, 17r10, 18r10,19r10, 20r10, 21r10, 22r10, 23r10, 24r10, 25r10, 26r10, 27r10,
     28r10, 29r10, 30r10, 31r10, 32r10, 33r10, 34r10, 35r10, 36r10]

every write(!L) end</lang>

J

J's numeric mini-language allows spaces, underlines, dots and lower case alphabetic characters in its numeric literals.

Arbitrary base numbers begin with a base ten literal (which represents the base of this number), and then the letter 'b' and then an arbitrary sequence of digits and letters which represents the number in that base. Letters a..z represent digits in the range 10..35. Each numeric item in a numeric constant must have its base specified independently.

<lang j> 10b123 16b123 8b123 20b123 2b123 1b123 0b123 100b123 99 0 0bsilliness 1 123 291 83 443 11 6 3 10203 99 0 1 28</lang>

This may be used to enter hexadecimal or octal or binary numbers. However, note also that J's primitives support a variety of binary operations on numbers represented as sequences of 0s and 1s, like this:

<lang j>0 1 0 0 0 1 0 0 0 1 1 1 1</lang>


J also supports extended precision integers, if one member of a list ends with an 'x' when they are parsed. Extended precision literals can not be combined, in the same constant, with arbitrary base literals. (The notation supports no way of indicating that extra precision in an arbitrary base literal should be preserved and the extra complexity to let this attribute bleed from any member of a list to any other member was deemed not worth implementing.)

<lang j> 123456789123456789123456789 100000000000x 123456789123456789123456789 100000000000

  16b100 10x

|ill-formed number</lang>

J also allows integers to be entered using other notations, such as scientific or rational.

<lang j> 1e2 100r5 100 20</lang>

Internally, J freely converts fixed precision integers to floating point numbers when they overflow, and numbers (including integers) of any type may be combined using any operation where they would individually be valid arguments.

Internally, J represents numeric constants in their simplest type, regardless of how they were specified. In other words 9r1, although it is "specified as a rational" is represented as an extended precision integer. Similarly, 2.0, although it is "specified as a floating point value" is represented as an integer, and 1.0 is represented as a boolean.

That said, note that "type" is a property of the array, and not a property of the value. And, code that modifies the structure of an array leaves its type alone. So, if you need an array of a type different than that specified by J's "simplest type for constants" rule, you can extract the constant you need from an array which contains it and has the type you need. For example {.1 2 would give you an integer 1 instead of a boolean 1.

Java

A leading 0 means octal, 0x or 0X means hexadecimal. Otherwise, it is just decimal.

<lang java5>public class IntegerLiterals {

   public static void main(String[] args) {
       System.out.println( 727 == 0x2d7 && 
                           727 == 01327   );
   }

}</lang>

You may also specify a long literal by adding an l or L (uppercase is preferred as the lowercase looks like a "1" in some fonts) to the end (ex: long a = 574298540721727L). This is required for numbers that are too large to be expressed as an int.

Works with: Java version 7

Java 7 has added binary literals to the language. A leading 0b means binary. You may also use underscores as separators in all bases. <lang java5>public class BinaryLiteral {

   public static void main(String[] args) {
       System.out.println( 727 == 0b10_1101_0111 );
   }

}</lang>

JavaScript

<lang javascript>if ( 727 == 0x2d7 &&

    727 == 01327 )
   window.alert("true");</lang>

jq

jq only supports JSON data types, and thus the only supported integer literals are decimals, which may, however, be expressed using digits in the conventional way, or using the "e" notation, e.g. 10 == 1e1. Other ways to express 10 include 1e+1, 10e0, 10E-0, etc.

Julia

Julia has binary, octal and hexadecimal literals. We check that they give the same value. <lang julia>julia> 0b1011010111 == 0o1327 == 0x2d7 == 727 true</lang>

Kotlin

Kotlin supports 3 types of integer literal (signed 4 byte), namely : decimal, hexadecimal and binary.

These can be converted to long integer literals (signed 8 byte) by appending the suffix 'L' (lower case 'l' is not allowed as it is easily confused with the digit '1').

It is also possible to assign integer literals to variables of type Short (signed 2 byte) or Byte (signed 1 byte). They will be automatically converted by the compiler provided they are within the range of the variable concerned. <lang scala>// version 1.0.6

fun main(args: Array<String>) {

   val d = 255                  // decimal integer literal
   val h = 0xff                 // hexadecimal integer literal
   val b = 0b11111111           // binary integer literal
   val ld = 255L                // decimal long integer literal (can't use l instead of L)
   val lh = 0xffL               // hexadecimal long integer literal (could use 0X rather than 0x)
   val lb = 0b11111111L         // binary long integer literal (could use 0B rather than 0b)
   val sd : Short = 127         // decimal integer literal automatically converted to Short
   val sh : Short = 0x7f        // hexadecimal integer literal automatically converted to Short
   val bd : Byte  = 0b01111111  // binary integer literal automatically converted to Byte
   println("$d $h $b $ld $lh $lb $sd $sh $bd")   

}</lang>

Output:
255 255 255 255 255 255 127 127 127

Lasso

<lang Lasso>42 0x2a</lang>

Limbo

Integer literals in Limbo can be written in any base from 2 to 36 by putting the base (or radix), then 'r' or 'R', and the digits of the number. If no base is explicitly given then the number will be in base 10. <lang Limbo>implement Command;

include "sys.m"; sys: Sys;

include "draw.m";

include "sh.m";

init(nil: ref Draw->Context, nil: list of string) { sys = load Sys Sys->PATH;

sys->print("%d\n", 2r1111); # binary sys->print("%d\n", 8r17); # octal sys->print("%d\n", 15); # decimal sys->print("%d\n", 16rF); # hexadecimal }</lang>

LiveCode

LiveCode supports hexadecimal literals, and if "convertOctals" is set to true, then integer literals with leading zeroes are interpreted as octal and not base 10.

