First perfect square in base n with n unique digits: Difference between revisions

From Rosetta Code
Content added Content deleted
m (→‎Inserted nearly all optimizations found by Hout and Nigel Galloway: Base 34 found.Runtimes nearly not to handle)
Line 1,301: Line 1,301:
5210.788 s Testcount : 53808573863
5210.788 s Testcount : 53808573863
Base 34 test every 33
Base 34 test every 33
205084 Mio 11 BB6GLLFX5V75RA3RRL 102345679JICE8KP5LXA8L3QUPUWFPE4P
BB6GLLFX5V75RA3RRL 102345679JICE8KP5LXA8L3QUPUWFPE4P
28900.032 s Testcount : 205094427126
28900.032 s Testcount : 205094427126
base 35 test every 34
base 35 test every 34

Revision as of 09:10, 7 June 2019

First perfect square in base n with n unique digits is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

Find the first perfect square in a given base N that has at least N digits and exactly N significant unique digits when expressed in base N.

E.G. In base 10, the first perfect square with at least 10 unique digits is 1026753849 (32043²).

You may use analytical methods to reduce the search space, but the code must do a search. Do not use magic numbers or just feed the code the answer to verify it is correct.

Task
  • Find and display here, on this page, the first perfect square in base N, with N significant unique digits when expressed in base N, for each of base 2 through 12. Display each number in the base N for which it was calculated.
  • (optional) Do the same for bases 13 through 16.
  • (stretch goal) Continue on for bases 17 - ?? (Big Integer math)


See also
related task

Casting out nines

F#

The Task

<lang fsharp> // Nigel Galloway: May 21st., 2019 let fN g=let g=int64(sqrt(float(pown g (int(g-1L)))))+1L in (Seq.unfold(fun(n,g)->Some(n,(n+g,g+2L))))(g*g,g*2L+1L) let fG n g=Array.unfold(fun n->if n=0L then None else let n,g=System.Math.DivRem(n,g) in Some(g,n)) n let fL g=let n=set[0L..g-1L] in Seq.find(fun x->set(fG x g)=n) (fN g) let toS n g=let a=Array.concat [[|'0'..'9'|];[|'a'..'f'|]] in System.String(Array.rev(fG n g)|>Array.map(fun n->a.[(int n)])) [2L..16L]|>List.iter(fun n->let g=fL n in printfn "Base %d: %s² -> %s" n (toS (int64(sqrt(float g))) n) (toS g n)) </lang>

Output:
Base 2: 10² -> 100
Base 3: 22² -> 2101
Base 4: 33² -> 3201
Base 5: 243² -> 132304
Base 6: 523² -> 452013
Base 7: 1431² -> 2450361
Base 8: 3344² -> 13675420
Base 9: 11642² -> 136802574
Base 10: 32043² -> 1026753849
Base 11: 111453² -> 1240a536789
Base 12: 3966b9² -> 124a7b538609
Base 13: 3828943² -> 10254773ca86b9
Base 14: 3a9db7c² -> 10269b8c57d3a4
Base 15: 1012b857² -> 102597bace836d4
Base 16: 404a9d9b² -> 1025648cfea37bd9

Using Factorial base numbers indexing permutations of a collection

On the discussion page for Factorial base numbers indexing permutations of a collection an anonymous contributor queries the value of Factorial base numbers indexing permutations of a collection. Well let's see him use an inverse Knuth shuffle to partially solve this task. This solution only applies to bases that do not require an extra digit. Still I think it's short and interesting.
Note that the minimal candidate is 1.0....0 as a factorial base number. <lang fsharp> // Nigel Galloway: May 30th., 2019 let fN n g=let g=n|>Array.rev|>Array.mapi(fun i n->(int64 n)*(pown g i))|>Array.sum

          let n=int64(sqrt (float g)) in g=(n*n)

let fG g=lN([|yield 1; yield! Array.zeroCreate(g-2)|])|>Seq.map(fun n->lN2p n [|0..(g-1)|]) |> Seq.filter(fun n->fN n (int64 g)) printfn "%A" (fG 12|>Seq.head) // -> [|1; 2; 4; 10; 7; 11; 5; 3; 8; 6; 0; 9|] printfn "%A" (fG 14|>Seq.head) // -> [|1; 0; 2; 6; 9; 11; 8; 12; 5; 7; 13; 3; 10; 4|] </lang>

Go

This takes advantage of major optimizations described by Nigel Galloway and Thundergnat (inspired by initial pattern analysis by Hout) in the Discussion page and a minor optimization contributed by myself. <lang go>package main

import (

   "fmt"
   "math/big"
   "strconv"
   "time"

)

const maxBase = 27 const minSq36 = "1023456789abcdefghijklmnopqrstuvwxyz" const minSq36x = "10123456789abcdefghijklmnopqrstuvwxyz"

var bigZero = new(big.Int) var bigOne = new(big.Int).SetUint64(1)

func containsAll(sq string, base int) bool {

   var found [maxBase]bool
   for _, r := range sq {
       if r < 58 {
           found[r-48] = true
       } else {
           found[r-87] = true
       }
   }
   for i := 0; i < base; i++ {
       if !found[i] {
           return false
       }
   }
   return true

}

func sumDigits(n, base *big.Int) *big.Int {

   q := new(big.Int).Set(n)
   r := new(big.Int)
   sum := new(big.Int).Set(bigZero)
   for q.Cmp(bigZero) == 1 {
       q.QuoRem(q, base, r)
       sum.Add(sum, r)
   }
   return sum

}

func digitalRoot(n *big.Int, base int) int {

   root := new(big.Int)
   b := big.NewInt(int64(base))
   for i := new(big.Int).Set(n); i.Cmp(b) >= 0; i.Set(root) {
       root.Set(sumDigits(i, b))
   }
   return int(root.Int64())

}

func minStart(base int) (string, uint64, int) {

   nn := new(big.Int)
   ms := minSq36[:base]
   nn.SetString(ms, base)
   bdr := digitalRoot(nn, base)
   var drs []int
   var ixs []uint64
   for n := uint64(1); n < uint64(2*base); n++ {
       nn.SetUint64(n * n)
       dr := digitalRoot(nn, base)
       if dr == 0 {
           dr = int(n * n)
       }
       if dr == bdr {
           ixs = append(ixs, n)
       }
       if n < uint64(base) && dr >= bdr {
           drs = append(drs, dr)
       }
   }
   inc := uint64(1)
   if len(ixs) >= 2 && base != 3 {
       inc = ixs[1] - ixs[0]
   }
   if len(drs) == 0 {
       return ms, inc, bdr
   }
   min := drs[0]
   for _, dr := range drs[1:] {
       if dr < min {
           min = dr
       }
   }
   rd := min - bdr
   if rd == 0 {
       return ms, inc, bdr
   }
   if rd == 1 {
       return minSq36x[:base+1], 1, bdr
   }
   ins := string(minSq36[rd])
   return (minSq36[:rd] + ins + minSq36[rd:])[:base+1], inc, bdr

}

func main() {

   start := time.Now()
   var nb, nn big.Int
   for n, k, base := uint64(2), uint64(1), 2; ; n += k {
       if base > 2 && n%uint64(base) == 0 {
           continue
       } 
       nb.SetUint64(n)
       sq := nb.Mul(&nb, &nb).Text(base)
       if !containsAll(sq, base) {
           continue
       }
       ns := strconv.FormatUint(n, base)
       tt := time.Since(start).Seconds()
       fmt.Printf("Base %2d:%15s² = %-27s in %8.3fs\n", base, ns, sq, tt)
       if base == maxBase {
           break
       }
       base++
       ms, inc, bdr := minStart(base)
       k = inc
       nn.SetString(ms, base)
       nb.Sqrt(&nn)
       if nb.Uint64() < n+1 {
           nb.SetUint64(n + 1)
       }
       if k != 1 {
           for {
               nn.Mul(&nb, &nb)
               dr := digitalRoot(&nn, base)
               if dr == bdr {
                   n = nb.Uint64() - k
                   break
               }
               nb.Add(&nb, bigOne)
           }
       } else {
           n = nb.Uint64() - k
       }
   }

}</lang>

Output:

Timings (in seconds) are for my Celeron @ 1.6GHz and should therefore be much faster on a more modern machine.

