Factorial base numbers indexing permutations of a collection

From Rosetta Code
Task
Factorial base numbers indexing permutations of a collection
You are encouraged to solve this task according to the task description, using any language you may know.

You need a random arrangement of a deck of cards, you are sick of lame ways of doing this. This task is a super-cool way of doing this using factorial base numbers. The first 25 factorial base numbers in increasing order are: 0.0.0, 0.0.1, 0.1.0, 0.1.1, 0.2.0, 0.2.1, 1.0.0, 1.0.1, 1.1.0, 1.1.1,1.2.0, 1.2.1, 2.0.0, 2.0.1, 2.1.0, 2.1.1, 2.2.0, 2.2.1, 3.0.0, 3.0.1, 3.1.0, 3.1.1, 3.2.0, 3.2.1, 1.0.0.0 Observe that the least significant digit is base 2 the next base 3, in general an n-digit factorial base number has digits n..1 in base n+1..2.

I want to produce a 1 to 1 mapping between these numbers and permutations:-

       0.0.0 -> 0123
       0.0.1 -> 0132
       0.1.0 -> 0213
       0.1.1 -> 0231
       0.2.0 -> 0312
       0.2.1 -> 0321
       1.0.0 -> 1023
       1.0.1 -> 1032
       1.1.0 -> 1203
       1.1.1 -> 1230
       1.2.0 -> 1302
       1.2.1 -> 1320
       2.0.0 -> 2013
       2.0.1 -> 2031
       2.1.0 -> 2103
       2.1.1 -> 2130
       2.2.0 -> 2301
       2.2.1 -> 2310
       3.0.0 -> 3012
       3.0.1 -> 3021
       3.1.0 -> 3102
       3.1.1 -> 3120
       3.2.0 -> 3201
       3.2.1 -> 3210

The following psudo-code will do this: Starting with m=0 and Ω, an array of elements to be permutated, for each digit g starting with the most significant digit in the factorial base number.

If g is greater than zero, rotate the elements from m to m+g in Ω (see example) Increment m and repeat the first step using the next most significant digit until the factorial base number is exhausted. For example: using the factorial base number 2.0.1 and Ω = 0 1 2 3 where place 0 in both is the most significant (left-most) digit/element.

Step 1: m=0 g=2; Rotate places 0 through 2. 0 1 2 3 becomes 2 0 1 3 Step 2: m=1 g=0; No action. Step 3: m=2 g=1; Rotate places 2 through 3. 2 0 1 3 becomes 2 0 3 1

Let me work 2.0.1 and 0123

    step 1 n=0 g=2 Ω=2013
    step 2 n=1 g=0 so no action
    step 3 n=2 g=1 Ω=2031

The task:

 First use your function to recreate the above table.
 Secondly use your function to generate all permutaions of 11 digits, perhaps count them don't display them, compare this method with
    methods in rc's permutations task.
 Thirdly here following are two ramdom 51 digit factorial base numbers I prepared earlier:
   39.49.7.47.29.30.2.12.10.3.29.37.33.17.12.31.29.34.17.25.2.4.25.4.1.14.20.6.21.18.1.1.1.4.0.5.15.12.4.3.10.10.9.1.6.5.5.3.0.0.0
   51.48.16.22.3.0.19.34.29.1.36.30.12.32.12.29.30.26.14.21.8.12.1.3.10.4.7.17.6.21.8.12.15.15.13.15.7.3.12.11.9.5.5.6.6.3.4.0.3.2.1
   use your function to crate the corresponding permutation of the following shoe of cards:
      A♠K♠Q♠J♠10♠9♠8♠7♠6♠5♠4♠3♠2♠A♥K♥Q♥J♥10♥9♥8♥7♥6♥5♥4♥3♥2♥A♦K♦Q♦J♦10♦9♦8♦7♦6♦5♦4♦3♦2♦A♣K♣Q♣J♣10♣9♣8♣7♣6♣5♣4♣3♣2♣
 Finally create your own 51 digit factorial base number and produce the corresponding permutation of the above shoe

F#[edit]

The Functıons
 
// Factorial base numbers indexing permutations of a collection
// Nigel Galloway: December 7th., 2018
let lN2p (c:int[]) (Ω:'Ω[])=
let Ω=Array.copy Ω
let rec fN i g e l=match l-i with 0->Ω.[i]<-e |_->Ω.[l]<-Ω.[l-1]; fN i g e (l-1)// rotate right
[0..((Array.length Ω)-2)]|>List.iter(fun n->let i=c.[n] in if i>0 then fN n (i+n) Ω.[i+n] (i+n)); Ω
let lN n =
let Ω=(Array.length n)
let fN g=if n.[g]=Ω-g then n.[g]<-0; false else n.[g]<-n.[g]+1; true
seq{yield n; while [1..Ω]|>List.exists(fun g->fN (Ω-g)) do yield n}
Re-create the table
 
lN [|0;0;0|] |> Seq.iter (fun n->printfn "%A -> %A" n (lN2p n [|0;1;2;3|]));;
 
