Infinity

From Rosetta Code
Revision as of 03:04, 19 June 2012 by rosettacode>Ipquarx (Added TorqueScript infinity.)
Task
Infinity
You are encouraged to solve this task according to the task description, using any language you may know.

Write a function which tests if infinity is supported for floating point numbers (this step should be omitted for languages where the language specification already demands the existence of infinity, e.g. by demanding IEEE numbers), and if so, returns positive infinity. Otherwise, return the largest possible positive floating point number.

For languages with several floating point types, use the type of the literal constant 1.5 as floating point type.

C.F. Extreme floating point values

ActionScript

ActionScript has the built in function isFinite() to test if a number is finite or not. <lang actionscript>trace(5 / 0); // outputs "Infinity" trace(isFinite(5 / 0)); // outputs "false"</lang>

Ada

<lang ada>with Ada.Text_IO; use Ada.Text_IO;

procedure Infinities is

  function Sup return Float is -- Only for predefined types
     Result : Float := Float'Last;
  begin
     if not Float'Machine_Overflows then
        Result := Float'Succ (Result);
     end if;
     return Result;
  end Sup;
  function Inf return Float is -- Only for predefined types
     Result : Float := Float'First;
  begin
     if not Float'Machine_Overflows then
        Result := Float'Pred (Result);
     end if;
     return Result;
  end Inf;

begin

  Put_Line ("Supremum" & Float'Image (Sup));
  Put_Line ("Infimum " & Float'Image (Inf));

end Infinities;</lang> The language-defined attribute Machine_Overflows is defined for each floating-point type. It is true when an overflow or divide-by-zero results in Constraint_Error exception propagation. When the underlying machine type is incapable to implement this semantics the attribute is false. It is to expect that on the machines with IEEE 754 hardware Machine_Overflows is true. The language-defined attributes Succ and Pred yield the value next or previous to the argument, correspondingly.

Sample output on a machine where Float is IEEE 754:

Supremum +Inf*******
Infimum -Inf*******

Note that the code above does not work for user-defined types, which may have range of values narrower than one of the underlying hardware type. This case represents one of the reasons why Ada programmers are advised not to use predefined floating-point types. There is a danger that the implementation of might be IEEE 754, and so the program semantics could be broken.

Here is the code that should work for any type on any machine: <lang ada>with Ada.Text_IO; use Ada.Text_IO;

procedure Infinities is

  type Real is digits 5 range -10.0..10.0;
  
  function Sup return Real is
     Result : Real := Real'Last;
  begin
     return Real'Succ (Result);
  exception
     when Constraint_Error =>
        return Result;
  end Sup;
  function Inf return Real is
     Result : Real := Real'First;
  begin
     return Real'Pred (Result);
  exception
     when Constraint_Error =>
        return Result;
  end Inf;

begin

  Put_Line ("Supremum" & Real'Image (Sup));
  Put_Line ("Infimum " & Real'Image (Inf));

end Infinities;</lang> Sample output. Note that the compiler is required to generate Constraint_Error even if the hardware is IEEE 754. So the upper and lower bounds are 10.0 and -10.0:

Supremum 1.0000E+01
Infimum -1.0000E+01

Getting rid of IEEE ideals

There is a simple way to strip IEEE 754 ideals (non-numeric values) from a predefined floating-point type such as Float or Long_Float: <lang ada>subtype Safe_Float is Float range Float'Range;</lang> The subtype Safe_Float keeps all the range of Float, yet behaves properly upon overflow, underflow and zero-divide.

ALGOL 68

ALGOL 68R (from Royal Radar Establishment) has an infinity variable as part of the standard prelude, on the ICL 1900 Series mainframes the value of infinity is 5.79860446188₁₀76 (the same as max float).

Works with: ALGOL 68 version Revision 1 - no extensions to language used
Works with: ALGOL 68G version Any - tested with release 1.18.0-9h.tiny

Note: The underlying hardware may sometimes support an infinity, but the ALGOL 68 standard itself does not, and gives no way of setting a variable to either ±∞.

ALGOL 68 does have some 7 built in exceptions, these might be used to detect exceptions during transput, and so if the underlying hardware does support ∞, then it would be detected with a on value error while printing and if mended would appear as a field full of error char.