Base  2:             10² = 100                         in    0.000s
Base  3:             22² = 2101                        in    0.000s
Base  4:             33² = 3201                        in    0.000s
Base  5:            243² = 132304                      in    0.000s
Base  6:            523² = 452013                      in    0.000s
Base  7:           1431² = 2450361                     in    0.001s
Base  8:           3344² = 13675420                    in    0.001s
Base  9:          11642² = 136802574                   in    0.001s
Base 10:          32043² = 1026753849                  in    0.001s
Base 11:         111453² = 1240a536789                 in    0.003s
Base 12:         3966b9² = 124a7b538609                in    0.011s
Base 13:        3828943² = 10254773ca86b9              in    0.025s
Base 14:        3a9db7c² = 10269b8c57d3a4              in    0.026s
Base 15:       1012b857² = 102597bace836d4             in    0.032s
Base 16:       404a9d9b² = 1025648cfea37bd9            in    0.045s
Base 17:      423f82ga9² = 101246a89cgfb357ed          in    0.339s
Base 18:      44b482cad² = 10236b5f8eg4ad9ch7          in    0.395s
Base 19:     1011b55e9a² = 10234dhbg7ci8f6a9e5         in    0.535s
Base 20:     49dgih5d3g² = 1024e7cdi3hb695fja8g        in   17.610s
Base 21:    4c9he5fe27f² = 1023457dg9hi8j6b6kceaf      in   18.595s
Base 22:    4f94788gj0f² = 102369fbgdej48chi7lka5      in   62.002s
Base 23:   1011d3el56mc² = 10234acedkg9hm8fbjil756     in   91.127s
Base 24:   4lj0hdgf0hd3² = 102345b87hfeckjnigmdla69    in   98.035s
Base 25:  1011e145fhghm² = 102345doeckj6gfb8liam7nh9   in  229.642s
Base 26:  52k8n53bdm99k² = 1023458lo6iemkg79fpchnjdba  in  935.014s
Base 27: 1011f11e37objj² = 1023458elomdhbijfgkp7cq9n6a in 1774.957s


It's possible to go beyond base 27 by using big.Int (rather than uint64) for N as well as N² though this takes about 14% longer to reach base 27 itself.

For example, to reach base 28 (the largest base shown in the OEIS table) we have: <lang go>package main

import (

   "fmt"
   "math/big"
   "time"

)

const maxBase = 28

// etc

func main() {

   start := time.Now()
   var n, k, b, t, nn big.Int
   n.SetUint64(2)
   k.SetUint64(1)
   b.SetUint64(2)
   for base := 2; ; n.Add(&n, &k) { 
      if base > 2 && t.Rem(&n, &b).Cmp(bigZero) == 0 {
           continue
       }
       sq := nn.Mul(&n, &n).Text(base)
       if !containsAll(sq, base) {
           continue
       }
       ns := n.Text(base)
       tt := time.Since(start).Seconds()
       fmt.Printf("Base %2d:%15s² = %-28s in %8.3fs\n", base, ns, sq, tt)
       if base == maxBase {
           break
       }
       base++
       b.SetUint64(uint64(base))
       ms, inc, bdr := minStart(base)
       k.SetUint64(inc)
       nn.SetString(ms, base)
       n.Sqrt(&nn)
       t.Add(&n, bigOne)
       if n.Cmp(&t) == -1 {
           n.Set(&t)
       }
       if inc != 1 {
           for {
               nn.Mul(&n, &n)
               dr := digitalRoot(&nn, base)
               if dr == bdr {
                   n.Sub(&n, &k)
                   break
               }
               n.Add(&n, bigOne)
           }
       } else {
           n.Sub(&n, &k)
       }
   }

}</lang>

Output:
Base  2:             10² = 100                          in    0.000s
Base  3:             22² = 2101                         in    0.000s
Base  4:             33² = 3201                         in    0.000s
Base  5:            243² = 132304                       in    0.000s
Base  6:            523² = 452013                       in    0.000s
Base  7:           1431² = 2450361                      in    0.000s
Base  8:           3344² = 13675420                     in    0.001s
Base  9:          11642² = 136802574                    in    0.001s
Base 10:          32043² = 1026753849                   in    0.001s
Base 11:         111453² = 1240a536789                  in    0.003s
Base 12:         3966b9² = 124a7b538609                 in    0.012s
Base 13:        3828943² = 10254773ca86b9               in    0.028s
Base 14:        3a9db7c² = 10269b8c57d3a4               in    0.031s
Base 15:       1012b857² = 102597bace836d4              in    0.039s
Base 16:       404a9d9b² = 1025648cfea37bd9             in    0.054s
Base 17:      423f82ga9² = 101246a89cgfb357ed           in    0.389s
Base 18:      44b482cad² = 10236b5f8eg4ad9ch7           in    0.446s
Base 19:     1011b55e9a² = 10234dhbg7ci8f6a9e5          in    0.607s
Base 20:     49dgih5d3g² = 1024e7cdi3hb695fja8g         in   20.705s
Base 21:    4c9he5fe27f² = 1023457dg9hi8j6b6kceaf       in   21.797s
Base 22:    4f94788gj0f² = 102369fbgdej48chi7lka5       in   73.152s
Base 23:   1011d3el56mc² = 10234acedkg9hm8fbjil756      in  107.040s
Base 24:   4lj0hdgf0hd3² = 102345b87hfeckjnigmdla69     in  114.986s
Base 25:  1011e145fhghm² = 102345doeckj6gfb8liam7nh9    in  266.218s
Base 26:  52k8n53bdm99k² = 1023458lo6iemkg79fpchnjdba   in 1073.121s
Base 27: 1011f11e37objj² = 1023458elomdhbijfgkp7cq9n6a  in 2018.632s
Base 28: 58a3ckp3n4cqd7² = 1023456cgjbirqedhp98kmoan7fl in 3812.564s

JavaScript

Translation of: Python

<lang javascript>(() => {

   'use strict';
   // allDigitSquare :: Int -> Int
   const allDigitSquare = base => {
       const bools = replicate(base, false);
       return untilSucc(
           allDigitsUsedAtBase(base, bools),
           ceil(sqrt(parseInt(
               '10' + '0123456789abcdef'.slice(2, base),
               base
           )))
       );
   };
   // allDigitsUsedAtBase :: Int -> [Bool] -> Int -> Bool
   const allDigitsUsedAtBase = (base, bools) => n => {
       // Fusion of representing the square of integer N at a given base
       // with checking whether all digits of that base contribute to N^2.
       // Sets the bool at a digit position to True when used.
       // True if all digit positions have been used.
       const ds = bools.slice(0);
       let x = n * n;
       while (x) {
           ds[x % base] = true;
           x = floor(x / base);
       }
       return ds.every(x => x)
   };
   // showBaseSquare :: Int -> String
   const showBaseSquare = b => {
       const q = allDigitSquare(b);
       return justifyRight(2, ' ', str(b)) + ' -> ' +
           justifyRight(8, ' ', showIntAtBase(b, digit, q, )) +
           ' -> ' + showIntAtBase(b, digit, q * q, );
   };
   // TEST -----------------------------------------------
   const main = () => {
       // 1-12 only - by 15 the squares are truncated by
       // JS integer limits.
       // Returning values through console.log –
       // in separate events to avoid asynchronous disorder.
       print('Smallest perfect squares using all digits in bases 2-12:\n')
       print('Base      Root    Square')
       print(showBaseSquare(2));
       print(showBaseSquare(3));
       print(showBaseSquare(4));
       print(showBaseSquare(5));
       print(showBaseSquare(6));
       print(showBaseSquare(7));
       print(showBaseSquare(8));
       print(showBaseSquare(9));
       print(showBaseSquare(10));
       print(showBaseSquare(11));
       print(showBaseSquare(12));
   };
   // GENERIC FUNCTIONS ----------------------------------
   
