Infinity: Difference between revisions

From Rosetta Code
Content added Content deleted
No edit summary
 
(34 intermediate revisions by 21 users not shown)
Line 13: Line 13:


=={{header|11l}}==
=={{header|11l}}==
<lang 11l>print(Float.infinity)</lang>
<syntaxhighlight lang="11l">print(Float.infinity)</syntaxhighlight>


{{out}}
{{out}}
Line 22: Line 22:
=={{header|ActionScript}}==
=={{header|ActionScript}}==
ActionScript has the built in function isFinite() to test if a number is finite or not.
ActionScript has the built in function isFinite() to test if a number is finite or not.
<lang actionscript>trace(5 / 0); // outputs "Infinity"
<syntaxhighlight lang="actionscript">trace(5 / 0); // outputs "Infinity"
trace(isFinite(5 / 0)); // outputs "false"</lang>
trace(isFinite(5 / 0)); // outputs "false"</syntaxhighlight>


=={{header|Ada}}==
=={{header|Ada}}==
<lang ada>with Ada.Text_IO; use Ada.Text_IO;
<syntaxhighlight lang="ada">with Ada.Text_IO; use Ada.Text_IO;


procedure Infinities is
procedure Infinities is
Line 49: Line 49:
Put_Line ("Supremum" & Float'Image (Sup));
Put_Line ("Supremum" & Float'Image (Sup));
Put_Line ("Infimum " & Float'Image (Inf));
Put_Line ("Infimum " & Float'Image (Inf));
end Infinities;</lang>
end Infinities;</syntaxhighlight>
The language-defined attribute Machine_Overflows is defined for each floating-point type. It is true when an overflow or divide-by-zero results in Constraint_Error exception propagation. When the underlying machine type is incapable to implement this semantics the attribute is false. It is to expect that on the machines with [[IEEE]] 754 hardware Machine_Overflows is true. The language-defined attributes Succ and Pred yield the value next or previous to the argument, correspondingly.
The language-defined attribute Machine_Overflows is defined for each floating-point type. It is true when an overflow or divide-by-zero results in Constraint_Error exception propagation. When the underlying machine type is incapable to implement this semantics the attribute is false. It is to expect that on the machines with [[IEEE]] 754 hardware Machine_Overflows is true. The language-defined attributes Succ and Pred yield the value next or previous to the argument, correspondingly.


Line 60: Line 60:


Here is the code that should work for any type on any machine:
Here is the code that should work for any type on any machine:
<lang ada>with Ada.Text_IO; use Ada.Text_IO;
<syntaxhighlight lang="ada">with Ada.Text_IO; use Ada.Text_IO;


procedure Infinities is
procedure Infinities is
Line 85: Line 85:
Put_Line ("Supremum" & Real'Image (Sup));
Put_Line ("Supremum" & Real'Image (Sup));
Put_Line ("Infimum " & Real'Image (Inf));
Put_Line ("Infimum " & Real'Image (Inf));
end Infinities;</lang>
end Infinities;</syntaxhighlight>
Sample output. Note that the compiler is required to generate Constraint_Error even if the hardware is [[IEEE]] 754. So the upper and lower bounds are 10.0 and -10.0:
Sample output. Note that the compiler is required to generate Constraint_Error even if the hardware is [[IEEE]] 754. So the upper and lower bounds are 10.0 and -10.0:
<pre>
<pre>
Line 93: Line 93:
===Getting rid of IEEE ideals===
===Getting rid of IEEE ideals===
There is a simple way to strip [[IEEE]] 754 ideals (non-numeric values) from a predefined floating-point type such as Float or Long_Float:
There is a simple way to strip [[IEEE]] 754 ideals (non-numeric values) from a predefined floating-point type such as Float or Long_Float:
<lang ada>subtype Safe_Float is Float range Float'Range;</lang>
<syntaxhighlight lang="ada">subtype Safe_Float is Float range Float'Range;</syntaxhighlight>
The subtype Safe_Float keeps all the range of Float, yet behaves properly upon overflow, underflow and zero-divide.
The subtype Safe_Float keeps all the range of Float, yet behaves properly upon overflow, underflow and zero-divide.


Line 107: Line 107:
ALGOL 68 does have some 7 built in [[Exceptions#ALGOL_68|exceptions]], these might be used to detect exceptions during transput, and so <u>if</u> the underlying hardware <u>does</u> support &infin;, then it would be detected with a ''on value error'' while printing and if ''mended'' would appear as a field full of ''error char''.
ALGOL 68 does have some 7 built in [[Exceptions#ALGOL_68|exceptions]], these might be used to detect exceptions during transput, and so <u>if</u> the underlying hardware <u>does</u> support &infin;, then it would be detected with a ''on value error'' while printing and if ''mended'' would appear as a field full of ''error char''.


<lang algol68>printf(($"max int: "gl$,max int));
<syntaxhighlight lang="algol68">printf(($"max int: "gl$,max int));
printf(($"long max int: "gl$,long max int));
printf(($"long max int: "gl$,long max int));
printf(($"long long max int: "gl$,long long max int));
printf(($"long long max int: "gl$,long long max int));
Line 113: Line 113:
printf(($"long max real: "gl$,long max real));
printf(($"long max real: "gl$,long max real));
printf(($"long long max real: "gl$,long long max real));
printf(($"long long max real: "gl$,long long max real));
printf(($"error char: "gl$,error char))</lang>
printf(($"error char: "gl$,error char))</syntaxhighlight>
Output:
Output:
<pre>
<pre>
Line 124: Line 124:
error char: *
error char: *
</pre>
</pre>

=={{header|APL}}==
For built-in functions, reduction over an empty list returns the identity value for that function.
E.g., <code>+/⍬</code> gives <code>0</code>, and <code>×/⍬</code> gives 1.

The identity value for <code>⌊</code> (minimum) is the largest possible value. For APL implementations
that support infinity, this will be infinity. Otherwise, it will be some large, but finite value.

<syntaxhighlight lang="apl">inf ← {⌊/⍬}</syntaxhighlight>
{{out}}

[[GNU APL]]:
<pre>∞</pre>

[[Dyalog APL]]:
<pre>1.797693135E308</pre>


=={{header|Argile}}==
=={{header|Argile}}==
{{trans|C}} (simplified)
{{trans|C}} (simplified)
<lang Argile>use std
<syntaxhighlight lang="argile">use std
printf "%f\n" atof "infinity" (: this prints "inf" :)
printf "%f\n" atof "infinity" (: this prints "inf" :)
#extern :atof<text>: -> real</lang>
#extern :atof<text>: -> real</syntaxhighlight>


=={{header|AWK}}==
=={{header|Arturo}}==


<syntaxhighlight lang="rebol">print infinity
<lang AWK> BEGIN {
print neg infinity</syntaxhighlight>

{{out}}

<pre>∞
-∞</pre>

=={{header|AWK}}==
<syntaxhighlight lang="awk"> BEGIN {
k=1;
k=1;
while (2^(k-1) < 2^k) k++;
while (2^(k-1) < 2^k) k++;
INF = 2^k;
INF = 2^k;
print INF;
print INF;
}</lang>
}</syntaxhighlight>


This has been tested with GAWK 3.1.7 and MAWK, both return
This has been tested with GAWK 3.1.7 and MAWK, both return
<pre> inf </pre>
<pre> inf </pre>


=={{header|BBC BASIC}}==
=={{header|BASIC}}==
==={{header|BASIC256}}===
<syntaxhighlight lang="basic256">onerror TratoError
infinity = 1e300*1e300
end

TratoError:
if lasterror = 29 then print lasterrormessage
return</syntaxhighlight>

==={{header|BBC BASIC}}===
{{works with|BBC BASIC for Windows}}
{{works with|BBC BASIC for Windows}}
<lang bbcbasic> *FLOAT 64
<syntaxhighlight lang="bbcbasic"> *FLOAT 64
PRINT FNinfinity
PRINT FNinfinity
END
END
Line 163: Line 198:
RESTORE ERROR
RESTORE ERROR
UNTIL maxpos = prev
UNTIL maxpos = prev
= maxpos</lang>
= maxpos</syntaxhighlight>
Output:
Output:
<pre>
<pre>
Line 169: Line 204:
</pre>
</pre>


=={{header|bootBASIC}}==
==={{header|bootBASIC}}===
There are no floating point numbers in bootBASIC. All numbers and variables are 2 byte unsigned integers.

The code below can't print anything on the screen, plus the program won't end. No way is currently known to break out of the program.
The code below can't print anything on the screen, plus the program won't end. No way is currently known to break out of the program.
<lang bootBASIC>10 print 1/0</lang>
<syntaxhighlight lang="BASIC">10 print 1/0</syntaxhighlight>

=={{header|BQN}}==

Positive infinity is just ∞:

<pre>
∞ + 1
∞ - 3
-∞
¯∞
∞ - ∞
NaN
</pre>


=={{header|C}}==
=={{header|C}}==
Line 178: Line 230:
C89 has a macro HUGE_VAL in <math.h>. HUGE_VAL is a <tt>double</tt>. HUGE_VAL will be infinity if infinity exists, else it will be the largest possible number. HUGE_VAL is a <tt>double</tt>.
C89 has a macro HUGE_VAL in <math.h>. HUGE_VAL is a <tt>double</tt>. HUGE_VAL will be infinity if infinity exists, else it will be the largest possible number. HUGE_VAL is a <tt>double</tt>.


<lang c>#include <math.h> /* HUGE_VAL */
<syntaxhighlight lang="c">#include <math.h> /* HUGE_VAL */
#include <stdio.h> /* printf() */
#include <stdio.h> /* printf() */


Line 188: Line 240:
printf("%g\n", inf());
printf("%g\n", inf());
return 0;
return 0;
}</lang>
}</syntaxhighlight>


The output from the above program might be "inf", "1.#INF", or something else.
The output from the above program might be "inf", "1.#INF", or something else.
Line 194: Line 246:
C99 also has a macro for infinity:
C99 also has a macro for infinity:


<lang c>#define _ISOC99_SOURCE
<syntaxhighlight lang="c">#define _ISOC99_SOURCE


#include <math.h>
#include <math.h>
Line 202: Line 254:
printf("%g\n", INFINITY);
printf("%g\n", INFINITY);
return 0;
return 0;
}</lang>
}</syntaxhighlight>


=={{header|C sharp|C#}}==
=={{header|C sharp|C#}}==
<lang csharp>using System;
<syntaxhighlight lang="csharp">using System;


class Program
class Program
Line 218: Line 270:
Console.WriteLine(PositiveInfinity());
Console.WriteLine(PositiveInfinity());
}
}
}</lang>
}</syntaxhighlight>
Output:
Output:
<lang>Infinity</lang>
<syntaxhighlight lang="text">Infinity</syntaxhighlight>


=={{header|C++}}==
=={{header|C++}}==


<lang cpp>#include <limits>
<syntaxhighlight lang="cpp">#include <limits>


double inf()
double inf()
Line 232: Line 284:
else
else
return std::numeric_limits<double>::max();
return std::numeric_limits<double>::max();
}</lang>
}</syntaxhighlight>


=={{header|Clojure}}==
=={{header|Clojure}}==
{{trans|Java}}
{{trans|Java}}
Java's floating-point types (float, double) all support infinity. Clojure has literals for infinity:
Java's floating-point types (float, double) all support infinity. Clojure has literals for infinity:
<lang clojure>##Inf ;; same as Double/POSITIVE_INFINITY
<syntaxhighlight lang="clojure">##Inf ;; same as Double/POSITIVE_INFINITY
##-Inf ;; same as Double/NEGATIVE_INFINITY
##-Inf ;; same as Double/NEGATIVE_INFINITY
(Double/isInfinite ##Inf) ;; true</lang>
(Double/isInfinite ##Inf) ;; true</syntaxhighlight>


The largest possible number in Java (without using the Big classes) is also in the Double class
The largest possible number in Java (without using the Big classes) is also in the Double class
Line 249: Line 301:


JavaScript has a special global property called "Infinity":
JavaScript has a special global property called "Infinity":
<lang coffeescript>Infinity</lang>
<syntaxhighlight lang="coffeescript">Infinity</syntaxhighlight>
as well as constants in the Number class:
as well as constants in the Number class:
<lang coffeescript>Number.POSITIVE_INFINITY
<syntaxhighlight lang="coffeescript">Number.POSITIVE_INFINITY
Number.NEGATIVE_INFINITY</lang>
Number.NEGATIVE_INFINITY</syntaxhighlight>


The global isFinite function tests for finiteness:
The global isFinite function tests for finiteness:
<lang coffeescript>isFinite x</lang>
<syntaxhighlight lang="coffeescript">isFinite x</syntaxhighlight>


=={{header|Common Lisp}}==
=={{header|Common Lisp}}==
Line 263: Line 315:
{{works with|LispWorks}} 5.1.2, Intel, OS X, 32-bit
{{works with|LispWorks}} 5.1.2, Intel, OS X, 32-bit


<lang lisp>> (apropos "MOST-POSITIVE" :cl)
<syntaxhighlight lang="lisp">> (apropos "MOST-POSITIVE" :cl)
MOST-POSITIVE-LONG-FLOAT, value: 1.7976931348623158D308
MOST-POSITIVE-LONG-FLOAT, value: 1.7976931348623158D308
MOST-POSITIVE-SHORT-FLOAT, value: 3.4028172S38
MOST-POSITIVE-SHORT-FLOAT, value: 3.4028172S38
Line 275: Line 327:
MOST-NEGATIVE-SHORT-FLOAT, value: -3.4028172S38
MOST-NEGATIVE-SHORT-FLOAT, value: -3.4028172S38
MOST-NEGATIVE-DOUBLE-FLOAT, value: -1.7976931348623158D308
MOST-NEGATIVE-DOUBLE-FLOAT, value: -1.7976931348623158D308
MOST-NEGATIVE-FIXNUM, value: -536870912</lang>
MOST-NEGATIVE-FIXNUM, value: -536870912</syntaxhighlight>


=={{header|Component Pascal}}==
=={{header|Component Pascal}}==
BlackBox Component Builder
BlackBox Component Builder
<lang oberon2>
<syntaxhighlight lang="oberon2">
MODULE Infinity;
MODULE Infinity;
IMPORT StdLog;
IMPORT StdLog;
Line 291: Line 343:
END Do;
END Do;


</syntaxhighlight>
</lang>
Execute: ^Q Infinity.Do<br/>
Execute: ^Q Infinity.Do<br/>
Output:
Output:
Line 300: Line 352:
=={{header|D}}==
=={{header|D}}==


<lang d>auto inf() {
<syntaxhighlight lang="d">auto inf() {
return typeof(1.5).infinity;
return typeof(1.5).infinity;
}
}


void main() {}</lang>
void main() {}</syntaxhighlight>


=={{header|Delphi}}==
=={{header|Delphi}}==


Delphi defines the following constants in Math:
Delphi defines the following constants in Math:
<lang Delphi> Infinity = 1.0 / 0.0;
<syntaxhighlight lang="delphi"> Infinity = 1.0 / 0.0;
NegInfinity = -1.0 / 0.0;</lang>
NegInfinity = -1.0 / 0.0;</syntaxhighlight>
Test for infinite value using:
Test for infinite value using:
<lang Delphi>Math.IsInfinite()</lang>
<syntaxhighlight lang="delphi">Math.IsInfinite()</syntaxhighlight>


=={{header|Dyalect}}==
=={{header|Dyalect}}==
Line 319: Line 371:
Dyalect floating point number support positive infinity:
Dyalect floating point number support positive infinity:


<lang Dyalect>func infinityTask() {
<syntaxhighlight lang="dyalect">func infinityTask() => Float.Infinity</syntaxhighlight>
Float.inf()
}</lang>


=={{header|E}}==
=={{header|E}}==


<lang e>def infinityTask() {
<syntaxhighlight lang="e">def infinityTask() {
return Infinity # predefined variable holding positive infinity
return Infinity # predefined variable holding positive infinity
}</lang>
}</syntaxhighlight>

=={{header|EasyLang}}==
<syntaxhighlight>
print number "inf"
# or
print 1 / 0

</syntaxhighlight>


=={{header|Eiffel}}==
=={{header|Eiffel}}==
<lang eiffel>
<syntaxhighlight lang="eiffel">
class
class
APPLICATION
APPLICATION
Line 349: Line 407:
end
end
end
end
</syntaxhighlight>
</lang>


Output:
Output:
Line 365: Line 423:
floating and MAXLONGREAL for double precision floating. An infinity test can be achieved with
floating and MAXLONGREAL for double precision floating. An infinity test can be achieved with
an EXCEPTION:
an EXCEPTION:
<syntaxhighlight lang="erre">
<lang ERRE>
PROGRAM INFINITY
PROGRAM INFINITY


Line 381: Line 439:
END WHILE
END WHILE
END PROGRAM
END PROGRAM
</syntaxhighlight>
</lang>


=={{header|Euphoria}}==
=={{header|Euphoria}}==


<lang Euphoria>constant infinity = 1E400
<syntaxhighlight lang="euphoria">constant infinity = 1E400


? infinity -- outputs "inf"</lang>
? infinity -- outputs "inf"</syntaxhighlight>


=={{header|F_Sharp|F#}}==
=={{header|F_Sharp|F#}}==
<lang fsharp>
<syntaxhighlight lang="fsharp">
printfn "%f" (1.0/0.0)
printfn "%f" (1.0/0.0)
</syntaxhighlight>
</lang>
{{out}}
{{out}}
<pre>
<pre>
Line 399: Line 457:


=={{header|Factor}}==
=={{header|Factor}}==
<lang factor>1/0.</lang>
<syntaxhighlight lang="factor">1/0.</syntaxhighlight>


=={{header|Fantom}}==
=={{header|Fantom}}==
Line 405: Line 463:
Fantom's <code>Float</code> data type is an IEEE 754 64-bit floating point type. Positive infinity is represented by the constant <code>posInf</code>.
Fantom's <code>Float</code> data type is an IEEE 754 64-bit floating point type. Positive infinity is represented by the constant <code>posInf</code>.


