Distribution of 0 digits in factorial series: Difference between revisions

From Rosetta Code
Content added Content deleted
m (syntax highlighting fixup automation)
m (Undo revision 327367 by Thundergnat (talk)Copy paste error)
Tag: Undo
Line 1: Line 1:
{{draft task|Mathematics}}
{{task|Networking and Web Interaction}}


Large Factorials and the Distribution of '0' in base 10 digits.
Write two programs (or one program with two modes) which run on networked computers, and send some messages between them.


; About the task:
The protocol used may be language-specific or not, and should be '''suitable for general distributed programming'''; that is, the ''protocol'' should be generic (not designed just for the particular example application), readily capable of handling the independent communications of many different components of a single application, and the transferring of arbitrary data structures natural for the language.


We can see that some features of factorial numbers (the series of numbers 1!, 2!, 3!, ...)
This task is intended to demonstrate high-level communication facilities beyond just creating [[sockets]].
come about because such numbers are the product of a series of counting numbers, and so those
products have predictable factors. For example, all factorials above 1! are even numbers,
since they have 2 as a factor. Similarly, all factorials from 5! up end in a 0, because they
have 5 and 2 as factors, and thus have 10 as a factor. In fact, the factorial integers add
another 0 at the end of the factorial for every step of 5 upward: 5! = 120, 10! = 3628800,
15! = 1307674368000, 16! = 20922789888000 and so on.


Because factorial numbers, which quickly become quite large, continue to have another terminal 0
=={{header|Ada}}==
on the right hand side of the number for every factor of 5 added to the factorial product, one might
{{works with|GNAT GPL|2010}}
think that the proportion of zeros in a base 10 factorial number might be close to 1/5. However,
{{works with|PolyORB}}
though the factorial products add another terminating 0 every factor of 5 multiplied into the product,
as the numbers become quite large, the number of digits in the factorial product expands exponentially,
and so the number above the terminating zeros tends toward 10% of each digit from 0 to 1 as the factorial
becomes larger. Thus, as the factorials become larger, the proportion of 0 digits in the factorial products
shifts slowly from around 1/5 toward 1/10, since the number of terminating zeros in n! increases only in
proportion to n, whereas the number of digits of n! in base 10 increases exponentially.


; The task:
Ada defines facilities for distributed systems in its standard (Annex E, also called DSA).


Create a function to calculate the mean of the proportions of 0 digits out of the total digits found in each factorial
This example works with PolyORB and the GNAT GPL 2010 compiler from AdaCore.
product from 1! to N!. This proportion of 0 digits in base 10 should be calculated using the number as printed as a base 10 integer.


Example: for 1 to 6 we have 1!, 2!, 3!, 4!, 5!, 6!, or (1, 2, 6, 24, 120, 720), so we need the mean of
server.ads:
(0/1, 0/1, 0/1, 0/2, 1/3, 1/3) = (2/3) (totals of each proportion) / 6 (= N), or 0.1111111...
<syntaxhighlight lang="ada">package Server is
pragma Remote_Call_Interface;
procedure Foo;
function Bar return Natural;
end Server;</syntaxhighlight>


Example: for 1 to 25 the mean of the proportions of 0 digits in the factorial products series of N! with N from 1 to 25 is 0.26787.
server.adb:
<syntaxhighlight lang="ada">package body Server is
Count : Natural := 0;


Do this task for 1 to N where N is in (100, 1000, and 10000), so, compute the mean of the proportion of 0 digits for each product
procedure Foo is
in the series of each of the factorials from 1 to 100, 1 to 1000, and 1 to 10000.
begin
Count := Count + 1;
end Foo;


; Stretch task:
function Bar return Natural is
begin
return Count;
end Bar;
end Server;</syntaxhighlight>


Find the N in 10000 < N < 50000 where the mean of the proportions of 0 digits in the factorial products from 1 to N
client.adb:
permanently falls below 0.16. This task took many hours in the Python example, though I wonder if there is a faster
<syntaxhighlight lang="ada">with Server;
algorithm out there.
with Ada.Text_IO;


=={{header|11l}}==
procedure Client is
{{trans|Python}}
begin
Ada.Text_IO.Put_Line ("Calling Foo...");
Server.Foo;
Ada.Text_IO.Put_Line ("Calling Bar: " & Integer'Image (Server.Bar));
end Client;</syntaxhighlight>


<lang 11l>F facpropzeros(n, verbose = 1B)
required config (dsa.cfg):
V proportions = [0.0] * n
<syntaxhighlight lang="ada">configuration DSA is
V (fac, psum) = (BigInt(1), 0.0)
pragma Starter (None);
L(i) 0 .< n
fac *= i + 1
V d = String(fac)
psum += sum(d.map(x -> Int(x == ‘0’))) / Float(d.len)
proportions[i] = psum / (i + 1)


-- Server
I verbose
print(‘The mean proportion of 0 in factorials from 1 to #. is #..’.format(n, psum / n))
Server_Partition : Partition := (Server);
procedure Run_Server is in Server_Partition;


-- Client
R proportions
Client_Partition : Partition;
for Client_Partition'Termination use Local_Termination;
procedure Client;
for Client_Partition'Main use Client;
end DSA;</syntaxhighlight>


L(n) [100, 1000, 10000]
compilation:
facpropzeros(n)</lang>
<pre>$po_gnatdist dsa.cfg
[...]
------------------------------
---- Configuration report ----
------------------------------
Configuration :
Name : dsa
Main : run_server
Starter : none


{{out}}
Partition server_partition
<pre>
Main : run_server
The mean proportion of 0 in factorials from 1 to 100 is 0.246753186.
Units :
The mean proportion of 0 in factorials from 1 to 1000 is 0.203544551.
- server (rci)
The mean proportion of 0 in factorials from 1 to 10000 is 0.173003848.
- run_server (normal)
</pre>
- polyorb.dsa_p.partitions (rci, from PCS)


=== Base 1000 version ===
Environment variables :
<lang 11l>F zinit()
- "POLYORB_DSA_NAME_SERVICE"
V zc = [0] * 999
L(x) 1..9
zc[x - 1] = 2
zc[10 * x - 1] = 2
zc[100 * x - 1] = 2
L(y) (10.<100).step(10)
zc[y + x - 1] = 1
zc[10 * y + x - 1] = 1
zc[10 * (y + x) - 1] = 1


R zc
Partition client_partition
Main : client
Termination : local
Units :
- client (normal)


F meanfactorialdigits()
Environment variables :
V zc = zinit()
- "POLYORB_DSA_NAME_SERVICE"
V rfs = [1]
V (total, trail, first) = (0.0, 1, 0)
L(f) 2 .< 50000
V (carry, d999, zeroes) = (0, 0, (trail - 1) * 3)
V (j, l) = (trail, rfs.len)
L j <= l | carry != 0
I j <= l
carry = rfs[j - 1] * f + carry


d999 = carry % 1000
-------------------------------
I j <= l
[...]</pre>
rfs[j - 1] = d999
E
rfs.append(d999)


zeroes += I d999 == 0 {3} E zc[d999 - 1]
preparation (run PolyORB name service):
carry I/= 1000
<pre>$ po_ioc_naming
j++
POLYORB_CORBA_NAME_SERVICE=IOR:010000002b00000049444[...]
POLYORB_CORBA_NAME_SERVICE=corbaloc:iiop:1.2@10.200.[...]</pre>


L rfs[trail - 1] == 0
You have to set the environment variable POLYORB_DSA_NAME_SERVICE to one of the two values given by po_ioc_naming for the server/client partitions.
trail++


d999 = rfs.last
running server:
d999 = I d999 >= 100 {0} E I d999 < 10 {2} E 1
<pre>$ ./server_partition</pre>


zeroes -= d999
running client:
V digits = rfs.len * 3 - d999
<pre>$ ./client_partition
total += Float(zeroes) / digits
Calling Foo...
V ratio = total / f
Calling Bar: 1
I f C [100, 1000, 10000]
$ ./client_partition
print(‘The mean proportion of zero digits in factorials to #. is #.’.format(f, ratio))
Calling Foo...
Calling Bar: 2</pre>