Hex example<lang LiveCode>put 0x1 + 0xff</lang>

Logo only supports decimal integer literals.

Logtalk

Built-in support for bases 2, 8, 10, and 16: <lang logtalk>

- object(integers).
   :- public(show/0).
   show :-
       write('Binary      0b11110101101 = '), write(0b11110101101), nl,
       write('Octal       0o3655 =        '), write(0o3655), nl,
       write('Decimal     1965 =          '), write(1965), nl,
       write('Hexadecimal 0x7AD =         '), write(0x7AD), nl.
- end_object.

</lang> Sample output: <lang text> | ?- integers::show. Binary 0b11110101101 = 1965 Octal 0o3655 = 1965 Decimal 1965 = 1965 Hexadecimal 0x7AD = 1965 yes </lang>

Lua

Lua supports either base ten or hex <lang Lua> 45, 0x45 </lang>

M2000 Interpreter

<lang M2000 Interpreter> Def ExpType$(x)=Type$(x) Print ExpType$(12345678912345#)="Currency", 12345678912345# Print ExpType$(123456789123456789123456@)="Decimal", 123456789123456789123456@ Print ExpType$(12&)="Long", 12&, 0xFFFFFFFF&=-1 Print ExpType$(12%)="Integer", 12%, 0xFFFF%=-1 \\ used for unsigned integers (but it is double) Print ExpType$(0xFFFFFFFF)="Double", 0xFFFFFFFF=4294967295 </lang>

M4

m4 has decimal, octal and hexadecimal literals like C.

<lang M4>eval(10) # base 10 eval(010) # base 8 eval(0x10) # base 16</lang>

Output:

10        # base 10
8       # base 8
16      # base 16

As an extension, GNU m4 provides "0b" and "0r" literals.

Works with: GNU m4

<lang M4>eval(0b10) # base 2 eval(`0r2:10') # base 2

...

eval(`0r36:10') # base 36</lang>

Output:

2      # base 2
2  # base 2
 ...
36 # base 36

Mathematica

<lang Mathematica>b^^nnnn is a valid number in base b (with b ranging from 2 to 36) : 2^^1011 -> 11

36^^1011 -> 46693</lang>

MATLAB / Octave

Matlab uses only base 10 integers. <lang MATLAB>> 11 ans = 11</lang>

Octave allows also a hexadecimal representation <lang Octave>> 0x11 ans = 17</lang>

Other representation of other bases need to be converted by functions <lang MATLAB>hex2dec(s) bin2dec(s) base2dec(s,base)</lang>

Different integer types can be defined by casting. <lang MATLAB>int8(8) uint8(8) int16(8) uint16(8) int32(8) uint32(8) int64(8) uint64(8)</lang>

Maxima

<lang maxima>/* Maxima has integers of arbitrary length */ 170141183460469231731687303715884105727</lang>

Mercury

<lang Mercury>Bin = 0b010101, Octal = 0o666, Hex = 0x1fa, CharCode = 0'a.</lang>

An integer is either a decimal, binary, octal, hexadecimal, or character-code literal. A decimal literal is any sequence of decimal digits. A binary literal is 0b followed by any sequence of binary digits. An octal literal is 0o followed by any sequence of octal digits. A hexadecimal literal is 0x followed by any sequence of hexadecimal digits. A character-code literal is 0' followed by any single character.

Metafont

<lang metafont>num1 := oct"100"; num2 := hex"100";</lang>

Metafont numbers can't be greater than 4096, so that the maximum octal and hexadecimal legal values are 7777 and FFF respectively. To be honest, "100" is a string, and oct is an "internal" "macro"; but this is the way Metafont specifies numbers in base 8 and 16.

Modula-3

All numbers 2 to 16 are allowed to be bases. <lang modula3>MODULE Literals EXPORTS Main;

IMPORT IO;

BEGIN

 IO.PutInt(16_2D7);
 IO.Put(" ");
 IO.PutInt(10_727);
 IO.Put(" ");
 IO.PutInt(8_1327);
 IO.Put(" ");
 IO.PutInt(2_1011010111);
 IO.Put("\n");

END Literals.</lang>

Neko

Neko supports base 10 and 0x prefixed base 16 integer literals. Leading zero is NOT octal.