<lang algol68>printf(($"max int: "gl$,max int)); printf(($"long max int: "gl$,long max int)); printf(($"long long max int: "gl$,long long max int)); printf(($"max real: "gl$,max real)); printf(($"long max real: "gl$,long max real)); printf(($"long long max real: "gl$,long long max real)); printf(($"error char: "gl$,error char))</lang> Output:

max int: +2147483647
long max int: +99999999999999999999999999999999999
long long max int: +9999999999999999999999999999999999999999999999999999999999999999999999
max real: +1.79769313486235e+308
long max real: +1.000000000000000000000000e+999999
long long max real: +1.00000000000000000000000000000000000000000000000000000000000e+999999
error char: *

Argile

Translation of: C

(simplified)

<lang Argile>use std printf "%f\n" atof "infinity" (: this prints "inf" :)

  1. extern :atof<text>: -> real</lang>

AWK

<lang AWK> BEGIN {

   k=1; 
   while (2^(k-1) < 2^k) k++; 
   INF = 2^k; 
   print INF; 
 }</lang>

This has been tested with GAWK 3.1.7 and MAWK, both return

 inf 

C

A previous solution used atof("infinity"), which returned infinity with some C libraries but returned zero with MinGW.

C89 has a macro HUGE_VAL in <math.h>. HUGE_VAL is a double. HUGE_VAL will be infinity if infinity exists, else it will be the largest possible number. HUGE_VAL is a double.

<lang c>#include <math.h> /* HUGE_VAL */

  1. include <stdio.h> /* printf() */

double inf(void) {

 return HUGE_VAL;

}

int main() {

 printf("%g\n", inf());
 return 0;

}</lang>

The output from the above program might be "inf", "1.#INF", or something else.

C99 also has a macro for infinity:

<lang c>#define _ISOC99_SOURCE

  1. include <math.h>
  2. include <stdio.h>

int main() {

 printf("%g\n", INFINITY);
 return 0;

}</lang>

C#

<lang csharp>using System;

class Program {

   static double PositiveInfinity()
   {
       return double.PositiveInfinity;
   }
   static void Main()
   {
       Console.WriteLine(PositiveInfinity());
   }

}</lang> Output: <lang>Infinity</lang>

C++

<lang cpp>#include <limits>

double inf() {

 if (std::numeric_limits<double>::has_infinity)
   return std::numeric_limits<double>::infinity();
 else
   return std::numeric_limits<double>::max();

}</lang>

Clojure

Translation of: Java

Java's floating-point types (float, double) all support infinity. You can get infinity from constants in the corresponding wrapper class; for example, Double: (def infinity Double/POSITIVE_INFINITY) ; defined as 1.0/0.0 (Double/isInfinite infinity) ; true

The largest possible number in Java (without using the Big classes) is also in the Double class. (def biggestNumber Double/MAX_VALUE) Its value is (2-2-52)*21023 or 1.7976931348623157*10308 (a.k.a. "big"). Other number classes (Integer, Long, Float, Byte, and Short) have maximum values that can be accessed in the same way.

CoffeeScript

Translation of: JavaScript

CoffeeScript compiles to JavaScript, and as such it inherits the properties of JavaScript.

JavaScript has a special global property called "Infinity": <lang coffeescript>Infinity</lang> as well as constants in the Number class: <lang coffeescript>Number.POSITIVE_INFINITY Number.NEGATIVE_INFINITY</lang>

The global isFinite function tests for finiteness: <lang coffeescript>isFinite x</lang>

Common Lisp

Common Lisp does not specify an infinity value. Some implementations may have support for IEEE infinity, however. For instance, CMUCL supports IEEE Special Values. Common Lisp does specify that implementations define constants with most (and least) positive (and negative) values. These may vary between implementations.

Works with: LispWorks

5.1.2, Intel, OS X, 32-bit

<lang lisp>> (apropos "MOST-POSITIVE" :cl) MOST-POSITIVE-LONG-FLOAT, value: 1.7976931348623158D308 MOST-POSITIVE-SHORT-FLOAT, value: 3.4028172S38 MOST-POSITIVE-SINGLE-FLOAT, value: 3.4028235E38 MOST-POSITIVE-DOUBLE-FLOAT, value: 1.7976931348623158D308 MOST-POSITIVE-FIXNUM, value: 536870911