   const
       ceil = Math.ceil,
       floor = Math.floor,
       sqrt = Math.sqrt;
   // Tuple (,) :: a -> b -> (a, b)
   const Tuple = (a, b) => ({
       type: 'Tuple',
       '0': a,
       '1': b,
       length: 2
   });
   // digit :: Int -> Char
   const digit = n =>
       // Digit character for given integer.
       '0123456789abcdef' [n];
   // enumFromTo :: (Int, Int) -> [Int]
   const enumFromTo = (m, n) =>
       Array.from({
           length: 1 + n - m
       }, (_, i) => m + i);
   // justifyRight :: Int -> Char -> String -> String
   const justifyRight = (n, cFiller, s) =>
       n > s.length ? (
           s.padStart(n, cFiller)
       ) : s;
   // print :: a -> IO ()
   const print = x => console.log(x)
   // quotRem :: Int -> Int -> (Int, Int)
   const quotRem = (m, n) =>
       Tuple(Math.floor(m / n), m % n);
   // replicate :: Int -> a -> [a]
   const replicate = (n, x) =>
       Array.from({
           length: n
       }, () => x);
   // showIntAtBase :: Int -> (Int -> Char) -> Int -> String -> String
   const showIntAtBase = (base, toChr, n, rs) => {
       const go = ([n, d], r) => {
           const r_ = toChr(d) + r;
           return 0 !== n ? (
               go(Array.from(quotRem(n, base)), r_)
           ) : r_;
       };
       return 1 >= base ? (
           'error: showIntAtBase applied to unsupported base'
       ) : 0 > n ? (
           'error: showIntAtBase applied to negative number'
       ) : go(Array.from(quotRem(n, base)), rs);
   };
   // Abbreviation for quick testing - any 2nd arg interpreted as indent size
   // sj :: a -> String
   function sj() {
       const args = Array.from(arguments);
       return JSON.stringify.apply(
           null,
           1 < args.length && !isNaN(args[0]) ? [
               args[1], null, args[0]
           ] : [args[0], null, 2]
       );
   }
   // str :: a -> String
   const str = x => x.toString();
   // untilSucc :: (Int -> Bool) -> Int -> Int
   const untilSucc = (p, x) => {
       // The first in a chain of successive integers
       // for which p(x) returns true.
       let v = x;
       while (!p(v)) v = 1 + v;
       return v;
   };
   // MAIN ---
   return main();

})();</lang>

Output:
Smallest perfect squares using all digits in bases 2-12:

Base      Root    Square
 2 ->       10 -> 100
 3 ->       22 -> 2101
 4 ->       33 -> 3201
 5 ->      243 -> 132304
 6 ->      523 -> 452013
 7 ->     1431 -> 2450361
 8 ->     3344 -> 13675420
 9 ->    11642 -> 136802574
10 ->    32043 -> 1026753849
11 ->   111453 -> 1240a536789
12 ->   3966b9 -> 124a7b538609

Julia

Runs in about 4 seconds with using occursin(). <lang julia>const num = "0123456789abcdef" hasallin(n, nums, b) = (s = string(n, base=b); all(x -> occursin(x, s), nums))

function squaresearch(base)

   basenumerals = [c for c in num[1:base]]
   highest = parse(Int, "10" * num[3:base], base=base)
   for n in Int(trunc(sqrt(highest))):highest
       if hasallin(n * n, basenumerals, base)
           return n
       end
   end

end

println("Base Root N") for b in 2:16

   n = squaresearch(b)
   println(lpad(b, 3), lpad(string(n, base=b), 10), "  ", string(n * n, base=b))

end

</lang>

Output:
Base     Root   N
  2        10  100
  3        22  2101
  4        33  3201
  5       243  132304
  6       523  452013
  7      1431  2450361
  8      3344  13675420
  9     11642  136802574
 10     32043  1026753849
 11    111453  1240a536789
 12    3966b9  124a7b538609
 13   3828943  10254773ca86b9
 14   3a9db7c  10269b8c57d3a4
 15  1012b857  102597bace836d4
 16  404a9d9b  1025648cfea37bd9

Pascal

Using an array of digits to base n, to get rid of base conversions.
Starting value equals squareroot of smallest value containing all digits to base.
Than brute force.
Try it online! <lang pascal>program project1; //Find the smallest number n to base b, so that n*n includes all //digits of base b {$IFDEF FPC}{$MODE DELPHI}{$ENDIF} uses

 sysutils;

const

charSet : array[0..36] of char ='0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ';  

type

 tNumtoBase = record 
                ntb_dgt : array[0..31-4] of byte;
                ntb_cnt,
                ntb_bas  : Word;
              end;

var

 Num,
 sqr2B,
 deltaNum  : tNumtoBase;                  

function Minimal_n(base:NativeUint):Uint64; //' 1023456789ABCDEFGHIJ...' var

 i : NativeUint;

Begin

 result := base;  // aka '10'
 IF base > 2 then 
   For i := 2 to base-1 do
     result := result*base+i;
 result := trunc(sqrt(result)+0.99999);        

end;

procedure Conv2num(var num:tNumtoBase;n:Uint64;base:NativeUint); var

 quot :UInt64;
 i :NativeUint; 

Begin

 i := 0;
 repeat
   quot := n div base;
   Num.ntb_dgt[i] := n-quot*base;
   n := quot;
   inc(i);
 until n = 0;
 Num.ntb_cnt := i;
 Num.ntb_bas := base;
 //clear upper digits
 For i := i to high(tNumtoBase.ntb_dgt) do 
    Num.ntb_dgt[i] := 0;

end;

procedure OutNum(const num:tNumtoBase); var

 i : NativeInt;

Begin

 with num do
 Begin
   For i := 17-ntb_cnt-1 downto 0 do 
     write(' ');
   For i := ntb_cnt-1 downto 0 do
     write(charSet[ntb_dgt[i]]);
 end;  

end;

procedure IncNumBig(var add1:tNumtoBase;n:NativeUInt); //prerequisites //bases are the same,delta : NativeUint var

 i,s,b,carry : NativeInt;

Begin

 b := add1.ntb_bas;
 i := 0;
 carry := 0;
 while n > 0 do
 Begin
   s := add1.ntb_dgt[i]+carry+ n MOD b;
   carry := Ord(s>=b);
   s := s- (-carry AND b);
   add1.ntb_dgt[i] := s;
   n := n div b;
   inc(i);
 end;   
 
 while carry <> 0 do
 Begin
   s := add1.ntb_dgt[i]+carry;
   carry := Ord(s>=b);
   s := s- (-carry AND b);
   add1.ntb_dgt[i] := s;
   inc(i);
 end;   
 IF add1.ntb_cnt < i then
   add1.ntb_cnt := i;

end;

procedure IncNum(var add1:tNumtoBase;carry:NativeInt); //prerequisites: bases are the same, carry==delta < base var

 i,s,b : NativeInt;

Begin

 b := add1.ntb_bas;
 i := 0;
 while carry <> 0 do
 Begin
   s := add1.ntb_dgt[i]+carry;
   carry := Ord(s>=b);
   s := s- (-carry AND b);
   add1.ntb_dgt[i] := s;
   inc(i);
 end;   
 IF add1.ntb_cnt < i then
   add1.ntb_cnt := i;

end;

procedure AddNum(var add1,add2:tNumtoBase); //prerequisites //bases are the same,add1>add2, add1 <= add1+add2; var

 i,carry,s,b : NativeInt;