<lang fantom>
<syntaxhighlight lang="fantom">
class Main
class Main
{
{
Line 411: Line 469:
public static Void main () { echo (getInfinity ()) }
public static Void main () { echo (getInfinity ()) }
}
}
</syntaxhighlight>
</lang>


=={{header|Forth}}==
=={{header|Forth}}==
<lang forth>: inf ( -- f ) 1e 0e f/ ;
<syntaxhighlight lang="forth">: inf ( -- f ) 1e 0e f/ ;
inf f. \ implementation specific. GNU Forth will output "inf"
inf f. \ implementation specific. GNU Forth will output "inf"


Line 420: Line 478:
\ IEEE infinity is the only value for which this will return true
\ IEEE infinity is the only value for which this will return true


: has-inf ( -- ? ) ['] inf catch if false else inf? then ;</lang>
: has-inf ( -- ? ) ['] inf catch if false else inf? then ;</syntaxhighlight>


=={{header|Fortran}}==
=={{header|Fortran}}==
ISO Fortran 2003 or later supports an IEEE_ARITHMETIC module which defines a wide range of intrinsic functions and types in support of IEEE floating point formats and arithmetic rules.
ISO Fortran 2003 or later supports an IEEE_ARITHMETIC module which defines a wide range of intrinsic functions and types in support of IEEE floating point formats and arithmetic rules.
<lang fortran>program to_f_the_ineffable
<syntaxhighlight lang="fortran">program to_f_the_ineffable
use, intrinsic :: ieee_arithmetic
use, intrinsic :: ieee_arithmetic
integer :: i
integer :: i
Line 441: Line 499:
end if
end if
end do
end do
end program to_f_the_ineffable</lang>
end program to_f_the_ineffable</syntaxhighlight>


ISO Fortran 90 or later supports a HUGE intrinsic which returns the largest value supported by the data type of the number given.
ISO Fortran 90 or later supports a HUGE intrinsic which returns the largest value supported by the data type of the number given.
<lang fortran>real :: x
<syntaxhighlight lang="fortran">real :: x
real :: huge_real = huge(x)</lang>
real :: huge_real = huge(x)</syntaxhighlight>


=={{header|FreeBASIC}}==
=={{header|FreeBASIC}}==
<lang freebasic>' FB 1.05.0 Win64
<syntaxhighlight lang="freebasic">' FB 1.05.0 Win64


#Include "crt/math.bi"
#Include "crt/math.bi"
Line 456: Line 514:
Print d; " (String representation of Positive Infinity)"
Print d; " (String representation of Positive Infinity)"
Sleep
Sleep
</syntaxhighlight>
</lang>


{{out}}
{{out}}
Line 462: Line 520:
1.#INF (String representation of Positive Infinity)
1.#INF (String representation of Positive Infinity)
</pre>
</pre>


=={{header|FutureBasic}}==
FB has a native definition for infinite floating point types. As demonstrated below, it returns "inf".
<syntaxhighlight lang="futurebasic">
printf @"%g", INFINITY

HandleEvents
</syntaxhighlight>
{{output}}
<pre>
inf
</pre>

=={{header|Fōrmulæ}}==

{{FormulaeEntry|page=https://formulae.org/?script=examples/Infinity}}

'''Solution'''

Fōrmulæ does not use floating point numbers, but arbitrary-size integers and arbitrary-precision decimal numbers.

Infinity is a predefined expression in Fōrmulæ.

Reduction of certain expressions can produce it:

[[File:Fōrmulæ - Infinity 01.png]]

[[File:Fōrmulæ - Infinity 02.png]]


=={{header|GAP}}==
=={{header|GAP}}==
<lang gap># Floating point infinity
<syntaxhighlight lang="gap"># Floating point infinity
inf := FLOAT_INT(1) / FLOAT_INT(0);
inf := FLOAT_INT(1) / FLOAT_INT(0);


Line 472: Line 559:
# GAP has also a formal ''infinity'' value
# GAP has also a formal ''infinity'' value
infinity in Cyclotomics;
infinity in Cyclotomics;
# true</lang>
# true</syntaxhighlight>


=={{header|Go}}==
=={{header|Go}}==
<lang go>package main
<syntaxhighlight lang="go">package main


import (
import (
Line 493: Line 580:
x = posInf() // test function
x = posInf() // test function
fmt.Println(x, math.IsInf(x, 1)) // demonstrate result
fmt.Println(x, math.IsInf(x, 1)) // demonstrate result
}</lang>
}</syntaxhighlight>
Output:
Output:
<pre>
<pre>
Line 501: Line 588:
=={{header|Groovy}}==
=={{header|Groovy}}==
Groovy, like Java, requires full support for IEEE 32-bit (Float) and 64-bit (Double) formats. So the solution function would simply return either the Float or Double constant encoded as IEEE infinity.
Groovy, like Java, requires full support for IEEE 32-bit (Float) and 64-bit (Double) formats. So the solution function would simply return either the Float or Double constant encoded as IEEE infinity.
<lang groovy>def biggest = { Double.POSITIVE_INFINITY }</lang>
<syntaxhighlight lang="groovy">def biggest = { Double.POSITIVE_INFINITY }</syntaxhighlight>


Test program:
Test program:
<lang groovy>println biggest()
<syntaxhighlight lang="groovy">println biggest()
printf ( "0x%xL \n", Double.doubleToLongBits(biggest()) )</lang>
printf ( "0x%xL \n", Double.doubleToLongBits(biggest()) )</syntaxhighlight>


Output:
Output:
Line 517: Line 604:
Nevertheless, the following may come close to the task description:
Nevertheless, the following may come close to the task description:


<lang haskell>maxRealFloat :: RealFloat a => a -> a
<syntaxhighlight lang="haskell">maxRealFloat :: RealFloat a => a -> a
maxRealFloat x = encodeFloat b (e-1) `asTypeOf` x where
maxRealFloat x = encodeFloat b (e-1) `asTypeOf` x where
b = floatRadix x - 1
b = floatRadix x - 1
Line 524: Line 611:
infinity :: RealFloat a => a
infinity :: RealFloat a => a
infinity = if isInfinite inf then inf else maxRealFloat 1.0 where
infinity = if isInfinite inf then inf else maxRealFloat 1.0 where
inf = 1/0</lang>
inf = 1/0</syntaxhighlight>


Test for the two standard floating point types:
Test for the two standard floating point types:


<lang haskell>*Main> infinity :: Float
<syntaxhighlight lang="haskell">*Main> infinity :: Float
Infinity
Infinity
*Main> infinity :: Double
*Main> infinity :: Double
Infinity</lang>
Infinity</syntaxhighlight>


Or you can simply use division by 0:
Or you can simply use division by 0:
<lang haskell>Prelude> 1 / 0 :: Float
<syntaxhighlight lang="haskell">Prelude> 1 / 0 :: Float
Infinity
Infinity
Prelude> 1 / 0 :: Double
Prelude> 1 / 0 :: Double
Infinity</lang>
Infinity</syntaxhighlight>


Or use "read" to read the string representation:
Or use "read" to read the string representation:
<lang haskell>Prelude> read "Infinity" :: Float
<syntaxhighlight lang="haskell">Prelude> read "Infinity" :: Float
Infinity
Infinity
Prelude> read "Infinity" :: Double
Prelude> read "Infinity" :: Double
Infinity</lang>
Infinity</syntaxhighlight>


=={{header|Icon}} and {{header|Unicon}}==
=={{header|Icon}} and {{header|Unicon}}==
Line 554: Line 641:
IDL provides the standard IEEE values for _inf and _NaN in the !Values system structure:
IDL provides the standard IEEE values for _inf and _NaN in the !Values system structure:


<lang idl>print, !Values.f_infinity ;; for normal floats or
<syntaxhighlight lang="idl">print, !Values.f_infinity ;; for normal floats or
print, !Values.D_infinity ;; for doubles</lang>
print, !Values.D_infinity ;; for doubles</syntaxhighlight>


=={{header|Io}}==
=={{header|Io}}==
<lang io>inf := 1/0</lang>
<syntaxhighlight lang="io">inf := 1/0</syntaxhighlight>


or
or


<lang io>Number constants inf</lang>
<syntaxhighlight lang="io">Number constants inf</syntaxhighlight>


=={{header|IS-BASIC}}==
=={{header|IS-BASIC}}==
<lang IS-BASIC>PRINT INF</lang>
<syntaxhighlight lang="is-basic">PRINT INF</syntaxhighlight>
Output:
Output:
<pre>
<pre>
Line 576: Line 663:


Example:
Example:
<syntaxhighlight lang="j">
<lang j>
_ * 5 NB. multiplying infinity to 5 results in infinity
_ * 5 NB. multiplying infinity to 5 results in infinity
_
_
Line 583: Line 670:
5 % 0 NB. dividing 5 by 0 results in infinity
5 % 0 NB. dividing 5 by 0 results in infinity
_
_
</syntaxhighlight>
</lang>


=={{header|Java}}==
=={{header|Java}}==
Java's floating-point types (<tt>float</tt>, <tt>double</tt>) all support infinity. You can get infinity from constants in the corresponding wrapper class; for example, <tt>Double</tt>:
Java's floating-point types (<tt>float</tt>, <tt>double</tt>) all support infinity. You can get infinity from constants in the corresponding wrapper class; for example, <tt>Double</tt>:
<lang java>double infinity = Double.POSITIVE_INFINITY; //defined as 1.0/0.0
<syntaxhighlight lang="java">double infinity = Double.POSITIVE_INFINITY; //defined as 1.0/0.0
Double.isInfinite(infinity); //true</lang>
Double.isInfinite(infinity); //true</syntaxhighlight>
As a function:
As a function:
<lang java>public static double getInf(){
<syntaxhighlight lang="java">public static double getInf(){
return Double.POSITIVE_INFINITY;
return Double.POSITIVE_INFINITY;
}</lang>
}</syntaxhighlight>
The largest possible number in Java (without using the <tt>Big</tt> classes) is also in the <tt>Double</tt> class.
The largest possible number in Java (without using the <tt>Big</tt> classes) is also in the <tt>Double</tt> class.
<lang java>double biggestNumber = Double.MAX_VALUE;</lang>
<syntaxhighlight lang="java">double biggestNumber = Double.MAX_VALUE;</syntaxhighlight>
Its value is (2-2<sup>-52</sup>)*2<sup>1023</sup> or 1.7976931348623157*10<sup>308</sup> (a.k.a. "big"). Other number classes (<tt>Integer</tt>, <tt>Long</tt>, <tt>Float</tt>, <tt>Byte</tt>, and <tt>Short</tt>) have maximum values that can be accessed in the same way.
Its value is (2-2<sup>-52</sup>)*2<sup>1023</sup> or 1.7976931348623157*10<sup>308</sup> (a.k.a. "big"). Other number classes (<tt>Integer</tt>, <tt>Long</tt>, <tt>Float</tt>, <tt>Byte</tt>, and <tt>Short</tt>) have maximum values that can be accessed in the same way.


=={{header|JavaScript}}==
=={{header|JavaScript}}==
JavaScript has a special global property called "Infinity":
JavaScript has a special global property called "Infinity":
<lang javascript>Infinity</lang>
<syntaxhighlight lang="javascript">Infinity</syntaxhighlight>
as well as constants in the Number class:
as well as constants in the Number class:
<lang javascript>Number.POSITIVE_INFINITY
<syntaxhighlight lang="javascript">Number.POSITIVE_INFINITY
Number.NEGATIVE_INFINITY</lang>
Number.NEGATIVE_INFINITY</syntaxhighlight>


The global isFinite() function tests for finiteness:
The global isFinite() function tests for finiteness:
<lang javascript>isFinite(x)</lang>
<syntaxhighlight lang="javascript">isFinite(x)</syntaxhighlight>


=={{header|jq}}==
=={{header|Joy}}==
<syntaxhighlight lang="joy">1 1024 ldexp dup neg stack.</syntaxhighlight>
jq uses IEEE 754 64-bit floating-point arithmetic, and very large number literals, e.g. 1e1000, are evaluated as IEEE 754 infinity. If your version of jq does not include `infinite` as a built-in, you could therefore define it as follows:
{{out}}
<pre>[-inf inf]</pre>


=={{header|jq}}==
<lang jq>def infinite: 1e1000;</lang>
Sufficiently recent versions of the C, Go and Rust implementations of jq (jq, gojq, and jaq, respectively) all allow `infinite` as a scalar value in jq programs; jq and gojq display its value as 1.7976931348623157e+308. The C implementation also allows the token `inf` when reading JSON, and stores it as `infinite`.


To test whether a JSON entity is equal to `infinite`, one can simply use `==` in the expected manner. Thus, assuming `infinite` has been defined, one could define a predicate, isinfinite, as follows:
The C implementation of jq uses IEEE 754 64-bit floating-point arithmetic, and very large real number literals, e.g. 1e1000, are evaluated as IEEE 754 infinity, so if your version of jq does not include `infinite` as a built-in, you could therefore define it as follows:


<lang jq>def isinfinite: . == infinite;</lang>
<syntaxhighlight lang="jq">def infinite: 1e1000;</syntaxhighlight>


To test whether a jq value is equal to `infinite` or `- infinite`, one can use the built-in filter `isinfinite`. One can also use `==` in the expected manner.
Currently, the infinite value prints as though it were a very large floating point number.


=={{header|Julia}}==
=={{header|Julia}}==
Julia uses IEEE floating-point arithmetic and includes a built-in constant `Inf` for (64-bit) floating-point infinity. Inf32 can be used as 32-bit infinity, when avoiding type promotions to Int64.
Julia uses IEEE floating-point arithmetic and includes a built-in constant `Inf` for (64-bit) floating-point infinity. Inf32 can be used as 32-bit infinity, when avoiding type promotions to Int64.