Output:
[|0; 0; 0|] -> [|0; 1; 2; 3|]
[|0; 0; 1|] -> [|0; 1; 3; 2|]
[|0; 1; 0|] -> [|0; 2; 1; 3|]
[|0; 1; 1|] -> [|0; 2; 3; 1|]
[|0; 2; 0|] -> [|0; 3; 1; 2|]
[|0; 2; 1|] -> [|0; 3; 2; 1|]
[|1; 0; 0|] -> [|1; 0; 2; 3|]
[|1; 0; 1|] -> [|1; 0; 3; 2|]
[|1; 1; 0|] -> [|1; 2; 0; 3|]
[|1; 1; 1|] -> [|1; 2; 3; 0|]
[|1; 2; 0|] -> [|1; 3; 0; 2|]
[|1; 2; 1|] -> [|1; 3; 2; 0|]
[|2; 0; 0|] -> [|2; 0; 1; 3|]
[|2; 0; 1|] -> [|2; 0; 3; 1|]
[|2; 1; 0|] -> [|2; 1; 0; 3|]
[|2; 1; 1|] -> [|2; 1; 3; 0|]
[|2; 2; 0|] -> [|2; 3; 0; 1|]
[|2; 2; 1|] -> [|2; 3; 1; 0|]
[|3; 0; 0|] -> [|3; 0; 1; 2|]
[|3; 0; 1|] -> [|3; 0; 2; 1|]
[|3; 1; 0|] -> [|3; 1; 0; 2|]
[|3; 1; 1|] -> [|3; 1; 2; 0|]
[|3; 2; 0|] -> [|3; 2; 0; 1|]
[|3; 2; 1|] -> [|3; 2; 1; 0|]
Shuffles
 
let shoe==[|"A♠";"K♠";"Q♠";"J♠";"10♠";"9♠";"8♠";"7♠";"6♠";"5♠";"4♠";"3♠";"2♠";"A♥";"K♥";"Q♥";"J♥";"10♥";"9♥";"8♥";"7♥";"6♥";"5♥";"4♥";"3♥";"2♥";"A♦";"K♦";"Q♦";"J♦";"10♦";"9♦";"8♦";"7♦";"6♦";"5♦";"4♦";"3♦";"2♦";"A♣";"K♣";"Q♣";"J♣";"10♣";"9♣";"8♣";"7♣";"6♣";"5♣";"4♣";"3♣";"2♣";|]
//Random Shuffle
let N=System.Random() in lc2p [|for n in 52..-1..2 do yield N.Next(n)|] shoe|>Array.iter (printf "%s ");printfn ""
//Task Shuffles
lN2p [|39;49;7;47;29;30;2;12;10;3;29;37;33;17;12;31;29;34;17;25;2;4;25;4;1;14;20;6;21;18;1;1;1;4;0;5;15;12;4;3;10;10;9;1;6;5;5;3;0;0;0|] shoe|>Array.iter (printf "%s ");printfn ""
lN2p [|51;48;16;22;3;0;19;34;29;1;36;30;12;32;12;29;30;26;14;21;8;12;1;3;10;4;7;17;6;21;8;12;15;15;13;15;7;3;12;11;9;5;5;6;6;3;4;0;3;2;1|] shoe|>Array.iter (printf "%s ");printfn ""
 
Output:
J♣ Q♦ 10♣ 10♠ 3♥ 7♠ 8♥ 7♥ 8♦ 10♦ 4♥ 9♥ 8♠ K♥ 4♣ 5♥ K♣ Q♥ 9♠ A♦ Q♠ 6♦ K♦ K♠ 2♣ 6♠ 7♦ J♦ 2♥ 5♠ 4♦ 3♦ 6♣ J♥ 9♦ 4♠ 3♣ 2♠ 3♠ 10♥ Q♣ A♥ 2♦ A♠ 7♣ A♣ 9♣ 6♥ 5♦ 5♣ J♠ 8♣

A♣ 3♣ 7♠ 4♣ 10♦ 8♦ Q♠ K♥ 2♠ 10♠ 4♦ 7♣ J♣ 5♥ 10♥ 10♣ K♣ 2♣ 3♥ 5♦ J♠ 6♠ Q♣ 5♠ K♠ A♦ 3♦ Q♥ 8♣ 6♦ 9♠ 8♠ 4♠ 9♥ A♠ 6♥ 5♣ 2♦ 7♥ 8♥ 9♣ 6♣ 7♦ A♥ J♦ Q♦ 9♦ 2♥ 3♠ J♥ 4♥ K♦

2♣ 5♣ J♥ 4♥ J♠ A♠ 5♥ A♣ 6♦ Q♠ 9♣ 3♦ Q♥ J♣ 10♥ K♣ 10♣ 5♦ 7♥ 10♦ 3♠ 8♥ 10♠ 7♠ 6♥ 5♠ K♥ 4♦ A♥ 4♣ 2♥ 9♦ Q♣ 8♣ 7♦ 6♣ 3♥ 6♠ 7♣ 2♦ J♦ 9♥ A♦ Q♦ 8♦ 4♠ K♦ K♠ 3♣ 2♠ 8♠ 9♠
Comparıson wıth [Permutations(F#)]
 
let g=[|0..10|]
lC 10 |> Seq.map(fun n->lc2p n g) |> Seq.length
 
Output:
Real: 00:01:08.430, CPU: 00:01:08.970, GC gen0: 9086, gen1: 0
val it : int = 39916800