Begin

 b := add1.ntb_bas;
 carry := 0;
 For i := 0 to add2.ntb_cnt-1 do 
 begin
   s := add1.ntb_dgt[i]+add2.ntb_dgt[i]+carry;
   carry := Ord(s>=b);
   s := s- (-carry AND b);
   add1.ntb_dgt[i] := s;
 end;  
 
 i := add2.ntb_cnt;
 while carry = 1 do
 Begin
   s := add1.ntb_dgt[i]+carry;
   carry := Ord(s>=b);
   // remove of if s>b then by bit-twiddling
   s := s- (-carry AND b);
   add1.ntb_dgt[i] := s;
   inc(i);
 end;   
 
 IF add1.ntb_cnt < i then
   add1.ntb_cnt := i;

end;

procedure Test(base:NativeInt); var

 n : Uint64;  
 i,j,TestSet : NativeInt;

Begin

 write(base:5);
 n := Minimal_n(base);
 Conv2num(sqr2B,n*n,base);
 Conv2num(Num,n,base);
 deltaNum := num;
 AddNum(deltaNum,deltaNum);
 IncNum(deltaNum,1);  
 
 i := 0;
 repeat
   //count used digits
   TestSet := 0;
   For j := sqr2B.ntb_cnt-1 downto 0 do
     TestSet := TestSet OR (1 shl sqr2B.ntb_dgt[j]);
   inc(TestSet);  
   IF (1 shl base)=TestSet  then
      BREAK;   
   //next square number
   AddNum(sqr2B,deltaNum);
   IncNum(deltaNum,2);
   inc(i);
 until false;
 IncNumBig(num,i);
 OutNum(Num);  
 OutNum(sqr2B);
 Writeln(i:14);  

end;

var

 T0: TDateTime;
 base :nativeInt;   

begin

 T0 := now;
 writeln('base                 n        square(n)       Testcnt');
 For base := 2 to 16 do
   Test(base);
 writeln((now-T0)*86400:10:3);
 {$IFDEF WINDOWS}readln;{$ENDIF}

end.</lang>

Output:
base                 n        square(n)       Testcnt
    2               10              100             0
    3               22             2101             4
    4               33             3201             6
    5              243           132304            46
    6              523           452013           103
    7             1431          2450361           209
    8             3344         13675420           288
    9            11642        136802574          1156
   10            32043       1026753849            51
   11           111453      1240A536789         14983
   12           3966B9     124A7B538609         75713
   13          3828943   10254773CA86B9      12668112
   14          3A9DB7C   10269B8C57D3A4         17291
   15         1012B857  102597BACE836D4         59026
   16         404A9D9B 1025648CFEA37BD9        276865
     0.401

Inserted nearly all optimizations found by Hout and Nigel Galloway

I use now gmp to calculate the start values.Check Chai Wah Wu list on oeis.org/A260182
Still not correct where I have to insert one digit! 102345... instead of 1012345... The runtime is on my PC ( AMD 2200G ) about 80 s to complete the task.Try it online! <lang pascal>program project1; //Find the smallest number n to base b, so that n*n includes all //digits of base b aka pandigital {$IFDEF FPC} //{$R+,O+}

 {$MODE DELPHI}
 {$Optimization ON}

// {$CODEALIGN proc=4,loop=4} TIO

 {$CODEALIGN proc=8,loop=1} // Ryzen

{$ENDIF} //{$DEFINE ShowInterims} uses

 SysUtils,
 gmp;// to calculate start values

const

 charSet: array[0..62] of char =
   '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz';

type

 tNumtoBase = record
   ntb_dgt: array[0..63 - 2] of Uint32;
   ntb_cnt,
   ntb_bas: Uint32;
 end;
 tDgtRootSqr = record
   drs_List: array[0..63 - 4] of Uint32;
   drs_bas: Uint32;
   drs_Sol: Uint32;
   drs_SolCnt: Uint32;
   drs_Insert: Uint32;
   drs_NeedsOneMoreDigit: boolean;
 end;

var {$ALIGN 32}

 Num, sqr2B, deltaNum, delta: tNumtoBase;

{$ALIGN 32}

 DgtRtSqr: tDgtRootSqr;