<lang ActionScript>/**

Integer literals, in Neko
Base 10 and Base 16, no leading zero octal in Neko
  • /

var num = 2730 if (num == 02730) $print("base 10, even with leading zero\n") if (num == 0xAAA) $print("base 16, with leading 0x or 0X\n")</lang>

Nemerle

<lang Nemerle>42 // integer literal 1_000_000 // _ can be used for readability 1_42_00 // or unreadability... 0x2a // hexadecimal integer literal 0o52 // octal integer literal 0b101010 // binary integer literal 10u // unsigned int 10b, 10sb, 10bs // signed byte 10ub, 10bu // unsigned byte 10L // long 10UL, 10LU // unsigned long</lang>

Formally (adapted from Reference Manual):

<decimal_literal> ::=
    [ <prefix> ] <digits> [ { '_' <digits> } ] [ <suffix> ]
<prefix> ::=
    '0x'
|   '0o'
|   '0b'
<digits> ::=
    { <decimal_digit> }
<suffix> ::=
    'b'
|   'sb'
|   'ub'
|   's'
|   'us'
|   'u'
|   'l'
|   'lu'

NetRexx

Along with decimal notation NetRexx accepts numeric literals in hexadecimal and binary formats.

The NetRexx documentation describes hexadecimal and binary literal symbol notation in more detail; a summary follows:

A hexadecimal numeric symbol describes a whole number, and is of the form nXstring where, n is a simple number which describes the effective length of the hexadecimal string and string is a string of one or more hexadecimal characters.

A binary numeric symbol describes a whole number using the same rules, except that the identifying character is B or b, and the digits of string must be either 0 or 1, each representing a single bit.

<lang NetRexx>/* NetRexx */ options replace format comments java crossref symbols

iv = 8; say '8'.right(20) '==' iv.right(8) -- 8 iv = -8; say '-8'.right(20) '==' iv.right(8) -- -8 iv = 1x8; say '1x8'.right(20) '==' iv.right(8) -- -8 iv = 2x8; say '2x8'.right(20) '==' iv.right(8) -- 8 iv = 2x08; say '2x08'.right(20) '==' iv.right(8) -- 8 iv = 0x08; say '0x08'.right(20) '==' iv.right(8) -- 8 iv = 0x10; say '0x10'.right(20) '==' iv.right(8) -- 16 iv = 0x81; say '0x81'.right(20) '==' iv.right(8) -- 129 iv = 2x81; say '2x81'.right(20) '==' iv.right(8) -- -127 iv = 3x81; say '3x81'.right(20) '==' iv.right(8) -- 129 iv = 4x81; say '4x81'.right(20) '==' iv.right(8) -- 129 iv = 04x81; say '04x81'.right(20) '==' iv.right(8) -- 129 iv = 16x81; say '16x81'.right(20) '==' iv.right(8) -- 129 iv = 4xF081; say '4xF081'.right(20) '==' iv.right(8) -- -3967 iv = 8xF081; say '8xF081'.right(20) '==' iv.right(8) -- 61569 iv = 0Xf081; say '0Xf081'.right(20) '==' iv.right(8) -- 61569 iv = 0xffff; say '0xffff'.right(20) '==' iv.right(8) -- 65535 iv = 4xffff; say '4xffff'.right(20) '==' iv.right(8) -- -1 iv = 8xffff; say '8xffff'.right(20) '==' iv.right(8) -- 65535 iv = 1b0; say '1b0'.right(20) '==' iv.right(8) -- 0 iv = 1b1; say '1b1'.right(20) '==' iv.right(8) -- -1 iv = 2b1; say '2b1'.right(20) '==' iv.right(8) -- 1 iv = 0b10; say '0b10'.right(20) '==' iv.right(8) -- 2 iv = 2b10; say '2b10'.right(20) '==' iv.right(8) -- -2 iv = 3b10; say '3b10'.right(20) '==' iv.right(8) -- 2 iv = 0b100; say '0b100'.right(20) '==' iv.right(8) -- 4 iv = 3b100; say '3b100'.right(20) '==' iv.right(8) -- -4 iv = 4b100; say '4b100'.right(20) '==' iv.right(8) -- 4 iv = 4b1000; say '4b1000'.right(20) '==' iv.right(8) -- -8 iv = 8B1000; say '8B1000'.right(20) '==' iv.right(8) -- 8 iv = 00B1111111111111111; say '00B1111111111111111'.right(20) '==' iv.right(8) -- 65535 iv = 16B1111111111111111; say '16B1111111111111111'.right(20) '==' iv.right(8) -- -1 iv = 32B1111111111111111; say '32B1111111111111111'.right(20) '==' iv.right(8) -- 65535

return</lang> Output:

                   8 ==        8 
                  -8 ==       -8 
                 1x8 ==       -8 
                 2x8 ==        8 
                2x08 ==        8 
                0x08 ==        8 
                0x10 ==       16 
                0x81 ==      129 
                2x81 ==     -127 
                3x81 ==      129 
                4x81 ==      129 
               04x81 ==      129 
               16x81 ==      129 
              4xF081 ==    -3967 
              8xF081 ==    61569 
              0Xf081 ==    61569 
              0xffff ==    65535 
              4xffff ==       -1 
              8xffff ==    65535 
                 1b0 ==        0 
                 1b1 ==       -1 
                 2b1 ==        1 
                0b10 ==        2 
                2b10 ==       -2 
                3b10 ==        2 
               0b100 ==        4 
               3b100 ==       -4 
               4b100 ==        4 
              4b1000 ==       -8 
              8B1000 ==        8 
 00B1111111111111111 ==    65535 
 16B1111111111111111 ==       -1 
 32B1111111111111111 ==    65535