8GB of memory is insufficient for rc's perm task

Go[edit]

package main
 
import (
"fmt"
"math/rand"
"strconv"
"strings"
"time"
)
 
func factorial(n int) int {
fact := 1
for i := 2; i <= n; i++ {
fact *= i
}
return fact
}
 
func genFactBaseNums(size int, countOnly bool) ([][]int, int) {
var results [][]int
count := 0
for n := 0; ; n++ {
radix := 2
var res []int = nil
if !countOnly {
res = make([]int, size)
}
k := n
for k > 0 {
div := k / radix
rem := k % radix
if !countOnly {
if radix <= size+1 {
res[size-radix+1] = rem
}
}
k = div
radix++
}
if radix > size+2 {
break
}
count++
if !countOnly {
results = append(results, res)
}
}
return results, count
}
 
func mapToPerms(factNums [][]int) [][]int {
var perms [][]int
psize := len(factNums[0]) + 1
start := make([]int, psize)
for i := 0; i < psize; i++ {
start[i] = i
}
for _, fn := range factNums {
perm := make([]int, psize)
copy(perm, start)
for m := 0; m < len(fn); m++ {
g := fn[m]
if g == 0 {
continue
}
first := m
last := m + g
for i := 1; i <= g; i++ {
temp := perm[first]
for j := first + 1; j <= last; j++ {
perm[j-1] = perm[j]
}
perm[last] = temp
}
}
perms = append(perms, perm)
}
return perms
}
 
func join(is []int, sep string) string {
ss := make([]string, len(is))
for i := 0; i < len(is); i++ {
ss[i] = strconv.Itoa(is[i])
}
return strings.Join(ss, sep)
}
 
func undot(s string) []int {
ss := strings.Split(s, ".")
is := make([]int, len(ss))
for i := 0; i < len(ss); i++ {
is[i], _ = strconv.Atoi(ss[i])
}
return is
}
 
func main() {
rand.Seed(time.Now().UnixNano())
 
// Recreate the table.
factNums, _ := genFactBaseNums(3, false)
perms := mapToPerms(factNums)
for i, fn := range factNums {
fmt.Printf("%v -> %v\n", join(fn, "."), join(perms[i], ""))
}
 
// Check that the number of perms generated is equal to 11! (this takes a while).
_, count := genFactBaseNums(10, true)
fmt.Println("\nPermutations generated =", count)
fmt.Println("compared to 11! which =", factorial(11))
fmt.Println()
 
// Generate shuffles for the 2 given 51 digit factorial base numbers.
fbn51s := []string{
"39.49.7.47.29.30.2.12.10.3.29.37.33.17.12.31.29.34.17.25.2.4.25.4.1.14.20.6.21.18.1.1.1.4.0.5.15.12.4.3.10.10.9.1.6.5.5.3.0.0.0",
"51.48.16.22.3.0.19.34.29.1.36.30.12.32.12.29.30.26.14.21.8.12.1.3.10.4.7.17.6.21.8.12.15.15.13.15.7.3.12.11.9.5.5.6.6.3.4.0.3.2.1",
}
factNums = [][]int{undot(fbn51s[0]), undot(fbn51s[1])}
perms = mapToPerms(factNums)
shoe := []rune("A♠K♠Q♠J♠T♠9♠8♠7♠6♠5♠4♠3♠2♠A♥K♥Q♥J♥T♥9♥8♥7♥6♥5♥4♥3♥2♥A♦K♦Q♦J♦T♦9♦8♦7♦6♦5♦4♦3♦2♦A♣K♣Q♣J♣T♣9♣8♣7♣6♣5♣4♣3♣2♣")
cards := make([]string, 52)
for i := 0; i < 52; i++ {
cards[i] = string(shoe[2*i : 2*i+2])
if cards[i][0] == 'T' {
cards[i] = "10" + cards[i][1:]
}
}
for i, fbn51 := range fbn51s {
fmt.Println(fbn51)
for _, d := range perms[i] {
fmt.Print(cards[d])
}
fmt.Println("\n")
}
 
// Create a random 51 digit factorial base number and produce a shuffle from that.
fbn51 := make([]int, 51)
for i := 0; i < 51; i++ {
fbn51[i] = rand.Intn(52 - i)
}
fmt.Println(join(fbn51, "."))
perms = mapToPerms([][]int{fbn51})
for _, d := range perms[0] {
fmt.Print(cards[d])
}
fmt.Println()
}
Output:

Random for Part 4:

0.0.0 -> 0123
0.0.1 -> 0132
0.1.0 -> 0213
0.1.1 -> 0231
0.2.0 -> 0312
0.2.1 -> 0321
1.0.0 -> 1023
1.0.1 -> 1032
1.1.0 -> 1203
1.1.1 -> 1230
1.2.0 -> 1302
1.2.1 -> 1320
2.0.0 -> 2013
2.0.1 -> 2031
2.1.0 -> 2103
2.1.1 -> 2130
2.2.0 -> 2301
2.2.1 -> 2310
3.0.0 -> 3012
3.0.1 -> 3021
3.1.0 -> 3102
3.1.1 -> 3120
3.2.0 -> 3201
3.2.1 -> 3210

Permutations generated = 39916800
compared to 11! which  = 39916800

39.49.7.47.29.30.2.12.10.3.29.37.33.17.12.31.29.34.17.25.2.4.25.4.1.14.20.6.21.18.1.1.1.4.0.5.15.12.4.3.10.10.9.1.6.5.5.3.0.0.0
A♣3♣7♠4♣10♦8♦Q♠K♥2♠10♠4♦7♣J♣5♥10♥10♣K♣2♣3♥5♦J♠6♠Q♣5♠K♠A♦3♦Q♥8♣6♦9♠8♠4♠9♥A♠6♥5♣2♦7♥8♥9♣6♣7♦A♥J♦Q♦9♦2♥3♠J♥4♥K♦

51.48.16.22.3.0.19.34.29.1.36.30.12.32.12.29.30.26.14.21.8.12.1.3.10.4.7.17.6.21.8.12.15.15.13.15.7.3.12.11.9.5.5.6.6.3.4.0.3.2.1
2♣5♣J♥4♥J♠A♠5♥A♣6♦Q♠9♣3♦Q♥J♣10♥K♣10♣5♦7♥10♦3♠8♥10♠7♠6♥5♠K♥4♦A♥4♣2♥9♦Q♣8♣7♦6♣3♥6♠7♣2♦J♦9♥A♦Q♦8♦4♠K♦K♠3♣2♠8♠9♠

18.14.25.48.18.9.1.16.15.11.41.8.26.19.36.11.8.21.20.15.15.14.27.10.5.24.0.11.18.12.6.8.5.14.16.10.13.13.9.7.11.1.1.7.0.2.5.0.3.0.0
9♥K♥K♦2♣7♥5♠K♠6♥8♥A♥3♣4♠4♦J♦5♣J♥3♠6♦7♦A♦Q♦2♥7♣10♥8♠8♣A♠10♦Q♣8♦2♠4♥6♠J♣6♣3♦10♣9♣5♦3♥4♣J♠10♠A♣Q♠Q♥K♣9♠2♦7♠5♥9♦


J[edit]

Generalized base and antibase, and anagrams are j verbs making this project directly solvable.

   NB. A is a numerical matrix corresponding to the input and output
   A =: _&".;._2[0 :0
       0 0 0 0123
       0 0 1 0132
       0 1 0 0213
       0 1 1 0231
       0 2 0 0312
       0 2 1 0321
       1 0 0 1023
       1 0 1 1032
       1 1 0 1203
       1 1 1 1230
       1 2 0 1302
       1 2 1 1320
       2 0 0 2013
       2 0 1 2031
       2 1 0 2103
       2 1 1 2130
       2 2 0 2301
       2 2 1 2310
       3 0 0 3012
       3 0 1 3021
       3 1 0 3102
       3 1 1 3120
       3 2 0 3201
       3 2 1 3210
)

   NB. generalized antibase converts the factorial base representation to integers
   4 3 2 #. _ 3 {. A
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23


   EXPECT =: 10 10 10 10#:{:"1 A

   NB. the 0 through 23 anagrams of 0 1 2 3 matches our expactation
   EXPECT -: (4 3 2 #. _ 3 {. A) A. 0 1 2 3
1
   
   NB. 6 take EXPECT, for you to see what's been matched
   6{.EXPECT
0 1 2 3
0 1 3 2
0 2 1 3 
0 2 3 1
0 3 1 2
0 3 2 1
   

Julia[edit]

function makefactorialbased(N, makelist)
listlist = Vector{Vector{Int}}()
count = 0
while true
divisor = 2
makelist && (lis = zeros(Int, N))
k = count
while k > 0
k, r = divrem(k, divisor)
makelist && (divisor <= N + 1) && (lis[N - divisor + 2] = r)
divisor += 1
end
if divisor > N + 2
break
end
count += 1
makelist && push!(listlist, lis)
end
return count, listlist
end
 
function facmap(factnumbase)
perm = [i for i in 0:length(factnumbase)]
for (n, g) in enumerate(factnumbase)
if g != 0
perm[n:n + g] .= circshift(perm[n:n + g], 1)
end
end
perm
end
 
function factbasenums()
fcount, factnums = makefactorialbased(3, true)
perms = map(facmap, factnums)
for (i, fn) = enumerate(factnums)
println("$(join(string.(fn), ".")) -> $(join(string(perms[i]), ""))")
end
 