> (apropos "MOST-NEGATIVE" :cl) MOST-NEGATIVE-SINGLE-FLOAT, value: -3.4028235E38 MOST-NEGATIVE-LONG-FLOAT, value: -1.7976931348623158D308 MOST-NEGATIVE-SHORT-FLOAT, value: -3.4028172S38 MOST-NEGATIVE-DOUBLE-FLOAT, value: -1.7976931348623158D308 MOST-NEGATIVE-FIXNUM, value: -536870912</lang>

D

<lang d>auto inf() {

   return typeof(1.5).infinity;

}

void main() {}</lang>

Delphi

Delphi defines the following constants in Math: <lang Delphi> Infinity = 1.0 / 0.0;

 NegInfinity = -1.0 / 0.0;</lang>
 

Test for infinite value using: <lang Delphi>Math.IsInfinite()</lang>

E

<lang e>def infinityTask() {

   return Infinity # predefined variable holding positive infinity

}</lang>

Euphoria

<lang Euphoria>constant infinity = 1E400

? infinity -- outputs "inf"</lang>

Factor

<lang factor>1/0.</lang>

Fantom

Fantom's Float data type is an IEEE 754 64-bit floating point type. Positive infinity is represented by the constant posInf.

<lang fantom> class Main {

 static Float getInfinity () { Float.posInf }
 public static Void main () { echo (getInfinity ()) }

} </lang>

Forth

<lang forth>: inf ( -- f ) 1e 0e f/ ; inf f. \ implementation specific. GNU Forth will output "inf"

inf? ( f -- ? ) s" MAX-FLOAT" environment? drop f> ;

\ IEEE infinity is the only value for which this will return true

has-inf ( -- ? ) ['] inf catch if false else inf? then ;</lang>

Fortran

ISO Fortran 2003 or later supports an IEEE_ARITHMETIC module which defines a wide range of intrinsic functions and types in support of IEEE floating point formats and arithmetic rules. <lang fortran>program to_f_the_ineffable

  use, intrinsic :: ieee_arithmetic
  integer :: i
  real dimension(2) :: y, x = (/ 30, ieee_value(y,ieee_positive_inf) /)
  
  do i = 1, 2
     if (ieee_support_datatype(x(i))) then
        if (ieee_is_finite(x(i))) then
           print *, 'x(',i,') is finite'
        else
           print *, 'x(',i,') is infinite'
        end if
        
     else
        print *, 'x(',i,') is not in an IEEE-supported format'
     end if
  end do

end program to_f_the_ineffable</lang>

ISO Fortran 90 or later supports a HUGE intrinsic which returns the largest value supported by the data type of the number given. <lang fortran>real :: x real :: huge_real = huge(x)</lang>

GAP

<lang gap># Floating point infinity inf := FLOAT_INT(1) / FLOAT_INT(0);

IS_FLOAT(inf);

  1. true;
  1. GAP has also a formal infinity value

infinity in Cyclotomics;

  1. true</lang>

Go

<lang go>package main

import (

   "fmt"
   "math"

)

// function called for by task func posInf() float64 {

   return math.Inf(1) // argument specifies positive infinity

}

func main() {

   x := 1.5 // type of x determined by literal
   // that this compiles demonstrates that PosInf returns same type as x,
   // the type specified by the task.
   x = posInf()                     // test function
   fmt.Println(x, math.IsInf(x, 1)) // demonstrate result

}</lang> Output:

+Inf true

Groovy

Groovy, like Java, requires full support for IEEE 32-bit (Float) and 64-bit (Double) formats. So the solution function would simply return either the Float or Double constant encoded as IEEE infinity. <lang groovy>def biggest = { Double.POSITIVE_INFINITY }</lang>

Test program: <lang groovy>println biggest() printf ( "0x%xL \n", Double.doubleToLongBits(biggest()) )</lang>

Output:

Infinity
0x7ff0000000000000L

Haskell

The Haskell 98 standard does not require full IEEE numbers, and the required operations on floating point numbers leave some degree of freedom to the implementation. Also, it's not possible to use the type of the literal 1.0 to decide which concrete type to use, because Haskell number literals are automatically converted.