Nim

<lang nim>var x: int x = 0b1011010111 x = 0b10_1101_0111 x = 0o1327 x = 0o13_27 x = 727 x = 727_000_000 x = 0x2d7 x = 0x2d7_2d7

  1. Literals of specific size:

var a = -127'i8 # 8 bit Integer var b = -128'i16 var c = -129'i32 var d = -129'i64 var e = 126'u # Unsigned Integer var f = 127'u8 # 8 bit uint var g = 128'u16 var h = 129'u32 var i = 130'u64</lang>

Objeck

As of v1.1, Objeck only supports hexadecimal and decimal literals. <lang objeck> bundle Default {

 class Literal {
   function : Main(args : String[]) ~ Nil {
     (727 = 0x2d7)->PrintLine();
   }
 }

} </lang>

OCaml

(This is an interactive ocaml session)

Bin(leading 0b or 0B), Oct(leading 0o or 0O), Hex(leading 0x or 0X) <lang ocaml># 727 = 0b1011010111;; - : bool = true

  1. 727 = 0o1327;;

- : bool = true

  1. 727 = 0x2d7;;

- : bool = true

  1. 12345 = 12_345 (* underscores are ignored; useful for keeping track of places *);;

- : bool = true</lang>

Literals for the other built-in integer types:

  • 727l - int32
  • 727L - int64
  • 727n - nativeint

Oforth

Integers can be expressed into base 10 (default), base 16 (using 0x prefix) or base 2 (using 0b prefix).


Those prefixes can be used for arbitrary precision integers :

Output:
>0b100000000000000000000000000 println
67108864
ok
>0xFFFFFFFFFFFFFFFFFFFFFFFFFFF println
324518553658426726783156020576255
ok

Oz

To demonstrate the different numerical bases, we unify the identical values: <lang oz>try

  %% binary      octal   dec.  hexadecimal
  0b1011010111 = 01327 = 727 = 0x2d7
  {Show success}

catch _ then

  {Show unexpectedError}

end</lang>

Negative integers start with "~": <lang oz>X = ~42</lang>

PARI/GP

GP allows input in binary 0b11 and hexadecimal 0xff. PARI of course supports precisely those bases supported by C.

Pascal

See Delphi

FreePascal also supports octal (with leading ampersand) and binary (with leading percent sigh) literals:

<lang Pascal>const

 INT_VALUE = 15;
 OCTAL_VALUE = &017;
 BINARY_VALUE = %1111;</lang>

Perl

<lang perl>print "true\n" if ( 727 == 0x2d7 &&

                   727 == 01327 &&
                   727 == 0b1011010111 &&
                   12345 == 12_345   # underscores are ignored; useful for keeping track of places
                 );</lang>

Phix

Phix supports more bases and number formats than average. Standard decimals and hexadecimals are eg 255=#FF. For hexadecimal numbers you can use upper or lower case for digits above 9 (A..F or a..f).
Phix also supports 0b01, 0o07, (0t07,) 0d09, and 0x0F for binary, octal, (octal,) decimal, and hexadecimal values. (The only difference between 0o07 and 0t07 is personal preference.) There is no difference whatsoever between 1 and 1.0.
Given the need for 2, 8, 10, and 16, rather than four routines I wrote one that could handle all of them, and trivially extended it to cope up to base 36. Thus Phix (also) allows any base between 2 and 36, using the notation o(<base>)digits, eg o(7)16 is the base 7 representation of the decimal 13 (ie 1*7^1 + 6*7^0). Phix does not however support "leading 0 is octal", or "trailing h is hex" or any other trailing qualifiers. There is also a specialist "bytewise octal" that I personally wanted for x86 opcodes/listing files, eg 0ob377377377377==#FFFFFFFF.
An integer literal representing a character code can also be expressed by surrounding the character with single quotes, for example the statement for i='A' to 'Z' is/behaves exactly the same as for i=65 to 90.
Elements (8-bit characters) of an ansi string can likewise be treated as integers. Strings representing a number can/must be converted using eg scanf().
In the 32-bit version, integers outside -1,073,741,824 to +1,073,741,823 must be stored as atoms, which [ie a 64-bit float] can (accurately) store integers up to 9,007,199,254,740,992: between 9,007,199,254,740,992 and 18,014,398,509,481,984 you can only store even numbers, and between 18,014,398,509,481,984 and 36,028,797,018,963,968, you can only store numbers divisible by 4, and so on. (ie as you need more and more bits on the front, eventually bits must start falling off the end)
In the 64-bit version the limits of integers are -4,611,686,018,427,387,904 to +4,611,686,018,427,387,903. Offhand I don't know the exact highest integer an 80-bit float can hold, but the limits should all be 512* the values given above for 32-bit.
The included bigatom library allows working with extremely large integers with arbitrary precision, but obviously will be somewhat slower than using native integers/atoms. <lang Phix>?{65,#41,'A',scanf("55","%d"),0o10,0(7)11}</lang>

Output:
{65,65,65,{{55}},8,8}

PHP

<lang php><?php if ( 727 == 0x2d7 &&

    727 == 01327 )
   echo "true\n";

?></lang>

PicoLisp

In the strict sense of this task, PicoLisp reads only integers at bases which are a power of ten (scaled fixpoint numbers). This is controlled via the global variable '*Scl': <lang PicoLisp>: (setq *Scl 4) -> 4

123.456789

-> 1234568</lang> However, the reader is normally augmented by read macros, which can read any base or any desired format. Read macros are not executed at runtime, but intially when the sources are read. <lang PicoLisp>: '(a `(hex "7F") b `(oct "377") c) -> (a 127 b 255 c)</lang> In addition to standard formats like 'hex' (hexadecimal) and 'oct' (octal), there are also more esoteric formats like 'fmt64' (base 64) and 'hax' (hexadecimal numbers coded with alphabetic characters).