fcount, _ = makefactorialbased(10, false)
println("\nPermutations generated = $fcount, and 11! = $(factorial(11))\n")
 
taskrandom = ["39.49.7.47.29.30.2.12.10.3.29.37.33.17.12.31.29.34.17.25.2.4.25.4.1.14.20.6.21.18.1.1.1.4.0.5.15.12.4.3.10.10.9.1.6.5.5.3.0.0.0",
"51.48.16.22.3.0.19.34.29.1.36.30.12.32.12.29.30.26.14.21.8.12.1.3.10.4.7.17.6.21.8.12.15.15.13.15.7.3.12.11.9.5.5.6.6.3.4.0.3.2.1"]
perms = map(s -> facmap([parse(Int, s) for s in split(s, ".")]), taskrandom)
 
cardshoe = split("A♠K♠Q♠J♠T♠9♠8♠7♠6♠5♠4♠3♠2♠A♥K♥Q♥J♥T♥9♥8♥7♥6♥5♥4♥3♥2♥A♦K♦Q♦J♦T♦9♦8♦7♦6♦5♦4♦3♦2♦A♣K♣Q♣J♣T♣9♣8♣7♣6♣5♣4♣3♣2♣", "")
cards = [cardshoe[2*i+1] * cardshoe[2*i+2] for i in 0:51]
printcardshuffle(t, c, o) = (println(t); for i in 1:length(o) print(c[o[i] + 1]) end; println())
 
println("\nTask shuffles:")
map(i -> printcardshuffle(taskrandom[i], cards, perms[i]), 1:2)
 
myran = [rand(collect(0:i)) for i in 51:-1:1]
perm = facmap(myran)
println("\nMy random shuffle:")
printcardshuffle(join(string.(myran), "."), cards, perm)
end
 
factbasenums()
 
Output:

0.0.0 -> [0, 1, 2, 3]
0.0.1 -> [0, 1, 3, 2]
0.1.0 -> [0, 2, 1, 3]
0.1.1 -> [0, 2, 3, 1]
0.2.0 -> [0, 3, 1, 2]
0.2.1 -> [0, 3, 2, 1]
1.0.0 -> [1, 0, 2, 3]
1.0.1 -> [1, 0, 3, 2]
1.1.0 -> [1, 2, 0, 3]
1.1.1 -> [1, 2, 3, 0]
1.2.0 -> [1, 3, 0, 2]
1.2.1 -> [1, 3, 2, 0]
2.0.0 -> [2, 0, 1, 3]
2.0.1 -> [2, 0, 3, 1]
2.1.0 -> [2, 1, 0, 3]
2.1.1 -> [2, 1, 3, 0]
2.2.0 -> [2, 3, 0, 1]
2.2.1 -> [2, 3, 1, 0]
3.0.0 -> [3, 0, 1, 2]
3.0.1 -> [3, 0, 2, 1]
3.1.0 -> [3, 1, 0, 2]
3.1.1 -> [3, 1, 2, 0]
3.2.0 -> [3, 2, 0, 1]
3.2.1 -> [3, 2, 1, 0]

Permutations generated = 39916800, and 11! = 39916800

Task shuffles:
39.49.7.47.29.30.2.12.10.3.29.37.33.17.12.31.29.34.17.25.2.4.25.4.1.14.20.6.21.18.1.1.1.4.0.5.15.12.4.3.10.10.9.1.6.5.5.3.0.0.0
A♣3♣7♠4♣T♦8♦Q♠K♥2♠T♠4♦7♣J♣5♥T♥T♣K♣2♣3♥5♦J♠6♠Q♣5♠K♠A♦3♦Q♥8♣6♦9♠8♠4♠9♥A♠6♥5♣2♦7♥8♥9♣6♣7♦A♥J♦Q♦9♦2♥3♠J♥4♥K♦
51.48.16.22.3.0.19.34.29.1.36.30.12.32.12.29.30.26.14.21.8.12.1.3.10.4.7.17.6.21.8.12.15.15.13.15.7.3.12.11.9.5.5.6.6.3.4.0.3.2.1
2♣5♣J♥4♥J♠A♠5♥A♣6♦Q♠9♣3♦Q♥J♣T♥K♣T♣5♦7♥T♦3♠8♥T♠7♠6♥5♠K♥4♦A♥4♣2♥9♦Q♣8♣7♦6♣3♥6♠7♣2♦J♦9♥A♦Q♦8♦4♠K♦K♠3♣2♠8♠9♠

My random shuffle:
29.18.33.22.0.5.10.1.12.18.3.7.39.7.5.12.8.16.28.4.19.18.19.12.4.15.22.3.13.0.5.16.2.16.0.5.10.11.7.0.2.8.9.4.1.6.0.4.1.0.0
J♦9♥5♦4♥A♠8♠2♠Q♠J♥2♥9♠3♠2♣A♥5♠5♥T♥9♦8♣6♠3♦4♦A♣K♦4♠6♦6♣7♠7♦K♠7♥9♣K♥5♣J♠A♦Q♣T♣8♦T♠6♥7♣3♣T♦8♥4♣Q♥J♣Q♦3♥2♦K♣