{$ALIGN 32}

 T0, T1: TDateTime;
 procedure OutNum(const num: tNumtoBase);
 var
   i: NativeInt;
 begin
   with num do
   begin
     for i := 30 - ntb_cnt - 1 downto 0 do
       Write(' ');
     for i := ntb_cnt - 1 downto 0 do
       Write(charSet[ntb_dgt[i]]);
   end;
   Write(' ');
 end;
 procedure OutIndex(i: NativeInt; const Num: tNumtoBase);
 var
   p: NativeInt;
   s: string[127];
 begin
   Write(#13);
   with Num do
   begin
     if i <> 0 then
       Write(i div 1000000: 10, ' Mio ')
     else
       Write(: 15);
     p := 1;
     setlength(s, ntb_cnt);
     for i := ntb_cnt - 1 downto 0 do
     begin
       s[p] := charSet[ntb_dgt[i]];
       Inc(p);
     end;
   end;
   s[p] := ' ';
   Inc(p);
   with sqr2B do
   begin
     setlength(s, length(s) + ntb_cnt + 1);
     for i := ntb_cnt - 1 downto 0 do
     begin
       s[p] := charSet[ntb_dgt[i]];
       Inc(p);
     end;
   end;
   s[p] := #13;
   Write(s);
 end;
 function getDgtRtNum(const num: tNumtoBase): NativeInt;
 var
   i: NativeInt;
 begin
   with num do
   begin
     Result := 0;
     for i := 0 to num.ntb_cnt - 1 do
       Inc(Result, ntb_dgt[i]);
     Result := Result mod (ntb_bas - 1);
   end;
 end;
 procedure CalcDgtRootSqr(base: NativeUInt);
 var
   i: NativeUInt;
 begin
   with DgtRtSqr do
   begin
     //pandigtal digital root (sum all digits of base) mod (base-1)
     drs_bas := base;
     if Odd(base) then
       drs_Sol := base div 2
     else
       drs_Sol := 0;
     base := Base - 1;
     //calc which dgt root the square of the number will become
     for i := 0 to base - 1 do
       drs_List[i] := (i * i) mod base;
     //searchuing if solution
     drs_SolCnt := 0;
     for i := 0 to base - 1 do
       if drs_List[i] = drs_Sol then
         Inc(drs_SolCnt);
     //if not found then NeedsOneMoreDigit
     drs_NeedsOneMoreDigit := drs_SolCnt = 0;
     if drs_NeedsOneMoreDigit then
       for i := 1 to base - 1 do
         if (drs_Sol + i) mod Base = drs_List[i] then
         begin
           drs_Insert := i;
           BREAK;
         end;
   end;
 end;
 procedure conv_ui_num(base: NativeUint; ui: Uint64; var Num: tNumtoBase);
 var
   i: NativeUInt;
 begin
   for i := 0 to high(tNumtoBase.ntb_dgt) do
     Num.ntb_dgt[i] := 0;
   with num do
   begin
     ntb_bas := base;
     ntb_cnt := 0;
     if ui = 0 then
       EXIT;
     i := 0;
     repeat
       ntb_dgt[i] := ui mod base;
       ui := ui div base;
       Inc(i);
     until ui = 0;
     ntb_cnt := i;
   end;
 end;
 procedure conv2Num(base: NativeUint; var Num: tNumtoBase; s: mpz_t);
 // ! zero's s
 var
   i: NativeUInt;
 begin
   for i := 0 to high(tNumtoBase.ntb_dgt) do
     Num.ntb_dgt[i] := 0;
   with num do
   begin
     ntb_bas := base;
     i := 0;
     repeat
       ntb_dgt[i] := mpz_tdiv_q_ui(s, s, base);
       Inc(i);
     until mpz_cmp_ui(s, 0) = 0;
     ntb_cnt := i;
   end;
 end;
 procedure StartValueCreate(base: NativeUInt);
 //create the lowest pandigital number "102345...Base-1 "
 //calc sqrt +1 and convert n new format.
 var
   sv_sqr, sv: mpz_t;
   k, ins: NativeUint;
 begin
   CalcDgtRootSqr(base);
   mpz_init(sv);
   mpz_init(sv_sqr);
   mpz_init_set_si(sv_sqr, base);//"10"
   if base > 2 then
   begin
     if DgtRtSqr.drs_NeedsOneMoreDigit then
     begin
       ins := DgtRtSqr.drs_Insert;
       Write('  insert ', ins: 3);
       for k := 2 to ins do
       begin
         mpz_mul_ui(sv_sqr, sv_sqr, base);
         mpz_add_ui(sv_sqr, sv_sqr, k);
       end;
       for k := ins to Base - 1 do
       begin
         mpz_mul_ui(sv_sqr, sv_sqr, base);
         mpz_add_ui(sv_sqr, sv_sqr, k);
       end;
     end
     else
     begin
       k := 2;
       repeat
         mpz_mul_ui(sv_sqr, sv_sqr, base);
         mpz_add_ui(sv_sqr, sv_sqr, k);
         Inc(k);
       until k >= base;
     end;
   end;
   mpz_sqrt(sv, sv_sqr);
   mpz_mul(sv_sqr, sv, sv);
   conv2Num(base, Num, sv);
   conv2Num(base, sqr2B, sv_sqr);
 {$IFDEF ShowInterims}
   OutIndex(0, Num);
   writeln;
 {$ENDIF}
   mpz_clear(sv_sqr);
   mpz_clear(sv);
 end;
 procedure IncNumBig(var add1: tNumtoBase; n: Uint64);
 var
   i, s, b, carry: NativeUInt;
 begin
   b := add1.ntb_bas;
   i := 0;
   carry := 0;
   while n > 0 do
   begin
     s := add1.ntb_dgt[i] + carry + n mod b;
     carry := Ord(s >= b);
     s := s - (-carry and b);
     add1.ntb_dgt[i] := s;
     n := n div b;
     Inc(i);
   end;
   while carry <> 0 do
   begin
     s := add1.ntb_dgt[i] + carry;
     carry := Ord(s >= b);
     s := s - (-carry and b);
     add1.ntb_dgt[i] := s;
     Inc(i);
   end;
   if add1.ntb_cnt < i then
     add1.ntb_cnt := i;
 end;
 procedure IncNum(var add1: tNumtoBase; carry: NativeInt);
 //prerequisites carry < base
 var
   i, s, b: NativeUInt;
 begin
   b := add1.ntb_bas;
   i := 0;
   while carry <> 0 do
   begin
     s := add1.ntb_dgt[i] + carry;
     carry := Ord(s >= b);
     s := s - (-carry and b);
     add1.ntb_dgt[i] := s;
     Inc(i);
   end;
   if add1.ntb_cnt < i then
     add1.ntb_cnt := i;
 end;
 procedure AddNum(var add1, add2: tNumtoBase);
 //add1 <= add1+add2;
 //prerequisites bases are the same,add1>=add2( cnt ),
 var
   i: NativeInt;
   carry, s, b: NativeUInt;
 begin
   b := add1.ntb_bas;
   carry := 0;
   for i := 0 to add2.ntb_cnt - 1 do
   begin
     s := add1.ntb_dgt[i] + add2.ntb_dgt[i] + carry;
     carry := Ord(s >= b);
     s := s - (-carry and b);
     add1.ntb_dgt[i] := s;
   end;
   i := add2.ntb_cnt;
   while carry = 1 do
   begin
     s := add1.ntb_dgt[i] + carry;
     carry := Ord(s >= b);
     s := s - (-carry and b);
     add1.ntb_dgt[i] := s;
     Inc(i);
   end;
   if add1.ntb_cnt < i then
     add1.ntb_cnt := i;
 end;
 procedure Test(base: NativeInt);
 var
   deltaCnt, TestSet, testComplete: Uint64;
   i, j: NativeInt;
 begin
   Write(base: 3);
   T0 := now;
   StartValueCreate(base);
 {$IFDEF ShowInterims}
   OutIndex(0, Num);
   writeln;
 {$ENDIF}
   deltaNum := num;
   AddNum(deltaNum, deltaNum);
   IncNum(deltaNum, 1);
   deltaCnt := 1;
   if (Base > 3) and not (DgtRtSqr.drs_NeedsOneMoreDigit) then
   begin
     //Find first number which can get the solution
     with dgtrtsqr do
       while drs_List[getDgtRtNum(num)] <> drs_sol do
       begin
         IncNum(num, 1);
         AddNum(sqr2B, deltaNum);
         IncNum(deltaNum, 2);
       end;
     deltaCnt := (Base - 1) div DgtRtSqr.drs_SolCnt;
     //j*num
     deltaNum := num;
     for i := 2 to deltaCnt do
       AddNum(deltaNum, num);
     AddNum(deltaNum, deltaNum);
     IncNumBig(deltaNum, deltaCnt * deltaCnt);
   end;
   conv_ui_num(base, 2 * deltaCnt * deltaCnt, delta);
   writeln(' test every ', deltaCnt);
   OutIndex(0, Num);
   writeln;
   i := 0;
   testComplete := Uint64(1) shl base - 1;
   repeat
     //count used digits
     TestSet := 0;
     for j := sqr2B.ntb_cnt - 1 downto 0 do
       TestSet := TestSet or (Uint64(1) shl sqr2B.ntb_dgt[j]);
     if testComplete = TestSet then
       BREAK;
     //next square number
     AddNum(sqr2B, deltaNum);
     AddNum(deltaNum, delta);
     Inc(i);
   {$IFDEF ShowInterims}
     if i and (1 shl 28 - 1) = 0 then
       OutIndex(i, deltaNum)
   {$ENDIF}
   until False;
   // correct num
   IncNumBig(num, i * deltaCnt);
   T1 := now;
   OutIndex(0, Num);
   writeln;
   Writeln((T1 - t0) * 86400: 9: 3, ' s Testcount : ', i);
   writeln;
 end;

var

 T: TDateTime;
 base: nativeInt;

begin

 writeln('base                 n        square(n)       Testcnt');
 T := now;
 for base := 2 to 30 do
   Test(base);
 writeln((now - T) * 86400: 10: 3, ' seconds');
 {$IFDEF WINDOWS}
 readln;

{$ENDIF} end.