PL/I

<lang PL/I> 12345 'b4'xn /* a hexadecimal literal integer. */ 'ffff_ffff'xn /* a longer hexadecimal hexadecimal integer. */ 1101b /* a binary integer, of value decimal 13. */ </lang>

PostScript

Integer literals in PostScript can be either standard decimal literals or in the form base#number. base can be any decimal integer between 2 and 36, number can then use digits from 0 to base − 1. Digits above 9 are replaced by A through Z and case does not matter. <lang postscript>123  % 123 8#1777  % 1023 16#FFFE  % 65534 2#11011  % 27 5#44  % 24</lang>

PowerShell

PowerShell only supports base 10 and 16 directly: <lang powershell>727 # base 10 0x2d7 # base 16</lang> Furthermore there are special suffices which treat the integer as a multiple of a specific power of two, intended to simplify file size operations: <lang powershell>3KB # 3072 3MB # 3145728 3GB # 3221225472 3TB # 3298534883328</lang> A number can be suffixed with d to make it a decimal. This doesn't work in conjunction with above suffixes, though:

PS> 4d.GetType().ToString()
System.Decimal

PureBasic

PureBasic allows integer literals to be specified in base 10, base 2 by using the prefix '%', or base 16 by using the prefix '$'. <lang PureBasic>x = 15 ;15 in base 10 x = %1111 ;15 in base 2 x = $f ;15 in base 16</lang> An integer literal representing a character code can also be expressed by surrounding the character with single quotes. More than one character can be included in the single quotes (i.e. 'abc'). Depending on whether code is compiled in Ascii or Unicode mode this will result in the integer value being specified in base 256 or base 65536 respectively.

<lang PureBasic>x = 'a' ;129</lang>

Python

Works with: Python version 3.0

Python 3.0 brought in the binary literal and uses 0o or 0O exclusively for octal. <lang python>>>> # Bin(leading 0b or 0B), Oct(leading 0o or 0O), Dec, Hex(leading 0x or 0X), in order: >>> 0b1011010111 == 0o1327 == 727 == 0x2d7 True >>></lang>

Works with: Python version 2.6

Python 2.6 has the binary and new octal formats of 3.0, as well as keeping the earlier leading 0 octal format of previous 2.X versions for compatability. <lang python>>>> # Bin(leading 0b or 0B), Oct(leading 0o or 0O, or just 0), Dec, Hex(leading 0x or 0X), in order: >>> 0b1011010111 == 0o1327 == 01327 == 727 == 0x2d7 True >>></lang>

Works with: Python version 2.5

<lang python>>>> # Oct(leading 0), Dec, Hex(leading 0x or 0X), in order: >>> 01327 == 727 == 0x2d7 True >>></lang>

In Python 2.x you may also specify a long literal by adding an l or L (the latter form is preferred as the former looks like a "1") to the end (ex: 574298540721727L), but this is optional, as integer literals that are too large for an int will be interpreted as a long.

Quackery

The default base for the Quackery compiler is decimal. This can be overridden for a single hexadecimal number with the building word (compiler directive) hex like this; hex DEFACEABADFACADE.

The default base can be overridden for a section of code using the compiler directive now! like this;

<lang Quackery>[ 2 base put ] now!

( The Quackery compiler now expects numeric literals to be in binary )

[ base release ] now!

( The Quackery compiler now expects numeric literals to be whichever

 base they were previously. The default base is decimal.  )</lang>

If a new compiler directive akin to hex is required, say to allow occasional octal literals in the form octal 45, the compiler can be extended like this;

<lang Quackery> [ 8 base put

   nextword dup
   $  = if
     [ $ '"octal" needs a number after it.'
       message put bail ]
   dup $->n iff
     [ nip swap dip join ]
   else
     [ drop
       char " swap join
       $ '" is not octal.'
       join message put bail ]
   base release ]              builds octal  ( [ $ --> [ $ )</lang>

R

0x or 0X followed by digits or the letters a-f denotes a hexadecimal number. The suffix L means that the number should be stored as an integer rather than numeric (floating point). <lang R>0x2d7==727 # TRUE identical(0x2d7, 727) # TRUE is.numeric(727) # TRUE is.integer(727) # FALSE is.integer(727L) # TRUE is.numeric(0x2d7) # TRUE is.integer(0x2d7) # FALSE is.integer(0x2d7L) # TRUE</lang> For more information, see Section 10.3.1 of the R Language definition (PDF).