<syntaxhighlight lang="julia">
<lang Julia>
julia> julia> Inf32 == Inf64 == Inf16 == Inf
julia> julia> Inf32 == Inf64 == Inf16 == Inf
true
true
</syntaxhighlight>
</lang>


=={{header|K}}==
=={{header|K}}==
K has predefined positive and negative integer and float infinities: -0I, 0I, -0i, 0i. They have following properties:
K has predefined positive and negative integer and float infinities: -0I, 0I, -0i, 0i. They have following properties:
{{works with|Kona}}
{{works with|Kona}}
<lang K> / Integer infinities
<syntaxhighlight lang="k"> / Integer infinities
/ 0I is just 2147483647
/ 0I is just 2147483647
/ -0I is just -2147483647
/ -0I is just -2147483647
Line 677: Line 767:
/ but
/ but
0.0%0.0
0.0%0.0
0.0</lang>
0.0</syntaxhighlight>


=={{header|Klingphix}}==
=={{header|Klingphix}}==
<lang Klingphix>1e300 dup mult tostr "inf" equal ["Infinity" print] if
<syntaxhighlight lang="klingphix">1e300 dup mult tostr "inf" equal ["Infinity" print] if


" " input</lang>
" " input</syntaxhighlight>


=={{header|Kotlin}}==
=={{header|Kotlin}}==
<lang scala>fun main(args: Array<String>) {
<syntaxhighlight lang="scala">fun main(args: Array<String>) {
val p = Double.POSITIVE_INFINITY // +∞
val p = Double.POSITIVE_INFINITY // +∞
println(p.isInfinite()) // true
println(p.isInfinite()) // true
Line 695: Line 785:
println(n.isFinite()) // false
println(n.isFinite()) // false
println("${n < 0} ${n > 0}") // true false
println("${n < 0} ${n > 0}") // true false
}</lang>
}</syntaxhighlight>
{{out}}
{{out}}
<pre>true
<pre>true
Line 706: Line 796:
=={{header|Lambdatalk}}==
=={{header|Lambdatalk}}==
Lambdatalk is built on Javascript and can inherit lots of its capabilities. For instance:
Lambdatalk is built on Javascript and can inherit lots of its capabilities. For instance:
<lang scheme>
<syntaxhighlight lang="scheme">
{/ 1 0}
{/ 1 0}
-> Infinity
-> Infinity
Line 715: Line 805:
{< {pow 10 1000} Infinity}
{< {pow 10 1000} Infinity}
-> false
-> false
</syntaxhighlight>
</lang>


=={{header|Lasso}}==
=={{header|Lasso}}==
Lasso supports 64-bit decimals.. This gives Lasso's decimal numbers a range from approximately negative to positive 2x10^300 and with precision down to 2x10^-300. Lasso also supports decimal literals for NaN (not a number) as well and positive and negative infinity.
Lasso supports 64-bit decimals.. This gives Lasso's decimal numbers a range from approximately negative to positive 2x10^300 and with precision down to 2x10^-300. Lasso also supports decimal literals for NaN (not a number) as well and positive and negative infinity.
<lang Lasso>infinity
<syntaxhighlight lang="lasso">infinity
'<br />'
'<br />'
infinity -> type</lang>
infinity -> type</syntaxhighlight>
-> inf
-> inf


Line 729: Line 819:
Lingo stores floats using IEEE 754 double-precision (64-bit) format.
Lingo stores floats using IEEE 754 double-precision (64-bit) format.
INF is not a constant that can be used programmatically, but only a special return value.
INF is not a constant that can be used programmatically, but only a special return value.
<lang lingo>x = (1-power(2, -53)) * power(2, 1023) * 2
<syntaxhighlight lang="lingo">x = (1-power(2, -53)) * power(2, 1023) * 2
put ilk(x), x
put ilk(x), x
-- #float 1.79769313486232e308
-- #float 1.79769313486232e308
Line 735: Line 825:
x = (1-power(2, -53)) * power(2, 1023) * 3
x = (1-power(2, -53)) * power(2, 1023) * 3
put ilk(x), x, -x
put ilk(x), x, -x
-- #float INF -INF</lang>
-- #float INF -INF</syntaxhighlight>


=={{header|Lua}}==
=={{header|Lua}}==
<lang lua>
<syntaxhighlight lang="lua">
function infinity()
function infinity()
return 1/0 --lua uses unboxed C floats for all numbers
return 1/0 --lua uses unboxed C floats for all numbers
end
end
</syntaxhighlight>
</lang>


=={{header|M2000 Interpreter}}==
=={{header|M2000 Interpreter}}==
<syntaxhighlight lang="m2000 interpreter">
<lang M2000 Interpreter>
Rem : locale 1033
Rem : locale 1033
Module CheckIt {
Module CheckIt {
Line 793: Line 883:
}
}
Checkit
Checkit
</syntaxhighlight>
</lang>


=={{header|Maple}}==
=={{header|Maple}}==
Maple's floating point numerics are a strict extension of IEEE/754 and IEEE/854 so there is already a built-in infinity. (In fact, there are several.) The following procedure just returns the floating point (positive) infinity directly.
Maple's floating point numerics are a strict extension of IEEE/754 and IEEE/854 so there is already a built-in infinity. (In fact, there are several.) The following procedure just returns the floating point (positive) infinity directly.
<syntaxhighlight lang="maple">
<lang Maple>
> proc() Float(infinity) end();
> proc() Float(infinity) end();
Float(infinity)
Float(infinity)
</syntaxhighlight>
</lang>
There is also an exact infinity ("infinity"), a negative float infinity ("Float(-infinity)" or "-Float(infinity)") and a suite of complex infinities. The next procedure returns a boxed machine (double precision) float infinity.
There is also an exact infinity ("infinity"), a negative float infinity ("Float(-infinity)" or "-Float(infinity)") and a suite of complex infinities. The next procedure returns a boxed machine (double precision) float infinity.
<syntaxhighlight lang="maple">
<lang Maple>
> proc() HFloat(infinity) end();
> proc() HFloat(infinity) end();
HFloat(infinity)
HFloat(infinity)
</syntaxhighlight>
</lang>


=={{header|Mathematica}} / {{header|Wolfram Language}}==
=={{header|Mathematica}} / {{header|Wolfram Language}}==
Mathematica has infinity built-in as a symbol. Which can be used throughout the software:
Mathematica has infinity built-in as a symbol. Which can be used throughout the software:
<lang Mathematica>Sum[1/n^2,{n,Infinity}]
<syntaxhighlight lang="mathematica">Sum[1/n^2,{n,Infinity}]
1/Infinity
1/Infinity
Integrate[Exp[-x^2], {x, -Infinity, Infinity}]
Integrate[Exp[-x^2], {x, -Infinity, Infinity}]
10^100 < Infinity</lang>
10^100 < Infinity</syntaxhighlight>
gives back:
gives back:
<pre>Pi^2/6
<pre>Pi^2/6
Line 819: Line 909:
True</pre>
True</pre>
Moreover Mathematica has 2 other variables that represent 'infinity': DirectedInfinity[r] and ComplexInfinity. DirectInfinity[r] represents an infinite quantity with complex direction r. ComplexInfinity represents an infinite quantity with an undetermined direction; like 1/0. Which has infinite size but undetermined direction. So the general infinity is DirectedInfinity, however if the direction is unknown it will turn to ComplexInfinity, DirectedInfinity[-1] will return -infinity and DirectedInfinity[1] will return infinity. Directed infinity can, for example, be used to integrate over an infinite domain with a given complex direction: one might want to integrate Exp[-x^2]/(x^2-1) from 0 to DirectedInfinity[Exp[I Pi/4]]:
Moreover Mathematica has 2 other variables that represent 'infinity': DirectedInfinity[r] and ComplexInfinity. DirectInfinity[r] represents an infinite quantity with complex direction r. ComplexInfinity represents an infinite quantity with an undetermined direction; like 1/0. Which has infinite size but undetermined direction. So the general infinity is DirectedInfinity, however if the direction is unknown it will turn to ComplexInfinity, DirectedInfinity[-1] will return -infinity and DirectedInfinity[1] will return infinity. Directed infinity can, for example, be used to integrate over an infinite domain with a given complex direction: one might want to integrate Exp[-x^2]/(x^2-1) from 0 to DirectedInfinity[Exp[I Pi/4]]:
<lang Mathematica>Integrate[Exp[-x^2]/(x^2 - 1), {x, 0, DirectedInfinity[Exp[I Pi/4]]}]</lang>
<syntaxhighlight lang="mathematica">Integrate[Exp[-x^2]/(x^2 - 1), {x, 0, DirectedInfinity[Exp[I Pi/4]]}]</syntaxhighlight>
gives back:
gives back:
<pre>-((Pi (I+Erfi[1]))/(2 E))</pre>
<pre>-((Pi (I+Erfi[1]))/(2 E))</pre>
Line 826: Line 916:
MATLAB implements the IEEE 754 floating point standard as the default for all numeric data types. +Inf and -Inf are by default implemented and supported by MATLAB. To check if a variable has the value +/-Inf, one can use the built-in function "isinf()" which will return a Boolean 1 if the number is +/-inf.
MATLAB implements the IEEE 754 floating point standard as the default for all numeric data types. +Inf and -Inf are by default implemented and supported by MATLAB. To check if a variable has the value +/-Inf, one can use the built-in function "isinf()" which will return a Boolean 1 if the number is +/-inf.


<lang Matlab>a = +Inf;
<syntaxhighlight lang="matlab">a = +Inf;
isinf(a)
isinf(a)
</syntaxhighlight>
</lang>


Returns:
Returns:
Line 837: Line 927:


=={{header|Maxima}}==
=={{header|Maxima}}==
<lang maxima>/* Maxima has inf (positive infinity) and minf (negative infinity) */
<syntaxhighlight lang="maxima">/* Maxima has inf (positive infinity) and minf (negative infinity) */


declare(x, real)$
declare(x, real)$
Line 850: Line 940:
1.0/0.0;
1.0/0.0;
/* expt: undefined: 0 to a negative exponent.
/* expt: undefined: 0 to a negative exponent.
-- an error. To debug this try: debugmode(true); */</lang>
-- an error. To debug this try: debugmode(true); */</syntaxhighlight>


=={{header|Metafont}}==
=={{header|Metafont}}==
Line 856: Line 946:
Metafont numbers are a little bit odd (it uses fixed binary arithmetic). For Metafont, the biggest number (and so the one which is also considered to be infinity) is 4095.99998. In fact, in the basic set of macros for Metafont, we can read
Metafont numbers are a little bit odd (it uses fixed binary arithmetic). For Metafont, the biggest number (and so the one which is also considered to be infinity) is 4095.99998. In fact, in the basic set of macros for Metafont, we can read


<lang metafont>infinity := 4095.99998;</lang>
<syntaxhighlight lang="metafont">infinity := 4095.99998;</syntaxhighlight>


=={{header|MiniScript}}==
=={{header|MiniScript}}==
MiniScript uses IEEE numerics, so:
MiniScript uses IEEE numerics, so:


<lang MiniScript>posInfinity = 1/0
<syntaxhighlight lang="miniscript">posInfinity = 1/0
print posInfinity</lang>
print posInfinity</syntaxhighlight>
{{out}}
{{out}}
<pre>INF</pre>
<pre>INF</pre>


=={{header|Modula-2}}==
=={{header|Modula-2}}==
<lang Modula-2>MODULE inf;
<syntaxhighlight lang="modula-2">MODULE inf;


IMPORT InOut;
IMPORT InOut;
Line 874: Line 964:
InOut.WriteReal (1.0 / 0.0, 12, 12);
InOut.WriteReal (1.0 / 0.0, 12, 12);
InOut.WriteLn
InOut.WriteLn
END inf.</lang>
END inf.</syntaxhighlight>
Producing
Producing
<lang Modula-2>jan@Beryllium:~/modula/rosetta$ inf
<syntaxhighlight lang="modula-2">jan@Beryllium:~/modula/rosetta$ inf


**** RUNTIME ERROR bound check error
**** RUNTIME ERROR bound check error
Floating point exception</lang>
Floating point exception</syntaxhighlight>


=={{header|Modula-3}}==
=={{header|Modula-3}}==
Line 885: Line 975:


If the implementation doesn't support IEEE floats, the program prints arbitrary values (Critical Mass Modula-3 implementation does support IEEE floats).
If the implementation doesn't support IEEE floats, the program prints arbitrary values (Critical Mass Modula-3 implementation does support IEEE floats).
<lang modula3>MODULE Inf EXPORTS Main;
<syntaxhighlight lang="modula3">MODULE Inf EXPORTS Main;


IMPORT IO, IEEESpecial;
IMPORT IO, IEEESpecial;
Line 892: Line 982:
IO.PutReal(IEEESpecial.RealPosInf);
IO.PutReal(IEEESpecial.RealPosInf);
IO.Put("\n");
IO.Put("\n");
END Inf.</lang>
END Inf.</syntaxhighlight>


Output:
Output:
Line 901: Line 991:
=={{header|Nemerle}}==
=={{header|Nemerle}}==
Both single and double precision floating point numbers support PositiveInfinity, NegativeInfinity and NaN.
Both single and double precision floating point numbers support PositiveInfinity, NegativeInfinity and NaN.
<lang Nemerle>def posinf = double.PositiveInfinity;
<syntaxhighlight lang="nemerle">def posinf = double.PositiveInfinity;
def a = IsInfinity(posinf); // a = true
def a = IsInfinity(posinf); // a = true
def b = IsNegativeInfinity(posinf); // b = false
def b = IsNegativeInfinity(posinf); // b = false
def c = IsPositiveInfinity(posinf); // c = true</lang>
def c = IsPositiveInfinity(posinf); // c = true</syntaxhighlight>


=={{header|Nim}}==
=={{header|Nim}}==
<lang nim>Inf</lang>
<syntaxhighlight lang="nim">Inf</syntaxhighlight>
is a predefined constant in Nim:
is a predefined constant in Nim:
<lang nim>var f = Inf
<syntaxhighlight lang="nim">var f = Inf
echo f</lang>
echo f</syntaxhighlight>


=={{header|NS-HUBASIC}}==
=={{header|NS-HUBASIC}}==
<lang NS-HUBASIC>10 PRINT 1/0</lang>
<syntaxhighlight lang="ns-hubasic">10 PRINT 1/0</syntaxhighlight>
{{out}}
{{out}}
?DZ ERROR is a division by zero error in NS-HUBASIC.
?DZ ERROR is a division by zero error in NS-HUBASIC.
Line 921: Line 1,011:


=={{header|OCaml}}==
=={{header|OCaml}}==
<lang ocaml>infinity</lang>
<syntaxhighlight lang="ocaml">infinity</syntaxhighlight>
is already a pre-defined value in OCaml.
is already a pre-defined value in OCaml.


Line 933: Line 1,023:
=={{header|Oforth}}==
=={{header|Oforth}}==


<lang Oforth>10 1000.0 powf dup println dup neg println 1 swap / println</lang>
<syntaxhighlight lang="oforth">10 1000.0 powf dup println dup neg println 1 swap / println</syntaxhighlight>


{{out}}
{{out}}
Line 948: Line 1,038:
-inf.0 ; negative infinity
-inf.0 ; negative infinity


<lang scheme>
<syntaxhighlight lang="scheme">
(define (infinite? x) (or (equal? x +inf.0) (equal? x -inf.0)))
(define (infinite? x) (or (equal? x +inf.0) (equal? x -inf.0)))


Line 957: Line 1,047:
(infinite? 1/3456) ==> #false
(infinite? 1/3456) ==> #false
(infinite? 17+28i) ==> #false
(infinite? 17+28i) ==> #false
</syntaxhighlight>
</lang>


=={{header|OpenEdge/Progress}}==
=={{header|OpenEdge/Progress}}==
Line 963: Line 1,053:
The unknown value (represented by a question mark) can be considered to equal infinity. There is no difference between positive and negative infinity but the unknown value sometimes sorts low and sometimes sorts high when used in queries.
The unknown value (represented by a question mark) can be considered to equal infinity. There is no difference between positive and negative infinity but the unknown value sometimes sorts low and sometimes sorts high when used in queries.