Nevertheless, the following may come close to the task description:

<lang haskell>maxRealFloat :: RealFloat a => a -> a maxRealFloat x = encodeFloat b (e-1) `asTypeOf` x where

 b     = floatRadix x - 1
 (_,e) = floatRange x

infinity :: RealFloat a => a infinity = if isInfinite inf then inf else maxRealFloat 1.0 where

 inf = 1/0</lang>

Test for the two standard floating point types:

<lang haskell>*Main> infinity :: Float Infinity

  • Main> infinity :: Double

Infinity</lang>

Or you can simply use division by 0: <lang haskell>Prelude> 1 / 0 :: Float Infinity Prelude> 1 / 0 :: Double Infinity</lang>

Or use "read" to read the string representation: <lang haskell>Prelude> read "Infinity" :: Float Infinity Prelude> read "Infinity" :: Double Infinity</lang>

Icon and Unicon

Icon and Unicon have no infinity value (or defined maximum or minimum values). Reals are implemented as C doubles and the behavior could vary somewhat from platform to platform. Both explicitly check for divide by zero and treat it as a runtime error (201), so it's not clear how you could produce one with the possible exception of externally called code.

IDL

IDL provides the standard IEEE values for _inf and _NaN in the !Values system structure:

<lang idl>print, !Values.f_infinity  ;; for normal floats or print, !Values.D_infinity  ;; for doubles</lang>

Io

<lang io>inf := 1/0</lang>

or

<lang io>Number constants inf</lang>

J

Positive infinity is produced by the primary constant function _: .
It is also represented directly as a numeric value by an underscore, used alone.

Example: <lang j>

  _ * 5 NB. multiplying infinity to 5 results in infinity

_

  5 % _ NB. dividing 5 by infinity results in 0

0

  5 % 0 NB. dividing 5 by 0 results in infinity

_ </lang>

Java

Java's floating-point types (float, double) all support infinity. You can get infinity from constants in the corresponding wrapper class; for example, Double: <lang java>double infinity = Double.POSITIVE_INFINITY; //defined as 1.0/0.0 Double.isInfinite(infinity); //true</lang> As a function: <lang java>public static double getInf(){

  return Double.POSITIVE_INFINITY;

}</lang> The largest possible number in Java (without using the Big classes) is also in the Double class. <lang java>double biggestNumber = Double.MAX_VALUE;</lang> Its value is (2-2-52)*21023 or 1.7976931348623157*10308 (a.k.a. "big"). Other number classes (Integer, Long, Float, Byte, and Short) have maximum values that can be accessed in the same way.

JavaScript

JavaScript has a special global property called "Infinity": <lang javascript>Infinity</lang> as well as constants in the Number class: <lang javascript>Number.POSITIVE_INFINITY Number.NEGATIVE_INFINITY</lang>

The global isFinite() function tests for finiteness: <lang javascript>isFinite(x)</lang>

Lua

<lang lua> function infinity()

 return 1/0 --lua uses unboxed C floats for all numbers

end </lang>

K

K has predefined positive and negative integer and float infinities: -0I, 0I, -0i, 0i. They have following properties:

Works with: Kona

<lang K> / Integer infinities

  / 0I is just 2147483647
  / -0I is just -2147483647
  / -2147483648 is a special "null integer"(NaN) 0N
  0I*0I

1

  0I-0I

0

  0I+1

0N

  0I+2

-0I

  0I+3 / -0I+1

-2147483646

  0I-1

2147483646

  0I%0I

1

  0I^2

4.611686e+18

  0I^0I

0i

  0I^-0I

0.0

  1%0

0I

  0%0

0

  0i^2

0i

  0i^0i

0i

  / Floating point infinities in K are something like
  / IEEE 754 values
  / Also there is floating point NaN -- 0n
  0i+1

0i

  0i*0i

0i

  0i-0i

0n

  0i%0i

0n

  0i%0n

0n

  / but
  0.0%0.0

0.0</lang>

Mathematica

Mathematica has infinity built-in as a symbol. Which can be used throughout the software: <lang Mathematica>Sum[1/n^2,{n,Infinity}] 1/Infinity Integrate[Exp[-x^2], {x, -Infinity, Infinity}] 10^100 < Infinity</lang> gives back:

Pi^2/6
0
Sqrt[Pi]
True

Moreover Mathematica has 2 other variables that represent 'infinity': DirectedInfinity[r] and ComplexInfinity. DirectInfinity[r] represents an infinite quantity with complex direction r. ComplexInfinity represents an infinite quantity with an undetermined direction; like 1/0. Which has infinite size but undetermined direction. So the general infinity is DirectedInfinity, however if the direction is unknown it will turn to ComplexInfinity, DirectedInfinity[-1] will return -infinity and DirectedInfinity[1] will return infinity. Directed infinity can, for example, be used to integrate over an infinite domain with a given complex direction: one might want to integrate Exp[-x^2]/(x^2-1) from 0 to DirectedInfinity[Exp[I Pi/4]]: <lang Mathematica>Integrate[Exp[-x^2]/(x^2 - 1), {x, 0, DirectedInfinity[Exp[I Pi/4]]}]</lang> gives back:

