First perfect square in base n with n unique digits: Difference between revisions

From Rosetta Code
Content added Content deleted
(→‎proof of concept: Newest improved Version using)
m (→‎Inserted nearly all optimizations found Hout and Nigel Galloway: needs still much more optimization base+1 -> runtime * base?)
Line 1,123: Line 1,123:
58A3CKP3N4CQD7 1023456CGJBIRQEDHP98KMOAN7FL
58A3CKP3N4CQD7 1023456CGJBIRQEDHP98KMOAN7FL
76.885 seconds</pre>
76.885 seconds</pre>
Now testing 29..40 on Ryzen 5 1600 ( 12 instances -> SMT has minimal benefit here ), but 31..40 still running.
Now tested 29:
Stopping 33..40, seems to be out of reach.
<pre> 29 test every 1 592.478 s
<pre>
5BAH95I8BCSN21Q 10234567FCQS2OBP8NRLMGJIDAEKH9</pre>
Base
29 test every 1 1048.672 s Testcount : 11,394,250,747 // one instance alone takes 569s, using integer instead of byte for base
starting values 5BAH95I7L8DORRL 1023456789ABCDEOCPEQ59O7IJ8HI6
solution 5BAH95I8BCSN21Q 10234567FCQS2OBP8NRLMGJIDAEKH9

30 test every 29 1346.140 s Testcount : 13,343,410,738
starting values 5EF7R2P77FFPBMR 1023456789ABCDEPPNIG6S4MJNB8C9
solution 5EF7R2POS9MQRN7 1023456DMAPECBQOLSITK9FR87GHNJ

31 test every 30
starting values 1011H10BS64GFL6U 1023456789ABCDEH3122BRSP7T7G6H1
calculation count 321585 Mio still running
</pre>


=={{header|Perl}}==
=={{header|Perl}}==

Revision as of 04:18, 6 June 2019

First perfect square in base n with n unique digits is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

Find the first perfect square in a given base N that has at least N digits and exactly N significant unique digits when expressed in base N.

E.G. In base 10, the first perfect square with at least 10 unique digits is 1026753849 (32043²).

You may use analytical methods to reduce the search space, but the code must do a search. Do not use magic numbers or just feed the code the answer to verify it is correct.

Task
  • Find and display here, on this page, the first perfect square in base N, with N significant unique digits when expressed in base N, for each of base 2 through 12. Display each number in the base N for which it was calculated.
  • (optional) Do the same for bases 13 through 16.
  • (stretch goal) Continue on for bases 17 - ?? (Big Integer math)


See also
related task

Casting out nines

F#

The Task

<lang fsharp> // Nigel Galloway: May 21st., 2019 let fN g=let g=int64(sqrt(float(pown g (int(g-1L)))))+1L in (Seq.unfold(fun(n,g)->Some(n,(n+g,g+2L))))(g*g,g*2L+1L) let fG n g=Array.unfold(fun n->if n=0L then None else let n,g=System.Math.DivRem(n,g) in Some(g,n)) n let fL g=let n=set[0L..g-1L] in Seq.find(fun x->set(fG x g)=n) (fN g) let toS n g=let a=Array.concat [[|'0'..'9'|];[|'a'..'f'|]] in System.String(Array.rev(fG n g)|>Array.map(fun n->a.[(int n)])) [2L..16L]|>List.iter(fun n->let g=fL n in printfn "Base %d: %s² -> %s" n (toS (int64(sqrt(float g))) n) (toS g n)) </lang>

Output:
Base 2: 10² -> 100
Base 3: 22² -> 2101
Base 4: 33² -> 3201
Base 5: 243² -> 132304
Base 6: 523² -> 452013
Base 7: 1431² -> 2450361
Base 8: 3344² -> 13675420
Base 9: 11642² -> 136802574
Base 10: 32043² -> 1026753849
Base 11: 111453² -> 1240a536789
Base 12: 3966b9² -> 124a7b538609
Base 13: 3828943² -> 10254773ca86b9
Base 14: 3a9db7c² -> 10269b8c57d3a4
Base 15: 1012b857² -> 102597bace836d4
Base 16: 404a9d9b² -> 1025648cfea37bd9

Using Factorial base numbers indexing permutations of a collection

On the discussion page for Factorial base numbers indexing permutations of a collection an anonymous contributor queries the value of Factorial base numbers indexing permutations of a collection. Well let's see him use an inverse Knuth shuffle to partially solve this task. This solution only applies to bases that do not require an extra digit. Still I think it's short and interesting.
Note that the minimal candidate is 1.0....0 as a factorial base number. <lang fsharp> // Nigel Galloway: May 30th., 2019 let fN n g=let g=n|>Array.rev|>Array.mapi(fun i n->(int64 n)*(pown g i))|>Array.sum

          let n=int64(sqrt (float g)) in g=(n*n)

let fG g=lN([|yield 1; yield! Array.zeroCreate(g-2)|])|>Seq.map(fun n->lN2p n [|0..(g-1)|]) |> Seq.filter(fun n->fN n (int64 g)) printfn "%A" (fG 12|>Seq.head) // -> [|1; 2; 4; 10; 7; 11; 5; 3; 8; 6; 0; 9|] printfn "%A" (fG 14|>Seq.head) // -> [|1; 0; 2; 6; 9; 11; 8; 12; 5; 7; 13; 3; 10; 4|] </lang>

Go

This takes advantage of major optimizations described by Nigel Galloway and Thundergnat (inspired by initial pattern analysis by Hout) in the Discussion page and a minor optimization contributed by myself. <lang go>package main

import (

   "fmt"
   "math/big"
   "strconv"
   "time"

)

const maxBase = 27 const minSq36 = "1023456789abcdefghijklmnopqrstuvwxyz" const minSq36x = "10123456789abcdefghijklmnopqrstuvwxyz"

var bigZero = new(big.Int) var bigOne = new(big.Int).SetUint64(1)

func containsAll(sq string, base int) bool {

   var found [maxBase]bool
   for _, r := range sq {
       if r < 58 {
           found[r-48] = true
       } else {
           found[r-87] = true
       }
   }
   for i := 0; i < base; i++ {
       if !found[i] {
           return false
       }
   }
   return true

}

func sumDigits(n, base *big.Int) *big.Int {

   q := new(big.Int).Set(n)
   r := new(big.Int)
   sum := new(big.Int).Set(bigZero)
   for q.Cmp(bigZero) == 1 {
       q.QuoRem(q, base, r)
       sum.Add(sum, r)
   }
   return sum

}

func digitalRoot(n *big.Int, base int) int {

   root := new(big.Int)
   b := big.NewInt(int64(base))
   for i := new(big.Int).Set(n); i.Cmp(b) >= 0; i.Set(root) {
       root.Set(sumDigits(i, b))
   }
   return int(root.Int64())