<lang progress>MESSAGE
<syntaxhighlight lang="progress">MESSAGE
1.0 / 0.0 SKIP
1.0 / 0.0 SKIP
-1.0 / 0.0 SKIP(1)
-1.0 / 0.0 SKIP(1)
( 1.0 / 0.0 ) = ( -1.0 / 0.0 )
( 1.0 / 0.0 ) = ( -1.0 / 0.0 )
VIEW-AS ALERT-BOX.</lang>
VIEW-AS ALERT-BOX.</syntaxhighlight>


Output
Output
Line 984: Line 1,074:
=={{header|OxygenBasic}}==
=={{header|OxygenBasic}}==
Using double precision floats:
Using double precision floats:
<lang oxygenbasic>
<syntaxhighlight lang="oxygenbasic">
print 1.5e-400 '0
print 1.5e-400 '0


Line 1,005: Line 1,095:


print f '#-INF
print f '#-INF
</syntaxhighlight>
</lang>


=={{header|Oz}}==
=={{header|Oz}}==
<lang oz>declare
<syntaxhighlight lang="oz">declare
PosInf = 1./0.
PosInf = 1./0.
NegInf = ~1./0.
NegInf = ~1./0.
Line 1,020: Line 1,110:
PosInf * PosInf = PosInf
PosInf * PosInf = PosInf
PosInf * NegInf = NegInf
PosInf * NegInf = NegInf
NegInf * NegInf = PosInf</lang>
NegInf * NegInf = PosInf</syntaxhighlight>


=={{header|PARI/GP}}==
=={{header|PARI/GP}}==
{{works with|PARI/GP|version 2.8.0 and higher}}
{{works with|PARI/GP|version 2.8.0 and higher}}
<lang parigp>+oo</lang>
<syntaxhighlight lang="parigp">+oo</syntaxhighlight>


{{works with|PARI/GP|version 2.2.9 to 2.7.0}}
{{works with|PARI/GP|version 2.2.9 to 2.7.0}}
<lang parigp>infty()={
<syntaxhighlight lang="parigp">infty()={
[1] \\ Used for many functions like intnum
[1] \\ Used for many functions like intnum
};</lang>
};</syntaxhighlight>


=={{header|Pascal}}==
=={{header|Pascal}}==
Line 1,036: Line 1,126:
=={{header|Perl}}==
=={{header|Perl}}==
Positive infinity:
Positive infinity:
<lang perl>my $x = 0 + "inf";
<syntaxhighlight lang="perl">my $x = 0 + "inf";
my $y = 0 + "+inf";</lang>
my $y = 0 + "+inf";</syntaxhighlight>
Negative infinity:
Negative infinity:
<lang perl>my $x = 0 - "inf";
<syntaxhighlight lang="perl">my $x = 0 - "inf";
my $y = 0 + "-inf";</lang>
my $y = 0 + "-inf";</syntaxhighlight>
The "<code>0 + </code>..." is used here to make sure that the variable stores a value that is actually an infinitive number instead of just a string <code>"inf"</code> but in practice one can use just:
The "<code>0 + </code>..." is used here to make sure that the variable stores a value that is actually an infinitive number instead of just a string <code>"inf"</code> but in practice one can use just:
<lang perl>my $x = "inf";</lang>
<syntaxhighlight lang="perl">my $x = "inf";</syntaxhighlight>
and <code>$x</code> while originally holding a string will get converted to an infinite number when it is first used as a number.
and <code>$x</code> while originally holding a string will get converted to an infinite number when it is first used as a number.


Some programmers use expressions that overflow the IEEE floating point numbers such as:
Some programmers use expressions that overflow the IEEE floating point numbers such as:
<lang perl>my $x = 1e1000;</lang>
<syntaxhighlight lang="perl">my $x = 1e1000;</syntaxhighlight>
which is 10<sup>1000</sup> or googol<sup>10</sup> or even numbers like this one:
which is 10<sup>1000</sup> or googol<sup>10</sup> or even numbers like this one:
<lang perl>my $y = 10**10**10;</lang>
<syntaxhighlight lang="perl">my $y = 10**10**10;</syntaxhighlight>
which is 10<sup>10000000000</sup> but it has to make some assumptions about the underlying hardware format and its size. Furthermore, using such literals in the scope of some pragmas such as <code>bigint</code>, <code>bignum</code> or <code>bigrat</code> would actually compute those numbers:
which is 10<sup>10000000000</sup> but it has to make some assumptions about the underlying hardware format and its size. Furthermore, using such literals in the scope of some pragmas such as <code>bigint</code>, <code>bignum</code> or <code>bigrat</code> would actually compute those numbers:


<lang perl>use bigint;
<syntaxhighlight lang="perl">use bigint;
my $x = 1e1000;
my $x = 1e1000;
my $y = 10**10**10; # N.B. this will consume vast quantities of RAM</lang>
my $y = 10**10**10; # N.B. this will consume vast quantities of RAM</syntaxhighlight>
Here the <code>$x</code> and <code>$y</code> when printed would give 1001 and 10000000001-digit numbers respectively, the latter taking no less than 10GB of space to just output.
Here the <code>$x</code> and <code>$y</code> when printed would give 1001 and 10000000001-digit numbers respectively, the latter taking no less than 10GB of space to just output.


Under those pragmas, however, there is a simpler way to use infinite values, thanks to the <code>inf</code> symbol being exported into the namespace by default:
Under those pragmas, however, there is a simpler way to use infinite values, thanks to the <code>inf</code> symbol being exported into the namespace by default:
<lang perl>use bigint;
<syntaxhighlight lang="perl">use bigint;
my $x = inf;
my $x = inf;
my $y = -inf;</lang>
my $y = -inf;</syntaxhighlight>


=={{header|Phix}}==
=={{header|Phix}}==
<!--<syntaxhighlight lang="phix">(phixonline)-->
<lang Phix>constant infinity = 1e300*1e300
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
? infinity</lang>
<span style="color: #008080;">constant</span> <span style="color: #000000;">infinity</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">1e300</span><span style="color: #0000FF;">*</span><span style="color: #000000;">1e300</span>
<span style="color: #0000FF;">?</span> <span style="color: #000000;">infinity</span>
<!--</syntaxhighlight>-->
{{out}}
{{out}}
desktop/Phix:
<pre>
<pre>
inf
inf
</pre>
pwa/p2js:
<pre>
Infinity
</pre>
</pre>


=={{header|Phixmonti}}==
=={{header|Phixmonti}}==
<lang Phixmonti>1e300 dup * tostr "inf" == if "Infinity" print endif</lang>
<syntaxhighlight lang="phixmonti">1e300 dup * tostr "inf" == if "Infinity" print endif</syntaxhighlight>


=={{header|PHP}}==
=={{header|PHP}}==
This is how you get infinity:
This is how you get infinity:
<lang php>INF</lang>
<syntaxhighlight lang="php">INF</syntaxhighlight>
Unfortunately, "1.0 / 0.0" doesn't evaluate to infinity; but instead seems to evaluate to False, which is more like 0 than infinity.
Unfortunately, "1.0 / 0.0" doesn't evaluate to infinity; but instead seems to evaluate to False, which is more like 0 than infinity.


Line 1,085: Line 1,183:
support (scaled bignum arithmetics), but some functions return 'T' for infinite
support (scaled bignum arithmetics), but some functions return 'T' for infinite
results.
results.
<lang PicoLisp>(load "@lib/math.l")
<syntaxhighlight lang="picolisp">(load "@lib/math.l")


: (exp 1000.0)
: (exp 1000.0)
-> T</lang>
-> T</syntaxhighlight>


=={{header|PL/I}}==
=={{header|PL/I}}==
<syntaxhighlight lang="pl/i">
<lang PL/I>
declare x float, y float (15), z float (18);
declare x float, y float (15), z float (18);


put skip list (huge(x), huge(y), huge(z));
put skip list (huge(x), huge(y), huge(z));
</syntaxhighlight>
</lang>


=={{header|PostScript}}==
=={{header|PostScript}}==
<lang postscript>/infinity { 9 99 exp } def</lang>
<syntaxhighlight lang="postscript">/infinity { 9 99 exp } def</syntaxhighlight>


=={{header|PowerShell}}==
=={{header|PowerShell}}==
A .NET floating-point number representing infinity is available.
A .NET floating-point number representing infinity is available.
<lang powershell>function infinity {
<syntaxhighlight lang="powershell">function infinity {
[double]::PositiveInfinity
[double]::PositiveInfinity
}</lang>
}</syntaxhighlight>


=={{header|PureBasic}}==
=={{header|PureBasic}}==
Line 1,110: Line 1,208:
PureBasic uses [[wp:IEEE_754-2008|IEEE 754]] coding for float types. PureBasic also includes the function <tt>Infinity()</tt> that return the positive value for infinity and the boolean function <tt>IsInfinite(value.f)</tt> that returns true if the floating point value is either positive or negative infinity.
PureBasic uses [[wp:IEEE_754-2008|IEEE 754]] coding for float types. PureBasic also includes the function <tt>Infinity()</tt> that return the positive value for infinity and the boolean function <tt>IsInfinite(value.f)</tt> that returns true if the floating point value is either positive or negative infinity.


<lang PureBasic>If OpenConsole()
<syntaxhighlight lang="purebasic">If OpenConsole()
Define.d a, b
Define.d a, b
b = 0
b = 0
Line 1,129: Line 1,227:
CloseConsole()
CloseConsole()
EndIf
EndIf
</syntaxhighlight>
</lang>


''Outputs''
''Outputs''
Line 1,139: Line 1,237:
=={{header|Python}}==
=={{header|Python}}==
This is how you get infinity:
This is how you get infinity:
<lang python>>>> float('infinity')
<syntaxhighlight lang="python">>>> float('infinity')
inf</lang>
inf</syntaxhighlight>
''Note: When passing in a string to float(), values for NaN and Infinity may be returned, depending on the underlying C library. The specific set of strings accepted which cause these values to be returned depends entirely on the underlying C library used to compile Python itself, and is known to vary.'' <br>
''Note: When passing in a string to float(), values for NaN and Infinity may be returned, depending on the underlying C library. The specific set of strings accepted which cause these values to be returned depends entirely on the underlying C library used to compile Python itself, and is known to vary.'' <br>
''The Decimal module explicitly supports +/-infinity Nan, +/-0.0, etc without exception.''
''The Decimal module explicitly supports +/-infinity Nan, +/-0.0, etc without exception.''


Floating-point division by 0 doesn't give you infinity, it raises an exception:
Floating-point division by 0 doesn't give you infinity, it raises an exception:
<lang python>>>> 1.0 / 0.0
<syntaxhighlight lang="python">>>> 1.0 / 0.0
Traceback (most recent call last):
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 1, in <module>
ZeroDivisionError: float division</lang>
ZeroDivisionError: float division</syntaxhighlight>


If <tt>float('infinity')</tt> doesn't work on your platform, you could use this trick:
If <tt>float('infinity')</tt> doesn't work on your platform, you could use this trick:
Line 1,156: Line 1,254:


=={{header|QB64}}==
=={{header|QB64}}==
<lang c++>#include<math.h>
<syntaxhighlight lang="c++">#include<math.h>
//save as inf.h
//save as inf.h
double inf(void){
double inf(void){
return HUGE_VAL;
return HUGE_VAL;
}</lang>
}</syntaxhighlight>
<lang vb>Declare CustomType Library "inf"
<syntaxhighlight lang="vb">Declare CustomType Library "inf"
Function inf#
Function inf#
End Declare
End Declare


Print inf</lang>
Print inf</syntaxhighlight>

=={{header|QBasic}}==
{{works with|QBasic|1.1}}
<syntaxhighlight lang="qbasic">DECLARE FUNCTION f! ()

ON ERROR GOTO TratoError
PRINT 0!
PRINT 0 / -1.5
PRINT 1.5 / 0
PRINT 0 / 0
PRINT f
END

TratoError:
PRINT "Error "; ERR; " on line "; ERL; CHR$(9); " --> ";
SELECT CASE ERR
CASE 6
PRINT "Overflow"
RESUME NEXT
CASE 11
PRINT "Division by zero"
RESUME NEXT
CASE ELSE
PRINT "Unexpected error, ending program."
END
END SELECT

FUNCTION f!
f! = -1.5 / 0
END FUNCTION</syntaxhighlight>



=={{header|R}}==
=={{header|R}}==
<lang R> Inf #positive infinity
<syntaxhighlight lang="r"> Inf #positive infinity
-Inf #negative infinity
-Inf #negative infinity
.Machine$double.xmax # largest finite floating-point number
.Machine$double.xmax # largest finite floating-point number
Line 1,178: Line 1,307:
forcefinite(c(1, -1, 0, .Machine$double.xmax, -.Machine$double.xmax, Inf, -Inf))
forcefinite(c(1, -1, 0, .Machine$double.xmax, -.Machine$double.xmax, Inf, -Inf))
# [1] 1.000000e+00 -1.000000e+00 0.000000e+00 1.797693e+308
# [1] 1.000000e+00 -1.000000e+00 0.000000e+00 1.797693e+308
# [5] -1.797693e+308 1.797693e+308 -1.797693e+308</lang>
# [5] -1.797693e+308 1.797693e+308 -1.797693e+308</syntaxhighlight>


=={{header|Racket}}==
=={{header|Racket}}==
Line 1,184: Line 1,313:
as in Scheme:
as in Scheme:


<lang Racket>#lang racket
<syntaxhighlight lang="racket">#lang racket


+inf.0 ; positive infinity
+inf.0 ; positive infinity
(define (finite? x) (< -inf.0 x +inf.0))
(define (finite? x) (< -inf.0 x +inf.0))
(define (infinite? x) (not (finite? x)))</lang>
(define (infinite? x) (not (finite? x)))</syntaxhighlight>


=={{header|Raku}}==
=={{header|Raku}}==
(formerly Perl 6)
(formerly Perl 6)
Inf support is required by language spec on all abstract Numeric types (in the absence of subset constraints) including Num, Rat and Int types. Native integers cannot support Inf, so attempting to assign Inf will result in an exception; native floats are expected to follow IEEE standards including +/- Inf and NaN.
Inf support is required by language spec on all abstract Numeric types (in the absence of subset constraints) including Num, Rat and Int types. Native integers cannot support Inf, so attempting to assign Inf will result in an exception; native floats are expected to follow IEEE standards including +/- Inf and NaN.
<lang perl6>my $x = 1.5/0; # Failure: catchable error, if evaluated will return: "Attempt to divide by zero ...
<syntaxhighlight lang="raku" line>my $x = 1.5/0; # Failure: catchable error, if evaluated will return: "Attempt to divide by zero ...
my $y = (1.5/0).Num; # assigns 'Inf'</lang>
my $y = (1.5/0).Num; # assigns 'Inf'</syntaxhighlight>


=={{header|REXX}}==
=={{header|REXX}}==
Line 1,235: Line 1,364:


=={{header|RLaB}}==
=={{header|RLaB}}==
<syntaxhighlight lang="rlab">
<lang RLaB>
>> x = inf()
>> x = inf()
inf
inf
Line 1,244: Line 1,373:
>> -inf() > 10
>> -inf() > 10
0
0
</syntaxhighlight>
</lang>


=={{header|RPL}}==
{{in}}
<pre>
MAXR →NUM
</pre>
{{out}}
<pre>
1: 1.7976931348E+308
</pre>
=={{header|Ruby}}==
=={{header|Ruby}}==
Infinity is a Float value
Infinity is a Float value
<lang ruby>a = 1.0/0 # => Infinity
<syntaxhighlight lang="ruby">a = 1.0/0 # => Infinity
a.finite? # => false
a.finite? # => false
a.infinite? # => 1
a.infinite? # => 1
Line 1,257: Line 1,395:
a = Float::MAX # => 1.79769313486232e+308
a = Float::MAX # => 1.79769313486232e+308
a.finite? # => true
a.finite? # => true
a.infinite? # => nil</lang>
a.infinite? # => nil</syntaxhighlight>
{{works with|Ruby|1.9.2+}}
{{works with|Ruby|1.9.2+}}
<lang ruby>a = Float::INFINITY # => Infinity</lang>
<syntaxhighlight lang="ruby">a = Float::INFINITY # => Infinity</syntaxhighlight>