I ratio >= 0.16
=={{header|AutoHotkey}}==
first = 0
See [[Distributed program/AutoHotkey]].
E I first == 0
first = f


print(‘The mean proportion dips permanently below 0.16 at ’first‘.’)
=={{header|C}}==
Using PVM [http://www.csm.ornl.gov/pvm/pvm_home.html]
This program is in a sense both a server and a client, depending on if its task is spawned with a command-line argument: if yes, it spawns another task of the same executible on the parallel virtual machine and waits for it to transmit data; if no, it transmits data and is done.
<syntaxhighlight lang="c">#include <stdio.h>
#include <stdlib.h>
#include <pvm3.h>


meanfactorialdigits()</lang>
int main(int c, char **v)
{
int tids[10];
int parent, spawn;
int i_data, i2;
double f_data;


{{out}}
if (c > 1) {
<pre>
spawn = pvm_spawn("/tmp/a.out", 0, PvmTaskDefault, 0, 1, tids);
The mean proportion of zero digits in factorials to 100 is 0.246753186
if (spawn <= 0) {
The mean proportion of zero digits in factorials to 1000 is 0.203544551
printf("Can't spawn task\n");
The mean proportion of zero digits in factorials to 10000 is 0.173003848
return 1;
The mean proportion dips permanently below 0.16 at 47332.
}
</pre>


=={{header|C++}}==
printf("Spawning successful\n");
{{trans|Phix}}
<lang cpp>#include <array>
#include <chrono>
#include <iomanip>
#include <iostream>
#include <vector>


auto init_zc() {
/* pvm_recv(task_id, msgtag). msgtag identifies what kind of data it is,
* for here: 1 = (int, double), 2 = (int, int)
std::array<int, 1000> zc;
zc.fill(0);
* The receiving order is intentionally swapped, just to show.
zc[0] = 3;
* task_id = -1 means "receive from any task"
for (int x = 1; x <= 9; ++x) {
*/
zc[x] = 2;
pvm_recv(-1, 2);
zc[10 * x] = 2;
pvm_unpackf("%d %d", &i_data, &i2);
zc[100 * x] = 2;
printf("got msg type 2: %d %d\n", i_data, i2);
for (int y = 10; y <= 90; y += 10) {

zc[y + x] = 1;
pvm_recv(-1, 1);
zc[10 * y + x] = 1;
pvm_unpackf("%d %lf", &i_data, &f_data);
zc[10 * (y + x)] = 1;
printf("got msg type 1: %d %f\n", i_data, f_data);
} else {
parent = pvm_parent();

pvm_initsend(PvmDataDefault);
i_data = rand();
f_data = (double)rand() / RAND_MAX;
pvm_packf("%d %lf", i_data, f_data);
pvm_send(parent, 1); /* send msg type 1 */

pvm_initsend(PvmDataDefault);
i2 = rand();
pvm_packf("%d %d", i_data, i2);
pvm_send(parent, 2); /* send msg type 2 */
}

pvm_exit();
return 0;
}</syntaxhighlight>{{out}}(running it on PVM console, exe is /tmp/a.out)<syntaxhighlight lang="text">pvm> spawn -> /tmp/a.out 1
spawn -> /tmp/a.out 1
[2]
1 successful
t40028
pvm> [2:t40029] EOF
[2:t40028] Spawning successful
[2:t40028] got msg type 2: 1804289383 1681692777
[2:t40028] got msg type 1: 1804289383 0.394383
[2:t40028] EOF
[2] finished</syntaxhighlight>

=={{header|C sharp|C#}}==
Start the program with "server" parameter to start the server, and "client" to start the client. The client will send data to the server and receive a response. The server will wait for data, display the data received, and send a response.

<syntaxhighlight lang="csharp">
using System;
using System.IO;
using System.Net;
using System.Net.Sockets;
using System.Runtime.Serialization.Formatters.Binary;
using System.Threading.Tasks;

using static System.Console;

class DistributedProgramming
{
const int Port = 555;

async static Task RunClient()
{
WriteLine("Connecting");
var client = new TcpClient();
await client.ConnectAsync("localhost", Port);

using (var stream = client.GetStream())
{
WriteLine("Sending loot");
var data = Serialize(new SampleData());
await stream.WriteAsync(data, 0, data.Length);

WriteLine("Receiving thanks");
var buffer = new byte[80000];
var bytesRead = await stream.ReadAsync(buffer, 0, buffer.Length);
var thanks = (string)Deserialize(buffer, bytesRead);
WriteLine(thanks);
}
}

client.Close();
}
}
return zc;
}


template <typename clock_type>
async static Task RunServer()
auto elapsed(const std::chrono::time_point<clock_type>& t0) {
{
WriteLine("Listening");
auto t1 = clock_type::now();
auto duration =
var listener = new TcpListener(IPAddress.Any, Port);
std::chrono::duration_cast<std::chrono::milliseconds>(t1 - t0);
listener.Start();
return duration.count();
var client = await listener.AcceptTcpClientAsync();
}


int main() {
using (var stream = client.GetStream())
{
auto zc = init_zc();
auto t0 = std::chrono::high_resolution_clock::now();
WriteLine("Receiving loot");
var buffer = new byte[80000];
int trail = 1, first = 0;
double total = 0;
var bytesRead = await stream.ReadAsync(buffer, 0, buffer.Length);
std::vector<int> rfs{1};
var data = (SampleData)Deserialize(buffer, bytesRead);
std::cout << std::fixed << std::setprecision(10);
WriteLine($"{data.Loot} at {data.Latitude}, {data.Longitude}");
for (int f = 2; f <= 50000; ++f) {

int carry = 0, d999, zeroes = (trail - 1) * 3, len = rfs.size();
WriteLine("Sending thanks");
var thanks = Serialize("Thanks!");
for (int j = trail - 1; j < len || carry != 0; ++j) {
await stream.WriteAsync(thanks, 0, thanks.Length);
if (j < len)
carry += rfs[j] * f;
d999 = carry % 1000;
if (j < len)
rfs[j] = d999;
else
rfs.push_back(d999);
zeroes += zc[d999];
carry /= 1000;
}
}
while (rfs[trail - 1] == 0)

client.Close();
++trail;
listener.Stop();
d999 = rfs.back();
Write("Press a key");
d999 = d999 < 100 ? (d999 < 10 ? 2 : 1) : 0;
ReadKey();
zeroes -= d999;
int digits = rfs.size() * 3 - d999;
}
total += double(zeroes) / digits;

double ratio = total / f;
static byte[] Serialize(object data)
if (ratio >= 0.16)
{
using (var mem = new MemoryStream())
first = 0;
{
else if (first == 0)
new BinaryFormatter().Serialize(mem, data);
first = f;
return mem.ToArray();
if (f == 100 || f == 1000 || f == 10000) {
std::cout << "Mean proportion of zero digits in factorials to " << f
<< " is " << ratio << ". (" << elapsed(t0) << "ms)\n";
}
}
}
}
std::cout << "The mean proportion dips permanently below 0.16 at " << first
<< ". (" << elapsed(t0) << "ms)\n";
}</lang>