Racket

<lang racket>

  1. lang racket
  2. b1011010111
  3. o1327
  4. d727
  5. x2d7

</lang>

Output:

727
727
727
727

Raku

(formerly Perl 6) These all print 255. <lang perl6>say 255; say 0d255; say 0xff; say 0o377; say 0b1111_1111;

say :10<255>; say :16<ff>; say :8<377>; say :2<1111_1111>; say :3<100110>; say :4<3333>; say :12<193>; say :36<73>;</lang> There is a specced form for bases above 36, but rakudo does not yet implement it.

REBOL

<lang rebol>1</lang>

Retro

<lang Retro>#100 ( decimal ) %100 ( binary ) $100 ( hex ) 'c ( ascii character ) 100 ( number in current base )</lang>

Numbers without a prefix are interpreted using the current base, which is a variable Valid characters are stored in a string called numbers, which can also be altered to allow for larger bases.

REXX

<lang rexx>/*REXX pgm displays an integer (expressed in the pgm as a literal) in different bases*/

                                     /*────────── expressing decimal numbers ──────────*/

ddd = 123 /*a decimal number (expressed as a literal). */ ddd = '123' /*this is exactly the same as above. */ ddd = "123" /*this is exactly the same as above also. */

                                     /*────────── expressing hexadecimal numbers ──────*/

hhh = '7b'x /*a value, expressed as a hexadecimal literal. */ hhh = '7B'x /* (same as above) using a capital "B". */ hhh = '7B'X /* (same as above) using a capital "X". */ cow = 'dead beef'x /*another value, with a blank for the eyeballs.*/ cow = 'de ad be ef'x /* (same as above) with blanks for the eyeballs.*/

                                     /*────────── expressing binary numbers ───────────*/

bbb = '1111011'b /*a value, expressed as a binary literal. */ bbb = '01111011'b /* (same as above) with a full 8 binary digits. */ bbb = '0111 1011'b /* (same as above) with a blank for the eyeballs.*/

say ' base 10=' ddd say ' base 2=' x2b( d2x( ddd ) ) say ' base 16=' d2x( ddd ) say ' base 256=' d2c( ddd ) /*the output displayed is ASCII (or maybe EBCDIC).*/

thingy1= +123 /*╔══════════════════════════════════════════════╗*/ thingy2= '+123' /*║ All of the THINGYs variables aren't strictly ║*/ thingy3= ' 123' /*║ (exactly) equal to the DDD variable, but ║*/ thingy4= 123. /*║ they do compare numerically equal. When ║*/ thingy5= 12.3e+1 /*║ compared numerically, numbers are rounded to ║*/ thingy6= 1230e-1 /*║ the current setting of NUMERIC DIGITS. The ║*/ thingy7= 1230E-0001 /*║ default for (decimal) NUMERIC DIGITS is 9 ║*/ thingy8= ' + 123 ' /*╚══════════════════════════════════════════════╝*/

                                                /*stick a fork in it,  we're all done. */</lang>
output:
    base  10= 123
    base   2= 01111011
    base  16= 7B
    base 256= {

On TSO d2c(37) does not result in a displayable character. With thing=c2d('A') I see:

base  10= 193        
base   2= 11000001   
base  16= C1         
base 256= A 

The first three lines are platform-independent.

Ring

<lang ring> see "Decimal literal = " + 1234 + nl see "Hexadecimal literal = " + dec("4D2") + nl see "Octal Literal = " + octal(668) + nl see "Binary literal = " + bintodec("10011010010")

func bintodec(bin)

    binsum = 0
    for n=1  to len(bin)
        binsum = binsum + number(bin[n]) *pow(2, len(bin)-n)
    next
    return binsum

func octal m

    output = ""
    w = m
    while fabs(w) > 0    
          oct = w & 7
          w = floor(w / 8)
          output = string(oct) + output
    end
    return output

</lang> Output:

Decimal literal = 1234
Hexadecimal literal = 1234
Octal Literal = 1234
Binary literal = 1234

Ruby

<lang ruby>727 == 0b1011010111 # => true, binary 727 == 0x2d7 # => true, hex 727 == 0o1327 # => true, octal 727 == 01327 # => true, octal

12345 == 12_345 # => true underscores are ignored; useful for keeping track of places </lang>

Rust

<lang rust>10 // Decimal 0b10 // Binary 0x10 // Hexadecimal 0o10 // Octal 1_000 // Underscores may appear anywhere in the numeric literal for clarity 10_i32 // The type (in this case i32, a 32-bit signed integer) may also be appended. 10i32 // With or without underscores</lang>

Scala

Scala has signed integers of 8, 16, 32 and 64 bits. They can be represented in decimal, octal by prefixing 0, or hexadecimal by prefixing 0x or 0X. Without any other type hint, it defaults to 32 bits integers, or an Int. An l or L suffix will indicate a 64 bits integer, or a Long. The other two types, Byte and Short, can be represented using type ascription, as shown below.

scala> 16
res10: Int = 16

scala> 020L
res11: Long = 16

scala> 0x10 : Byte
res12: Byte = 16

scala> 16 : Short
res13: Short = 16

scala> 020 : Int
res14: Int = 16

scala> 0x10 : Long
res15: Long = 16

Scheme

(This is an interactive scheme session)

binary: #b, octal: #o, decimal: #d (optional obviously), hex: #x <lang scheme>> (= 727 #b1011010111)

  1. t

> (= 727 #o1327)

  1. t

> (= 727 #d727)

  1. t

> (= 727 #x2d7)