=={{header|Rust}}==
=={{header|Rust}}==
Rust has builtin function for floating types which returns infinity. This program outputs 'inf'.
Rust has builtin function for floating types which returns infinity. This program outputs 'inf'.
<lang rust>fn main() {
<syntaxhighlight lang="rust">fn main() {
let inf = std::f32::INFINITY;
let inf = f32::INFINITY;
println!("{}", inf);
println!("{}", inf);
}</lang>
}</syntaxhighlight>


=={{header|Scala}}==
=={{header|Scala}}==
Line 1,274: Line 1,412:
* [[Extreme_floating_point_values#Scala]]
* [[Extreme_floating_point_values#Scala]]
In order to be compliant with IEEE-754, Scala has all support for infinity on its floating-point types (<tt>float</tt>, <tt>double</tt>). You can get infinity from constants in the corresponding wrapper class; for example, <tt>Double</tt>:
In order to be compliant with IEEE-754, Scala has all support for infinity on its floating-point types (<tt>float</tt>, <tt>double</tt>). You can get infinity from constants in the corresponding wrapper class; for example, <tt>Double</tt>:
<lang Scala>val inf = Double.PositiveInfinity //defined as 1.0/0.0
<syntaxhighlight lang="scala">val inf = Double.PositiveInfinity //defined as 1.0/0.0
inf.isInfinite; //true</lang>
inf.isInfinite; //true</syntaxhighlight>
The largest possible number in Scala (without using the <tt>Big</tt> classes) is also in the <tt>Double</tt> class.
The largest possible number in Scala (without using the <tt>Big</tt> classes) is also in the <tt>Double</tt> class.
<lang Scala>val biggestNumber = Double.MaxValue</lang>
<syntaxhighlight lang="scala">val biggestNumber = Double.MaxValue</syntaxhighlight>


REPL session:
REPL session:
<lang scala>scala> 1 / 0.
<syntaxhighlight lang="scala">scala> 1 / 0.
res2: Double = Infinity
res2: Double = Infinity


Line 1,290: Line 1,428:


scala> 1 / Double.NegativeInfinity
scala> 1 / Double.NegativeInfinity
res5: Double = -0.0</lang>
res5: Double = -0.0</syntaxhighlight>


=={{header|Scheme}}==
=={{header|Scheme}}==
<lang scheme>+inf.0 ; positive infinity
<syntaxhighlight lang="scheme">+inf.0 ; positive infinity
(define (finite? x) (< -inf.0 x +inf.0))
(define (finite? x) (< -inf.0 x +inf.0))
(define (infinite? x) (not (finite? x)))</lang>
(define (infinite? x) (not (finite? x)))</syntaxhighlight>


=={{header|Seed7}}==
=={{header|Seed7}}==
Line 1,301: Line 1,439:
The library [http://seed7.sourceforge.net/libraries/float.htm float.s7i] defines
The library [http://seed7.sourceforge.net/libraries/float.htm float.s7i] defines
the constant [http://seed7.sourceforge.net/libraries/float.htm#Infinity Infinity] as:
the constant [http://seed7.sourceforge.net/libraries/float.htm#Infinity Infinity] as:
<lang seed7>const float: Infinity is 1.0 / 0.0;</lang>
<syntaxhighlight lang="seed7">const float: Infinity is 1.0 / 0.0;</syntaxhighlight>
Checks for infinity can be done by comparing with this constant.
Checks for infinity can be done by comparing with this constant.


=={{header|Sidef}}==
=={{header|Sidef}}==
<lang ruby>var a = 1.5/0 # Inf
<syntaxhighlight lang="ruby">var a = 1.5/0 # Inf
say a.is_inf # true
say a.is_inf # true
say a.is_pos # true
say a.is_pos # true
Line 1,315: Line 1,453:
var inf = Inf
var inf = Inf
var ninf = -Inf
var ninf = -Inf
say (inf == -ninf) # true</lang>
say (inf == -ninf) # true</syntaxhighlight>


=={{header|Slate}}==
=={{header|Slate}}==


<lang slate>PositiveInfinity</lang>
<syntaxhighlight lang="slate">PositiveInfinity</syntaxhighlight>


=={{header|Smalltalk}}==
=={{header|Smalltalk}}==
Line 1,332: Line 1,470:
{{works with|Smalltalk/X}}
{{works with|Smalltalk/X}}
The behavior is slightly different, in that an exception is raised if you divide by zero:
The behavior is slightly different, in that an exception is raised if you divide by zero:
<lang smalltalk>FloatD infinity -> INF
<syntaxhighlight lang="smalltalk">FloatD infinity -> INF
1.0 / 0.0 -> "ZeroDivide exception"</lang>
1.0 / 0.0 -> "ZeroDivide exception"</syntaxhighlight>
but we can simulate the other behavior with:
but we can simulate the other behavior with:
<lang smalltalk>[
<syntaxhighlight lang="smalltalk">[
1.0 / 0.0
1.0 / 0.0
] on: ZeroDivide do:[:ex |
] on: ZeroDivide do:[:ex |
ex proceedWith: (FloatD infinity)
ex proceedWith: (FloatD infinity)
]
]
-> INF</lang>
-> INF</syntaxhighlight>


=={{header|Standard ML}}==
=={{header|Standard ML}}==
<lang sml>Real.posInf</lang>
<syntaxhighlight lang="sml">Real.posInf</syntaxhighlight>


<pre>
<pre>
Line 1,354: Line 1,492:
=={{header|Swift}}==
=={{header|Swift}}==
Swift's floating-point types (<tt>Float</tt>, <tt>Double</tt>, and any other type that conforms to the <tt>FloatingPointNumber</tt> protocol) all support infinity. You can get infinity from the <tt>infinity</tt> class property in the type:
Swift's floating-point types (<tt>Float</tt>, <tt>Double</tt>, and any other type that conforms to the <tt>FloatingPointNumber</tt> protocol) all support infinity. You can get infinity from the <tt>infinity</tt> class property in the type:
<lang swift>let inf = Double.infinity
<syntaxhighlight lang="swift">let inf = Double.infinity
inf.isInfinite //true</lang>
inf.isInfinite //true</syntaxhighlight>
As a function:
As a function:
<lang swift>func getInf() -> Double {
<syntaxhighlight lang="swift">func getInf() -> Double {
return Double.infinity
return Double.infinity
}</lang>
}</syntaxhighlight>


=={{header|Tcl}}==
=={{header|Tcl}}==
Line 1,365: Line 1,503:


Tcl 8.5 has Infinite as a floating point value, not an integer value
Tcl 8.5 has Infinite as a floating point value, not an integer value
<lang tcl>package require Tcl 8.5
<syntaxhighlight lang="tcl">package require Tcl 8.5


expr {1.0 / 0} ;# ==> Inf
expr {1.0 / 0} ;# ==> Inf
expr {-1.0 / 0} ;# ==> -Inf
expr {-1.0 / 0} ;# ==> -Inf
expr {inf} ;# ==> Inf
expr {inf} ;# ==> Inf
expr {1 / 0} ;# ==> "divide by zero" error; Inf not part of range of integer division</lang>
expr {1 / 0} ;# ==> "divide by zero" error; Inf not part of range of integer division</syntaxhighlight>


A maximal integer is not easy to find, as Tcl switches to unbounded integers when a 64-bit integer is about to roll over:
A maximal integer is not easy to find, as Tcl switches to unbounded integers when a 64-bit integer is about to roll over:
<lang Tcl>% format %lx -1 ;# all bits set
<syntaxhighlight lang="tcl">% format %lx -1 ;# all bits set
ffffffffffffffff
ffffffffffffffff


Line 1,383: Line 1,521:


% incr ii
% incr ii
9223372036854775808 ;# silently upgrade to unbounded integer, still positive</lang>
9223372036854775808 ;# silently upgrade to unbounded integer, still positive</syntaxhighlight>
A theoretical MAXINT, though very impractical, could be
A theoretical MAXINT, though very impractical, could be
string repeat 9 [expr 2**32-1]
string repeat 9 [expr 2**32-1]
Line 1,389: Line 1,527:
=={{header|TI-89 BASIC}}==
=={{header|TI-89 BASIC}}==


<lang ti89b>∞</lang>
<syntaxhighlight lang="ti89b">∞</syntaxhighlight>


=={{header|TorqueScript}}==
=={{header|TorqueScript}}==
<lang TorqueScript>function infinity()
<syntaxhighlight lang="torquescript">function infinity()
{
{
return 1/0;
return 1/0;
}</lang>
}</syntaxhighlight>


=={{header|Trith}}==
=={{header|Trith}}==
The following functions are included as part of the core operators:
The following functions are included as part of the core operators:
<lang trith>
<syntaxhighlight lang="trith">
: inf 1.0 0.0 / ;
: inf 1.0 0.0 / ;
: -inf inf neg ;
: -inf inf neg ;
: inf? abs inf = ;
: inf? abs inf = ;
</syntaxhighlight>
</lang>


=={{header|Ursa}}==
=={{header|Ursa}}==
Infinity is a defined value in Ursa.
Infinity is a defined value in Ursa.
<lang ursa>decl double d
<syntaxhighlight lang="ursa">decl double d
set d Infinity</lang>
set d Infinity</syntaxhighlight>


=={{header|Ursala}}==
=={{header|Ursala}}==
Line 1,417: Line 1,555:




<lang Ursala>#import flo
<syntaxhighlight lang="ursala">#import flo


infinity = inf!</lang>
infinity = inf!</syntaxhighlight>


=={{header|Visual Basic}}==
=={{header|Visual Basic}}==
Line 1,429: Line 1,567:
Positive infinity, negative infinity and indefinite number (usable as NaN) can be generated by deliberately dividing by zero under the influence of <code>On Error Resume Next</code>:
Positive infinity, negative infinity and indefinite number (usable as NaN) can be generated by deliberately dividing by zero under the influence of <code>On Error Resume Next</code>:


<lang vb>Option Explicit
<syntaxhighlight lang="vb">Option Explicit


Private Declare Sub GetMem8 Lib "msvbvm60.dll" _
Private Declare Sub GetMem8 Lib "msvbvm60.dll" _
Line 1,455: Line 1,593:
DoubleAsHex = Right$(String$(8, "0") & Hex$(l(1)), 8) _
DoubleAsHex = Right$(String$(8, "0") & Hex$(l(1)), 8) _
& Right$(String$(8, "0") & Hex$(l(0)), 8)
& Right$(String$(8, "0") & Hex$(l(0)), 8)
End Function</lang>
End Function</syntaxhighlight>
{{out}}<pre>PlusInfinity = 1,#INF (7FF0000000000000)
{{out}}<pre>PlusInfinity = 1,#INF (7FF0000000000000)
MinusInfinity = -1,#INF (FFF0000000000000)
MinusInfinity = -1,#INF (FFF0000000000000)
IndefiniteNumber = -1,#IND (FFF8000000000000)
IndefiniteNumber = -1,#IND (FFF8000000000000)
</pre>
</pre>

=={{header|V (Vlang)}}==
<syntaxhighlight lang="v (vlang)">import math
fn main() {
mut x := 1.5 // type of x determined by literal
// that this compiles demonstrates that PosInf returns same type as x,
// the type specified by the task.
x = math.inf(1)
println('$x ${math.is_inf(x, 1)}') // demonstrate result
}</syntaxhighlight>


=={{header|Wren}}==
=={{header|Wren}}==
Wren certainly supports infinity for floating point numbers as we already have a method ''Num.isInfinity'' to test for it.
Wren certainly supports infinity for floating point numbers as we already have a method ''Num.isInfinity'' to test for it.
<lang ecmascript>var x = 1.5
<syntaxhighlight lang="wren">var x = 1.5
var y = x / 0
var y = x / 0
System.print("x = %(x)")
System.print("x = %(x)")
System.print("y = %(y)")
System.print("y = %(y)")
System.print("'x' is infinite? %(x.isInfinity)")
System.print("'x' is infinite? %(x.isInfinity)")
System.print("'y' is infinite? %(y.isInfinity)")</lang>
System.print("'y' is infinite? %(y.isInfinity)")</syntaxhighlight>


{{out}}
{{out}}
Line 1,480: Line 1,629:
=={{header|XPL0}}==
=={{header|XPL0}}==
The IEEE 754 floating point standard is used.
The IEEE 754 floating point standard is used.
<lang XPL0>int A;
<syntaxhighlight lang="xpl0">int A;
real X;
real X;
[Format(0, 15); \output in scientific notation
[Format(0, 15); \output in scientific notation
Line 1,487: Line 1,636:
A(1):= $7FEF_FFFF;
A(1):= $7FEF_FFFF;
RlOut(0, X); \display it
RlOut(0, X); \display it
]</lang>
]</syntaxhighlight>


{{out}}
{{out}}
Line 1,495: Line 1,644:


=={{header|Yabasic}}==
=={{header|Yabasic}}==
<lang Yabasic>infinity = 1e300*1e300
<syntaxhighlight lang="yabasic">infinity = 1e300*1e300
if str$(infinity) = "inf" print "Infinity"</lang>
if str$(infinity) = "inf" print "Infinity"</syntaxhighlight>


=={{header|Zig}}==
=={{header|Zig}}==
<lang zig>const std = @import("std");


'''Works with:''' 0.10.x, 0.11.x, 0.12.0-dev.1577+9ad03b628
const debug = std.debug;
const math = std.math;


Assumes that defaul float optimization mode was not changed via @setFloatMode (performed in Strict mode, not Optimized, latter is equivalent to -ffast-math).
test "infinity" {
const infinite_f16 = math.inf(f16);
const infinite_f32 = math.inf(f32);
const infinite_f64 = math.inf(f64);
const infinite_f128 = math.inf(f128);


<syntaxhighlight lang="zig">const std = @import("std");
// Any other types besides these four floating types are not implemented.


const math = std.math;
debug.assert(math.isInf(infinite_f16));
debug.assert(math.isInf(infinite_f32));
debug.assert(math.isInf(infinite_f64));
debug.assert(math.isInf(infinite_f128));


test "infinity" {
debug.assert(math.isPositiveInf(infinite_f16));
const expect = std.testing.expect;
debug.assert(math.isPositiveInf(infinite_f32));
debug.assert(math.isPositiveInf(infinite_f64));
debug.assert(math.isPositiveInf(infinite_f128));


const float_types = [_]type{ f16, f32, f64, f80, f128, c_longdouble };
debug.assert(math.isNegativeInf(-infinite_f16));
inline for (float_types) |T| {
debug.assert(math.isNegativeInf(-infinite_f32));
const infinite_value: T = comptime std.math.inf(T);
debug.assert(math.isNegativeInf(-infinite_f64));
debug.assert(math.isNegativeInf(-infinite_f128));


debug.assert(!math.isFinite(infinite_f16));
try expect(math.isInf(infinite_value));
debug.assert(!math.isFinite(infinite_f32));
try expect(math.isPositiveInf(infinite_value));
debug.assert(!math.isFinite(infinite_f64));
try expect(!math.isNegativeInf(infinite_value));
try expect(!math.isFinite(infinite_value));
// isFinite(f128) is not implemented.
}
//debug.assert(!math.isFinite(infinite_f128));
}</lang>
}</syntaxhighlight>

{{out}}
<pre>
$ zig test src/infinity_float.zig
All 1 tests passed.
</pre>


=={{header|zkl}}==
=={{header|zkl}}==
zkl doesn't like INF, NaN, etc but sorta knows about them:
zkl doesn't like INF, NaN, etc but sorta knows about them:
<lang zkl>1.5/0</lang>
<syntaxhighlight lang="zkl">1.5/0</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 1,543: Line 1,686:


=={{header|ZX Spectrum Basic}}==
=={{header|ZX Spectrum Basic}}==
ZX Spectrum BASIC has no infinity handling; <lang zxbasic>PRINT 1/0</lang> will be met with <pre>6 Number too big, 0:1</pre>
ZX Spectrum BASIC has no infinity handling; <syntaxhighlight lang="zxbasic">PRINT 1/0</syntaxhighlight> will be met with <pre>6 Number too big, 0:1</pre>
A quick doubling loop will get you halfway to the maximum floating point value:
A quick doubling loop will get you halfway to the maximum floating point value:
<lang zxbasic>10 LET z=1
<syntaxhighlight lang="zxbasic">10 LET z=1
20 PRINT z
20 PRINT z
30 LET z=z*2
30 LET z=z*2
40 GO TO 20</lang>
40 GO TO 20</syntaxhighlight>


Output will end with:
Output will end with:
Line 1,559: Line 1,702:
Precision has been lost by this stage through the loop, but one more manual double and subtract 1 will get you the true displayable maximum of 1.7014118E+38 (or 2^127-1).
Precision has been lost by this stage through the loop, but one more manual double and subtract 1 will get you the true displayable maximum of 1.7014118E+38 (or 2^127-1).