}

func minStart(base int) (string, uint64, int) {

   nn := new(big.Int)
   ms := minSq36[:base]
   nn.SetString(ms, base)
   bdr := digitalRoot(nn, base)
   var drs []int
   var ixs []uint64
   for n := uint64(1); n < uint64(2*base); n++ {
       nn.SetUint64(n * n)
       dr := digitalRoot(nn, base)
       if dr == 0 {
           dr = int(n * n)
       }
       if dr == bdr {
           ixs = append(ixs, n)
       }
       if n < uint64(base) && dr >= bdr {
           drs = append(drs, dr)
       }
   }
   inc := uint64(1)
   if len(ixs) >= 2 && base != 3 {
       inc = ixs[1] - ixs[0]
   }
   if len(drs) == 0 {
       return ms, inc, bdr
   }
   min := drs[0]
   for _, dr := range drs[1:] {
       if dr < min {
           min = dr
       }
   }
   rd := min - bdr
   if rd == 0 {
       return ms, inc, bdr
   }
   if rd == 1 {
       return minSq36x[:base+1], 1, bdr
   }
   ins := string(minSq36[rd])
   return (minSq36[:rd] + ins + minSq36[rd:])[:base+1], inc, bdr

}

func main() {

   start := time.Now()
   var nb, nn big.Int
   for n, k, base := uint64(2), uint64(1), 2; ; n += k {
       if base > 2 && n%uint64(base) == 0 {
           continue
       } 
       nb.SetUint64(n)
       sq := nb.Mul(&nb, &nb).Text(base)
       if !containsAll(sq, base) {
           continue
       }
       ns := strconv.FormatUint(n, base)
       tt := time.Since(start).Seconds()
       fmt.Printf("Base %2d:%15s² = %-27s in %8.3fs\n", base, ns, sq, tt)
       if base == maxBase {
           break
       }
       base++
       ms, inc, bdr := minStart(base)
       k = inc
       nn.SetString(ms, base)
       nb.Sqrt(&nn)
       if nb.Uint64() < n+1 {
           nb.SetUint64(n + 1)
       }
       if k != 1 {
           for {
               nn.Mul(&nb, &nb)
               dr := digitalRoot(&nn, base)
               if dr == bdr {
                   n = nb.Uint64() - k
                   break
               }
               nb.Add(&nb, bigOne)
           }
       } else {
           n = nb.Uint64() - k
       }
   }

}</lang>

Output:

Timings (in seconds) are for my Celeron @ 1.6GHz and should therefore be much faster on a more modern machine.

Base  2:             10² = 100                         in    0.000s
Base  3:             22² = 2101                        in    0.000s
Base  4:             33² = 3201                        in    0.000s
Base  5:            243² = 132304                      in    0.000s
Base  6:            523² = 452013                      in    0.000s
Base  7:           1431² = 2450361                     in    0.001s
Base  8:           3344² = 13675420                    in    0.001s
Base  9:          11642² = 136802574                   in    0.001s
Base 10:          32043² = 1026753849                  in    0.001s
Base 11:         111453² = 1240a536789                 in    0.003s
Base 12:         3966b9² = 124a7b538609                in    0.011s
Base 13:        3828943² = 10254773ca86b9              in    0.025s
Base 14:        3a9db7c² = 10269b8c57d3a4              in    0.026s
Base 15:       1012b857² = 102597bace836d4             in    0.032s
Base 16:       404a9d9b² = 1025648cfea37bd9            in    0.045s
Base 17:      423f82ga9² = 101246a89cgfb357ed          in    0.339s
Base 18:      44b482cad² = 10236b5f8eg4ad9ch7          in    0.395s
Base 19:     1011b55e9a² = 10234dhbg7ci8f6a9e5         in    0.535s
Base 20:     49dgih5d3g² = 1024e7cdi3hb695fja8g        in   17.610s
Base 21:    4c9he5fe27f² = 1023457dg9hi8j6b6kceaf      in   18.595s
Base 22:    4f94788gj0f² = 102369fbgdej48chi7lka5      in   62.002s
Base 23:   1011d3el56mc² = 10234acedkg9hm8fbjil756     in   91.127s
Base 24:   4lj0hdgf0hd3² = 102345b87hfeckjnigmdla69    in   98.035s
Base 25:  1011e145fhghm² = 102345doeckj6gfb8liam7nh9   in  229.642s
Base 26:  52k8n53bdm99k² = 1023458lo6iemkg79fpchnjdba  in  935.014s
Base 27: 1011f11e37objj² = 1023458elomdhbijfgkp7cq9n6a in 1774.957s


It's possible to go beyond base 27 by using big.Int (rather than uint64) for N as well as N² though this takes about 14% longer to reach base 27 itself.

For example, to reach base 28 (the largest base shown in the OEIS table) we have: <lang go>package main

import (

   "fmt"
   "math/big"
   "time"

)

const maxBase = 28

// etc

func main() {

   start := time.Now()
   var n, k, b, t, nn big.Int
   n.SetUint64(2)
   k.SetUint64(1)
   b.SetUint64(2)
   for base := 2; ; n.Add(&n, &k) { 
      if base > 2 && t.Rem(&n, &b).Cmp(bigZero) == 0 {
           continue
       }
       sq := nn.Mul(&n, &n).Text(base)
       if !containsAll(sq, base) {
           continue
       }
       ns := n.Text(base)
       tt := time.Since(start).Seconds()
       fmt.Printf("Base %2d:%15s² = %-28s in %8.3fs\n", base, ns, sq, tt)
       if base == maxBase {
           break
       }
       base++
       b.SetUint64(uint64(base))
       ms, inc, bdr := minStart(base)
       k.SetUint64(inc)
       nn.SetString(ms, base)
       n.Sqrt(&nn)
       t.Add(&n, bigOne)
       if n.Cmp(&t) == -1 {
           n.Set(&t)
       }
       if inc != 1 {
           for {
               nn.Mul(&n, &n)
               dr := digitalRoot(&nn, base)
               if dr == bdr {
                   n.Sub(&n, &k)
                   break
               }
               n.Add(&n, bigOne)
           }
       } else {
           n.Sub(&n, &k)
       }
   }

}</lang>

Output:
Base  2:             10² = 100                          in    0.000s
Base  3:             22² = 2101                         in    0.000s
Base  4:             33² = 3201                         in    0.000s
Base  5:            243² = 132304                       in    0.000s
Base  6:            523² = 452013                       in    0.000s
Base  7:           1431² = 2450361                      in    0.000s
Base  8:           3344² = 13675420                     in    0.001s
Base  9:          11642² = 136802574                    in    0.001s
Base 10:          32043² = 1026753849                   in    0.001s
Base 11:         111453² = 1240a536789                  in    0.003s
Base 12:         3966b9² = 124a7b538609                 in    0.012s
Base 13:        3828943² = 10254773ca86b9               in    0.028s
Base 14:        3a9db7c² = 10269b8c57d3a4               in    0.031s
Base 15:       1012b857² = 102597bace836d4              in    0.039s
Base 16:       404a9d9b² = 1025648cfea37bd9             in    0.054s
Base 17:      423f82ga9² = 101246a89cgfb357ed           in    0.389s
Base 18:      44b482cad² = 10236b5f8eg4ad9ch7           in    0.446s
Base 19:     1011b55e9a² = 10234dhbg7ci8f6a9e5          in    0.607s
Base 20:     49dgih5d3g² = 1024e7cdi3hb695fja8g         in   20.705s
Base 21:    4c9he5fe27f² = 1023457dg9hi8j6b6kceaf       in   21.797s
Base 22:    4f94788gj0f² = 102369fbgdej48chi7lka5       in   73.152s
Base 23:   1011d3el56mc² = 10234acedkg9hm8fbjil756      in  107.040s
Base 24:   4lj0hdgf0hd3² = 102345b87hfeckjnigmdla69     in  114.986s
Base 25:  1011e145fhghm² = 102345doeckj6gfb8liam7nh9    in  266.218s
Base 26:  52k8n53bdm99k² = 1023458lo6iemkg79fpchnjdba   in 1073.121s
Base 27: 1011f11e37objj² = 1023458elomdhbijfgkp7cq9n6a  in 2018.632s
Base 28: 58a3ckp3n4cqd7² = 1023456cgjbirqedhp98kmoan7fl in 3812.564s