{{out}}
static object Deserialize(byte[] data, int length)
<pre>
{
Mean proportion of zero digits in factorials to 100 is 0.2467531862. (0ms)
using (var mem = new MemoryStream(data, 0, length))
Mean proportion of zero digits in factorials to 1000 is 0.2035445511. (1ms)
{
Mean proportion of zero digits in factorials to 10000 is 0.1730038482. (152ms)
return new BinaryFormatter().Deserialize(mem);
The mean proportion dips permanently below 0.16 at 47332. (4598ms)
}
</pre>
}

static void Main(string[] args)
{
if (args.Length == 0) return;

switch (args[0])
{
case "client": RunClient().Wait(); break;
case "server": RunServer().Wait(); break;
}
}
}

[Serializable]
class SampleData
{
public decimal Latitude = 44.33190m;
public decimal Longitude = 114.84129m;
public string Loot = "140 tonnes of jade";
}
</syntaxhighlight>

=={{header|D}}==
Uses the <b>rpc</b> library:
https://github.com/adamdruppe/misc-stuff-including-D-programming-language-web-stuff/blob/master/rpc.d

This library is not standard, so this code (by Adam D. Ruppe) could and should be rewritten using more standard means.
<syntaxhighlight lang="d">import arsd.rpc;

struct S1 {
int number;
string name;
}

struct S2 {
string name;
int number;
}

interface ExampleNetworkFunctions {
string sayHello(string name);
int add(in int a, in int b) const pure nothrow;
S2 structTest(S1);
void die();
}

// The server must implement the interface.
class ExampleServer : ExampleNetworkFunctions {
override string sayHello(string name) {
return "Hello, " ~ name;
}

override int add(in int a, in int b) const pure nothrow {
return a + b;
}

override S2 structTest(S1 a) {
return S2(a.name, a.number);
}

override void die() {
throw new Exception("death requested");
}

mixin NetworkServer!ExampleNetworkFunctions;
}

class Client {
mixin NetworkClient!ExampleNetworkFunctions;
}

void main(in string[] args) {
import std.stdio;

if (args.length > 1) {
auto client = new Client("localhost", 5005);
// These work like the interface above, but instead of
// returning the value, they take callbacks for success (where
// the arg is the retval) and failure (the arg is the
// exception).
client.sayHello("whoa", (a) { writeln(a); }, null);
client.add(1,2, (a){ writeln(a); }, null);
client.add(10,20, (a){ writeln(a); }, null);
client.structTest(S1(20, "cool!"),
(a){ writeln(a.name, " -- ", a.number); },
null);
client.die(delegate(){ writeln("shouldn't happen"); },
delegate(a){ writeln(a); });
client.eventLoop;
} else {
auto server = new ExampleServer(5005);
server.eventLoop;
}
}</syntaxhighlight>

=={{header|E}}==
'''Protocol:''' Pluribus

This service cannot be used except by clients which know the URL designating it, messages are encrypted, and the client authenticates the server. However, it is vulnerable to denial-of-service by any client knowing the URL.

=== Server ===

(The protocol is symmetric; this program is the server only in that it is the one which is started first and exports an object.)

<syntaxhighlight lang="e">def storage := [].diverge()

def logService {
to log(line :String) {
storage.push([timer.now(), line])
}
to search(substring :String) {
var matches := []
for [time, line] ? (line.startOf(substring) != -1) in storage {
matches with= [time, line]
}
return matches
}
}

introducer.onTheAir()
def sturdyRef := makeSturdyRef.temp(logService)
println(<captp>.sturdyToURI(sturdyRef))
interp.blockAtTop()</syntaxhighlight>

This will print the URL of the service and run it until aborted.

=== Client ===

The URL provided by the server is given as the argument to this program.

<syntaxhighlight lang="e">def [uri] := interp.getArgs()
introducer.onTheAir()
def sturdyRef := <captp>.sturdyFromURI(uri)
def logService := sturdyRef.getRcvr()

logService <- log("foot")
logService <- log("shoe")

println("Searching...")
when (def result := logService <- search("foo")) -> {
for [time, line] in result {
println(`At $time: $line`)
}
}</syntaxhighlight>

=={{header|Erlang}}==
The protocol is erlang's own
=== Server ===
srv.erl

<syntaxhighlight lang="erlang">-module(srv).
-export([start/0, wait/0]).

start() ->
net_kernel:start([srv,shortnames]),
erlang:set_cookie(node(), rosetta),
Pid = spawn(srv,wait,[]),
register(srv,Pid),
io:fwrite("~p ready~n",[node(Pid)]),
ok.

wait() ->
receive
{echo, Pid, Any} ->
io:fwrite("-> ~p from ~p~n", [Any, node(Pid)]),
Pid ! {hello, Any},
wait();
Any -> io:fwrite("Error ~p~n", [Any])
end.</syntaxhighlight>

=== Client ===
client.erl

<syntaxhighlight lang="erlang">-module(client).
-export([start/0, wait/0]).

start() ->
net_kernel:start([client,shortnames]),
erlang:set_cookie(node(), rosetta),
{ok,[[Srv]]} = init:get_argument(server),
io:fwrite("connecting to ~p~n", [Srv]),
{srv, list_to_atom(Srv)} ! {echo,self(), hi},
wait(),
ok.

wait() ->
receive
{hello, Any} -> io:fwrite("Received ~p~n", [Any]);
Any -> io:fwrite("Error ~p~n", [Any])
end.</syntaxhighlight>

running it (*comes later)
|erlc srv.erl
|erl -run srv start -noshell
srv@agneyam ready
*-> hi from client@agneyam

|erlc client.erl
|erl -run client start -run init stop -noshell -server srv@agneyam
connecting to "srv@agneyam"
Received hi

=={{header|Factor}}==
The protocol is the one provided by Factor (concurrency.distributed, concurrency.messaging)

Example summary:

- A server node is listening for messages made of natural data types and structures, and simply prettyprint them.

- A client node is sending such data structure: an array of one string and one hashtable (with one key/value pair).

===Server===
<syntaxhighlight lang="factor">USING: concurrency.distributed concurrency.messaging threads io.sockets io.servers ;
QUALIFIED: concurrency.messaging
: prettyprint-message ( -- ) concurrency.messaging:receive . flush prettyprint-message ;
[ prettyprint-message ] "logger" spawn dup name>> register-remote-thread
"127.0.0.1" 9000 <inet4> <node-server> start-server</syntaxhighlight>

Note: we are using QUALIFIED: with the concurrency.messaging vocabulary because the "receive" word is defined in io.sockets vocabulary too. If someone have a cleaner way to handle this.

===Client===
<syntaxhighlight lang="factor">USING: concurrency.distributed io.sockets ;
QUALIFIED: concurrency.messaging
{ "Hello Remote Factor!" H{ { "key1" "value1" } } }
"127.0.0.1" 9000 <inet4> "logger" <remote-thread> concurrency.messaging:send</syntaxhighlight>

How to Run:

- Copy/Paste the server code in an instance of Factor Listener

- Copy/Paste the client code in another instance of Factor Listener.