{{omit from|6502 Assembly|Has no dedicated floating point hardware}}
{{omit from|8080 Assembly|Has no dedicated floating point hardware}}
{{omit from|bc|No infinity. Numbers have unlimited precision, so no largest possible value.}}
{{omit from|bc|No infinity. Numbers have unlimited precision, so no largest possible value.}}
{{omit from|Brainf***}}
{{omit from|Brainf***}}
{{omit from|Computer/zero Assembly|Has no dedicated floating point hardware}}
{{omit from|dc|No infinity. Numbers have unlimited precision, so no largest possible value.}}
{{omit from|dc|No infinity. Numbers have unlimited precision, so no largest possible value.}}
{{omit from|Integer BASIC}}
{{omit from|Integer BASIC}}
Line 1,567: Line 1,713:
{{omit from|VBScript}}
{{omit from|VBScript}}
{{omit from|UNIX Shell}}
{{omit from|UNIX Shell}}
{{omit from|Z80 Assembly|Has no dedicated floating point hardware}}

[[Category:Irrational numbers]]
[[Category:Irrational numbers]]

Latest revision as of 14:18, 17 March 2024

Task
Infinity
You are encouraged to solve this task according to the task description, using any language you may know.
Task

Write a function which tests if infinity is supported for floating point numbers (this step should be omitted for languages where the language specification already demands the existence of infinity, e.g. by demanding IEEE numbers), and if so, returns positive infinity.   Otherwise, return the largest possible positive floating point number.

For languages with several floating point types, use the type of the literal constant   1.5   as floating point type.


Related task



11l

print(Float.infinity)
Output:
inf

ActionScript

ActionScript has the built in function isFinite() to test if a number is finite or not.

trace(5 / 0); // outputs "Infinity"
trace(isFinite(5 / 0)); // outputs "false"

Ada

with Ada.Text_IO; use Ada.Text_IO;

procedure Infinities is
   function Sup return Float is -- Only for predefined types
      Result : Float := Float'Last;
   begin
      if not Float'Machine_Overflows then
         Result := Float'Succ (Result);
      end if;
      return Result;
   end Sup;

   function Inf return Float is -- Only for predefined types
      Result : Float := Float'First;
   begin
      if not Float'Machine_Overflows then
         Result := Float'Pred (Result);
      end if;
      return Result;
   end Inf;
begin
   Put_Line ("Supremum" & Float'Image (Sup));
   Put_Line ("Infimum " & Float'Image (Inf));
end Infinities;

The language-defined attribute Machine_Overflows is defined for each floating-point type. It is true when an overflow or divide-by-zero results in Constraint_Error exception propagation. When the underlying machine type is incapable to implement this semantics the attribute is false. It is to expect that on the machines with IEEE 754 hardware Machine_Overflows is true. The language-defined attributes Succ and Pred yield the value next or previous to the argument, correspondingly.

Sample output on a machine where Float is IEEE 754:

Supremum +Inf*******
Infimum -Inf*******

Note that the code above does not work for user-defined types, which may have range of values narrower than one of the underlying hardware type. This case represents one of the reasons why Ada programmers are advised not to use predefined floating-point types. There is a danger that the implementation of might be IEEE 754, and so the program semantics could be broken.

Here is the code that should work for any type on any machine:

with Ada.Text_IO; use Ada.Text_IO;

procedure Infinities is
   type Real is digits 5 range -10.0..10.0;
   
   function Sup return Real is
      Result : Real := Real'Last;
   begin
      return Real'Succ (Result);
   exception
      when Constraint_Error =>
         return Result;
   end Sup;

   function Inf return Real is
      Result : Real := Real'First;
   begin
      return Real'Pred (Result);
   exception
      when Constraint_Error =>
         return Result;
   end Inf;
begin
   Put_Line ("Supremum" & Real'Image (Sup));
   Put_Line ("Infimum " & Real'Image (Inf));
end Infinities;

Sample output. Note that the compiler is required to generate Constraint_Error even if the hardware is IEEE 754. So the upper and lower bounds are 10.0 and -10.0:

Supremum 1.0000E+01
Infimum -1.0000E+01

Getting rid of IEEE ideals

There is a simple way to strip IEEE 754 ideals (non-numeric values) from a predefined floating-point type such as Float or Long_Float:

subtype Safe_Float is Float range Float'Range;

The subtype Safe_Float keeps all the range of Float, yet behaves properly upon overflow, underflow and zero-divide.

ALGOL 68

ALGOL 68R (from Royal Radar Establishment) has an infinity variable as part of the standard prelude, on the ICL 1900 Series mainframes the value of infinity is 5.79860446188₁₀76 (the same as max float).

Works with: ALGOL 68 version Revision 1 - no extensions to language used
Works with: ALGOL 68G version Any - tested with release 1.18.0-9h.tiny

Note: The underlying hardware may sometimes support an infinity, but the ALGOL 68 standard itself does not, and gives no way of setting a variable to either ±∞.

ALGOL 68 does have some 7 built in exceptions, these might be used to detect exceptions during transput, and so if the underlying hardware does support ∞, then it would be detected with a on value error while printing and if mended would appear as a field full of error char.

printf(($"max int: "gl$,max int));
printf(($"long max int: "gl$,long max int));
printf(($"long long max int: "gl$,long long max int));
printf(($"max real: "gl$,max real));
printf(($"long max real: "gl$,long max real));
printf(($"long long max real: "gl$,long long max real));
printf(($"error char: "gl$,error char))

Output:

max int: +2147483647
long max int: +99999999999999999999999999999999999
long long max int: +9999999999999999999999999999999999999999999999999999999999999999999999
max real: +1.79769313486235e+308
long max real: +1.000000000000000000000000e+999999
long long max real: +1.00000000000000000000000000000000000000000000000000000000000e+999999
error char: *

APL

For built-in functions, reduction over an empty list returns the identity value for that function. E.g., +/⍬ gives 0, and ×/⍬ gives 1.

The identity value for (minimum) is the largest possible value. For APL implementations that support infinity, this will be infinity. Otherwise, it will be some large, but finite value.

inf  {/}
Output:

GNU APL:

Dyalog APL:

1.797693135E308

Argile

Translation of: C

(simplified)

use std
printf "%f\n" atof "infinity" (: this prints "inf" :)
#extern :atof<text>: -> real

Arturo

print infinity
print neg infinity
Output:
∞
-∞

AWK

  BEGIN { 
    k=1; 
    while (2^(k-1) < 2^k) k++; 
    INF = 2^k; 
    print INF; 
  }

This has been tested with GAWK 3.1.7 and MAWK, both return

 inf 

BASIC

BASIC256

onerror TratoError
infinity = 1e300*1e300
end

TratoError:
if lasterror = 29 then print lasterrormessage
return

BBC BASIC

      *FLOAT 64
      PRINT FNinfinity
      END
      
      DEF FNinfinity
      LOCAL supported%, maxpos, prev, inct
      supported% = TRUE
      ON ERROR LOCAL supported% = FALSE
      IF supported% THEN = 1/0
      RESTORE ERROR
      inct = 1E10
      REPEAT
        prev = maxpos
        inct *= 2
        ON ERROR LOCAL inct /= 2
        maxpos += inct
        RESTORE ERROR
      UNTIL maxpos = prev
      = maxpos

Output:

1.79769313E308

bootBASIC

There are no floating point numbers in bootBASIC. All numbers and variables are 2 byte unsigned integers.

The code below can't print anything on the screen, plus the program won't end. No way is currently known to break out of the program.

10 print 1/0

BQN

Positive infinity is just ∞:

   ∞ + 1
∞
   ∞ - 3
∞
   -∞
¯∞
   ∞ - ∞
NaN

C

A previous solution used atof("infinity"), which returned infinity with some C libraries but returned zero with MinGW.

C89 has a macro HUGE_VAL in <math.h>. HUGE_VAL is a double. HUGE_VAL will be infinity if infinity exists, else it will be the largest possible number. HUGE_VAL is a double.

#include <math.h>	/* HUGE_VAL */
#include <stdio.h>	/* printf() */

double inf(void) {
  return HUGE_VAL;
}

int main() {
  printf("%g\n", inf());
  return 0;
}

The output from the above program might be "inf", "1.#INF", or something else.

C99 also has a macro for infinity:

#define _ISOC99_SOURCE

#include <math.h>
#include <stdio.h>

int main() {
  printf("%g\n", INFINITY);
  return 0;
}

C#

using System;

class Program
{
    static double PositiveInfinity()
    {
        return double.PositiveInfinity;
    }

    static void Main()
    {
        Console.WriteLine(PositiveInfinity());
    }
}

Output:

Infinity

C++

#include <limits>

double inf()
{
  if (std::numeric_limits<double>::has_infinity)
    return std::numeric_limits<double>::infinity();
  else
    return std::numeric_limits<double>::max();
}

Clojure

Translation of: Java

Java's floating-point types (float, double) all support infinity. Clojure has literals for infinity:

##Inf  ;; same as Double/POSITIVE_INFINITY
##-Inf ;; same as Double/NEGATIVE_INFINITY
(Double/isInfinite ##Inf) ;; true

The largest possible number in Java (without using the Big classes) is also in the Double class (def biggestNumber Double/MAX_VALUE). Its value is (1+(1-2^(-52)))*2^1023 or 1.7976931348623157*10^308 (a.k.a. "big"). Other number classes (Integer, Long, Float, Byte, and Short) have maximum values that can be accessed in the same way.

CoffeeScript

Translation of: JavaScript

CoffeeScript compiles to JavaScript, and as such it inherits the properties of JavaScript.

JavaScript has a special global property called "Infinity":

Infinity

as well as constants in the Number class:

Number.POSITIVE_INFINITY
Number.NEGATIVE_INFINITY

The global isFinite function tests for finiteness:

isFinite x

Common Lisp

Common Lisp does not specify an infinity value. Some implementations may have support for IEEE infinity, however. For instance, CMUCL supports IEEE Special Values. Common Lisp does specify that implementations define constants with most (and least) positive (and negative) values. These may vary between implementations.

Works with: LispWorks

5.1.2, Intel, OS X, 32-bit

> (apropos "MOST-POSITIVE" :cl)
MOST-POSITIVE-LONG-FLOAT, value: 1.7976931348623158D308
MOST-POSITIVE-SHORT-FLOAT, value: 3.4028172S38
MOST-POSITIVE-SINGLE-FLOAT, value: 3.4028235E38
MOST-POSITIVE-DOUBLE-FLOAT, value: 1.7976931348623158D308
MOST-POSITIVE-FIXNUM, value: 536870911

> (apropos "MOST-NEGATIVE" :cl)
MOST-NEGATIVE-SINGLE-FLOAT, value: -3.4028235E38
MOST-NEGATIVE-LONG-FLOAT, value: -1.7976931348623158D308
MOST-NEGATIVE-SHORT-FLOAT, value: -3.4028172S38
MOST-NEGATIVE-DOUBLE-FLOAT, value: -1.7976931348623158D308
MOST-NEGATIVE-FIXNUM, value: -536870912

Component Pascal

BlackBox Component Builder

MODULE Infinity;
IMPORT StdLog;

PROCEDURE Do*;
VAR
	x: REAL;
BEGIN
	x := 1 / 0;
	StdLog.String("x:> ");StdLog.Real(x);StdLog.Ln
END Do;

Execute: ^Q Infinity.Do
Output:

x:>  inf

D

auto inf() {
    return typeof(1.5).infinity;
}

void main() {}

Delphi

Delphi defines the following constants in Math:

  Infinity    =  1.0 / 0.0;
  NegInfinity = -1.0 / 0.0;

Test for infinite value using:

Math.IsInfinite()

Dyalect

Dyalect floating point number support positive infinity:

func infinityTask() => Float.Infinity

E

def infinityTask() {
    return Infinity # predefined variable holding positive infinity
}

EasyLang

print number "inf"
# or
print 1 / 0

Eiffel

class
	APPLICATION
inherit
	ARGUMENTS
create
	make
feature {NONE} -- Initialization
	number:REAL_64
	make
			-- Run application.
		do
			number := 2^2000
			print(number)
			print("%N")
			print(number.is_positive_infinity)
			print("%N")
		end
end

Output:

Infinity
True

Erlang

No infinity available. Largest floating point number is supposed to be 1.80e308 (IEEE 754-1985 double precision 64 bits) but that did not work. However 1.79e308 is fine, so max float is somewhere close to 1.80e308.

ERRE

Every type has its "infinity" constant: MAXINT for 16-bit integer, MAXREAL for single precision floating and MAXLONGREAL for double precision floating. An infinity test can be achieved with an EXCEPTION:

PROGRAM INFINITY

EXCEPTION
    PRINT("INFINITY")
    ESCI%=TRUE
END EXCEPTION

BEGIN
    ESCI%=FALSE
    K=1
    WHILE 2^K>0 DO
       EXIT IF ESCI%
       K+=1
    END WHILE
END PROGRAM

Euphoria

constant infinity = 1E400

? infinity -- outputs "inf"

F#

printfn "%f" (1.0/0.0)
Output:
Infinity

Factor

1/0.

Fantom

Fantom's Float data type is an IEEE 754 64-bit floating point type. Positive infinity is represented by the constant posInf.

class Main
{
  static Float getInfinity () { Float.posInf }
  public static Void main () { echo (getInfinity ()) }
}

Forth

: inf ( -- f ) 1e 0e f/ ;
inf f.    \ implementation specific. GNU Forth will output "inf"

: inf? ( f -- ? ) s" MAX-FLOAT" environment? drop f> ;
\ IEEE infinity is the only value for which this will return true

: has-inf ( -- ? ) ['] inf catch if false else inf? then ;

Fortran

ISO Fortran 2003 or later supports an IEEE_ARITHMETIC module which defines a wide range of intrinsic functions and types in support of IEEE floating point formats and arithmetic rules.

program to_f_the_ineffable
   use, intrinsic :: ieee_arithmetic
   integer :: i
   real dimension(2) :: y, x = (/ 30, ieee_value(y,ieee_positive_inf) /)
   
   do i = 1, 2
      if (ieee_support_datatype(x(i))) then
         if (ieee_is_finite(x(i))) then
            print *, 'x(',i,') is finite'
         else
            print *, 'x(',i,') is infinite'
         end if
         
      else
         print *, 'x(',i,') is not in an IEEE-supported format'
      end if
   end do
end program to_f_the_ineffable

ISO Fortran 90 or later supports a HUGE intrinsic which returns the largest value supported by the data type of the number given.

real :: x
real :: huge_real = huge(x)

FreeBASIC

' FB 1.05.0 Win64

#Include "crt/math.bi"
#Print Typeof(1.5) ' Prints DOUBLE at compile time

Dim d As Typeof(1.5) = INFINITY
Print d; " (String representation of Positive Infinity)"
Sleep
Output:
 1.#INF (String representation of Positive Infinity)


FutureBasic

FB has a native definition for infinite floating point types. As demonstrated below, it returns "inf".

printf @"%g", INFINITY

HandleEvents
Output:
inf

Fōrmulæ

Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for storage and transfer purposes more than visualization and edition.

Programs in Fōrmulæ are created/edited online in its website.

In this page you can see and run the program(s) related to this task and their results. You can also change either the programs or the parameters they are called with, for experimentation, but remember that these programs were created with the main purpose of showing a clear solution of the task, and they generally lack any kind of validation.