JavaScript

Translation of: Python

<lang javascript>(() => {

   'use strict';
   // allDigitSquare :: Int -> Int
   const allDigitSquare = base => {
       const bools = replicate(base, false);
       return untilSucc(
           allDigitsUsedAtBase(base, bools),
           ceil(sqrt(parseInt(
               '10' + '0123456789abcdef'.slice(2, base),
               base
           )))
       );
   };
   // allDigitsUsedAtBase :: Int -> [Bool] -> Int -> Bool
   const allDigitsUsedAtBase = (base, bools) => n => {
       // Fusion of representing the square of integer N at a given base
       // with checking whether all digits of that base contribute to N^2.
       // Sets the bool at a digit position to True when used.
       // True if all digit positions have been used.
       const ds = bools.slice(0);
       let x = n * n;
       while (x) {
           ds[x % base] = true;
           x = floor(x / base);
       }
       return ds.every(x => x)
   };
   // showBaseSquare :: Int -> String
   const showBaseSquare = b => {
       const q = allDigitSquare(b);
       return justifyRight(2, ' ', str(b)) + ' -> ' +
           justifyRight(8, ' ', showIntAtBase(b, digit, q, )) +
           ' -> ' + showIntAtBase(b, digit, q * q, );
   };
   // TEST -----------------------------------------------
   const main = () => {
       // 1-12 only - by 15 the squares are truncated by
       // JS integer limits.
       // Returning values through console.log –
       // in separate events to avoid asynchronous disorder.
       print('Smallest perfect squares using all digits in bases 2-12:\n')
       print('Base      Root    Square')
       print(showBaseSquare(2));
       print(showBaseSquare(3));
       print(showBaseSquare(4));
       print(showBaseSquare(5));
       print(showBaseSquare(6));
       print(showBaseSquare(7));
       print(showBaseSquare(8));
       print(showBaseSquare(9));
       print(showBaseSquare(10));
       print(showBaseSquare(11));
       print(showBaseSquare(12));
   };
   // GENERIC FUNCTIONS ----------------------------------
   
   const
       ceil = Math.ceil,
       floor = Math.floor,
       sqrt = Math.sqrt;
   // Tuple (,) :: a -> b -> (a, b)
   const Tuple = (a, b) => ({
       type: 'Tuple',
       '0': a,
       '1': b,
       length: 2
   });
   // digit :: Int -> Char
   const digit = n =>
       // Digit character for given integer.
       '0123456789abcdef' [n];
   // enumFromTo :: (Int, Int) -> [Int]
   const enumFromTo = (m, n) =>
       Array.from({
           length: 1 + n - m
       }, (_, i) => m + i);
   // justifyRight :: Int -> Char -> String -> String
   const justifyRight = (n, cFiller, s) =>
       n > s.length ? (
           s.padStart(n, cFiller)
       ) : s;
   // print :: a -> IO ()
   const print = x => console.log(x)
   // quotRem :: Int -> Int -> (Int, Int)
   const quotRem = (m, n) =>
       Tuple(Math.floor(m / n), m % n);
   // replicate :: Int -> a -> [a]
   const replicate = (n, x) =>
       Array.from({
           length: n
       }, () => x);
   // showIntAtBase :: Int -> (Int -> Char) -> Int -> String -> String
   const showIntAtBase = (base, toChr, n, rs) => {
       const go = ([n, d], r) => {
           const r_ = toChr(d) + r;
           return 0 !== n ? (
               go(Array.from(quotRem(n, base)), r_)
           ) : r_;
       };
       return 1 >= base ? (
           'error: showIntAtBase applied to unsupported base'
       ) : 0 > n ? (
           'error: showIntAtBase applied to negative number'
       ) : go(Array.from(quotRem(n, base)), rs);
   };
   // Abbreviation for quick testing - any 2nd arg interpreted as indent size
   // sj :: a -> String
   function sj() {
       const args = Array.from(arguments);
       return JSON.stringify.apply(
           null,
           1 < args.length && !isNaN(args[0]) ? [
               args[1], null, args[0]
           ] : [args[0], null, 2]
       );
   }
   // str :: a -> String
   const str = x => x.toString();
   // untilSucc :: (Int -> Bool) -> Int -> Int
   const untilSucc = (p, x) => {
       // The first in a chain of successive integers
       // for which p(x) returns true.
       let v = x;
       while (!p(v)) v = 1 + v;
       return v;
   };
   // MAIN ---
   return main();

})();</lang>

Output:
Smallest perfect squares using all digits in bases 2-12:

Base      Root    Square
 2 ->       10 -> 100
 3 ->       22 -> 2101
 4 ->       33 -> 3201
 5 ->      243 -> 132304
 6 ->      523 -> 452013
 7 ->     1431 -> 2450361
 8 ->     3344 -> 13675420
 9 ->    11642 -> 136802574
10 ->    32043 -> 1026753849
11 ->   111453 -> 1240a536789
12 ->   3966b9 -> 124a7b538609

Julia

Runs in about 4 seconds with using occursin(). <lang julia>const num = "0123456789abcdef" hasallin(n, nums, b) = (s = string(n, base=b); all(x -> occursin(x, s), nums))

function squaresearch(base)

   basenumerals = [c for c in num[1:base]]
   highest = parse(Int, "10" * num[3:base], base=base)
   for n in Int(trunc(sqrt(highest))):highest
       if hasallin(n * n, basenumerals, base)
           return n
       end
   end

end

println("Base Root N") for b in 2:16

   n = squaresearch(b)
   println(lpad(b, 3), lpad(string(n, base=b), 10), "  ", string(n * n, base=b))

end

</lang>

Output:
Base     Root   N
  2        10  100
  3        22  2101
  4        33  3201
  5       243  132304
  6       523  452013
  7      1431  2450361
  8      3344  13675420
  9     11642  136802574
 10     32043  1026753849
 11    111453  1240a536789
 12    3966b9  124a7b538609
 13   3828943  10254773ca86b9
 14   3a9db7c  10269b8c57d3a4
 15  1012b857  102597bace836d4
 16  404a9d9b  1025648cfea37bd9

Pascal

Using an array of digits to base n, to get rid of base conversions.
Starting value equals squareroot of smallest value containing all digits to base.
Than brute force.
Try it online! <lang pascal>program project1; //Find the smallest number n to base b, so that n*n includes all //digits of base b {$IFDEF FPC}{$MODE DELPHI}{$ENDIF} uses

 sysutils;

const

charSet : array[0..36] of char ='0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ';  

type

 tNumtoBase = record 
                ntb_dgt : array[0..31-4] of byte;
                ntb_cnt,
                ntb_bas  : Word;
              end;

var

 Num,
 sqr2B,
 deltaNum  : tNumtoBase;                  

function Minimal_n(base:NativeUint):Uint64; //' 1023456789ABCDEFGHIJ...' var

 i : NativeUint;