Perl 6[edit]

Works with: Rakudo version 2018.11

Using my interpretation of the task instructions as shown on the discussion page.

sub postfix:<!> (Int $n) { (flat 1, [\*] 1..*)[$n] }
 
multi base (Int $n is copy, 'F', $length? is copy) {
constant @fact = [\*] 1 .. *;
my $i = $length // @fact.first: * > $n, :k;
my $f;
[ @fact[^$i].reverse.map: { ($n, $f) = $n.polymod($_); $f } ]
}
 
sub fpermute (@a is copy, *@f) { (^@f).map: { @a[$_ .. $_ + @f[$_]].=rotate(-1) }; @a }
 
put "Part 1: Generate table";
put $_.&base('F', 3).join('.') ~ ' -> ' ~ [0,1,2,3].&fpermute($_.&base('F', 3)).join for ^24;
 
put "\nPart 2: Compare 11! to 11! " ~ '¯\_(ツ)_/¯';
# This is kind of a weird request. Since we don't actually need to _generate_
# the permutations, only _count_ them: compare count of 11! vs count of 11!
put "11! === 11! : {11! === 11!}";
 
put "\nPart 3: Generate the given task shuffles";
my= <A♠ K♠ Q♠ J♠ 1098765432♠ A♥ K♥ Q♥ J♥ 1098765432
A♦ K♦ Q♦ J♦ 1098765432♦ A♣ K♣ Q♣ J♣ 1098765432
>;
 
my @books = <
39.49.7.47.29.30.2.12.10.3.29.37.33.17.12.31.29.34.17.25.2.4.25.4.1.14.20.6.21.18.1.1.1.4.0.5.15.12.4.3.10.10.9.1.6.5.5.3.0.0.0
51.48.16.22.3.0.19.34.29.1.36.30.12.32.12.29.30.26.14.21.8.12.1.3.10.4.7.17.6.21.8.12.15.15.13.15.7.3.12.11.9.5.5.6.6.3.4.0.3.2.1
>;
 
put "Original deck:";
put Ω.join;
 
put "\n$_\n" ~ Ω[(^Ω).&fpermute($_.split: '.')].join for @books;
 
put "\nPart 4: Generate a random shuffle";
my @shoe = (+Ω … 2).map: { (^$_).pick };
put @shoe.join('.');
put Ω[(^Ω).&fpermute(@shoe)].join;
 
put "\nSeems to me it would be easier to just say: Ω.pick(*).join";
put Ω.pick(*).join;
Output:
Part 1: Generate table
0.0.0 -> 0123
0.0.1 -> 0132
0.1.0 -> 0213
0.1.1 -> 0231
0.2.0 -> 0312
0.2.1 -> 0321
1.0.0 -> 1023
1.0.1 -> 1032
1.1.0 -> 1203
1.1.1 -> 1230
1.2.0 -> 1302
1.2.1 -> 1320
2.0.0 -> 2013
2.0.1 -> 2031
2.1.0 -> 2103
2.1.1 -> 2130
2.2.0 -> 2301
2.2.1 -> 2310
3.0.0 -> 3012
3.0.1 -> 3021
3.1.0 -> 3102
3.1.1 -> 3120
3.2.0 -> 3201
3.2.1 -> 3210

Part 2: Compare 11! to 11! ¯\_(ツ)_/¯
11! === 11! : True

Part 3: Generate the given task shuffles
Original deck:
A♠K♠Q♠J♠10♠9♠8♠7♠6♠5♠4♠3♠2♠A♥K♥Q♥J♥10♥9♥8♥7♥6♥5♥4♥3♥2♥A♦K♦Q♦J♦10♦9♦8♦7♦6♦5♦4♦3♦2♦A♣K♣Q♣J♣10♣9♣8♣7♣6♣5♣4♣3♣2♣

39.49.7.47.29.30.2.12.10.3.29.37.33.17.12.31.29.34.17.25.2.4.25.4.1.14.20.6.21.18.1.1.1.4.0.5.15.12.4.3.10.10.9.1.6.5.5.3.0.0.0
A♣3♣7♠4♣10♦8♦Q♠K♥2♠10♠4♦7♣J♣5♥10♥10♣K♣2♣3♥5♦J♠6♠Q♣5♠K♠A♦3♦Q♥8♣6♦9♠8♠4♠9♥A♠6♥5♣2♦7♥8♥9♣6♣7♦A♥J♦Q♦9♦2♥3♠J♥4♥K♦

51.48.16.22.3.0.19.34.29.1.36.30.12.32.12.29.30.26.14.21.8.12.1.3.10.4.7.17.6.21.8.12.15.15.13.15.7.3.12.11.9.5.5.6.6.3.4.0.3.2.1
2♣5♣J♥4♥J♠A♠5♥A♣6♦Q♠9♣3♦Q♥J♣10♥K♣10♣5♦7♥10♦3♠8♥10♠7♠6♥5♠K♥4♦A♥4♣2♥9♦Q♣8♣7♦6♣3♥6♠7♣2♦J♦9♥A♦Q♦8♦4♠K♦K♠3♣2♠8♠9♠