The server node should prettyprint the data structure send by the client: { "Hello Remote Factor!" H{ { "key1" "value1" } } }


=={{header|Go}}==
=={{header|Go}}==
===Standard library net/rpc===
===Brute force===
{{libheader|GMP(Go wrapper)}}
Package net/rpc in the Go standard library serializes data with the Go-native "gob" type. The example here sends only a single floating point number, but the package will send any user-defined data type, including of course structs with multiple fields.
{{libheader|Go-rcu}}

Timings here are 2.8 seconds for the basic task and 182.5 seconds for the stretch goal.
'''Server:'''
<syntaxhighlight lang="go">package main
<lang go>package main

import (
"errors"
"log"
"net"
"net/http"
"net/rpc"
)

type TaxComputer float64

func (taxRate TaxComputer) Tax(x float64, r *float64) error {
if x < 0 {
return errors.New("Negative values not allowed")
}
*r = x * float64(taxRate)
return nil
}

func main() {
c := TaxComputer(.05)
rpc.Register(c)
rpc.HandleHTTP()
listener, err := net.Listen("tcp", ":1234")
if err != nil {
log.Fatal(err)
}
http.Serve(listener, nil)
}</syntaxhighlight>
'''Client:'''
<syntaxhighlight lang="go">package main


import (
import (
"fmt"
"fmt"
"log"
big "github.com/ncw/gmp"
"net/rpc"
"rcu"
)
)


func main() {
func main() {
client, err := rpc.DialHTTP("tcp", "localhost:1234")
fact := big.NewInt(1)
if err != nil {
sum := 0.0
fmt.Println(err)
first := int64(0)
return
firstRatio := 0.0
fmt.Println("The mean proportion of zero digits in factorials up to the following are:")
for n := int64(1); n <= 50000; n++ {
fact.Mul(fact, big.NewInt(n))
bytes := []byte(fact.String())
digits := len(bytes)
zeros := 0
for _, b := range bytes {
if b == '0' {
zeros++
}
}
sum += float64(zeros)/float64(digits)
ratio := sum / float64(n)
if n == 100 || n == 1000 || n == 10000 {
fmt.Printf("%6s = %12.10f\n", rcu.Commatize(int(n)), ratio)
}
if first > 0 && ratio >= 0.16 {
first = 0
firstRatio = 0.0
} else if first == 0 && ratio < 0.16 {
first = n
firstRatio = ratio
}
}
}
fmt.Printf("%6s = %12.10f", rcu.Commatize(int(first)), firstRatio)
fmt.Println(" (stays below 0.16 after this)")
fmt.Printf("%6s = %12.10f\n", "50,000", sum / 50000)
}</lang>


{{out}}
amount := 3.
var tax float64
err = client.Call("TaxComputer.Tax", amount, &tax)
if err != nil {
log.Fatal(err)
}
fmt.Printf("Tax on %.2f: %.2f\n", amount, tax)
}</syntaxhighlight>
{{out | Client output}}
<pre>
<pre>
The mean proportion of zero digits in factorials up to the following are:
Tax on 3.00: 0.15
100 = 0.2467531862
1,000 = 0.2035445511
10,000 = 0.1730038482
47,332 = 0.1599999958 (stays below 0.16 after this)
50,000 = 0.1596200546
</pre>
</pre>
<br>
===gRPC===
==='String math' and base 1000===
See http://www.grpc.io/
{{trans|Phix}}

Much quicker than before with 10,000 now being reached in 0.35 seconds and the stretch goal in about 5.5 seconds.
The default serialization for gRPC is "protocol buffers." gRPC uses a .proto file to define an interface for the client and server. The .proto has its own syntax, independent of client and server implementation languages. Server and client programs here are Go however.
<lang go>package main

'''.proto:'''
<syntaxhighlight lang="proto">syntax = "proto3";

service TaxComputer {
rpc Tax(Amount) returns (Amount) {}
}

message Amount {
int32 cents = 1;
}</syntaxhighlight>
'''Server:'''
<syntaxhighlight lang="go">package main


import (
import (
"errors"
"fmt"
"net"
"rcu"

"golang.org/x/net/context"
"google.golang.org/grpc"
"google.golang.org/grpc/grpclog"

"taxcomputer"
)
)


var rfs = []int{1} // reverse factorial(1) in base 1000
type taxServer struct {
var zc = make([]int, 999)
rate float64
}


func init() {
func (s *taxServer) Tax(ctx context.Context,
for x := 1; x <= 9; x++ {
amt *taxcomputer.Amount) (*taxcomputer.Amount, error) {
zc[x-1] = 2 // 00x
if amt.Cents < 0 {
zc[10*x-1] = 2 // 0x0
return nil, errors.New("Negative amounts not allowed")
zc[100*x-1] = 2 // x00
var y = 10
for y <= 90 {
zc[y+x-1] = 1 // 0yx
zc[10*y+x-1] = 1 // y0x
zc[10*(y+x)-1] = 1 // yx0
y += 10
}
}
}
return &taxcomputer.Amount{int32(float64(amt.Cents)*s.rate + .5)}, nil
}
}


func main() {
func main() {
total := 0.0
listener, err := net.Listen("tcp", ":1234")
if err != nil {
trail := 1
first := 0
grpclog.Fatalf(err.Error())
firstRatio := 0.0
fmt.Println("The mean proportion of zero digits in factorials up to the following are:")
for f := 2; f <= 10000; f++ {
carry := 0
d999 := 0
zeros := (trail - 1) * 3
j := trail
l := len(rfs)
for j <= l || carry != 0 {
if j <= l {
carry = rfs[j-1]*f + carry
}
d999 = carry % 1000
if j <= l {
rfs[j-1] = d999
} else {
rfs = append(rfs, d999)
}
if d999 == 0 {
zeros += 3
} else {
zeros += zc[d999-1]
}
carry /= 1000
j++
}
for rfs[trail-1] == 0 {
trail++
}
// d999 = quick correction for length and zeros
d999 = rfs[len(rfs)-1]
if d999 < 100 {
if d999 < 10 {
d999 = 2
} else {
d999 = 1
}
} else {
d999 = 0
}
zeros -= d999
digits := len(rfs)*3 - d999
total += float64(zeros) / float64(digits)
ratio := total / float64(f)
if ratio >= 0.16 {
first = 0
firstRatio = 0.0
} else if first == 0 {
first = f
firstRatio = ratio
}
if f == 100 || f == 1000 || f == 10000 {
fmt.Printf("%6s = %12.10f\n", rcu.Commatize(f), ratio)
}
}
}
fmt.Printf("%6s = %12.10f", rcu.Commatize(first), firstRatio)
grpcServer := grpc.NewServer()
fmt.Println(" (stays below 0.16 after this)")
taxcomputer.RegisterTaxComputerServer(grpcServer, &taxServer{.05})
fmt.Printf("%6s = %12.10f\n", "50,000", total/50000)
grpcServer.Serve(listener)
}</syntaxhighlight>
}</lang>
'''Client:'''
<syntaxhighlight lang="go">package main


{{out}}
import (
"fmt"

"golang.org/x/net/context"
"google.golang.org/grpc"
"google.golang.org/grpc/grpclog"

"taxcomputer"
)

func main() {
conn, err := grpc.Dial("localhost:1234", grpc.WithInsecure())
if err != nil {
grpclog.Fatalf(err.Error())
}
defer conn.Close()
client := taxcomputer.NewTaxComputerClient(conn)
amt := &taxcomputer.Amount{300}
tax, err := client.Tax(context.Background(), amt)
if err != nil {
grpclog.Fatalf(err.Error())
}
fmt.Println("Tax on", amt.Cents, "cents is", tax.Cents, "cents")
}</syntaxhighlight>
{{out | Client output}}
<pre>
<pre>
Same as 'brute force' version.
Tax on 300 cents is 15 cents
</pre>
</pre>


===Apache Thrift===
=={{header|jq}}==
'''Works with jq'''
See https://thrift.apache.org/


The precision of jq's integer arithmetic is not up to this task, so in the following we borrow from the "BigInt" library and use a string representation of integers.
'''.thrift'''


Unfortunately, although gojq (the Go implementation of jq) does support unbounded-precision integer arithmetic, it is unsuited for the task because of memory management issues.
Like gRPC, Thrift requires a language independent interface definition file:
<syntaxhighlight lang="thrift">service TaxService {
i32 tax(1: i32 amt)
}</syntaxhighlight>
'''Server:'''
<syntaxhighlight lang="go">package main


'''From BigInt.jq'''
import (
<lang jq>
"errors"
# multiply two decimal strings, which may be signed (+ or -)
"log"
def long_multiply(num1; num2):


def stripsign:
"git.apache.org/thrift.git/lib/go/thrift"
.[0:1] as $a
| if $a == "-" then [ -1, .[1:]]
elif $a == "+" then [ 1, .[1:]]
else [1, .]
end;


def adjustsign(sign):
"gen-go/tax"
if sign == 1 then . else "-" + . end;
)