Begin

 result := base;  // aka '10'
 IF base > 2 then 
   For i := 2 to base-1 do
     result := result*base+i;
 result := trunc(sqrt(result)+0.99999);        

end;

procedure Conv2num(var num:tNumtoBase;n:Uint64;base:NativeUint); var

 quot :UInt64;
 i :NativeUint; 

Begin

 i := 0;
 repeat
   quot := n div base;
   Num.ntb_dgt[i] := n-quot*base;
   n := quot;
   inc(i);
 until n = 0;
 Num.ntb_cnt := i;
 Num.ntb_bas := base;
 //clear upper digits
 For i := i to high(tNumtoBase.ntb_dgt) do 
    Num.ntb_dgt[i] := 0;

end;

procedure OutNum(const num:tNumtoBase); var

 i : NativeInt;

Begin

 with num do
 Begin
   For i := 17-ntb_cnt-1 downto 0 do 
     write(' ');
   For i := ntb_cnt-1 downto 0 do
     write(charSet[ntb_dgt[i]]);
 end;  

end;

procedure IncNumBig(var add1:tNumtoBase;n:NativeUInt); //prerequisites //bases are the same,delta : NativeUint var

 i,s,b,carry : NativeInt;

Begin

 b := add1.ntb_bas;
 i := 0;
 carry := 0;
 while n > 0 do
 Begin
   s := add1.ntb_dgt[i]+carry+ n MOD b;
   carry := Ord(s>=b);
   s := s- (-carry AND b);
   add1.ntb_dgt[i] := s;
   n := n div b;
   inc(i);
 end;   
 
 while carry <> 0 do
 Begin
   s := add1.ntb_dgt[i]+carry;
   carry := Ord(s>=b);
   s := s- (-carry AND b);
   add1.ntb_dgt[i] := s;
   inc(i);
 end;   
 IF add1.ntb_cnt < i then
   add1.ntb_cnt := i;

end;

procedure IncNum(var add1:tNumtoBase;carry:NativeInt); //prerequisites: bases are the same, carry==delta < base var

 i,s,b : NativeInt;

Begin

 b := add1.ntb_bas;
 i := 0;
 while carry <> 0 do
 Begin
   s := add1.ntb_dgt[i]+carry;
   carry := Ord(s>=b);
   s := s- (-carry AND b);
   add1.ntb_dgt[i] := s;
   inc(i);
 end;   
 IF add1.ntb_cnt < i then
   add1.ntb_cnt := i;

end;

procedure AddNum(var add1,add2:tNumtoBase); //prerequisites //bases are the same,add1>add2, add1 <= add1+add2; var

 i,carry,s,b : NativeInt;

Begin

 b := add1.ntb_bas;
 carry := 0;
 For i := 0 to add2.ntb_cnt-1 do 
 begin
   s := add1.ntb_dgt[i]+add2.ntb_dgt[i]+carry;
   carry := Ord(s>=b);
   s := s- (-carry AND b);
   add1.ntb_dgt[i] := s;
 end;  
 
 i := add2.ntb_cnt;
 while carry = 1 do
 Begin
   s := add1.ntb_dgt[i]+carry;
   carry := Ord(s>=b);
   // remove of if s>b then by bit-twiddling
   s := s- (-carry AND b);
   add1.ntb_dgt[i] := s;
   inc(i);
 end;   
 
 IF add1.ntb_cnt < i then
   add1.ntb_cnt := i;

end;

procedure Test(base:NativeInt); var

 n : Uint64;  
 i,j,TestSet : NativeInt;

Begin

 write(base:5);
 n := Minimal_n(base);
 Conv2num(sqr2B,n*n,base);
 Conv2num(Num,n,base);
 deltaNum := num;
 AddNum(deltaNum,deltaNum);
 IncNum(deltaNum,1);  
 
 i := 0;
 repeat
   //count used digits
   TestSet := 0;
   For j := sqr2B.ntb_cnt-1 downto 0 do
     TestSet := TestSet OR (1 shl sqr2B.ntb_dgt[j]);
   inc(TestSet);  
   IF (1 shl base)=TestSet  then
      BREAK;   
   //next square number
   AddNum(sqr2B,deltaNum);
   IncNum(deltaNum,2);
   inc(i);
 until false;
 IncNumBig(num,i);
 OutNum(Num);  
 OutNum(sqr2B);
 Writeln(i:14);  

end;

var

 T0: TDateTime;
 base :nativeInt;   

begin

 T0 := now;
 writeln('base                 n        square(n)       Testcnt');
 For base := 2 to 16 do
   Test(base);
 writeln((now-T0)*86400:10:3);
 {$IFDEF WINDOWS}readln;{$ENDIF}

end.</lang>

Output:
base                 n        square(n)       Testcnt
    2               10              100             0
    3               22             2101             4
    4               33             3201             6
    5              243           132304            46
    6              523           452013           103
    7             1431          2450361           209
    8             3344         13675420           288
    9            11642        136802574          1156
   10            32043       1026753849            51
   11           111453      1240A536789         14983
   12           3966B9     124A7B538609         75713
   13          3828943   10254773CA86B9      12668112
   14          3A9DB7C   10269B8C57D3A4         17291
   15         1012B857  102597BACE836D4         59026
   16         404A9D9B 1025648CFEA37BD9        276865
     0.401

Inserted nearly all optimizations found Hout and Nigel Galloway

I use now gmp to calculate the start values.Check Chai Wah Wu list on oeis.org/A260182
The runtime is on my PC ( AMD 2200G ) about 80 s to complete the task. Try it online! <lang pascal>program project1; //Find the smallest number n to base b, so that n*n includes all //digits of base b aka pandigital {$IFDEF FPC}

 {$MODE DELPHI}

{$ENDIF} uses

 sysutils,
 gmp;// to calculate start values

const

 charSet : array[0..62] of char ='0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz';

type

 tNumtoBase = record
                ntb_dgt : array[0..63-4] of byte;
                ntb_cnt,
                ntb_bas  : Word;
              end;
 tDgtRootSqr = record
                 drs_List : array[0..63-4] of byte;
                 drs_bas  : byte;
                 drs_Sol  : byte;
                 drs_SolCnt:byte;
                 drs_NeedsOneMoreDigit: boolean;
               end;

var {$ALIGN 32}

 Num,
 sqr2B,
 deltaNum,
 delta  : tNumtoBase;

{$ALIGN 32}

 DgtRtSqr  : tDgtRootSqr;

{$ALIGN 32}

 T0,T1: TDateTime;

procedure OutNum(const num:tNumtoBase); var

 i : NativeInt;

Begin

 with num do
 Begin
   For i := 30-ntb_cnt-1 downto 0 do
     write(' ');
   For i := ntb_cnt-1 downto 0 do
     write(charSet[ntb_dgt[i]]);
 end;
 write(' ');

end;

function getDgtRtNum(const num:tNumtoBase):NativeInt; var

 i : NativeInt;

begin

 with num do
 Begin
   result := 0;
   For i := 0 to num.ntb_cnt-1 do
     inc(result,ntb_dgt[i]);
   result := result MOD(ntb_bas-1);
 end;

end;

procedure CalcDgtRootSqr(base:NativeInt); var

 i : NativeInt;