</lang>

Output:
base                 n        square(n)       Testcnt
  2 test every 1
               1 1
               10 100
    0.000 s Testcount : 1

  3 test every 1
               10 100
               22 2101
    0.000 s Testcount : 5

  4 test every 3
               21 1101
               33 3201
    0.000 s Testcount : 2

  5  insert   2 test every 1
               213 101424
               243 132304
    0.000 s Testcount : 15

  6 test every 5
               235 105441
               523 452013
    0.000 s Testcount : 20

  7 test every 6
               1011 1022121
               1431 2450361
    0.000 s Testcount : 35

  8 test every 7
               2705 10244631
               3344 13675420
    0.000 s Testcount : 41

  9 test every 4
               10117 102363814
               11642 136802574
    0.000 s Testcount : 289

 10 test every 3
               31992 1023488064
               32043 1026753849
    0.000 s Testcount : 17

 11 test every 10
               101175 10235267A63
               111453 1240A536789
    0.000 s Testcount : 1498

 12 test every 11
               35A924 102345A32554
               3966B9 124A7B538609
    0.000 s Testcount : 6883

 13  insert   3 test every 1
               3824C72 10233456419824
               3828943 10254773CA86B9
    0.000 s Testcount : 8243

 14 test every 13
               3A9774C 1023457801D984
               3A9DB7C 10269B8C57D3A4
    0.000 s Testcount : 1330

 15 test every 14
               10119108 1023456BA5BA144
               1012B857 102597BACE836D4
    0.000 s Testcount : 4216

 16 test every 15
               40466424 1023456CEADC2510
               404A9D9B 1025648CFEA37BD9
    0.000 s Testcount : 18457

 17  insert   8 test every 1
               426180FCB 1023456783420FEDG2
               4261CBG65 102369EB54FD9G7CA8
    0.015 s Testcount : 388308

 18 test every 17
               44B433H7F 102345679E6908HD69
               44B482CAD 10236B5F8EG4AD9CH7
    0.000 s Testcount : 30440

 19 test every 6
               1011B10789 102345678I39A8G87F5
               1011B55E9A 10234DHBG7CI8F6A9E5
    0.000 s Testcount : 93021

 20 test every 19
               49DDBE2JA0 102345678D5CCEH05000
               49DGIH5D3G 1024E7CDI3HB695FJA8G
    0.485 s Testcount : 11310604

 21  insert   6 test every 1
               4C9HE5CC2DA 102345667897G4CG438BCG
               4C9HE5FE27F 1023457DG9HI8J6B6KCEAF
    0.031 s Testcount : 601844

 22 test every 21
               4F942523JL0 1023456789HL35DJ1I4100
               4F94788GJ0F 102369FBGDEJ48CHI7LKA5
    1.266 s Testcount : 27804949

 23 test every 22
               1011D108L540 1023456789A9D49M46AHG00
               1011D3EL56MC 10234ACEDKG9HM8FBJIL756
    0.765 s Testcount : 17710218

 24 test every 23
               4LJ0HD4763F6 1023456789AC9NJIL6HG54DC
               4LJ0HDGF0HD3 102345B87HFECKJNIGMDLA69
    0.204 s Testcount : 4266555

 25 test every 12
               1011E109GHMMM 1023456789ABD5AHDHG370GC9
               1011E145FHGHM 102345DOECKJ6GFB8LIAM7NH9
    3.875 s Testcount : 78092125

 26 test every 5
               52K8N4MNP7AM9 1023456789ABCCJPGN3JNMK393
               52K8N53BDM99K 1023458LO6IEMKG79FPCHNJDBA
   18.251 s Testcount : 402922569

 27 test every 26
               1011F10AB5HL71 1023456789ABD6808CDF1LQ7AE1
               1011F11E37OBJJ 1023458ELOMDHBIJFGKP7CQ9N6A
   22.299 s Testcount : 457555293

 28 test every 9
               58A3CKOHN4IK4C 1023456789ABCD83A2GKO3BHLNH4
               58A3CKP3N4CQD7 1023456CGJBIRQEDHP98KMOAN7FL
   37.690 s Testcount : 749593055

 29  insert   7 test every 1
               5BAH95I7IEKD9JR 10234567789ABCDEEQ8RFDL7AA1D74
               5BAH95I8BCSN21Q 10234567FCQS2OBP8NRLMGJIDAEKH9
  674.188 s Testcount : 13050986492

 30 test every 29
 start values: 5EF7R2P77FFPBN5 1023456789ABCDHNHROTMC0MS6RGKP
               5EF7R2POS9MQRN7 1023456DMAPECBQOLSITK9FR87GHNJ
  736.579 s Testcount : 13343410738

Now testing 31..35

 31 test every 30
               1011H10BS64GFL76 1023456789ABCDF03FNNQ29H0ULION5
               1011H10CDMAUP44O 10234568ABQUJGCNFP7KEM9RHDLTSOI
  810.852 s Testcount : 15152895679
Base 32 test every 31
               5L6HID7BVGE2CIEC 102345678VS9CMJDRAIOPLHNFQETBUKG
  127.853 s Testcount : 2207946558
Base 33 test every 8
              1011I10CLWWNS6SKS 102345678THKFAERNWJGDOSQ9BCIUVMLP
 5210.788 s Testcount : 53808573863
Base 34 test every 33
             BB6GLLFX5V75RA3RRL 102345679JICE8KP5LXA8L3QUPUWFPE4P
28900.032 s Testcount : 205094427126
base 35 test every 34
            1011J10DEFW1QTVBXR 102345678RUEPV9KGQIWFOBAXCNSLDMYJHT
48673.607 s Testcount : 614575698110

Perl

Library: ntheory

<lang perl>use strict; use warnings; use feature 'say'; use ntheory qw/fromdigits todigitstring/; use utf8; binmode('STDOUT', 'utf8');

sub first_square {

   my $n = shift;
   my $sr = substr('1023456789abcdef',0,$n);
   my $r  = int fromdigits($sr, $n) ** .5;
   my @digits = reverse split , $sr;
   TRY: while (1) {
       my $sq = $r * $r;
       my $cnt = 0;
       my $s = todigitstring($sq, $n);
       my $i = scalar @digits;
       for (@digits) {
           $r++ and redo TRY if (-1 == index($s, $_)) || ($i-- + $cnt < $n);
           last if $cnt++ == $n;
       }
       return sprintf "Base %2d: %10s² == %s", $n, todigitstring($r, $n),
              todigitstring($sq, $n);
   }

}

say "First perfect square with N unique digits in base N: "; say first_square($_) for 2..16;</lang>

Output:
First perfect square with N unique digits in base N: 
Base  2:         10² == 100
Base  3:         22² == 2101
Base  4:         33² == 3201
Base  5:        243² == 132304
Base  6:        523² == 452013
Base  7:       1431² == 2450361
Base  8:       3344² == 13675420
Base  9:      11642² == 136802574
Base 10:      32043² == 1026753849
Base 11:     111453² == 1240a536789
Base 12:     3966b9² == 124a7b538609
Base 13:    3828943² == 10254773ca86b9
Base 14:    3a9db7c² == 10269b8c57d3a4
Base 15:   1012b857² == 102597bace836d4
Base 16:   404a9d9b² == 1025648cfea37bd9

Alternative solution:

Library: ntheory

<lang perl>use strict; use warnings; use ntheory qw(:all); use List::Util qw(uniq);

sub first_square {

   my ($base) = @_;
   my $start = sqrtint(fromdigits([1, 0, 2 .. $base-1], $base));
   for (my $k = $start ; ; ++$k) {
       if (uniq(todigits($k * $k, $base)) == $base) {
           return $k * $k;
       }
   }

}

foreach my $n (2 .. 16) {

   my $s = first_square($n);
   printf("Base %2d: %10s² == %s\n", $n,
       todigitstring(sqrtint($s), $n), todigitstring($s, $n));

}</lang>

Perl 6

Works with: Rakudo version 2019.03

As long as you have the patience, this will work for bases 2 through 36.

Bases 2 through 19 finish quickly, (about 10 seconds on my system), 20 takes a while, 21 is pretty fast, 22 is glacial. 23 through 26 takes several hours.

Use analytical start value filtering based on observations by Hout++ and Nigel Galloway++ on the discussion page.

Try it online!

<lang perl6>#`[

Only search square numbers that have at least N digits; smaller could not possibly match.

Only bother to use analytics for large N. Finesse takes longer than brute force for small N.