-((Pi (I+Erfi[1]))/(2 E))

MATLAB / Octave

MATLAB implements the IEEE 754 floating point standard as the default for all numeric data types. +Inf and -Inf are by default implemented and supported by MATLAB. To check if a variable has the value +/-Inf, one can use the built-in function "isinf()" which will return a Boolean 1 if the number is +/-inf.

<lang Matlab>a = +Inf; isinf(a) </lang>

Returns:

ans =
     1

Maxima

<lang maxima>/* Maxima has inf (positive infinity) and minf (negative infinity) */

declare(x, real)$

is(x < inf); /* true */

is(x > minf); /* true */

/* However, it is an error to try to divide by zero, even with floating-point numbers */ 1.0/0.0; /* expt: undefined: 0 to a negative exponent.

  -- an error. To debug this try: debugmode(true); */</lang>

Metafont

Metafont numbers are a little bit odd (it uses fixed binary arithmetic). For Metafont, the biggest number (and so the one which is also considered to be infinity) is 4095.99998. In fact, in the basic set of macros for Metafont, we can read

<lang metafont>infinity := 4095.99998;</lang>

Modula-2

<lang Modula-2>MODULE inf;

IMPORT InOut;

BEGIN

 InOut.WriteReal (1.0 / 0.0, 12, 12);
 InOut.WriteLn

END inf.</lang> Producing <lang Modula-2>jan@Beryllium:~/modula/rosetta$ inf

        • RUNTIME ERROR bound check error

Floating point exception</lang>

Modula-3

IEEESpecial contains 3 variables defining negative infinity, positive infinity, and NaN for all 3 floating point types in Modula-3 (REAL, LONGREAL, and EXTENDED).

If the implementation doesn't support IEEE floats, the program prints arbitrary values (Critical Mass Modula-3 implementation does support IEEE floats). <lang modula3>MODULE Inf EXPORTS Main;

IMPORT IO, IEEESpecial;

BEGIN

 IO.PutReal(IEEESpecial.RealPosInf);
 IO.Put("\n");

END Inf.</lang>

Output:

Infinity

Nemerle

Both single and double precision floating point numbers support PositiveInfinity, NegativeInfinity and NaN. <lang Nemerle>def posinf = double.PositiveInfinity; def a = IsInfinity(posinf); // a = true def b = IsNegativeInfinity(posinf); // b = false def c = IsPositiveInfinity(posinf); // c = true</lang>

OCaml

<lang ocaml>infinity</lang> is already a pre-defined value in OCaml.

# infinity;;
- : float = infinity
# 1.0 /. 0.0;;
- : float = infinity

OpenEdge/Progress

The unknown value (represented by a question mark) can be considered to equal infinity. There is no difference between positive and negative infinity but the unknown value sometimes sorts low and sometimes sorts high when used in queries.

<lang progress>MESSAGE

  1.0 / 0.0 SKIP
  -1.0 / 0.0 SKIP(1)
  ( 1.0 / 0.0 ) = ( -1.0 / 0.0 )

VIEW-AS ALERT-BOX.</lang>

Output

---------------------------
Message (Press HELP to view stack trace)
---------------------------
? 
? 

yes
---------------------------
OK   Help   
---------------------------

Oz

<lang oz>declare

 PosInf = 1./0.
 NegInf = ~1./0.

in

 {Show PosInf}
 {Show NegInf}
 %% some assertion
 42. / PosInf = 0.
 42. / NegInf = 0.
 PosInf * PosInf = PosInf
 PosInf * NegInf = NegInf
 NegInf * NegInf = PosInf</lang>

PARI/GP

<lang parigp>infty()={

 [1] \\ Used for many functions like intnum

};</lang>

Pascal

See Delphi

Perl

Positive infinity: <lang perl>my $x = 0 + "inf"; my $y = 0 + "+inf";</lang> Negative infinity: <lang perl>my $x = 0 - "inf"; my $y = 0 + "-inf";</lang> The "0 + ..." is used here to make sure that the variable stores a value that is actually an infinitive number instead of just a string "inf" but in practice one can use just: <lang perl>my $x = "inf";</lang> and $x while originally holding a string will get converted to an infinite number when it is first used as a number.