Part 4: Generate a random shuffle
47.9.46.16.28.8.36.27.29.1.9.27.1.16.21.22.28.34.30.8.19.27.18.22.3.25.15.20.12.14.8.9.11.1.4.0.3.5.4.2.2.10.8.1.6.1.2.4.1.2.1
6♣5♠5♣10♥10♦6♠K♣9♦6♦K♠2♠5♦Q♠5♥Q♦8♦J♣2♣8♣A♥K♦9♣A♦2♦9♠4♣3♥A♣7♥2♥Q♥9♥4♥J♠4♠A♠3♠8♥J♥7♠K♥3♣10♣8♠Q♣6♥7♦7♣J♦3♦4♦10♠

Seems to me it would be easier to just say: Ω.pick(*).join
5♦3♠8♦10♦2♥7♠7♦Q♦A♠5♣8♣Q♠4♠2♦K♦5♠Q♥7♣10♠2♠K♠J♣9♣3♣4♥3♥4♦3♦Q♣2♣4♣J♦9♠A♣J♠10♣6♣9♦6♠10♥6♥9♥J♥7♥K♥A♦8♠A♥5♥8♥K♣6♦

Phix[edit]

function fperm(sequence fbn, omega)
integer m=0
for i=1 to length(fbn) do
integer g = fbn[i]
if g>0 then
omega[m+1..m+g+1] = omega[m+g+1]&omega[m+1..m+g]
end if
m += 1
end for
return omega
end function
 
function factorial_base_numbers(integer size, bool countOnly)
-- translation of Go
sequence results = {}, res = repeat(0,size)
integer count = 0, n = 0
while true do
integer radix = 2, k = n
while k>0 do
if not countOnly
and radix <= size+1 then
res[size-radix+2] = mod(k,radix)
end if
k = floor(k/radix)
radix += 1
end while
if radix > size+2 then exit end if
count += 1
if not countOnly then
results = append(results, res)
end if
n += 1
end while
return iff(countOnly?count:results)
end function
 
sequence fbns = factorial_base_numbers(3,false)
for i=1 to length(fbns) do
printf(1,"%v -> %v\n",{fbns[i],fperm(fbns[i],{0,1,2,3})})
end for
printf(1,"\n")
 
integer count = factorial_base_numbers(10,true)
printf(1,"Permutations generated = %d\n", count)
printf(1," versus factorial(11) = %d\n", factorial(11))
 
procedure show_cards(sequence s)
printf(1,"\n")
for i=1 to length(s) do
integer c = s[i]-1
string sep = iff(mod(i,13)=0 or i=length(s)?"\n":" ")
puts(1,"AKQJT98765432"[mod(c,13)+1]&"SHDC"[floor(c/13)+1]&sep)
end for
end procedure
 
function rand_fbn51()
sequence fbn51 = repeat(0,51)
for i=1 to 51 do
fbn51[i] = rand(52-i)
end for
return fbn51
end function
 
sequence fbn51s = {{39,49, 7,47,29,30, 2,12,10, 3,29,37,33,17,12,31,29,
34,17,25, 2, 4,25, 4, 1,14,20, 6,21,18, 1, 1, 1, 4,
0, 5,15,12, 4, 3,10,10, 9, 1, 6, 5, 5, 3, 0, 0, 0},
{51,48,16,22, 3, 0,19,34,29, 1,36,30,12,32,12,29,30,
26,14,21, 8,12, 1, 3,10, 4, 7,17, 6,21, 8,12,15,15,
13,15, 7, 3,12,11, 9, 5, 5, 6, 6, 3, 4, 0, 3, 2, 1},
rand_fbn51()}
for i=1 to length(fbn51s) do
show_cards(fperm(fbn51s[i],tagset(52)))
end for
Output:
{0,0,0} -> {0,1,2,3}
{0,0,1} -> {0,1,3,2}
{0,1,0} -> {0,2,1,3}
{0,1,1} -> {0,2,3,1}
{0,2,0} -> {0,3,1,2}
{0,2,1} -> {0,3,2,1}
{1,0,0} -> {1,0,2,3}
{1,0,1} -> {1,0,3,2}
{1,1,0} -> {1,2,0,3}
{1,1,1} -> {1,2,3,0}
{1,2,0} -> {1,3,0,2}
{1,2,1} -> {1,3,2,0}
{2,0,0} -> {2,0,1,3}
{2,0,1} -> {2,0,3,1}
{2,1,0} -> {2,1,0,3}
{2,1,1} -> {2,1,3,0}
{2,2,0} -> {2,3,0,1}
{2,2,1} -> {2,3,1,0}
{3,0,0} -> {3,0,1,2}
{3,0,1} -> {3,0,2,1}
{3,1,0} -> {3,1,0,2}
{3,1,1} -> {3,1,2,0}
{3,2,0} -> {3,2,0,1}
{3,2,1} -> {3,2,1,0}