]

unit sub MAIN ($timer = False);

sub first-square (Int $n) {

   my @start = flat '1', '0', (2 ..^ $n)».base: $n;
   if $n > 10 { # analytics
       my $root  = digital-root( @start.join, :base($n) );
       my @roots = (2..$n).map(*²).map: { digital-root($_.base($n), :base($n) ) };
       if $root ∉ @roots {
           my $offset = min(@roots.grep: * > $root ) - $root;
           @start[1+$offset] = $offset ~ @start[1+$offset];
       }
   }
   my $start = @start.join.parse-base($n).sqrt.ceiling;
   my @digits = reverse (^$n)».base: $n;
   my $sq;
   my $now  = now;
   my $time = 0;
   my $sr;
   for $start .. * {
       $sq = .²;
       my $s = $sq.base($n);
       my $f;
       $f = 1 and last unless $s.contains: $_ for @digits;
       if $timer && $n > 19 && $_ %% 1_000_000 {
           $time += now - $now;
           say "N $n:  {$_}² = $sq <$s> : {(now - $now).round(.001)}s" ~
               " : {$time.round(.001)} elapsed";
           $now = now;
       }
       next if $f;
       $sr = $_;
       last
   }
   sprintf( "Base %2d: %13s² == %-30s", $n, $sr.base($n), $sq.base($n) ) ~
       ($timer ?? ($time + now - $now).round(.001) !! );

}

sub digital-root ($root is copy, :$base = 10) {

   $root = $root.comb.map({:36($_)}).sum.base($base) while $root.chars > 1;
   $root.parse-base($base);

}

say "First perfect square with N unique digits in base N: "; say .&first-square for flat

  2 .. 12, # required
 13 .. 16, # optional
 17 .. 19, # stretch
 20, # slow
 21, # pretty fast
 22, # very slow
 23, # don't hold your breath
 24, # slow but not too terrible
 25, # very slow
 26, #   "
</lang>
Output:
First perfect square with N unique digits in base N:
Base  2:            10² == 100
Base  3:            22² == 2101
Base  4:            33² == 3201
Base  5:           243² == 132304
Base  6:           523² == 452013
Base  7:          1431² == 2450361
Base  8:          3344² == 13675420
Base  9:         11642² == 136802574
Base 10:         32043² == 1026753849
Base 11:        111453² == 1240A536789
Base 12:        3966B9² == 124A7B538609
Base 13:       3828943² == 10254773CA86B9
Base 14:       3A9DB7C² == 10269B8C57D3A4
Base 15:      1012B857² == 102597BACE836D4
Base 16:      404A9D9B² == 1025648CFEA37BD9
Base 17:     423F82GA9² == 101246A89CGFB357ED
Base 18:     44B482CAD² == 10236B5F8EG4AD9CH7
Base 19:    1011B55E9A² == 10234DHBG7CI8F6A9E5
Base 20:    49DGIH5D3G² == 1024E7CDI3HB695FJA8G
Base 21:   4C9HE5FE27F² == 1023457DG9HI8J6B6KCEAF
Base 22:   4F94788GJ0F² == 102369FBGDEJ48CHI7LKA5
Base 23:  1011D3EL56MC² == 10234ACEDKG9HM8FBJIL756
Base 24:  4LJ0HDGF0HD3² == 102345B87HFECKJNIGMDLA69
Base 25: 1011E145FHGHM² == 102345DOECKJ6GFB8LIAM7NH9
Base 26: 52K8N53BDM99K² == 1023458LO6IEMKG79FPCHNJDBA

Python

Works with: Python version 3.7

<lang python>Perfect squares using every digit in a given base.

from itertools import (count, dropwhile, repeat) from math import (ceil, sqrt) from time import time


  1. allDigitSquare :: Int -> Int -> Int

def allDigitSquare(base, above):

   The lowest perfect square which
      requires all digits in the given base.
   
   bools = list(repeat(True, base))
   return next(dropwhile(missingDigitsAtBase(base, bools), count(
       max(above, ceil(sqrt(int('10' + '0123456789abcdef'[2:base], base))))
   )))


  1. missingDigitsAtBase :: Int -> [Bool] -> Int -> Bool

def missingDigitsAtBase(base, bools):

   Fusion of representing the square of integer N at a given base
      with checking whether all digits of that base contribute to N^2.
      Clears the bool at a digit position to False when used.
      True if any positions remain uncleared (unused).
   
   def go(x):
       xs = bools.copy()
       while x:
           xs[x % base] = False
           x //= base
       return any(xs)
   return lambda n: go(n * n)


  1. digit :: Int -> Char

def digit(n):

   Digit character for given integer.
   return '0123456789abcdef'[n]


  1. TEST ----------------------------------------------------
  2. main :: IO ()

def main():

   Smallest perfect squares using all digits in bases 2-16
   start = time()
   print(main.__doc__ + ':\n\nBase      Root    Square')
   q = 0
   for b in enumFromTo(2)(16):
       q = allDigitSquare(b, q)
       print(
           str(b).rjust(2, ' ') + ' -> ' +
           showIntAtBase(b)(digit)(q)().rjust(8, ' ') + ' -> ' +
           showIntAtBase(b)(digit)(q * q)()
       )
   print(
       '\nc. ' + str(ceil(time() - start)) + ' seconds.'
   )


  1. GENERIC -------------------------------------------------
  1. enumFromTo :: (Int, Int) -> [Int]

def enumFromTo(m):

   Integer enumeration from m to n.
   return lambda n: list(range(m, 1 + n))


  1. showIntAtBase :: Int -> (Int -> String) -> Int -> String -> String

def showIntAtBase(base):

   String representation of an integer in a given base,
      using a supplied function for the string representation
      of digits.
   
   def wrap(toChr, n, rs):
       def go(nd, r):
           n, d = nd
           r_ = toChr(d) + r
           return go(divmod(n, base), r_) if 0 != n else r_
       return 'unsupported base' if 1 >= base else (
           'negative number' if 0 > n else (
               go(divmod(n, base), rs))
       )
   return lambda toChr: lambda n: lambda rs: (
       wrap(toChr, n, rs)
   )


  1. MAIN ---

if __name__ == '__main__':

   main()</lang>
Output:
Smallest perfect squares using all digits in bases 2-16:

Base      Root    Square
 2 ->       10 -> 100
 3 ->       22 -> 2101
 4 ->       33 -> 3201
 5 ->      243 -> 132304
 6 ->      523 -> 452013
 7 ->     1431 -> 2450361
 8 ->     3344 -> 13675420
 9 ->    11642 -> 136802574
10 ->    32043 -> 1026753849
11 ->   111453 -> 1240a536789
12 ->   3966b9 -> 124a7b538609
13 ->  3828943 -> 10254773ca86b9
14 ->  3a9db7c -> 10269b8c57d3a4
15 -> 1012b857 -> 102597bace836d4
16 -> 404a9d9b -> 1025648cfea37bd9

c. 30 seconds.

REXX

The   REXX   language doesn't have a   sqrt   function,   nor does it have a general purpose radix (base) convertor,
so RYO versions were included here.