Begin

 with DgtRtSqr do
 begin
   //pandigtal digital root (sum all digits of base) mod (base-1)
   drs_bas := base;
   if Odd(base) then
     drs_Sol := base div 2
   else
     drs_Sol := 0;
   base := Base-1;
   //calc which dgt root the square of the number will become
   For i := 0 to base-1 do
     drs_List[i] := (i*i) MOD base;
   //searchuing if solution
   drs_SolCnt := 0;
   For i := 0 to base-1 do
     If drs_List[i] = drs_Sol then
       inc(drs_SolCnt);
   //if not found then NeedsOneMoreDigit
   drs_NeedsOneMoreDigit := drs_SolCnt = 0;
 end;

end;

procedure conv_ui_num(base:NativeUint;ui:Uint64;var Num:tNumtoBase); var

 i : NativeInt;

Begin

 For i := 0 to high(tNumtoBase.ntb_dgt) do
   Num.ntb_dgt[i] := 0;
 with num do
 begin
   ntb_bas := base;
   ntb_cnt := 0;
   if ui = 0 then
     EXIT;
   i := 0;
   repeat
     ntb_dgt[i] := ui Mod base;
     ui := ui DIV base;
     inc(i);
   until ui = 0;
   ntb_cnt := i;
 end;

end;

procedure conv2Num(base:NativeUint;var Num:tNumtoBase;var s:mpz_t); var

 i : NativeInt;

Begin

 For i := 0 to high(tNumtoBase.ntb_dgt) do
   Num.ntb_dgt[i] := 0;
 with num do
 begin
   ntb_bas := base;
   i := 0;
   repeat
     ntb_dgt[i] := mpz_tdiv_q_ui(s,s,base);
     inc(i);
   until mpz_cmp_ui(s, 0) = 0;
   ntb_cnt:= i;
 end;

end;

procedure StartValueCreate(base:NativeUInt); //create the lowest pandigital number "102345...Base-1 " // calc sqrt +1 and convert n new format. var

 sv_sqr,
 sv: mpz_t;
 k: Uint64;

Begin

 CalcDgtRootSqr(base);
 mpz_init(sv);
 mpz_init(sv_sqr);
 mpz_init_set_si(sv_sqr, base);//"10"
 IF base >2 then
 Begin
   k := 2;
   repeat
     mpz_mul_ui(sv_sqr, sv_sqr, base);
     mpz_add_ui(sv_sqr,sv_sqr,k);
     inc(k);
   until k>= base;
   if DgtRtSqr.drs_NeedsOneMoreDigit then
     mpz_mul_ui(sv_sqr, sv_sqr, base);
 end;


 mpz_sqrt(sv, sv_sqr);
 mpz_add_ui(sv,sv,1);
 mpz_mul(sv_sqr, sv,sv);
 If base <63 then
 begin
   conv2Num(base,Num,sv);
   conv2Num(base,sqr2B,sv_sqr);
 end;
 mpz_clear(sv_sqr);
 mpz_clear(sv);

end;

procedure IncNumBig(var add1:tNumtoBase;n:Uint64); var

 i,s,b,carry : NativeInt;

Begin

 b := add1.ntb_bas;
 i := 0;
 carry := 0;
 while n > 0 do
 Begin
   s := add1.ntb_dgt[i]+carry+ n MOD b;
   carry := Ord(s>=b);
   s := s- (-carry AND b);
   add1.ntb_dgt[i] := s;
   n := n div b;
   inc(i);
 end;
 while carry <> 0 do
 Begin
   s := add1.ntb_dgt[i]+carry;
   carry := Ord(s>=b);
   s := s- (-carry AND b);
   add1.ntb_dgt[i] := s;
   inc(i);
 end;
 IF add1.ntb_cnt < i then
   add1.ntb_cnt := i;

end;

procedure IncNum(var add1:tNumtoBase;carry:NativeInt); //prerequisites carry < base var

 i,s,b : NativeInt;

Begin

 b := add1.ntb_bas;
 i := 0;
 while carry <> 0 do
 Begin
   s := add1.ntb_dgt[i]+carry;
   carry := Ord(s>=b);
   s := s- (-carry AND b);
   add1.ntb_dgt[i] := s;
   inc(i);
 end;
 IF add1.ntb_cnt < i then
   add1.ntb_cnt := i;

end;

procedure AddNum(var add1,add2:tNumtoBase); //add1 <= add1+add2; //prerequisites bases are the same,add1>=add2( cnt ), var

 i,carry,s,b : NativeInt;

Begin

 b := add1.ntb_bas;
 carry := 0;
 For i := 0 to add2.ntb_cnt-1 do
 begin
   s := add1.ntb_dgt[i]+add2.ntb_dgt[i]+carry;
   carry := Ord(s>=b);
   s := s- (-carry AND b);
   add1.ntb_dgt[i] := s;
 end;
 i := add2.ntb_cnt;
 while carry = 1 do
 Begin
   s := add1.ntb_dgt[i]+carry;
   carry := Ord(s>=b);
   s := s- (-carry AND b);
   add1.ntb_dgt[i] := s;
   inc(i);
 end;
 IF add1.ntb_cnt < i then
   add1.ntb_cnt := i;

end;

procedure Test(base:NativeInt); var

 deltaCnt : Uint64;
 i,j,TestSet : NativeInt;

Begin

 write(base:3);
 T0 := now;
 StartValueCreate(base);
 deltaNum := num;
 AddNum(deltaNum,deltaNum);
 IncNum(deltaNum,1);
 deltaCnt := 1;
 IF (Base>3) AND NOT(DgtRtSqr.drs_NeedsOneMoreDigit) then
 Begin
   //Find first number which can get the solution
   with dgtrtsqr do
     while drs_List[getDgtRtNum(num)] <>  drs_sol do
     Begin
       IncNum(num,1);
       AddNum(sqr2B,deltaNum);
       IncNum(deltaNum,2);
     end;
   deltaCnt := (Base-1) DIV DgtRtSqr.drs_SolCnt;
   //j*num
   deltaNum := num;
   For i := 2 to deltaCnt do
     AddNum(deltaNum,num);
   AddNum(deltaNum,deltaNum);
   IncNumBig(deltaNum,deltaCnt*deltaCnt);
 end;
 conv_ui_num(base,2*deltaCnt*deltaCnt,delta);
 write(' test every ',deltaCnt);
 i := 0;
 repeat
   //count used digits
   TestSet := 0;
   For j := sqr2B.ntb_cnt-1 downto 0 do
     TestSet := TestSet OR (1 shl sqr2B.ntb_dgt[j]);
   inc(TestSet);
   IF (1 shl base)=TestSet  then
      BREAK;
   //next square number
   AddNum(sqr2B,deltaNum);
   AddNum(deltaNum,delta);
   inc(i);