Some programmers use expressions that overflow the IEEE floating point numbers such as: <lang perl>my $x = 1e1000;</lang> which is 101000 or googol10 or even numbers like this one: <lang perl>my $y = 10**10**10;</lang> which is 1010000000000 but it has to make some assumptions about the underlying hardware format and its size. Furthermore, using such literals in the scope of some pragmas such as bigint, bignum or bigrat would actually compute those numbers:

<lang perl>use bigint; my $x = 1e1000; my $y = 10**10**10;</lang> Here the $x and $y when printed would give 1001 and 10000000001-digit numbers respectively, the latter taking no less than 10GB of space to just output.

Under those pragmas, however, there is a simpler way to use infinite values, thanks to the inf symbol being exported into the namespace by default: <lang perl>use bigint; my $x = inf; my $y = -inf;</lang>

Perl 6

Inf support is required by language spec on all abstract Numeric types (in the absence of subset constraints) including Num, Rat and Int types. Native integers cannot support Inf, so attempting to assign Inf will result in an exception; native floats are expected to follow IEEE standards including +/- Inf and NaN.

PHP

This is how you get infinity: <lang php>INF</lang> Unfortunately, "1.0 / 0.0" doesn't evaluate to infinity; but instead seems to evaluate to False, which is more like 0 than infinity.

PHP has functions is_finite() and is_infinite() to test for infiniteness.

PL/I

<lang PL/I> declare x float, y float (15), z float (18);

put skip list (huge(x), huge(y), huge(z)); </lang>

PicoLisp

The symbol 'T' is used to represent infinite values, e.g. for the length of circular lists, and is greater than any other value in comparisons. PicoLisp has only very limited floating point support (scaled bignum arithmetics), but some functions return 'T' for infinite results. <lang PicoLisp>(load "@lib/math.l")

(exp 1000.0)

-> T</lang>

PostScript

<lang postscript>/infinity { 9 99 exp } def</lang>

PowerShell

Since PowerShell is built on .NET, floating-point numbers are always capable of representing infinity. <lang powershell>function infinity {

   [double]::PositiveInfinity

}</lang>

PureBasic

PureBasic uses IEEE 754 coding for float types, result is as <lang PureBasic>Define.d a,b

b=0 a=+1.0 Debug a/b

a=-1.0 Debug a/b</lang>

Outputs

+Infinity

-Infinity

Python

This is how you get infinity: <lang python>>>> float('infinity') inf</lang> Note: When passing in a string to float(), values for NaN and Infinity may be returned, depending on the underlying C library. The specific set of strings accepted which cause these values to be returned depends entirely on the underlying C library used to compile Python itself, and is known to vary.
The Decimal module explicitly supports +/-infinity Nan, +/-0.0, etc without exception.

Floating-point division by 0 doesn't give you infinity, it raises an exception: <lang python>>>> 1.0 / 0.0 Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ZeroDivisionError: float division</lang>

If float('infinity') doesn't work on your platform, you could use this trick:

>>> 1e999
1.#INF

It works by trying to create a float bigger than the machine can handle.

R

<lang R> Inf #positive infinity

-Inf                   #negative infinity 
.Machine$double.xmax   # largest finite floating-point number
is.finite              # function to test to see if a number is finite
  1. function that returns the input if it is finite, otherwise returns (plus or minus) the largest finite floating-point number
forcefinite <- function(x) ifelse(is.finite(x), x, sign(x)*.Machine$double.xmax)
forcefinite(c(1, -1, 0, .Machine$double.xmax, -.Machine$double.xmax, Inf, -Inf))
  1. [1] 1.000000e+00 -1.000000e+00 0.000000e+00 1.797693e+308
  2. [5] -1.797693e+308 1.797693e+308 -1.797693e+308</lang>

RLaB

<lang RLaB> >> x = inf()

        inf

>> isinf(x)

          1

>> inf() > 10

          1

>> -inf() > 10

          0

</lang>

REXX

The language specifications for REXX are rather open-ended when it comes to language limits.

Limits on numbers is expressed as: The REXX interpreter has to at least handle exponents up to nine (decimal) digits.

So it's up to the writers of the REXX interpreter to decide what limits are to be implemented or enforced.