# mult/2 assumes neither argument has a sign
type taxHandler float64
def mult(num1;num2):
(num1 | explode | map(.-48) | reverse) as $a1
| (num2 | explode | map(.-48) | reverse) as $a2
| reduce range(0; num1|length) as $i1
([]; # result
reduce range(0; num2|length) as $i2
(.;
($i1 + $i2) as $ix
| ( $a1[$i1] * $a2[$i2] + (if $ix >= length then 0 else .[$ix] end) ) as $r
| if $r > 9 # carrying
then
.[$ix + 1] = ($r / 10 | floor) + (if $ix + 1 >= length then 0 else .[$ix + 1] end )
| .[$ix] = $r - ( $r / 10 | floor ) * 10
else
.[$ix] = $r
end
)
)
| reverse | map(.+48) | implode;


(num1|stripsign) as $a1
func (r taxHandler) Tax(amt int32) (int32, error) {
| (num2|stripsign) as $a2
if amt < 0 {
| if $a1[1] == "0" or $a2[1] == "0" then "0"
return 0, errors.New("Negative amounts not allowed")
elif $a1[1] == "1" then $a2[1]|adjustsign( $a1[0] * $a2[0] )
}
elif $a2[1] == "1" then $a1[1]|adjustsign( $a1[0] * $a2[0] )
return int32(float64(amt)*float64(r) + .5), nil
else mult($a1[1]; $a2[1]) | adjustsign( $a1[0] * $a2[0] )
}
end;
</lang>
'''The task'''
<lang jq>
def count(s): reduce s as $x (0; .+1);


def meanfactorialdigits:
func main() {
def digits: tostring | explode;
transport, err := thrift.NewTServerSocket("localhost:3141")
def nzeros: count( .[] | select(. == 48) ); # "0" is 48
if err != nil {
log.Fatal(err)
}
. as $N
| 0.16 as $goal
transFac := thrift.NewTTransportFactory()
| label $out
protoFac := thrift.NewTCompactProtocolFactory()
| reduce range( 1; 1+$N ) as $i ( {factorial: "1", proportionsum: 0.0, first: null };
proc := tax.NewTaxServiceProcessor(taxHandler(.05))
.factorial = long_multiply(.factorial; $i|tostring)
s := thrift.NewTSimpleServer4(proc, transport, transFac, protoFac)
| (.factorial|digits) as $d
if err := s.Serve(); err != nil {
log.Fatal(err)
| .proportionsum += ($d | (nzeros / length))
| (.proportionsum / $i) as $propmean
}
| if .first
}</syntaxhighlight>
then if $propmean > $goal then .first = null else . end
'''Client:'''
elif $propmean <= $goal then .first = $i
<syntaxhighlight lang="go">package main
else .
end)
| "Mean proportion of zero digits in factorials to \($N) is \(.proportionsum/$N);" +
(if .first then " mean <= \($goal) from N=\(.first) on." else " goal (\($goal)) unmet." end);


# The task:
import (
100, 1000, 10000 | meanfactorialdigits</lang>
"fmt"
{{out}}
"log"

"git.apache.org/thrift.git/lib/go/thrift"

"gen-go/tax"
)

func main() {
transport, err := thrift.NewTSocket("localhost:3141")
if err != nil {
log.Fatal(err)
}
if err := transport.Open(); err != nil {
log.Fatal(err)
}
protoFac := thrift.NewTCompactProtocolFactory()
client := tax.NewTaxServiceClientFactory(transport, protoFac)
amt := int32(300)
t, err := client.Tax(amt)
if err != nil {
log.Print(err)
} else {
fmt.Println("tax on", amt, "is", t)
}
transport.Close()
}</syntaxhighlight>
{{out | Client output}}
<pre>
<pre>
Mean proportion of zero digits in factorials to 100 is 0.24675318616743216; goal (0.16) unmet.
tax on 300 is 15
Mean proportion of zero digits in factorials to 1000 is 0.20354455110316458; goal (0.16) unmet.
Mean proportion of zero digits in factorials to 10000 is 0.17300384824186707; goal (0.16) unmet.
</pre>
</pre>

=={{header|Haskell}}==
See:

* http://www.haskell.org/haskellwiki/HaXR#Server
* http://www.haskell.org/haskellwiki/HaXR#Client

Check license:
http://www.haskell.org/haskellwiki/HaskellWiki:Copyrights

=={{header|JavaScript}}==

{{works with|node.js}}

===Server===

<syntaxhighlight lang="javascript">var net = require('net')

var server = net.createServer(function (c){
c.write('hello\r\n')
c.pipe(c) // echo messages back
})

server.listen(3000, 'localhost')
</syntaxhighlight>

===Client===
<syntaxhighlight lang="javascript">var net = require('net')

conn = net.createConnection(3000, '192.168.1.x')

conn.on('connect', function(){
console.log('connected')
conn.write('test')
})

conn.on('data', function(msg){
console.log(msg.toString())
})</syntaxhighlight>


=={{header|Julia}}==
=={{header|Julia}}==
<lang julia>function meanfactorialdigits(N, goal = 0.0)
Julia was designed with distributed conmputing. in particular cluster computing, as a primary use target.
factoril, proportionsum = big"1", 0.0
If a group of CPUs, including multiple cores on a single machine or a cluster running with paswordless ssh login, is used,
for i in 1:N
the following can be set up as an example:
factoril *= i
<syntaxhighlight lang="julia"># From Julia 1.0's online docs. File countheads.jl available to all machines:
d = digits(factoril)

zero_proportion_in_fac = count(x -> x == 0, d) / length(d)
function count_heads(n)
proportionsum += zero_proportion_in_fac
c::Int = 0
for i = 1:n
propmean = proportionsum / i
c += rand(Bool)
if i > 15 && propmean <= goal
println("The mean proportion dips permanently below $goal at $i.")
break
end
if i == N
println("Mean proportion of zero digits in factorials to $N is ", propmean)
end
end
end
end
c
end</syntaxhighlight>
We then run the following on the primary client:
<syntaxhighlight lang="julia">
using Distributed
@everywhere include_string(Main, $(read("count_heads.jl", String)), "count_heads.jl")


@time foreach(meanfactorialdigits, [100, 1000, 10000])
a = @spawn count_heads(100000000) # runs on an available processor
b = @spawn count_heads(100000000) # runs on another available processor


@time meanfactorialdigits(50000, 0.16)
println(fetch(a)+fetch(b)) # total heads of 200 million coin flips, half on each CPU
</lang>{{out}}
</syntaxhighlight> {{output}} <pre>
<pre>
100001564
Mean proportion of zero digits in factorials to 100 is 0.24675318616743216
Mean proportion of zero digits in factorials to 1000 is 0.20354455110316458
Mean proportion of zero digits in factorials to 10000 is 0.17300384824186707
3.030182 seconds (297.84 k allocations: 1.669 GiB, 0.83% gc time, 0.28% compilation time)
The mean proportion dips permanently below 0.16 at 47332.
179.157788 seconds (3.65 M allocations: 59.696 GiB, 1.11% gc time)
</pre>
</pre>


=== Base 1000 version ===
=={{header|LFE}}==
{{trans|Pascal, Phix}}
<lang julia>function init_zc()
zc = zeros(Int, 999)
for x in 1:9
zc[x] = 2 # 00x
zc[10*x] = 2 # 0x0
zc[100*x] = 2 # x00
for y in 10:10:90
zc[y+x] = 1 # 0yx
zc[10*y+x] = 1 # y0x
zc[10*(y+x)] = 1 # yx0
end
end
return zc
end


function meanfactorialzeros(N = 50000, verbose = true)
The protocol used is the one native to Erlang (and thus native to LFE, Lisp Flavored Erlang).
zc = init_zc()
rfs = [1]


total, trail, first, firstratio = 0.0, 1, 0, 0.0
These examples are done completely in the LFE REPL.