Permutations generated = 39916800
  versus factorial(11) = 39916800

AC 3C 7S 4C TD 8D QS KH 2S TS 4D 7C JC
5H TH TC KC 2C 3H 5D JS 6S QC 5S KS AD
3D QH 8C 6D 9S 8S 4S 9H AS 6H 5C 2D 7H
8H 9C 6C 7D AH JD QD 9D 2H 3S JH 4H KD

2C 5C JH 4H JS AS 5H AC 6D QS 9C 3D QH
JC TH KC TC 5D 7H TD 3S 8H TS 7S 6H 5S
KH 4D AH 4C 2H 9D QC 8C 7D 6C 3H 6S 7C
2D JD 9H AD QD 8D 4S KD KS 3C 2S 8S 9S

JS 4H JD 9H 2C 9C 3C KH 9S TH 6D 5S 3H
2H 3S JH 5H QD 4C 7D 4S QC 7C TS 5C 6H
KS 5D QH 2S AD AC 7S QS TC JC 7H 6C 8H
KC 9D 4D 8D KD 6S TD AH 8C 2D 8S 3D AS

zkl[edit]

fcn fpermute(omega,num){  // eg (0,1,2,3), (0,0,0)..(3,2,1)
omega=omega.copy(); // omega gonna be mutated
foreach m,g in ([0..].zip(num)){ if(g) omega.insert(m,omega.pop(m+g)) }
omega
}
Part 1, Generate permutation table:
foreach a,b,c in (4,3,2){
println("%d.%d.%d --> %s".fmt(a,b,c, fpermute(T(0,1,2,3),T(a,b,c)).concat()));
}
Output:
0.0.0 --> 0123
0.0.1 --> 0132
0.1.0 --> 0213
0.1.1 --> 0231
0.2.0 --> 0312
0.2.1 --> 0321
1.0.0 --> 1023
1.0.1 --> 1032
1.1.0 --> 1203
1.1.1 --> 1230
1.2.0 --> 1302
1.2.1 --> 1320
2.0.0 --> 2013
2.0.1 --> 2031
2.1.0 --> 2103
2.1.1 --> 2130
2.2.0 --> 2301
2.2.1 --> 2310
3.0.0 --> 3012
3.0.1 --> 3021
3.1.0 --> 3102
3.1.1 --> 3120
3.2.0 --> 3201
3.2.1 --> 3210
Part 3, Generate the given task shuffles:
deck:=List();
foreach s,c in ("\u2660 \u2665 \u2666 \u2663".split(),
"A K Q J 10 9 8 7 6 5 4 3 2".split()){ deck.append(c+s) }
books:=List(
"39.49.7.47.29.30.2.12.10.3.29.37.33.17.12.31.29.34.17.25.2.4.25.4.1.14.20.6.21.18.1.1.1.4.0.5.15.12.4.3.10.10.9.1.6.5.5.3.0.0.0",
"51.48.16.22.3.0.19.34.29.1.36.30.12.32.12.29.30.26.14.21.8.12.1.3.10.4.7.17.6.21.8.12.15.15.13.15.7.3.12.11.9.5.5.6.6.3.4.0.3.2.1")
.apply(fcn(s){ s.split(".").apply("toInt") });
foreach book in (books){ println(fpermute(deck,book).concat("")); }
Output:
A♣3♣7♠4♣10♦8♦Q♠K♥2♠10♠4♦7♣J♣5♥10♥10♣K♣2♣3♥5♦J♠6♠Q♣5♠K♠A♦3♦Q♥8♣6♦9♠8♠4♠9♥A♠6♥5♣2♦7♥8♥9♣6♣7♦A♥J♦Q♦9♦2♥3♠J♥4♥K♦
2♣5♣J♥4♥J♠A♠5♥A♣6♦Q♠9♣3♦Q♥J♣10♥K♣10♣5♦7♥10♦3♠8♥10♠7♠6♥5♠K♥4♦A♥4♣2♥9♦Q♣8♣7♦6♣3♥6♠7♣2♦J♦9♥A♦Q♦8♦4♠K♦K♠3♣2♠8♠9♠
Part 4, Generate a random shuffle:
r:=[52..2,-1].pump(List,(0).random);
println(r.concat("."),"\n",fpermute(deck,r).concat(""));
Output:
36.21.48.31.19.37.16.39.43.1.27.23.30.22.14.32.31.2.27.11.5.24.28.20.23.20.17.19.23.13.11.12.3.12.1.0.11.1.8.10.6.2.8.3.7.1.1.4.2.2.1
4♦6♥3♣8♦8♥Q♣J♥8♣2♣K♠9♦K♦2♦A♦Q♥9♣10♣J♠A♣A♥7♠3♦5♣10♦K♣7♦2♥6♦4♣7♥10♥5♥9♠3♥Q♠A♠J♦8♠4♥J♣K♥5♠7♣3♠6♣6♠4♠5♦9♥Q♦2♠10♠