These REXX versions can handle up to base 36.

slightly optimized

<lang rexx>/*REXX program finds/displays the first perfect square with N unique digits in base N.*/ numeric digits 40 /*ensure enough decimal digits for a #.*/ parse arg n . /*obtain optional argument from the CL.*/ if n== | n=="," then n= 16 /*not specified? Then use the default.*/ @start= 1023456789abcdefghijklmnopqrstuvwxyz /*contains the start # (up to base 36).*/

                          w= length(n)          /* [↓]  find the smallest square with  */
   do j=2  to n;          beg= left(@start, j)  /*      N  unique digits in base  N.   */
      do k=iSqrt( base(beg,10,j) )  until #==0  /*start each search from smallest sqrt.*/
      $= base(k*k, j, 10)                       /*calculate square, convert to base J. */
      $u= $;              upper $u              /*get an uppercase version fast count. */
      #= verify(beg, $u)                        /*count differences between 2 numbers. */
      end   /*k*/
   say 'base'  right(j,w)   "   root="   right(base(k,j,10),max(5,n))    '   square='   $
   end      /*j*/

exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ base: procedure; arg x 1 #,toB,inB /*obtain: three arguments. */

     @l= '0123456789abcdefghijklmnopqrstuvwxyz' /*lowercase (Latin or English) alphabet*/
     @u= @l;     upper @u                       /*uppercase    "    "    "         "   */
     if inb\==10  then                          /*only convert if  not  base 10.       */
        do;  #= 0                               /*result of converted  X  (in base 10).*/
          do j=1  for length(x)                 /*convert  X:   base inB  ──► base 10. */
          #= # * inB + pos(substr(x,j,1), @u)-1 /*build a new number,  digit by digit. */
          end    /*j*/                          /* [↑]  this also verifies digits.     */
        end
     y=                                         /*the value of  X  in base  B (so far).*/
     if tob==10  then return #                  /*if TOB is ten,  then simply return #.*/
        do  while  # >= toB                     /*convert #:    base 10  ──►  base toB.*/
        y= substr(@l, (# // toB) + 1, 1)y       /*construct the output number.         */
        #= # % toB                              /*      ··· and whittle  #  down also. */
        end    /*while*/                        /* [↑]  algorithm may leave a residual.*/
     return substr(@l, # + 1, 1)y               /*prepend the residual, if any.        */

/*──────────────────────────────────────────────────────────────────────────────────────*/ iSqrt: procedure; parse arg x; r=0; q=1; do while q<=x; q=q*4; end

       do while q>1; q=q%4; _=x-r-q; r=r%2; if _>=0 then do;x=_;r=r+q; end; end; return r</lang>
output   when using the default input:
base  2    root=           10    square= 100
base  3    root=           22    square= 2101
base  4    root=           33    square= 3201
base  5    root=          243    square= 132304
base  6    root=          523    square= 452013
base  7    root=         1431    square= 2450361
base  8    root=         3344    square= 13675420
base  9    root=        11642    square= 136802574
base 10    root=        32043    square= 1026753849
base 11    root=       111453    square= 1240a536789
base 12    root=       3966b9    square= 124a7b538609
base 13    root=      3828943    square= 10254773ca86b9
base 14    root=      3a9db7c    square= 10269b8c57d3a4
base 15    root=     1012b857    square= 102597bace836d4
base 16    root=     404a9d9b    square= 1025648cfea37bd9

more optimized

This REXX version uses a highly optimized   base   function since it was that particular function that was consuming the majority of the CPU time.

It is about   10%   faster. <lang rexx>/*REXX program finds/displays the first perfect square with N unique digits in base N.*/ numeric digits 40 /*ensure enough decimal digits for a #.*/ parse arg n . /*obtain optional argument from the CL.*/ if n== | n=="," then n= 16 /*not specified? Then use the default.*/ @start= 1023456789abcdefghijklmnopqrstuvwxyz /*contains the start # (up to base 36).*/ call base /*initialize 2 arrays for BASE function*/

                                                /* [↓]  find the smallest square with  */
   do j=2  to n;          beg= left(@start, j)  /*      N  unique digits in base  N.   */
      do k=iSqrt( base(beg,10,j) )  until #==0  /*start each search from smallest sqrt.*/
      $= base(k*k, j, 10)                       /*calculate square, convert to base J. */
      #= verify(beg, $)                         /*count differences between 2 numbers. */
      end   /*k*/
   say 'base'            right(j, length(n) )                    "   root="   ,
                  lower( right( base(k, j, 10), max(5, n) ) )    '   square='    lower($)
   end      /*j*/

exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ base: procedure expose !. !!.; arg x 1 #,toB,inB /*obtain: three arguments. */

     @= 0123456789abcdefghijklmnopqrstuvwxyz    /*the characters for the Latin alphabet*/
     if x==  then do i=1  for length(@);   _= substr(@, i, 1);    m= i - 1;    !._= m
                    !!.m= substr(@, i, 1)
                    if i==length(@) then return /*Done with shortcuts?  Then go back.  */
                    end   /*i*/                 /* [↑]  assign shortcut radix values.  */
     if inb\==10  then                          /*only convert if  not  base 10.       */
        do;  #= 0                               /*result of converted  X  (in base 10).*/
          do j=1  for length(x)                 /*convert  X:   base inB  ──► base 10. */
          _= substr(x, j, 1);  #= # * inB + !._ /*build a new number,  digit by digit. */
          end    /*j*/                          /* [↑]  this also verifies digits.     */
        end
     y=                                         /*the value of  X  in base  B (so far).*/
     if tob==10  then return #                  /*if TOB is ten,  then simply return #.*/
        do  while  # >= toB                     /*convert #:    base 10  ──►  base toB.*/
        _= # // toB;           y= !!._ || y     /*construct the output number.         */
        #= # % toB                              /*      ··· and whittle  #  down also. */
        end    /*while*/                        /* [↑]  algorithm may leave a residual.*/
     return !!.# || y                           /*prepend the residual, if any.        */

/*──────────────────────────────────────────────────────────────────────────────────────*/ iSqrt: procedure; parse arg x; r=0; q=1; do while q<=x; q=q*4; end

       do while q>1; q=q%4; _=x-r-q; r=r%2; if _>=0 then do;x=_;r=r+q; end; end; return r

/*──────────────────────────────────────────────────────────────────────────────────────*/ lower: @abc= 'abcdefghijklmnopqrstuvwxyz'; return translate(arg(1), @abc, translate(@abc))</lang>

output   is identical to the 1st REXX version.



Sidef

<lang ruby>func first_square(b) {

   var start = [1, 0, (2..^b)...].flip.map_kv{|k,v| v * b**k }.sum.isqrt
   start..Inf -> first_by {|k|
       k.sqr.digits(b).freq.len == b
   }.sqr

}

for b in (2..16) {

   var s = first_square(b)
   printf("Base %2d: %10s² == %s\n", b, s.isqrt.base(b), s.base(b))

}</lang>

Output:
Base  2:         10² == 100
Base  3:         22² == 2101
Base  4:         33² == 3201
Base  5:        243² == 132304
Base  6:        523² == 452013
Base  7:       1431² == 2450361
Base  8:       3344² == 13675420
Base  9:      11642² == 136802574
Base 10:      32043² == 1026753849
Base 11:     111453² == 1240a536789
Base 12:     3966b9² == 124a7b538609
Base 13:    3828943² == 10254773ca86b9
Base 14:    3a9db7c² == 10269b8c57d3a4
Base 15:   1012b857² == 102597bace836d4
Base 16:   404a9d9b² == 1025648cfea37bd9

zkl

Translation of: Julia

<lang zkl>fcn squareSearch(B){

  basenumerals:=B.pump(String,T("toString",B)); // 13 --> "0123456789abc"
  highest:=("10"+basenumerals[2,*]).toInt(B);   // 13 --> "10" "23456789abc"
  foreach n in ([highest.toFloat().sqrt().toInt() .. highest]){
    ns:=(n*n).toString(B);
    if(""==(basenumerals - ns) ) return(n.toString(B),ns);
 }
 Void

}</lang> <lang zkl>println("Base Root N"); foreach b in ([2..16])

 { println("%2d %10s  %s".fmt(b,squareSearch(b).xplode())) }</lang>
Output:
Base     Root   N
 2         10  100
 3         22  2101
 4         33  3201
 5        243  132304
 6        523  452013
 7       1431  2450361
 8       3344  13675420
 9      11642  136802574
10      32043  1026753849
11     111453  1240a536789
12     3966b9  124a7b538609
13    3828943  10254773ca86b9
14    3a9db7c  10269b8c57d3a4
15   1012b857  102597bace836d4
16   404a9d9b  1025648cfea37bd9