for f in 2:N
===Server===
carry, d999, zeroes = 0, 0, (trail - 1) * 3
j, l = trail, length(rfs)
while j <= l || carry != 0
if j <= l
carry = (rfs[j]) * f + carry
end
d999 = carry % 1000
if j <= l
rfs[j] = d999
else
push!(rfs, d999)
end
zeroes += (d999 == 0) ? 3 : zc[d999]
carry ÷= 1000
j += 1
end
while rfs[trail] == 0
trail += 1
end
# d999 = quick correction for length and zeroes:
d999 = rfs[end]
d999 = d999 < 100 ? d999 < 10 ? 2 : 1 : 0
zeroes -= d999
digits = length(rfs) * 3 - d999
total += zeroes / digits
ratio = total / f
if ratio >= 0.16
first = 0
firstratio = 0.0
elseif first == 0
first = f
firstratio = ratio
end
if f in [100, 1000, 10000]
verbose && println("Mean proportion of zero digits in factorials to $f is $ratio")
end
end
verbose && println("The mean proportion dips permanently below 0.16 at $first.")
end


meanfactorialzeros(100, false)
In one terminal window, start up the REPL
@time meanfactorialzeros()
</lang>{{out}}
<pre>
Mean proportion of zero digits in factorials to 100 is 0.24675318616743216
Mean proportion of zero digits in factorials to 1000 is 0.20354455110316458
Mean proportion of zero digits in factorials to 10000 is 0.17300384824186707
The mean proportion dips permanently below 0.16 at 47332.
4.638323 seconds (50.08 k allocations: 7.352 MiB)
</pre>


=={{header|Mathematica}}/{{header|Wolfram Language}}==
<syntaxhighlight lang="bash">
<lang Mathematica>ClearAll[ZeroDigitsFractionFactorial]
$ ./bin/lfe
ZeroDigitsFractionFactorial[n_Integer] := Module[{m},
Erlang/OTP 17 [erts-6.2] [source] [64-bit] [smp:4:4] [async-threads:10] [hipe] [kernel-poll:false]
m = IntegerDigits[n!];
Count[m, 0]/Length[m]
]
ZeroDigitsFractionFactorial /@ Range[6] // Mean // N
ZeroDigitsFractionFactorial /@ Range[25] // Mean // N
ZeroDigitsFractionFactorial /@ Range[100] // Mean // N
ZeroDigitsFractionFactorial /@ Range[1000] // Mean // N
ZeroDigitsFractionFactorial /@ Range[10000] // Mean // N


fracs = ParallelMap[ZeroDigitsFractionFactorial, Range[50000], Method -> ("ItemsPerEvaluation" -> 100)];
LFE Shell V6.2 (abort with ^G)
means = Accumulate[N@fracs]/Range[Length[fracs]];
>
len = LengthWhile[Reverse@means, # < 0.16 &];
</syntaxhighlight>
50000 - len + 1</lang>

{{out}}
And then enter the following code
<pre>0.111111

0.267873
<syntaxhighlight lang="lisp">
0.246753
> (defun get-server-name ()
0.203545
(list_to_atom (++ "exampleserver@" (element 2 (inet:gethostname)))))
0.173004

47332</pre>
> (defun start ()
(net_kernel:start `(,(get-server-name) shortnames))
(erlang:set_cookie (node) 'rosettaexample)
(let ((pid (spawn #'listen/0)))
(register 'serverref pid)
(io:format "~p ready~n" (list (node pid)))
'ok))

> (defun listen ()
(receive
(`#(echo ,pid ,data)
(io:format "Got ~p from ~p~n" (list data (node pid)))
(! pid `#(hello ,data))
(listen))
(x
(io:format "Unexpected pattern: ~p~n" `(,x)))))
</syntaxhighlight>

===Client===

In another terminal window, start up another LFE REPL and ender the following code:

<syntaxhighlight lang="lisp">
> (defun get-server-name ()
(list_to_atom (++ "exampleserver@" (element 2 (inet:gethostname)))))

> (defun send (data)
(net_kernel:start '(exampleclient shortnames))
(erlang:set_cookie (node) 'rosettaexample)
(io:format "connecting to ~p~n" `(,(get-server-name)))
(! `#(serverref ,(get-server-name)) `#(echo ,(self) ,data))
(receive
(`#(hello ,data)
(io:format "Received ~p~n" `(,data)))
(x
(io:format "Unexpected pattern: ~p~n" (list x))))
'ok)
</syntaxhighlight>

To use this code, simply start the server in the server terminal:

<syntaxhighlight lang="lisp">
> (start)
exampleserver@yourhostname ready
ok
(exampleserver@yourhostname)>
</syntaxhighlight>

Send some messages from the client terminal:

<syntaxhighlight lang="lisp">
> (send "hi there")
connecting to exampleserver@yourhostname
Received "hi there"
ok
(exampleclient@yourhostname)> (send 42)
connecting to exampleserver@yourhostname
Received 42
ok
(exampleclient@yourhostname)> (send #(key value))
connecting to exampleserver@yourhostname
Received {key,value}
ok
(exampleclient@yourhostname)>
</syntaxhighlight>

And check out the results back in the server terminal window:

<syntaxhighlight lang="lisp">
Got "hi there" from exampleclient@yourhostname
Got 42 from exampleclient@yourhostname
Got {key,value} from exampleclient@yourhostname
</syntaxhighlight>

=={{header|Mathematica}} / {{header|Wolfram Language}}==
The following sends a request for a random number to be generated on each of two nodes, these are then transmitted back to be assembled into an array with two elements. Omitting the first line, will cause the program to be run on all configured remote computers.
<syntaxhighlight lang="mathematica">LaunchKernels[2];
ParallelEvaluate[RandomReal[]]
</syntaxhighlight>


=={{header|Nim}}==
=={{header|Nim}}==
{{libheader|nanomsg}}
<syntaxhighlight lang="nim">import os, nanomsg


===Task===
proc sendMsg(s: cint, msg: string) =
{{libheader|bignum}}
echo "SENDING \"",msg,"\""
<lang Nim>import strutils, std/monotimes
let bytes = s.send(msg.cstring, msg.len + 1, 0)
import bignum
assert bytes == msg.len + 1


let t0 = getMonoTime()
proc recvMsg(s: cint) =
var sum = 0.0
var buf: cstring
var f = newInt(1)
let bytes = s.recv(addr buf, MSG, 0)
var lim = 100
if bytes > 0:
for n in 1..10_000:
echo "RECEIVED \"",buf,"\""
f *= n
discard freemsg buf
let str = $f
sum += str.count('0') / str.len
if n == lim:
echo n, ":\t", sum / float(n)
lim *= 10
echo()
echo getMonoTime() - t0</lang>


{{out}}
proc sendRecv(s: cint, msg: string) =
<pre>100: 0.2467531861674322
var to: cint = 100
1000: 0.2035445511031646
discard s.setSockOpt(SOL_SOCKET, RCVTIMEO, addr to, sizeof to)
10000: 0.1730038482418671
while true:
s.recvMsg
sleep 1000
s.sendMsg msg


(seconds: 2, nanosecond: 857794404)</pre>
proc node0(url: string) =
var s = socket(AF_SP, nanomsg.PAIR)
assert s >= 0
let res = s.bindd url
assert res >= 0
s.sendRecv "node0"
discard s.shutdown 0