// IF i AND ( 1 shl 24 - 1) = 0 then write(i,#13);

 until false;
 IncNumBig(num,i*deltaCnt);
 T1 := now;
 Writeln((T1-t0 )*86400:9:3,' s');
 OutNum(Num);
 OutNum(sqr2B);
 writeln;

end;

var

 T: TDateTime;
 base :nativeInt;

begin

 writeln('base                 n        square(n)       Testcnt');
 T := now;
 For base := 2 to 28 do
   Test(base);
 writeln((now-T)*86400:10:3,' seconds');
 {$IFDEF WINDOWS}readln;{$ENDIF}

end.</lang>

Output:
base                 n        square(n)       Testcnt
  2 test every 1    0.000 s
                            10                            100
  3 test every 1    0.000 s
                            22                           2101
  4 test every 3    0.000 s
                            33                           3201
  5 test every 1    0.000 s
                           243                         132304
  6 test every 5    0.000 s
                           523                         452013
  7 test every 6    0.000 s
                          1431                        2450361
  8 test every 7    0.000 s
                          3344                       13675420
  9 test every 4    0.000 s
                         11642                      136802574
 10 test every 3    0.000 s
                         32043                     1026753849
 11 test every 10    0.001 s
                        111453                    1240A536789
 12 test every 11    0.000 s
                        3966B9                   124A7B538609
 13 test every 1    0.000 s
                       3828943                 10254773CA86B9
 14 test every 13    0.001 s
                       3A9DB7C                 10269B8C57D3A4
 15 test every 14    0.000 s
                      1012B857                102597BACE836D4
 16 test every 15    0.001 s
                      404A9D9B               1025648CFEA37BD9
 17 test every 1    0.014 s
                     4261CBG65             102369EB54FD9G7CA8
 18 test every 17    0.002 s
                     44B482CAD             10236B5F8EG4AD9CH7
 19 test every 6    0.003 s
                    1011B55E9A            10234DHBG7CI8F6A9E5
 20 test every 19    0.402 s
                    49DGIH5D3G           1024E7CDI3HB695FJA8G
 21 test every 1    0.020 s
                   4C9HE5FE27F         1023457DG9HI8J6B6KCEAF
 22 test every 21    1.063 s
                   4F94788GJ0F         102369FBGDEJ48CHI7LKA5
 23 test every 22    0.631 s
                  1011D3EL56MC        10234ACEDKG9HM8FBJIL756
 24 test every 23    0.169 s
                  4LJ0HDGF0HD3       102345B87HFECKJNIGMDLA69
 25 test every 12    3.140 s
                 1011E145FHGHM      102345DOECKJ6GFB8LIAM7NH9
 26 test every 5   15.181 s
                 52K8N53BDM99K     1023458LO6IEMKG79FPCHNJDBA
 27 test every 26   18.533 s
                1011F11E37OBJJ    1023458ELOMDHBIJFGKP7CQ9N6A
 28 test every 9   37.724 s
                58A3CKP3N4CQD7   1023456CGJBIRQEDHP98KMOAN7FL
    76.885 seconds

Now testing 29..40 on Ryzen 5 1600 ( 12 instances -> SMT has minimal benefit here ), but 31..40 still running. Stopping 33..40, seems to be out of reach.

Base
 29 test every 1  1048.672 s Testcount : 11,394,250,747 // one instance alone takes 569s, using integer instead of byte for base
 starting values  5BAH95I7L8DORRL 1023456789ABCDEOCPEQ59O7IJ8HI6
 solution         5BAH95I8BCSN21Q 10234567FCQS2OBP8NRLMGJIDAEKH9

 30 test every 29 1346.140 s Testcount : 13,343,410,738
 starting values  5EF7R2P77FFPBMR 1023456789ABCDEPPNIG6S4MJNB8C9
 solution         5EF7R2POS9MQRN7 1023456DMAPECBQOLSITK9FR87GHNJ

 31 test every 30
 starting values  1011H10BS64GFL6U 1023456789ABCDEH3122BRSP7T7G6H1
calculation count    321585 Mio still running

Perl

Library: ntheory

<lang perl>use strict; use warnings; use feature 'say'; use ntheory qw/fromdigits todigitstring/; use utf8; binmode('STDOUT', 'utf8');

sub first_square {

   my $n = shift;
   my $sr = substr('1023456789abcdef',0,$n);
   my $r  = int fromdigits($sr, $n) ** .5;
   my @digits = reverse split , $sr;
   TRY: while (1) {
       my $sq = $r * $r;
       my $cnt = 0;
       my $s = todigitstring($sq, $n);
       my $i = scalar @digits;
       for (@digits) {
           $r++ and redo TRY if (-1 == index($s, $_)) || ($i-- + $cnt < $n);
           last if $cnt++ == $n;
       }
       return sprintf "Base %2d: %10s² == %s", $n, todigitstring($r, $n),
              todigitstring($sq, $n);
   }

}

say "First perfect square with N unique digits in base N: "; say first_square($_) for 2..16;</lang>

Output:
First perfect square with N unique digits in base N: 
Base  2:         10² == 100
Base  3:         22² == 2101
Base  4:         33² == 3201
Base  5:        243² == 132304
Base  6:        523² == 452013
Base  7:       1431² == 2450361
Base  8:       3344² == 13675420
Base  9:      11642² == 136802574
Base 10:      32043² == 1026753849
Base 11:     111453² == 1240a536789
Base 12:     3966b9² == 124a7b538609
Base 13:    3828943² == 10254773ca86b9
Base 14:    3a9db7c² == 10269b8c57d3a4
Base 15:   1012b857² == 102597bace836d4
Base 16:   404a9d9b² == 1025648cfea37bd9

Alternative solution:

Library: ntheory

<lang perl>use strict; use warnings; use ntheory qw(:all); use List::Util qw(uniq);

sub first_square {

   my ($base) = @_;
   my $start = sqrtint(fromdigits([1, 0, 2 .. $base-1], $base));
   for (my $k = $start ; ; ++$k) {
       if (uniq(todigits($k * $k, $base)) == $base) {
           return $k * $k;
       }
   }

}

foreach my $n (2 .. 16) {

   my $s = first_square($n);
   printf("Base %2d: %10s² == %s\n", $n,
       todigitstring(sqrtint($s), $n), todigitstring($s, $n));

}</lang>

Perl 6

Works with: Rakudo version 2019.03

As long as you have the patience, this will work for bases 2 through 36.

Bases 2 through 19 finish quickly, (about 10 seconds on my system), 20 takes a while, 21 is pretty fast, 22 is glacial. 23 through 26 takes several hours.

Use analytical start value filtering based on observations by Hout++ and Nigel Galloway++ on the discussion page.

Try it online!

<lang perl6>#`[

Only search square numbers that have at least N digits; smaller could not possibly match.

Only bother to use analytics for large N. Finesse takes longer than brute force for small N.

]

unit sub MAIN ($timer = False);

sub first-square (Int $n) {

   my @start = flat '1', '0', (2 ..^ $n)».base: $n;
   if $n > 10 { # analytics
       my $root  = digital-root( @start.join, :base($n) );
       my @roots = (2..$n).map(*²).map: { digital-root($_.base($n), :base($n) ) };
       if $root ∉ @roots {
           my $offset = min(@roots.grep: * > $root ) - $root;
           @start[1+$offset] = $offset ~ @start[1+$offset];
       }
   }
   my $start = @start.join.parse-base($n).sqrt.ceiling;
   my @digits = reverse (^$n)».base: $n;
   my $sq;
   my $now  = now;
   my $time = 0;
   my $sr;
   for $start .. * {
       $sq = .²;
       my $s = $sq.base($n);
       my $f;
       $f = 1 and last unless $s.contains: $_ for @digits;
       if $timer && $n > 19 && $_ %% 1_000_000 {
           $time += now - $now;
           say "N $n:  {$_}² = $sq <$s> : {(now - $now).round(.001)}s" ~
               " : {$time.round(.001)} elapsed";
           $now = now;
       }
       next if $f;
       $sr = $_;
       last
   }
   sprintf( "Base %2d: %13s² == %-30s", $n, $sr.base($n), $sq.base($n) ) ~
       ($timer ?? ($time + now - $now).round(.001) !! );