  1. t</lang>

Seed7

In Seed7 integer literals may have the form <base>#<numeral>. Here <base> can be from the range 2..36. For example: <lang seed7>$ include "seed7_05.s7i";

const proc: main is func

 begin
   writeln(727);
   writeln(32#MN);
   writeln(16#2D7);
   writeln(10#727);
   writeln(8#1327);
   writeln(2#1011010111);
 end func;

</lang> Sample output:

727
727
727
727
727
727

Sidef

<lang ruby>say 255; say 0xff; say 0377; say 0b1111_1111;</lang>

Output:
255
255
255
255

Slate

<lang slate>2r1011010111 + 8r1327 + 10r727 + 16r2d7 / 4</lang>

Smalltalk

<lang smalltalk>2r1011010111 + 5r100 + 8r1327 + 10r727 + 16r2d7 / 4</lang> binary, base-5, octal, decimal, binary, decimal (default). The radix is any between 2 and 32 (although only 2, 8, 10 and 16 are typically needed).

There is no size limit (except memory constraints), the runtime chooses an appropriate representation automatically: <lang smalltalk>16r1B30964EC395DC24069528D54BBDA40D16E966EF9A70EB21B5B2943A321CDF10391745570CCA9420C6ECB3B72ED2EE8B02EA2735C61A000000000000000000000000 = 100 factorial "evaluates to true"</lang>

Standard ML

(This is an interactive SML/NJ session)

Hex(leading 0x), Word (unsigned ints, leading 0w), Word Hex (leading 0wx) <lang sml>- 727 = 0x2d7; val it = true : bool - 727 = Word.toInt 0w727; val it = true : bool - 0w727 = 0wx2d7; val it = true : bool - ~727; (* negative number;

        * ~ is the unary negation operator for all numbers, including reals and ints;
        * worth mentioning because it's unusual
        *)

val it = ~727 : int</lang>

Stata

Stata does not have an integer type, except for dataset storage, in order to reduce data size in memory or on disk. Computations are done with floating-point doubles, which can hold exact integers in the range -9007199254740992 to 9007199254740992 (that is, -2^53 to 2^53). Only decimal literals are supported.

Swift

<lang Swift>let hex = 0x2F // Hexadecimal let bin = 0b101111 // Binary let oct = 0o57 // Octal</lang>

Tcl

Works with: Tcl version 8.5

(This is an interactive tclsh session; expr is only called to evaluate the equality test.) <lang tcl>% expr 727 == 0x2d7 1 % expr 727 == 0o1327 1 % expr 727 == 01327 1 % expr 727 == 0b1011010111 1</lang>

TI-89 BASIC

Binary, decimal, and hexadecimal are supported. The system base mode sets the default output base, but does not affect input; unmarked digits are always decimal.

<lang ti89b>0b10000001 = 129 = 0h81</lang>

UNIX Shell

The expr command accepts only decimal literals.

<lang bash>$ expr 700 - 1 699 $ expr 0700 - 01 699</lang>

Some shells have arithmetic expansion. These shells may accept literals in other bases. This syntax only works in places that do arithmetic expansion, such as in $(( )), or in Bash's let command.

Quoting the manual page of pdksh:

Integer constants may be specified with arbitrary bases using the
notation base#number, where base is a decimal integer specifying the 
base, and number is a number in the specified base.  Additionally,
integers may be prefixed with `0X' or `0x' (specifying base 16) or `0'
(base 8) in all forms of arithmetic expressions, except as numeric
arguments to the test command.

pdksh allows bases from 2 to 36. The letters a-z or A-Z represent numbers 10 to 35.

Bash allows the same syntax as pdksh. In addition, Bash can handle bases as high as 64: the symbols used are digits, lowercase letters, uppercase letters, @ and _ in that order; if the BASE is less than or equal to 36, lowercase and uppercase letters can be used interchangeably to represent number from 10 and 35. (From the info manual of the Bash).

Works with: bash

<lang bash>dec=727 oct=$(( 01327 )) bin=$(( 2#1011010111 )) hex=$(( 0x2d7 ))

  1. or e.g.

let bin=2#1011010111 let "baseXX = 20#1g7"</lang>

Works with: pdksh version 5.2.14

<lang bash>dec=727 oct=$(( 01327 )) bin=$(( 2#1011010111 )) hex=$(( 0x2d7 ))

  1. or e.g.

(( bin = 2#1011010111 )) (( baseXX = 20#1g7 ))</lang>

Ursa

Ursa supports signed, base-10 integers. <lang ursa>decl int i set i 123 set i -456</lang>

Ursala

Natural numbers (i.e., unsigned integers) of any size are supported. Only decimal integer literals are recognized by the compiler, as in a declaration such as the following. <lang Ursala>n = 724</lang> Signed integers are also recognized and are considered a separate type from natural numbers, but non-negative integers and natural numbers have compatible binary representations. <lang Ursala>z = -35</lang> Signed rational numbers of unlimited precision are yet another primitive type and can be expressed in conventional decimal form. <lang Ursala>m = -2/3</lang> The forward slash in a rational literal is part of the syntax and not a division operator. Finally, a signed or unsigned integer with a trailing underscore, like this <lang Usala>t = 4534934521_</lang> is used for numbers stored in binary converted decimal format, also with unlimited precision, which may perform better in applications involving very large decimal numbers.