===Stretch task===
proc node1(url: string) =
{{libheader|bignum}}
var s = socket(AF_SP, nanomsg.PAIR)
At each step, we eliminate the trailing zeroes to reduce the length of the number and save some time. But this is not much, about 8%.
assert s >= 0
let res = s.connect url
assert res >= 0
s.sendRecv "node1"
discard s.shutdown 0


<lang Nim>import strutils, std/monotimes
if paramStr(1) == "node0":
import bignum
node0 paramStr(2)
elif paramStr(1) == "node1":
node1 paramStr(2)</syntaxhighlight>
Usage:
<pre>./pair node0 tcp://127.0.0.1:25000
./pair node1 tcp://127.0.0.1:25000</pre>


let t0 = getMonoTime()
=={{header|Objective-C}}==
var sum = 0.0
Distributed Objects are ''natural'' to Objective-C, and OpenStep and derivated framework offers an easy way of ''using'' remote objects as if it were local. The client must only know the protocol the remote object support. For the rest, calling a remote object's method or local object's method is transparent.
var first = 0
var f = newInt(1)
var count0 = 0
for n in 1..<50_000:
f *= n
while f mod 10 == 0: # Reduce the length of "f".
f = f div 10
inc count0
let str = $f
sum += (str.count('0') + count0) / (str.len + count0)
if sum / float(n) < 0.16:
if first == 0: first = n
else:
first = 0


echo "Permanently below 0.16 at n = ", first
{{works with|GNUstep}}
echo "Execution time: ", getMonoTime() - t0</lang>
===Server===
The server ''vending'' the object with the name <tt>DistributedAction</tt>


{{out}}
<tt>ActionObjectProtocol.h</tt>
<pre>Permanently below 0.16 at n = 47332
<syntaxhighlight lang="objc">#import <Foundation/Foundation.h>
Execution time: (seconds: 190, nanosecond: 215845101)</pre>
// our protocol allows "sending" "strings", but we can implement
// everything we could for a "local" object
@protocol ActionObjectProtocol
- (NSString *)sendMessage: (NSString *)msg;
@end</syntaxhighlight>


=={{header|Pascal}}==
<tt>ActionObject.h</tt>
Doing the calculation in Base 1,000,000,000 like in [[Primorial_numbers#alternative]].<BR>
<syntaxhighlight lang="objc">#import <Foundation/Foundation.h>
The most time consuming is converting to string and search for zeros.<BR>
#import "ActionObjectProtocol.h"
Therefor I do not convert to string.I divide the base in sections of 3 digits with counting zeros in a lookup table.
<lang pascal>program Factorial;
{$IFDEF FPC} {$MODE DELPHI} {$Optimization ON,ALL} {$ENDIF}
uses
sysutils;
type
tMul = array of LongWord;
tpMul = pLongWord;
const
LongWordDec = 1000*1000*1000;
LIMIT = 50000;
var
CountOfZero : array[0..999] of byte;
SumOfRatio :array[0..LIMIT] of extended;


@interface ActionObject : NSObject <ActionObjectProtocol>
// we do not have much for this example!
@end</syntaxhighlight>


procedure OutMul(pMul:tpMul;Lmt :NativeInt);
<tt>ActionObject.m</tt>
// for testing
<syntaxhighlight lang="objc">#import <Foundation/Foundation.h>
Begin
#import "ActionObject.h"
write(pMul[lmt]);
For lmt := lmt-1 downto 0 do
write(Format('%.9d',[pMul[lmt]]));
writeln;
end;


procedure InitCoZ;
@implementation ActionObject
//Init Lookup table for 3 digits
-(NSString *)sendMessage: (NSString *)msg
var
{
x,y : integer;
NSLog(@"client sending message %@", msg);
begin
return @"server answers ...";
fillchar(CountOfZero,SizeOf(CountOfZero),#0);
}
CountOfZero[0] := 3; //000
@end</syntaxhighlight>
For x := 1 to 9 do
Begin
CountOfZero[x] := 2; //00x
CountOfZero[10*x] := 2; //0x0
CountOfZero[100*x] := 2; //x00
y := 10;
repeat
CountOfZero[y+x] := 1; //0yx
CountOfZero[10*y+x] := 1; //y0x
CountOfZero[10*(y+x)] := 1; //yx0
inc(y,10)
until y > 100;
end;
end;


function getFactorialDecDigits(n:NativeInt):NativeInt;
<tt>server.m</tt>
var
<syntaxhighlight lang="objc">#import <Foundation/Foundation.h>
res: extended;
#import "ActionObject.h"
Begin
result := -1;
IF (n > 0) AND (n <= 1000*1000) then
Begin
res := 0;
repeat res := res+ln(n); dec(n); until n < 2;
result := trunc(res/ln(10))+1;
end;
end;


function CntZero(pMul:tpMul;Lmt :NativeInt):NativeUint;
int main (void)
//count zeros in Base 1,000,000,000 number
{
var
@autoreleasepool {
q,r : LongWord;
i : NativeInt;
ActionObject *action = [[ActionObject alloc] init];
begin
result := 0;
For i := Lmt-1 downto 0 do
Begin
q := pMul[i];
r := q DIV 1000;
result +=CountOfZero[q-1000*r];//q-1000*r == q mod 1000
q := r;
r := q DIV 1000;
result +=CountOfZero[q-1000*r];
q := r;
r := q DIV 1000;
result +=CountOfZero[q-1000*r];
end;
//special case first digits no leading '0'
q := pMul[lmt];
while q >= 1000 do
begin
r := q DIV 1000;
result +=CountOfZero[q-1000*r];
q := r;
end;
while q > 0 do
begin
r := q DIV 10;
result += Ord( q-10*r= 0);
q := r;
end;
end;


function GetCoD(pMul:tpMul;Lmt :NativeInt):NativeUint;
NSSocketPort *port = (NSSocketPort *)[NSSocketPort port];
//count of decimal digits
// initWithTCPPort: 1234 and other methods are not supported yet
var
// by GNUstep
i : longWord;
NSConnection *connect = [NSConnection
begin
connectionWithReceivePort: port
result := 9*Lmt;
sendPort: port]; // or sendPort: nil
i := pMul[Lmt];
while i > 1000 do
begin
i := i DIV 1000;
inc(result,3);
end;
while i > 0 do
begin
i := i DIV 10;
inc(result);
end;
end;


procedure DoChecks(pMul:tpMul;Lmt,i :NativeInt);
[connect setRootObject: action];
//(extended(1.0)* makes TIO.RUN faster // only using FPU?
Begin
SumOfRatio[i] := SumOfRatio[i-1] + (extended(1.0)*CntZero(pMul,Lmt))/GetCoD(pMul,Lmt);
end;


function MulByI(pMul:tpMul;UL,i :NativeInt):NativeInt;
/* "vend" the object ActionObject as DistributedAction; on GNUstep
var
the Name Server that allows the resolution of the registered name
prod : Uint64;
is bound to port 538 */
j : nativeInt;
if (![connect registerName:@"DistributedAction"
carry : LongWord;
withNameServer: [NSSocketPortNameServer sharedInstance] ])
begin
{
result := UL;
NSLog(@"can't register the server DistributedAction");
carry := 0;
exit(EXIT_FAILURE);
For j := 0 to result do
}
Begin
prod := i*pMul[0]+Carry;
NSLog(@"waiting for messages...");
Carry := prod Div LongWordDec;
pMul[0] := Prod - LongWordDec*Carry;
inc(pMul);
end;