}

sub digital-root ($root is copy, :$base = 10) {

   $root = $root.comb.map({:36($_)}).sum.base($base) while $root.chars > 1;
   $root.parse-base($base);

}

say "First perfect square with N unique digits in base N: "; say .&first-square for flat

  2 .. 12, # required
 13 .. 16, # optional
 17 .. 19, # stretch
 20, # slow
 21, # pretty fast
 22, # very slow
 23, # don't hold your breath
 24, # slow but not too terrible
 25, # very slow
 26, #   "
</lang>
Output:
First perfect square with N unique digits in base N:
Base  2:            10² == 100
Base  3:            22² == 2101
Base  4:            33² == 3201
Base  5:           243² == 132304
Base  6:           523² == 452013
Base  7:          1431² == 2450361
Base  8:          3344² == 13675420
Base  9:         11642² == 136802574
Base 10:         32043² == 1026753849
Base 11:        111453² == 1240A536789
Base 12:        3966B9² == 124A7B538609
Base 13:       3828943² == 10254773CA86B9
Base 14:       3A9DB7C² == 10269B8C57D3A4
Base 15:      1012B857² == 102597BACE836D4
Base 16:      404A9D9B² == 1025648CFEA37BD9
Base 17:     423F82GA9² == 101246A89CGFB357ED
Base 18:     44B482CAD² == 10236B5F8EG4AD9CH7
Base 19:    1011B55E9A² == 10234DHBG7CI8F6A9E5
Base 20:    49DGIH5D3G² == 1024E7CDI3HB695FJA8G
Base 21:   4C9HE5FE27F² == 1023457DG9HI8J6B6KCEAF
Base 22:   4F94788GJ0F² == 102369FBGDEJ48CHI7LKA5
Base 23:  1011D3EL56MC² == 10234ACEDKG9HM8FBJIL756
Base 24:  4LJ0HDGF0HD3² == 102345B87HFECKJNIGMDLA69
Base 25: 1011E145FHGHM² == 102345DOECKJ6GFB8LIAM7NH9
Base 26: 52K8N53BDM99K² == 1023458LO6IEMKG79FPCHNJDBA

Python

Works with: Python version 3.7

<lang python>Perfect squares using every digit in a given base.

from itertools import (count, dropwhile, repeat) from math import (ceil, sqrt) from time import time


  1. allDigitSquare :: Int -> Int -> Int

def allDigitSquare(base, above):

   The lowest perfect square which
      requires all digits in the given base.
   
   bools = list(repeat(True, base))
   return next(dropwhile(missingDigitsAtBase(base, bools), count(
       max(above, ceil(sqrt(int('10' + '0123456789abcdef'[2:base], base))))
   )))


  1. missingDigitsAtBase :: Int -> [Bool] -> Int -> Bool

def missingDigitsAtBase(base, bools):

   Fusion of representing the square of integer N at a given base
      with checking whether all digits of that base contribute to N^2.
      Clears the bool at a digit position to False when used.
      True if any positions remain uncleared (unused).
   
   def go(x):
       xs = bools.copy()
       while x:
           xs[x % base] = False
           x //= base
       return any(xs)
   return lambda n: go(n * n)


  1. digit :: Int -> Char

def digit(n):

   Digit character for given integer.
   return '0123456789abcdef'[n]


  1. TEST ----------------------------------------------------
  2. main :: IO ()

def main():

   Smallest perfect squares using all digits in bases 2-16
   start = time()
   print(main.__doc__ + ':\n\nBase      Root    Square')
   q = 0
   for b in enumFromTo(2)(16):
       q = allDigitSquare(b, q)
       print(
           str(b).rjust(2, ' ') + ' -> ' +
           showIntAtBase(b)(digit)(q)().rjust(8, ' ') + ' -> ' +
           showIntAtBase(b)(digit)(q * q)()
       )
   print(
       '\nc. ' + str(ceil(time() - start)) + ' seconds.'
   )


  1. GENERIC -------------------------------------------------
  1. enumFromTo :: (Int, Int) -> [Int]

def enumFromTo(m):

   Integer enumeration from m to n.
   return lambda n: list(range(m, 1 + n))


  1. showIntAtBase :: Int -> (Int -> String) -> Int -> String -> String

def showIntAtBase(base):

   String representation of an integer in a given base,
      using a supplied function for the string representation
      of digits.
   
   def wrap(toChr, n, rs):
       def go(nd, r):
           n, d = nd
           r_ = toChr(d) + r
           return go(divmod(n, base), r_) if 0 != n else r_
       return 'unsupported base' if 1 >= base else (
           'negative number' if 0 > n else (
               go(divmod(n, base), rs))
       )
   return lambda toChr: lambda n: lambda rs: (
       wrap(toChr, n, rs)
   )


  1. MAIN ---

if __name__ == '__main__':

   main()</lang>
Output:
Smallest perfect squares using all digits in bases 2-16:

Base      Root    Square
 2 ->       10 -> 100
 3 ->       22 -> 2101
 4 ->       33 -> 3201
 5 ->      243 -> 132304
 6 ->      523 -> 452013
 7 ->     1431 -> 2450361
 8 ->     3344 -> 13675420
 9 ->    11642 -> 136802574
10 ->    32043 -> 1026753849
11 ->   111453 -> 1240a536789
12 ->   3966b9 -> 124a7b538609
13 ->  3828943 -> 10254773ca86b9
14 ->  3a9db7c -> 10269b8c57d3a4
15 -> 1012b857 -> 102597bace836d4
16 -> 404a9d9b -> 1025648cfea37bd9

c. 30 seconds.

REXX

The   REXX   language doesn't have a   sqrt   function,   nor does it have a general purpose radix (base) convertor,
so RYO versions were included here.

These REXX versions can handle up to base 36.

slightly optimized

<lang rexx>/*REXX program finds/displays the first perfect square with N unique digits in base N.*/ numeric digits 40 /*ensure enough decimal digits for a #.*/ parse arg n . /*obtain optional argument from the CL.*/ if n== | n=="," then n= 16 /*not specified? Then use the default.*/ @start= 1023456789abcdefghijklmnopqrstuvwxyz /*contains the start # (up to base 36).*/

                          w= length(n)          /* [↓]  find the smallest square with  */
   do j=2  to n;          beg= left(@start, j)  /*      N  unique digits in base  N.   */
      do k=iSqrt( base(beg,10,j) )  until #==0  /*start each search from smallest sqrt.*/
      $= base(k*k, j, 10)                       /*calculate square, convert to base J. */
      $u= $;              upper $u              /*get an uppercase version fast count. */
      #= verify(beg, $u)                        /*count differences between 2 numbers. */
      end   /*k*/
   say 'base'  right(j,w)   "   root="   right(base(k,j,10),max(5,n))    '   square='   $
   end      /*j*/

exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ base: procedure; arg x 1 #,toB,inB /*obtain: three arguments. */