For the default setting of

               NUMERIC DIGITS 9

the biggest number that can be used is:


for the Regina REXX  and  R4  REXX interpreter:

.999999999e+999999999
For a setting of

              NUMERIC DIGITS 100

the biggest number that can be used is:


for the Regina REXX interpreter:
.9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999e+999999999


for the R4 REXX interpreter:
.9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999e+9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999



... and so on with larger  NUMERIC DIGITS

For the most REXX interpreters, the maximum number of digits is only limited by virtual storage, but the pratical limit would be a little less than half of available virtual storage, which would (realistically) mean around one billion digits.

Ruby

Infinity is a Float value <lang ruby>a = 1.0/0 # => Infinity a.finite? # => false a.infinite? # => 1

a = -1/0.0 # => -Infinity a.infinite? # => -1

a = Float::MAX # => 1.79769313486232e+308 a.finite? # => true a.infinite? # => nil</lang>

Works with: Ruby version 1.9.2+

<lang ruby>a = Float::INFINITY # => Infinity</lang>

Scala

<lang scala>scala> 1 / 0. res2: Double = Infinity

scala> -1 / 0. res3: Double = -Infinity

scala> 1 / Double.PositiveInfinity res4: Double = 0.0

scala> 1 / Double.NegativeInfinity res5: Double = -0.0</lang>

Scheme

<lang scheme>+inf.0 ; positive infinity (define (finite? x) (< -inf.0 x +inf.0)) (define (infinite? x) (not (finite? x)))</lang>

Seed7

Seed7s floating-point type (float) supports infinity. The library float.s7i defines the constant Infinity as: <lang seed7>const float: Infinity is 1.0 / 0.0;</lang> Checks for infinity can be done by comparing with this constant.

Slate

<lang slate>PositiveInfinity</lang>

Smalltalk

Works with: GNU Smalltalk

Each of the finite-precision Float classes (FloatE, FloatD, FloatQ), have an "infinity" method that returns infinity in that type.

st> FloatD infinity
Inf
st> 1.0 / 0.0
Inf

Standard ML

<lang sml>Real.posInf</lang>

- Real.posInf;
val it = inf : real
- 1.0 / 0.0;
val it = inf : real

Tcl

Works with: Tcl version 8.5

Tcl 8.5 has Infinite as a floating point value, not an integer value <lang tcl>package require Tcl 8.5

expr {1.0 / 0}  ;# ==> Inf expr {-1.0 / 0} ;# ==> -Inf expr {inf}  ;# ==> Inf expr {1 / 0}  ;# ==> "divide by zero" error; Inf not part of range of integer division</lang>

A maximal integer is not easy to find, as Tcl switches to unbounded integers when a 64-bit integer is about to roll over: <lang Tcl>% format %lx -1  ;# all bits set ffffffffffffffff

% regsub f 0x[format %lx -1] 7 ;# unset the sign bit for positive 0x7fffffffffffffff

% set ii [expr [regsub f 0x[format %lx -1] 7]] ;# show as decimal 9223372036854775807

% incr ii 9223372036854775808 ;# silently upgrade to unbounded integer, still positive</lang> A theoretical MAXINT, though very impractical, could be

string repeat 9 [expr 2**32-1]

TI-89 BASIC

<lang ti89b>∞</lang>

TorqueScript

<lang TorqueScript>function infinity() {

   return 1/0;

}</lang>

Trith

The following functions are included as part of the core operators: <lang trith>

inf 1.0 0.0 / ;
-inf inf neg ;
inf? abs inf = ;

</lang>

Ursala

IEEE double precision floating point numbers are a primitive type in Ursala. This function returns IEEE double precision infinity when applied to any argument, using the value inf, which is declared as a constant in the flo library.


<lang Ursala>#import flo

infinity = inf!</lang>

Visual Basic

Works with: Visual Basic version 6

Positive infinity, negative infinity and indefinite number (usable as NaN?) can be generated by deliberately dividing by zero under the influence of On Error Resume Next:

<lang vb>Dim PlusInfinity as Double Dim MinusInfinity as Double Dim IndefiniteNumber as Double On Error Resume Next PlusInfinity = 1 / 0 MinusInfinity = -1 / 0 IndefiniteNumber = 0 / 0</lang>

The results of the above are stored internally as:

1.#INF
-1.#INF
-1.#IND