Solution

Fōrmulæ does not use floating point numbers, but arbitrary-size integers and arbitrary-precision decimal numbers.

Infinity is a predefined expression in Fōrmulæ.

Reduction of certain expressions can produce it:

GAP

# Floating point infinity
inf := FLOAT_INT(1) / FLOAT_INT(0);

IS_FLOAT(inf);
#true;

# GAP has also a formal ''infinity'' value
infinity in Cyclotomics;
# true

Go

package main

import (
    "fmt"
    "math"
)

// function called for by task
func posInf() float64 {
    return math.Inf(1) // argument specifies positive infinity
}

func main() {
    x := 1.5 // type of x determined by literal
    // that this compiles demonstrates that PosInf returns same type as x,
    // the type specified by the task.
    x = posInf()                     // test function
    fmt.Println(x, math.IsInf(x, 1)) // demonstrate result
}

Output:

+Inf true

Groovy

Groovy, like Java, requires full support for IEEE 32-bit (Float) and 64-bit (Double) formats. So the solution function would simply return either the Float or Double constant encoded as IEEE infinity.

def biggest = { Double.POSITIVE_INFINITY }

Test program:

println biggest()
printf ( "0x%xL \n", Double.doubleToLongBits(biggest()) )

Output:

Infinity
0x7ff0000000000000L

Haskell

The Haskell 98 standard does not require full IEEE numbers, and the required operations on floating point numbers leave some degree of freedom to the implementation. Also, it's not possible to use the type of the literal 1.0 to decide which concrete type to use, because Haskell number literals are automatically converted.

Nevertheless, the following may come close to the task description:

maxRealFloat :: RealFloat a => a -> a
maxRealFloat x = encodeFloat b (e-1) `asTypeOf` x where
  b     = floatRadix x - 1
  (_,e) = floatRange x

infinity :: RealFloat a => a
infinity = if isInfinite inf then inf else maxRealFloat 1.0 where
  inf = 1/0

Test for the two standard floating point types:

*Main> infinity :: Float
Infinity
*Main> infinity :: Double
Infinity

Or you can simply use division by 0:

Prelude> 1 / 0 :: Float
Infinity
Prelude> 1 / 0 :: Double
Infinity

Or use "read" to read the string representation:

Prelude> read "Infinity" :: Float
Infinity
Prelude> read "Infinity" :: Double
Infinity

Icon and Unicon

Icon and Unicon have no infinity value (or defined maximum or minimum values). Reals are implemented as C doubles and the behavior could vary somewhat from platform to platform. Both explicitly check for divide by zero and treat it as a runtime error (201), so it's not clear how you could produce one with the possible exception of externally called code.

IDL

IDL provides the standard IEEE values for _inf and _NaN in the !Values system structure:

print, !Values.f_infinity             ;; for normal floats or
print, !Values.D_infinity             ;; for doubles

Io

inf := 1/0

or

Number constants inf

IS-BASIC

PRINT INF

Output:

9.999999999E62 

J

Positive infinity is produced by the primary constant function _: .
It is also represented directly as a numeric value by an underscore, used alone.

Example:

   _ * 5 NB. multiplying infinity to 5 results in infinity
_
   5 % _ NB. dividing 5 by infinity results in 0
0
   5 % 0 NB. dividing 5 by 0 results in infinity
_

Java

Java's floating-point types (float, double) all support infinity. You can get infinity from constants in the corresponding wrapper class; for example, Double:

double infinity = Double.POSITIVE_INFINITY; //defined as 1.0/0.0
Double.isInfinite(infinity); //true

As a function:

public static double getInf(){
   return Double.POSITIVE_INFINITY;
}

The largest possible number in Java (without using the Big classes) is also in the Double class.

double biggestNumber = Double.MAX_VALUE;

Its value is (2-2-52)*21023 or 1.7976931348623157*10308 (a.k.a. "big"). Other number classes (Integer, Long, Float, Byte, and Short) have maximum values that can be accessed in the same way.

JavaScript

JavaScript has a special global property called "Infinity":

Infinity

as well as constants in the Number class:

Number.POSITIVE_INFINITY
Number.NEGATIVE_INFINITY

The global isFinite() function tests for finiteness:

isFinite(x)

Joy

1 1024 ldexp dup neg stack.
Output:
[-inf inf]

jq

Sufficiently recent versions of the C, Go and Rust implementations of jq (jq, gojq, and jaq, respectively) all allow `infinite` as a scalar value in jq programs; jq and gojq display its value as 1.7976931348623157e+308. The C implementation also allows the token `inf` when reading JSON, and stores it as `infinite`.

The C implementation of jq uses IEEE 754 64-bit floating-point arithmetic, and very large real number literals, e.g. 1e1000, are evaluated as IEEE 754 infinity, so if your version of jq does not include `infinite` as a built-in, you could therefore define it as follows:

def infinite: 1e1000;

To test whether a jq value is equal to `infinite` or `- infinite`, one can use the built-in filter `isinfinite`. One can also use `==` in the expected manner.

Julia

Julia uses IEEE floating-point arithmetic and includes a built-in constant `Inf` for (64-bit) floating-point infinity. Inf32 can be used as 32-bit infinity, when avoiding type promotions to Int64.

julia> julia> Inf32 == Inf64 == Inf16 == Inf
true

K

K has predefined positive and negative integer and float infinities: -0I, 0I, -0i, 0i. They have following properties:

Works with: Kona
   / Integer infinities
   / 0I is just 2147483647
   / -0I is just -2147483647
   / -2147483648 is a special "null integer"(NaN) 0N
   0I*0I
1
   0I-0I
0
   0I+1
0N
   0I+2
-0I
   0I+3 / -0I+1
-2147483646
   0I-1
2147483646
   0I%0I
1
   0I^2
4.611686e+18
   0I^0I
0i
   0I^-0I
0.0
   1%0
0I
   0%0
0
   0i^2
0i
   0i^0i
0i

   / Floating point infinities in K are something like
   / IEEE 754 values
   / Also there is floating point NaN -- 0n
   0i+1
0i
   0i*0i
0i
   0i-0i
0n
   0i%0i
0n
   0i%0n
0n
   / but
   0.0%0.0
0.0

Klingphix

1e300 dup mult tostr "inf" equal ["Infinity" print] if

" " input

Kotlin

fun main(args: Array<String>) {
    val p = Double.POSITIVE_INFINITY // +∞
    println(p.isInfinite()) // true
    println(p.isFinite()) // false
    println("${p < 0} ${p > 0}")  // false true

    val n = Double.NEGATIVE_INFINITY // -∞
    println(n.isInfinite()) // true
    println(n.isFinite()) // false
    println("${n < 0} ${n > 0}")  // true false
}
Output:
true
false
false true
true
false
true false

Lambdatalk

Lambdatalk is built on Javascript and can inherit lots of its capabilities. For instance:

{/ 1 0}
-> Infinity
{/ 1 Infinity}
-> 0
{< {pow 10 100} Infinity}
-> true
{< {pow 10 1000} Infinity}
-> false

Lasso

Lasso supports 64-bit decimals.. This gives Lasso's decimal numbers a range from approximately negative to positive 2x10^300 and with precision down to 2x10^-300. Lasso also supports decimal literals for NaN (not a number) as well and positive and negative infinity.

infinity
'<br />'
infinity -> type

-> inf

decimal

Lingo

Lingo stores floats using IEEE 754 double-precision (64-bit) format. INF is not a constant that can be used programmatically, but only a special return value.

x = (1-power(2, -53)) * power(2, 1023) * 2
put ilk(x), x
-- #float 1.79769313486232e308

x = (1-power(2, -53)) * power(2, 1023) * 3
put ilk(x), x, -x
-- #float INF -INF

Lua

function infinity()
  return 1/0 --lua uses unboxed C floats for all numbers
end

M2000 Interpreter

Rem : locale 1033
Module CheckIt {
      Form 66,40
      Cls 5
      Pen 14
      \\ Ensure True/False for Print boolean (else -1/0)
      \\ from m2000 console use statement Switches without Set.
      \\ use Monitor statement to see all switches.
      Set Switches "+SBL"
      IF version<9.4 then exit
      IF version=9.4 and revision<25 then exit
      Function Infinity(positive=True) {
            buffer clear inf as byte*8
            m=0x7F
            if not positive then m+=128
            return inf, 7:=m, 6:=0xF0
            =eval(inf, 0 as double)
      }
      K=Infinity(false)
      L=Infinity()
      Function TestNegativeInfinity(k) {
            =str$(k, 1033) = "-1.#INF"
      }
      Function TestPositiveInfinity(k) {
            =str$(k, 1033) = "1.#INF"
      }
      Function TestInvalid {
            =str$(Number, 1033) = "-1.#IND"
      }
      Pen 11 {Print "       True       True"}
      Print TestNegativeInfinity(K), TestPositiveInfinity(L)
      Pen 11 {Print "    -1.#INF     1.#INF    -1.#INF     1.#INF    -1.#INF     1.#INF"}
      Print K, L, K*100, L*100, K+K, L+L
      M=K/L
      Pen 11 {Print "    -1.#IND    -1.#IND       True       True" }
      Print K/L, L/K, TestInvalid(M), TestInvalid(K/L)
      M=K+L
      Pen 11 {Print  "    -1.#IND    -1.#IND    -1.#IND       True       True"}
      Print M, K+L, L+K, TestInvalid(M), TestInvalid(K+L)
      Pen 11 {Print "    -1.#INF     1.#INF"}
      Print 1+K+2, 1+L+2
      Pen 11 {Print "    -1.#INF"}
      Print K-L
      Pen 11 {Print "     1.#INF"}
      Print L-K
}
Checkit

Maple

Maple's floating point numerics are a strict extension of IEEE/754 and IEEE/854 so there is already a built-in infinity. (In fact, there are several.) The following procedure just returns the floating point (positive) infinity directly.

> proc() Float(infinity) end();
                            Float(infinity)

There is also an exact infinity ("infinity"), a negative float infinity ("Float(-infinity)" or "-Float(infinity)") and a suite of complex infinities. The next procedure returns a boxed machine (double precision) float infinity.

> proc() HFloat(infinity) end();
                            HFloat(infinity)

Mathematica / Wolfram Language

Mathematica has infinity built-in as a symbol. Which can be used throughout the software:

Sum[1/n^2,{n,Infinity}]
1/Infinity
Integrate[Exp[-x^2], {x, -Infinity, Infinity}]
10^100 < Infinity

gives back:

Pi^2/6
0
Sqrt[Pi]
True

Moreover Mathematica has 2 other variables that represent 'infinity': DirectedInfinity[r] and ComplexInfinity. DirectInfinity[r] represents an infinite quantity with complex direction r. ComplexInfinity represents an infinite quantity with an undetermined direction; like 1/0. Which has infinite size but undetermined direction. So the general infinity is DirectedInfinity, however if the direction is unknown it will turn to ComplexInfinity, DirectedInfinity[-1] will return -infinity and DirectedInfinity[1] will return infinity. Directed infinity can, for example, be used to integrate over an infinite domain with a given complex direction: one might want to integrate Exp[-x^2]/(x^2-1) from 0 to DirectedInfinity[Exp[I Pi/4]]:

Integrate[Exp[-x^2]/(x^2 - 1), {x, 0, DirectedInfinity[Exp[I Pi/4]]}]

gives back:

-((Pi (I+Erfi[1]))/(2 E))

MATLAB / Octave

MATLAB implements the IEEE 754 floating point standard as the default for all numeric data types. +Inf and -Inf are by default implemented and supported by MATLAB. To check if a variable has the value +/-Inf, one can use the built-in function "isinf()" which will return a Boolean 1 if the number is +/-inf.

a = +Inf;
isinf(a)

Returns:

ans =
     1

Maxima

/* Maxima has inf (positive infinity) and minf (negative infinity) */

declare(x, real)$

is(x < inf);
/* true */

is(x > minf);
/* true */

/* However, it is an error to try to divide by zero, even with floating-point numbers */
1.0/0.0;
/* expt: undefined: 0 to a negative exponent.
   -- an error. To debug this try: debugmode(true); */

Metafont

Metafont numbers are a little bit odd (it uses fixed binary arithmetic). For Metafont, the biggest number (and so the one which is also considered to be infinity) is 4095.99998. In fact, in the basic set of macros for Metafont, we can read

infinity := 4095.99998;

MiniScript

MiniScript uses IEEE numerics, so:

posInfinity = 1/0
print posInfinity
Output:
INF

Modula-2

MODULE inf;

IMPORT  InOut;

BEGIN
  InOut.WriteReal (1.0 / 0.0, 12, 12);
  InOut.WriteLn
END inf.

Producing

jan@Beryllium:~/modula/rosetta$ inf

**** RUNTIME ERROR  bound check error
Floating point exception

Modula-3

IEEESpecial contains 3 variables defining negative infinity, positive infinity, and NaN for all 3 floating point types in Modula-3 (REAL, LONGREAL, and EXTENDED).

If the implementation doesn't support IEEE floats, the program prints arbitrary values (Critical Mass Modula-3 implementation does support IEEE floats).

MODULE Inf EXPORTS Main;

IMPORT IO, IEEESpecial;

BEGIN
  IO.PutReal(IEEESpecial.RealPosInf);
  IO.Put("\n");
END Inf.

Output:

Infinity

Nemerle

Both single and double precision floating point numbers support PositiveInfinity, NegativeInfinity and NaN.

def posinf = double.PositiveInfinity;
def a = IsInfinity(posinf);         // a = true
def b = IsNegativeInfinity(posinf); // b = false
def c = IsPositiveInfinity(posinf); // c = true

Nim

Inf

is a predefined constant in Nim:

var f = Inf
echo f

NS-HUBASIC

10 PRINT 1/0
Output:

?DZ ERROR is a division by zero error in NS-HUBASIC.

?DZ ERROR IN 10

OCaml

infinity

is already a pre-defined value in OCaml.

# infinity;;
- : float = infinity
# 1.0 /. 0.0;;
- : float = infinity

Oforth

10 1000.0 powf dup println dup neg println 1 swap / println
Output:
1.#INF
-1.#INF
0

Ol

Inexact numbers support can be disabled during recompilation using "-DOLVM_INEXACTS=0" command line argument. Inexact numbers in Ol demands the existence of infinity, by demanding IEEE numbers. There are two signed infinity numbers (as constants) in Ol:

+inf.0 ; positive infinity
-inf.0 ; negative infinity
(define (infinite? x) (or (equal? x +inf.0) (equal? x -inf.0)))

(infinite? +inf.0) ==> #true
(infinite? -inf.0) ==> #true
(infinite? +nan.0) ==> #false
(infinite? 123456) ==> #false
(infinite? 1/3456) ==> #false
(infinite? 17+28i) ==> #false

OpenEdge/Progress

The unknown value (represented by a question mark) can be considered to equal infinity. There is no difference between positive and negative infinity but the unknown value sometimes sorts low and sometimes sorts high when used in queries.

MESSAGE
   1.0 / 0.0 SKIP
   -1.0 / 0.0 SKIP(1)
   ( 1.0 / 0.0 ) = ( -1.0 / 0.0 )
VIEW-AS ALERT-BOX.

Output

---------------------------
Message (Press HELP to view stack trace)
---------------------------
? 
? 

yes
---------------------------
OK   Help   
---------------------------

OxygenBasic

Using double precision floats:

print 1.5e-400 '0

print 1.5e400  '#INF

print -1.5e400 '#-INF

print 0/-1.5   '-0

print 1.5/0    '#INF

print -1.5/0   '#-INF

print 0/0      '#qNAN


function f() as double
return -1.5/0
end function

print f '#-INF

Oz

declare
  PosInf = 1./0.
  NegInf = ~1./0.
in
  {Show PosInf}
  {Show NegInf}

  %% some assertion
  42. / PosInf = 0.
  42. / NegInf = 0.
  PosInf * PosInf = PosInf
  PosInf * NegInf = NegInf
  NegInf * NegInf = PosInf

PARI/GP

Works with: PARI/GP version version 2.8.0 and higher
+oo
Works with: PARI/GP version version 2.2.9 to 2.7.0
infty()={
  [1] \\ Used for many functions like intnum
};

Pascal

See Delphi

Perl

Positive infinity:

my $x = 0 + "inf";
my $y = 0 + "+inf";

Negative infinity:

my $x = 0 - "inf";
my $y = 0 + "-inf";

The "0 + ..." is used here to make sure that the variable stores a value that is actually an infinitive number instead of just a string "inf" but in practice one can use just:

my $x = "inf";

and $x while originally holding a string will get converted to an infinite number when it is first used as a number.