Verbexx

<lang verbexx>// Integer Literals: // // If present, base prefix must be: 0b 0B (binary) 0o 0O (octal) // 0x 0X (hex) // // If present, length suffix must be: i I i64 I64 (INT64_T) // u U u64 U64 (UINT64_T) // i32 I32 (INT32_T) u32 U32 (UINT32_T) // i16 I16 (INT16_T) u16 U16 (UINT16_T) // i8 I8 (INT8_T) u8 U8 (UINT8_T) // u1 U1 (BOOL_T) u0 U0 (UNIT_T) // iV iv Iv IV (INTV_T)

// Binary Octal Decimal Hexadecimal // ------------ ---------- ------------ -------------- @SAY 0b1101 0o016 19999999 0xFfBBcC0088  ; // INT64_T @SAY 0B0101 0O777 -12345678 0X0a2B4c6D8eA  ; // INT64_T @SAY 0b1101I64 0o707I64 12345678i64 0xFfBBcC00i64  ; // INT64_T @SAY 0b1101I 0o57707i -2345678I 0xfafbbCc99i  ; // INT64_T @SAY 0b1001U64 0o555u64 33345678u64 0xFfaBcC00U64  ; // UINT64_T @SAY 0b10010100U 0o1234567u 3338u 0x99faBcC0EU  ; // UINT64_T @SAY 0B0101i32 0O753I32 987654i32 0XAAb4cCeeI32  ; // INT32_T @SAY 0B0101u32 0O573u32 987654U32 0X0BAb4cCeeU32 ; // UINT32_T @SAY 0B0101i16 0O753i16 -017654I16 0X000cCffi16  ; // INT16_T @SAY 0B0101u16 0O633U16 27654U16 0X000dDbBu16  ; // UINT16_T @SAY 0B0101i8 0O153i8 -000114I8 0X000ffi8  ; // INT8_T @SAY 0B0101u8 0O132U8 00094U8 0X0000bu8  ; // UINT8_T @SAY 0b0u1 0o0u1 00u1 0U1 0x000u1  ; // BOOL_T (FALSE) @SAY 0B001u1 0O1u1 1u1 01U1 0X1u1 0x001U1  ; // BOOL_T (TRUE ) @SAY 0b0u0 0o000u0 00u0 0U0 0x0u0 0X000U0  ; // UNIT_T @SAY -1234iV  ; // INTV_T (cpp_int) @SAY 56781234Iv  ; // INTV_T (cpp_int)

// note: _ (underscores) can appear in the main numeric part of the literal, // after any base prefix, and before any length suffix. If there is // no prefix, the numeric literal cannot begin with underscore:

@SAY 100_000 1_u1 0x_FFFF_u16 1__0__ 0x__7890_ABCD_EFAB_CDEF__u64; </lang>

Visual Basic

Works with: Visual Basic version 5
Works with: Visual Basic version 6
Works with: VBA version Access 97
Works with: VBA version 6.5
Works with: VBA version 7.1

Integer literals can be expressed in octal, decimal and hexadecimal form. <lang vb>Sub Main()

'Long: 4 Bytes (signed), type specifier = & Dim l1 As Long, l2 As Long, l3 As Long 'Integer: 2 Bytes (signed), type specifier = % Dim i1 As Integer, i2 As Integer, i3 As Integer 'Byte: 1 Byte (unsigned), no type specifier Dim b1 As Byte, b2 As Byte, b3 As Byte

 l1 = 1024&
 l2 = &H400&
 l3 = &O2000&
 Debug.Assert l1 = l2
 Debug.Assert l2 = l3
 
 i1 = 1024
 i2 = &H400
 i3 = &O2000
 Debug.Assert i1 = i2
 Debug.Assert i2 = i3
 
 b1 = 255
 b2 = &O377
 b3 = &HFF
 Debug.Assert b1 = b2
 Debug.Assert b2 = b3
 

End Sub</lang>

Wren

Wren supports just two kinds of integer literal: decimal and hexadecimal.

Despite being written in C, Wren doesn't support octal literals using the 'leading zero' notation. These are just treated as ordinary decimal literals with the leading zeros ignored.

All numbers, whether integers or not, are instances of the built-in Num class which is always 8 bytes in size. A consequence of this is that integers whose absolute magnitude exceeds 2^53-1 cannot be accurately represented in Wren.

As the only difference between integers and other numbers is that the former do not have a decimal part, it is also possible to represent integers using scientific notation. <lang ecmascript>var a = 255 var b = 0xff var c = 0255 // not an octal literal var d = 2.55e2 System.print([a, b, c, d])</lang>

Output:
[255, 255, 255, 255]

XPL0

<lang XPL0>code CrLf=9, IntOut=11; def A=123, B=$123, C=%11_0011, D=^A; [IntOut(0, A); CrLf(0); \decimal

IntOut(0, B);  CrLf(0);        \hex
IntOut(0, C);  CrLf(0);        \binary
IntOut(0, D);  CrLf(0);        \ASCII

]</lang>

Output:

123
291
51
65

zkl

Three int types the compiler understands: decimal, hex, binary. Other bases (2-36) require a method call. <lang zkl>123, 0d1_000 0x123, 0x12|34 0b1111|0000</lang>