     @l= '0123456789abcdefghijklmnopqrstuvwxyz' /*lowercase (Latin or English) alphabet*/
     @u= @l;     upper @u                       /*uppercase    "    "    "         "   */
     if inb\==10  then                          /*only convert if  not  base 10.       */
        do;  #= 0                               /*result of converted  X  (in base 10).*/
          do j=1  for length(x)                 /*convert  X:   base inB  ──► base 10. */
          #= # * inB + pos(substr(x,j,1), @u)-1 /*build a new number,  digit by digit. */
          end    /*j*/                          /* [↑]  this also verifies digits.     */
        end
     y=                                         /*the value of  X  in base  B (so far).*/
     if tob==10  then return #                  /*if TOB is ten,  then simply return #.*/
        do  while  # >= toB                     /*convert #:    base 10  ──►  base toB.*/
        y= substr(@l, (# // toB) + 1, 1)y       /*construct the output number.         */
        #= # % toB                              /*      ··· and whittle  #  down also. */
        end    /*while*/                        /* [↑]  algorithm may leave a residual.*/
     return substr(@l, # + 1, 1)y               /*prepend the residual, if any.        */

/*──────────────────────────────────────────────────────────────────────────────────────*/ iSqrt: procedure; parse arg x; r=0; q=1; do while q<=x; q=q*4; end

       do while q>1; q=q%4; _=x-r-q; r=r%2; if _>=0 then do;x=_;r=r+q; end; end; return r</lang>
output   when using the default input:
base  2    root=           10    square= 100
base  3    root=           22    square= 2101
base  4    root=           33    square= 3201
base  5    root=          243    square= 132304
base  6    root=          523    square= 452013
base  7    root=         1431    square= 2450361
base  8    root=         3344    square= 13675420
base  9    root=        11642    square= 136802574
base 10    root=        32043    square= 1026753849
base 11    root=       111453    square= 1240a536789
base 12    root=       3966b9    square= 124a7b538609
base 13    root=      3828943    square= 10254773ca86b9
base 14    root=      3a9db7c    square= 10269b8c57d3a4
base 15    root=     1012b857    square= 102597bace836d4
base 16    root=     404a9d9b    square= 1025648cfea37bd9

more optimized

This REXX version uses a highly optimized   base   function since it was that particular function that was consuming the majority of the CPU time.

It is about   10%   faster. <lang rexx>/*REXX program finds/displays the first perfect square with N unique digits in base N.*/ numeric digits 40 /*ensure enough decimal digits for a #.*/ parse arg n . /*obtain optional argument from the CL.*/ if n== | n=="," then n= 16 /*not specified? Then use the default.*/ @start= 1023456789abcdefghijklmnopqrstuvwxyz /*contains the start # (up to base 36).*/ call base /*initialize 2 arrays for BASE function*/

                                                /* [↓]  find the smallest square with  */
   do j=2  to n;          beg= left(@start, j)  /*      N  unique digits in base  N.   */
      do k=iSqrt( base(beg,10,j) )  until #==0  /*start each search from smallest sqrt.*/
      $= base(k*k, j, 10)                       /*calculate square, convert to base J. */
      #= verify(beg, $)                         /*count differences between 2 numbers. */
      end   /*k*/
   say 'base'            right(j, length(n) )                    "   root="   ,
                  lower( right( base(k, j, 10), max(5, n) ) )    '   square='    lower($)
   end      /*j*/

exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ base: procedure expose !. !!.; arg x 1 #,toB,inB /*obtain: three arguments. */

     @= 0123456789abcdefghijklmnopqrstuvwxyz    /*the characters for the Latin alphabet*/
     if x==  then do i=1  for length(@);   _= substr(@, i, 1);    m= i - 1;    !._= m
                    !!.m= substr(@, i, 1)
                    if i==length(@) then return /*Done with shortcuts?  Then go back.  */
                    end   /*i*/                 /* [↑]  assign shortcut radix values.  */
     if inb\==10  then                          /*only convert if  not  base 10.       */
        do;  #= 0                               /*result of converted  X  (in base 10).*/
          do j=1  for length(x)                 /*convert  X:   base inB  ──► base 10. */
          _= substr(x, j, 1);  #= # * inB + !._ /*build a new number,  digit by digit. */
          end    /*j*/                          /* [↑]  this also verifies digits.     */
        end
     y=                                         /*the value of  X  in base  B (so far).*/
     if tob==10  then return #                  /*if TOB is ten,  then simply return #.*/
        do  while  # >= toB                     /*convert #:    base 10  ──►  base toB.*/
        _= # // toB;           y= !!._ || y     /*construct the output number.         */
        #= # % toB                              /*      ··· and whittle  #  down also. */
        end    /*while*/                        /* [↑]  algorithm may leave a residual.*/
     return !!.# || y                           /*prepend the residual, if any.        */

/*──────────────────────────────────────────────────────────────────────────────────────*/ iSqrt: procedure; parse arg x; r=0; q=1; do while q<=x; q=q*4; end

       do while q>1; q=q%4; _=x-r-q; r=r%2; if _>=0 then do;x=_;r=r+q; end; end; return r

/*──────────────────────────────────────────────────────────────────────────────────────*/ lower: @abc= 'abcdefghijklmnopqrstuvwxyz'; return translate(arg(1), @abc, translate(@abc))</lang>

output   is identical to the 1st REXX version.



Sidef

<lang ruby>func first_square(b) {

   var start = [1, 0, (2..^b)...].flip.map_kv{|k,v| v * b**k }.sum.isqrt
   start..Inf -> first_by {|k|
       k.sqr.digits(b).freq.len == b
   }.sqr

}

for b in (2..16) {

   var s = first_square(b)
   printf("Base %2d: %10s² == %s\n", b, s.isqrt.base(b), s.base(b))

}</lang>

Output:
Base  2:         10² == 100
Base  3:         22² == 2101
Base  4:         33² == 3201
Base  5:        243² == 132304
Base  6:        523² == 452013
Base  7:       1431² == 2450361
Base  8:       3344² == 13675420
Base  9:      11642² == 136802574
Base 10:      32043² == 1026753849
Base 11:     111453² == 1240a536789
Base 12:     3966b9² == 124a7b538609
Base 13:    3828943² == 10254773ca86b9
Base 14:    3a9db7c² == 10269b8c57d3a4
Base 15:   1012b857² == 102597bace836d4
Base 16:   404a9d9b² == 1025648cfea37bd9

zkl

Translation of: Julia

<lang zkl>fcn squareSearch(B){

  basenumerals:=B.pump(String,T("toString",B)); // 13 --> "0123456789abc"
  highest:=("10"+basenumerals[2,*]).toInt(B);   // 13 --> "10" "23456789abc"
  foreach n in ([highest.toFloat().sqrt().toInt() .. highest]){
    ns:=(n*n).toString(B);
    if(""==(basenumerals - ns) ) return(n.toString(B),ns);
 }
 Void

}</lang> <lang zkl>println("Base Root N"); foreach b in ([2..16])

 { println("%2d %10s  %s".fmt(b,squareSearch(b).xplode())) }</lang>
Output:
Base     Root   N
 2         10  100
 3         22  2101
 4         33  3201
 5        243  132304
 6        523  452013
 7       1431  2450361
 8       3344  13675420
 9      11642  136802574
10      32043  1026753849
11     111453  1240a536789
12     3966b9  124a7b538609
13    3828943  10254773ca86b9
14    3a9db7c  10269b8c57d3a4
15   1012b857  102597bace836d4
16   404a9d9b  1025648cfea37bd9