Some programmers use expressions that overflow the IEEE floating point numbers such as:

my $x = 1e1000;

which is 101000 or googol10 or even numbers like this one:

my $y = 10**10**10;

which is 1010000000000 but it has to make some assumptions about the underlying hardware format and its size. Furthermore, using such literals in the scope of some pragmas such as bigint, bignum or bigrat would actually compute those numbers:

use bigint;
my $x = 1e1000;
my $y = 10**10**10; # N.B. this will consume vast quantities of RAM

Here the $x and $y when printed would give 1001 and 10000000001-digit numbers respectively, the latter taking no less than 10GB of space to just output.

Under those pragmas, however, there is a simpler way to use infinite values, thanks to the inf symbol being exported into the namespace by default:

use bigint;
my $x = inf;
my $y = -inf;

Phix

with javascript_semantics
constant infinity = 1e300*1e300
? infinity
Output:

desktop/Phix:

inf

pwa/p2js:

Infinity

Phixmonti

1e300 dup * tostr "inf" == if "Infinity" print endif

PHP

This is how you get infinity:

INF

Unfortunately, "1.0 / 0.0" doesn't evaluate to infinity; but instead seems to evaluate to False, which is more like 0 than infinity.

PHP has functions is_finite() and is_infinite() to test for infiniteness.

PicoLisp

The symbol 'T' is used to represent infinite values, e.g. for the length of circular lists, and is greater than any other value in comparisons. PicoLisp has only very limited floating point support (scaled bignum arithmetics), but some functions return 'T' for infinite results.

(load "@lib/math.l")

: (exp 1000.0)
-> T

PL/I

declare x float, y float (15), z float (18);

put skip list (huge(x), huge(y), huge(z));

PostScript

/infinity { 9 99 exp } def

PowerShell

A .NET floating-point number representing infinity is available.

function infinity {
    [double]::PositiveInfinity
}

PureBasic

PureBasic uses IEEE 754 coding for float types. PureBasic also includes the function Infinity() that return the positive value for infinity and the boolean function IsInfinite(value.f) that returns true if the floating point value is either positive or negative infinity.

If OpenConsole()
  Define.d a, b
  b = 0
  
  ;positive infinity
  PrintN(StrD(Infinity())) ;returns the value for positive infinity from builtin function
   
  a = 1.0
  PrintN(StrD(a / b)) ;calculation results in the value of positive infinity
  
  ;negative infinity
  PrintN(StrD(-Infinity())) ;returns the value for negative infinity from builtin function
  
  a = -1.0
  PrintN(StrD(a / b)) ;calculation results in the value of negative infinity
  
  Print(#crlf$ + #crlf$ + "Press ENTER to exit"): Input()
  CloseConsole()
EndIf

Outputs

+Infinity
+Infinity
-Infinity
-Infinity

Python

This is how you get infinity:

>>> float('infinity')
inf

Note: When passing in a string to float(), values for NaN and Infinity may be returned, depending on the underlying C library. The specific set of strings accepted which cause these values to be returned depends entirely on the underlying C library used to compile Python itself, and is known to vary.
The Decimal module explicitly supports +/-infinity Nan, +/-0.0, etc without exception.

Floating-point division by 0 doesn't give you infinity, it raises an exception:

>>> 1.0 / 0.0
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ZeroDivisionError: float division

If float('infinity') doesn't work on your platform, you could use this trick:

>>> 1e999
1.#INF

It works by trying to create a float bigger than the machine can handle.

QB64

#include<math.h>
//save as inf.h
double inf(void){
	return HUGE_VAL;
}
Declare CustomType Library "inf"
    Function inf#
End Declare

Print inf

QBasic

Works with: QBasic version 1.1
DECLARE FUNCTION f! ()

ON ERROR GOTO TratoError
PRINT 0!
PRINT 0 / -1.5
PRINT 1.5 / 0
PRINT 0 / 0
PRINT f
END

TratoError:
PRINT "Error "; ERR; " on line "; ERL; CHR$(9); " --> ";
SELECT CASE ERR
CASE 6
    PRINT "Overflow"
    RESUME NEXT
CASE 11
    PRINT "Division by zero"
    RESUME NEXT
CASE ELSE
    PRINT "Unexpected error, ending program."
    END
END SELECT

FUNCTION f!
    f! = -1.5 / 0
END FUNCTION


R

 Inf                    #positive infinity
 -Inf                   #negative infinity 
 .Machine$double.xmax   # largest finite floating-point number
 is.finite              # function to test to see if a number is finite

# function that returns the input if it is finite, otherwise returns (plus or minus) the largest finite floating-point number
 forcefinite <- function(x) ifelse(is.finite(x), x, sign(x)*.Machine$double.xmax)

 forcefinite(c(1, -1, 0, .Machine$double.xmax, -.Machine$double.xmax, Inf, -Inf))
# [1]   1.000000e+00  -1.000000e+00   0.000000e+00  1.797693e+308
# [5] -1.797693e+308  1.797693e+308 -1.797693e+308

Racket

as in Scheme:

#lang racket

+inf.0 ; positive infinity
(define (finite? x) (< -inf.0 x +inf.0))
(define (infinite? x) (not (finite? x)))

Raku

(formerly Perl 6) Inf support is required by language spec on all abstract Numeric types (in the absence of subset constraints) including Num, Rat and Int types. Native integers cannot support Inf, so attempting to assign Inf will result in an exception; native floats are expected to follow IEEE standards including +/- Inf and NaN.

my $x = 1.5/0;       # Failure: catchable error, if evaluated will return: "Attempt to divide by zero ... 
my $y = (1.5/0).Num; # assigns 'Inf'

REXX

The language specifications for REXX are rather open-ended when it comes to language limits.

Limits on numbers are expressed as: The REXX interpreter has to at least handle exponents up to nine (decimal) digits.

So it's up to the writers of the REXX interpreter to decide what limits are to be implemented or enforced.

For the default setting of

               NUMERIC DIGITS 9

the biggest number that can be used is  (for the Regina REXX  and  R4  REXX interpreters):

.999999999e+999999999
For a setting of

              NUMERIC DIGITS 100

the biggest number that can be used is:


(for the Regina REXX interpreter)

.9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999e+999999999


(for the R4 REXX interpreter)

.9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999e+9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999



... and so on with larger  NUMERIC DIGITS

For most REXX interpreters, the maximum number of digits is only limited by virtual storage,
but the pratical limit would be a little less than half of available virtual storage,
which would (realistically) be around one billion digits. Other interpreters have a limitation of roughly 8 million digits.

RLaB

>> x = inf()
         inf
>> isinf(x)
           1
>> inf() > 10
           1
>> -inf() > 10
           0

RPL

Input:
MAXR →NUM
Output:
1: 1.7976931348E+308

Ruby

Infinity is a Float value

a = 1.0/0       # => Infinity
a.finite?       # => false
a.infinite?     # => 1

a = -1/0.0      # => -Infinity
a.infinite?     # => -1

a = Float::MAX  # => 1.79769313486232e+308
a.finite?       # => true
a.infinite?     # => nil
Works with: Ruby version 1.9.2+
a = Float::INFINITY       # => Infinity

Rust

Rust has builtin function for floating types which returns infinity. This program outputs 'inf'.

fn main() {
    let inf = f32::INFINITY;
    println!("{}", inf);
}

Scala

Library: Scala

See also

In order to be compliant with IEEE-754, Scala has all support for infinity on its floating-point types (float, double). You can get infinity from constants in the corresponding wrapper class; for example, Double:

val inf = Double.PositiveInfinity //defined as 1.0/0.0
inf.isInfinite; //true

The largest possible number in Scala (without using the Big classes) is also in the Double class.

val biggestNumber = Double.MaxValue

REPL session:

scala> 1 / 0.
res2: Double = Infinity

scala> -1 / 0.
res3: Double = -Infinity

scala> 1 / Double.PositiveInfinity
res4: Double = 0.0

scala> 1 / Double.NegativeInfinity
res5: Double = -0.0

Scheme

+inf.0 ; positive infinity
(define (finite? x) (< -inf.0 x +inf.0))
(define (infinite? x) (not (finite? x)))

Seed7

Seed7s floating-point type (float) supports infinity. The library float.s7i defines the constant Infinity as:

const float: Infinity is 1.0 / 0.0;

Checks for infinity can be done by comparing with this constant.

Sidef

var a = 1.5/0        # Inf
say a.is_inf         # true
say a.is_pos         # true
 
var b = -1.5/0       # -Inf
say b.is_ninf        # true
say b.is_neg         # true

var inf = Inf
var ninf = -Inf
say (inf == -ninf)   # true

Slate

PositiveInfinity

Smalltalk

Works with: GNU Smalltalk

Each of the finite-precision Float classes (FloatE, FloatD, FloatQ), have an "infinity" method that returns infinity in that type.

st> FloatD infinity
Inf
st> 1.0 / 0.0
Inf
Works with: Smalltalk/X

The behavior is slightly different, in that an exception is raised if you divide by zero:

FloatD infinity -> INF
1.0 / 0.0 -> "ZeroDivide exception"

but we can simulate the other behavior with:

[
  1.0 / 0.0
] on: ZeroDivide do:[:ex |
  ex proceedWith: (FloatD infinity)
] 
-> INF

Standard ML

Real.posInf
- Real.posInf;
val it = inf : real
- 1.0 / 0.0;
val it = inf : real

Swift

Swift's floating-point types (Float, Double, and any other type that conforms to the FloatingPointNumber protocol) all support infinity. You can get infinity from the infinity class property in the type:

let inf = Double.infinity
inf.isInfinite //true

As a function:

func getInf() -> Double {
   return Double.infinity
}

Tcl

Works with: Tcl version 8.5

Tcl 8.5 has Infinite as a floating point value, not an integer value

package require Tcl 8.5

expr {1.0 / 0}  ;# ==> Inf
expr {-1.0 / 0} ;# ==> -Inf
expr {inf}      ;# ==> Inf
expr {1 / 0}    ;# ==> "divide by zero" error; Inf not part of range of integer division

A maximal integer is not easy to find, as Tcl switches to unbounded integers when a 64-bit integer is about to roll over:

% format %lx -1      ;# all bits set
ffffffffffffffff

% regsub f 0x[format %lx -1] 7 ;# unset the sign bit for positive
0x7fffffffffffffff

% set ii [expr [regsub f 0x[format %lx -1] 7]] ;# show as decimal
9223372036854775807

% incr ii
9223372036854775808 ;# silently upgrade to unbounded integer, still positive

A theoretical MAXINT, though very impractical, could be

string repeat 9 [expr 2**32-1]

TI-89 BASIC

TorqueScript

function infinity()
{
    return 1/0;
}

Trith

The following functions are included as part of the core operators:

: inf 1.0 0.0 / ;
: -inf inf neg ;
: inf? abs inf = ;

Ursa

Infinity is a defined value in Ursa.

decl double d
set d Infinity

Ursala

IEEE double precision floating point numbers are a primitive type in Ursala. This function returns IEEE double precision infinity when applied to any argument, using the value inf, which is declared as a constant in the flo library.


#import flo

infinity = inf!

Visual Basic

Works with: Visual Basic version 5
Works with: Visual Basic version 6
Works with: VBA version Access 97
Works with: VBA version 6.5
Works with: VBA version 7.1

Positive infinity, negative infinity and indefinite number (usable as NaN) can be generated by deliberately dividing by zero under the influence of On Error Resume Next:

Option Explicit

Private Declare Sub GetMem8 Lib "msvbvm60.dll" _
  (ByVal SrcAddr As Long, ByVal TarAddr As Long)

Sub Main()
Dim PlusInfinity As Double
Dim MinusInfinity As Double
Dim IndefiniteNumber As Double
    On Error Resume Next
    PlusInfinity = 1 / 0
    MinusInfinity = -1 / 0
    IndefiniteNumber = 0 / 0
    Debug.Print "PlusInfinity     = " & CStr(PlusInfinity) _
      & "  (" & DoubleAsHex(PlusInfinity) & ")"
    Debug.Print "MinusInfinity    = " & CStr(MinusInfinity) _
      & " (" & DoubleAsHex(MinusInfinity) & ")"
    Debug.Print "IndefiniteNumber = " & CStr(IndefiniteNumber) _
      & " (" & DoubleAsHex(IndefiniteNumber) & ")"
End Sub

Function DoubleAsHex(ByVal d As Double) As String
Dim l(0 To 1) As Long
GetMem8 VarPtr(d), VarPtr(l(0))
DoubleAsHex = Right$(String$(8, "0") & Hex$(l(1)), 8) _
            & Right$(String$(8, "0") & Hex$(l(0)), 8)
End Function
Output:
PlusInfinity     = 1,#INF  (7FF0000000000000)

MinusInfinity = -1,#INF (FFF0000000000000) IndefiniteNumber = -1,#IND (FFF8000000000000)

V (Vlang)

import math
 
fn main() {
    mut x := 1.5 // type of x determined by literal
    // that this compiles demonstrates that PosInf returns same type as x,
    // the type specified by the task.
    x = math.inf(1)
    println('$x ${math.is_inf(x, 1)}') // demonstrate result
}

Wren

Wren certainly supports infinity for floating point numbers as we already have a method Num.isInfinity to test for it.

var x = 1.5
var y = x / 0
System.print("x = %(x)")
System.print("y = %(y)")
System.print("'x' is infinite?  %(x.isInfinity)")
System.print("'y' is infinite?  %(y.isInfinity)")
Output:
x = 1.5
y = infinity
'x' is infinite?  false
'y' is infinite?  true

XPL0

The IEEE 754 floating point standard is used.

int  A;
real X;
[Format(0, 15);         \output in scientific notation
A:= addr X;             \get address of (pointer to) X
A(0):= $FFFF_FFFF;      \stuff in largest possible value
A(1):= $7FEF_FFFF;
RlOut(0, X);            \display it
]
Output:
 1.797693134862320E+308

Yabasic

infinity = 1e300*1e300
if str$(infinity) = "inf" print "Infinity"

Zig

Works with: 0.10.x, 0.11.x, 0.12.0-dev.1577+9ad03b628

Assumes that defaul float optimization mode was not changed via @setFloatMode (performed in Strict mode, not Optimized, latter is equivalent to -ffast-math).

const std = @import("std");

const math = std.math;

test "infinity" {
    const expect = std.testing.expect;

    const float_types = [_]type{ f16, f32, f64, f80, f128, c_longdouble };
    inline for (float_types) |T| {
        const infinite_value: T = comptime std.math.inf(T);

        try expect(math.isInf(infinite_value));
        try expect(math.isPositiveInf(infinite_value));
        try expect(!math.isNegativeInf(infinite_value));
        try expect(!math.isFinite(infinite_value));
    }
}
Output:
$ zig test src/infinity_float.zig
All 1 tests passed.

zkl

zkl doesn't like INF, NaN, etc but sorta knows about them:

1.5/0
Output:
Exception thrown: MathError(INF (number is infinite))

ZX Spectrum Basic

ZX Spectrum BASIC has no infinity handling;

PRINT 1/0

will be met with

6 Number too big, 0:1

A quick doubling loop will get you halfway to the maximum floating point value:

10 LET z=1
20 PRINT z
30 LET z=z*2
40 GO TO 20

Output will end with:

4.2535296E+37
8.5070592E+37

6 Number too big, 30:1

Precision has been lost by this stage through the loop, but one more manual double and subtract 1 will get you the true displayable maximum of 1.7014118E+38 (or 2^127-1).