IF Carry <> 0 then
[[NSRunLoop currentRunLoop] run];
Begin
inc(result);
pMul[0]:= Carry;
End;
end;


procedure getFactorialExact(n:NativeInt);
}
var
return 0;
MulArr : tMul;
}</syntaxhighlight>
pMul : tpMul;
i,ul : NativeInt;
begin
i := getFactorialDecDigits(n) DIV 9 +10;
Setlength(MulArr,i);
pMul := @MulArr[0];
Ul := 0;
pMul[Ul]:= 1;
i := 1;
repeat
UL := MulByI(pMul,UL,i);
//Now do what you like to do with i!
DoChecks(pMul,UL,i);
inc(i);
until i> n;
end;


procedure Out_(i: integer);
===Client===
begin
<tt>client.m</tt>
if i > LIMIT then
<syntaxhighlight lang="objc">#import <Foundation/Foundation.h>
EXIT;
#import "ActionObjectProtocol.h"
writeln(i:8,SumOfRatio[i]/i:18:15);
end;


var
int main(void)
i : integer;
{
Begin
@autoreleasepool {
InitCoZ;

SumOfRatio[0]:= 0;
id <ActionObjectProtocol> action = (id <ActionObjectProtocol>)
getFactorialExact(LIMIT);
[NSConnection
Out_(100);
rootProxyForConnectionWithRegisteredName: @"DistributedAction"
Out_(1000);
host: @"localhost"
Out_(10000);
usingNameServer: [NSSocketPortNameServer sharedInstance] ];
Out_(50000);

i := limit;
if (action == nil)
{
while i >0 do
Begin
NSLog(@"can't connect to the server");
if SumOfRatio[i]/i >0.16 then
exit(EXIT_FAILURE);
}
break;
dec(i);
end;
NSArray *args = [[NSProcessInfo processInfo] arguments];
inc(i);

writeln('First ratio < 0.16 ', i:8,SumOfRatio[i]/i:20:17);
if ([args count] == 1)
end.</lang>
{
{{out}}
NSLog(@"specify a message");
<pre> 100 0.246753186167432
exit(EXIT_FAILURE);
1000 0.203544551103165
}
10000 0.173003848241866
50000 0.159620054602269
NSString *msg = args[1];
First ratio < 0.16 47332 0.15999999579985665

Real time: 4.898 s CPU share: 99.55 % // 2.67s on 2200G freepascal 3.2.2</pre>
// "send" (call the selector "sendMessage:" of the (remote) object
// action) the first argument's text as msg, store the message "sent
// back" and then show it in the log
NSString *backmsg = [action sendMessage: msg];
NSLog("%@", backmsg);

}
return 0;
}</syntaxhighlight>

=={{header|OCaml}}==
{{works with|JoCaml}}

Minimalistic distributed logger with synchronous channels using the join calculus on top of OCaml.

=== Server ===
<syntaxhighlight lang="ocaml">open Printf
let create_logger () =
def log(text) & logs(l) =
printf "Logged: %s\n%!" text;
logs((text, Unix.gettimeofday ())::l) & reply to log

or search(text) & logs(l) =
logs(l) & reply List.filter (fun (line, _) -> line = text) l to search
in
spawn logs([]);
(log, search)

def wait() & finished() = reply to wait

let register name service = Join.Ns.register Join.Ns.here name service
let () =
let log, search = create_logger () in
register "log" log;
register "search" search;
Join.Site.listen (Unix.ADDR_INET (Join.Site.get_local_addr(), 12345));
wait ()</syntaxhighlight>

=== Client ===

<syntaxhighlight lang="ocaml">open Printf
let ns_there = Join.Ns.there (Unix.ADDR_INET (Join.Site.get_local_addr(), 12345))
let lookup name = Join.Ns.lookup ns_there name

let log : string -> unit = lookup "log"
let search : string -> (string * float) list = lookup "search"
let find txt =
printf "Looking for %s...\n" txt;
List.iter (fun (line, time) ->
printf "Found: '%s' at t = %f\n%!" (String.escaped line) time)
(search txt)
let () =
log "bar";
find "foo";
log "foo";
log "shoe";
find "foo"</syntaxhighlight>

=={{header|Oz}}==
We show a program that starts a server on a remote machine, exchanges two messages with that server and finally shuts it down.

<syntaxhighlight lang="oz">declare
functor ServerCode
export
port:Prt
define
Stream
Prt = {NewPort ?Stream}
thread
for Request#Reply in Stream do
case Request
of echo(Data) then Reply = Data
[] compute(Function) then Reply = {Function}
end
end
end
end

%% create the server on some machine
%% (just change "localhost" to some machine
%% that you can use with a passwordless rsh login
%% and that has the same Mozart version installed)
RM = {New Remote.manager init(host:localhost)}

%% execute the code encapsulated in the ServerCode functor
Server = {RM apply(ServerCode $)}

%% Shortcut: send a message to Server and receive a reply
fun {Send X}
{Port.sendRecv Server.port X}
end
in
%% echo
{System.showInfo "Echo reply: "#{Send echo(hello)}}

%% compute
{System.showInfo "Result of computation: "#
{Send compute(fun {$} 8 div 4 end)}}

%% shut down server
{RM close}</syntaxhighlight>


=={{header|Perl}}==
=={{header|Perl}}==
{{libheader|ntheory}}
Using Data::Dumper and Safe to transmit arbitrary data structures as serialized text between hosts. Same code works as both sender and receiver.
<syntaxhighlight lang="perl">use Data::Dumper;
<lang perl>use strict;
use IO::Socket::INET;
use warnings;
use ntheory qw/factorial/;
use Safe;


for my $n (100, 1000, 10000) {
sub get_data {
my($sum,$f) = 0;
my $sock = new IO::Socket::INET
$f = factorial $_ and $sum += ($f =~ tr/0//) / length $f for 1..$n;
LocalHost => "localhost",
printf "%5d: %.5f\n", $n, $sum/$n;
LocalPort => "10000",
}</lang>
Proto => "tcp",
{{out}}
Listen => 1,
<pre> 100: 0.24675
Reuse => 1;
1000: 0.20354
unless ($sock) { die "Socket creation failure" }
10000: 0.17300</pre>
my $cli = $sock->accept();

# of course someone may be tempted to send you 'system("rm -rf /")',
# to be safe(r), use Safe::
my $safe = new Safe;
my $x = $safe->reval(join("", <$cli>));
close $cli;
close $sock;
return $x;
}

sub send_data {
my $host = shift;
my $data = shift;
my $sock = new IO::Socket::INET
PeerAddr => "$host:10000",
Proto => "tcp",
Reuse => 1;

unless ($sock) { die "Socket creation failure" }

print $sock Data::Dumper->Dump([$data]);
close $sock;
}

if (@ARGV) {
my $x = get_data();
print "Got data\n", Data::Dumper->Dump([$x]);
} else {
send_data('some_host', { a=>100, b=>[1 .. 10] });
}</syntaxhighlight>


=={{header|Phix}}==
=={{header|Phix}}==
Using "string math" to create reversed factorials, for slightly easier skipping of "trailing" zeroes,
From/using [http://phix.x10.mx/pmwiki/pmwiki.php?n=Main.Libzmq the ZeroMQ wrapper from PCAN], a suitable simple publish/subscriber pair.
but converted to base 1000 and with the zero counting idea from Pascal, which sped it up threefold.
There is also a server/client/broker example.
<!--<lang Phix>(phixonline)-->
Obviously you can trivially serialize() and deserialize() any Phix data to and from a string.
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<!--<syntaxhighlight lang="phix">(notonline)-->
<span style="color: #008080;">without</span> <span style="color: #008080;">js</span> <span style="color: #000080;font-style:italic;">-- (zmq dll/so)</span>
<span style="color: #004080;">sequence</span> <span style="color: #000000;">rfs</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">1</span><span style="color: #0000FF;">}</span> <span style="color: #000080;font-style:italic;">-- reverse factorial(1) in base 1000</span>
<span style="color: #7060A8;">puts</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span> <span style="color: #008000;">"durapub:\n"</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">include</span> <span style="color: #000000;">zmq</span><span style="color: #0000FF;">/</span><span style="color: #000000;">zmq</span><span style="color: #0000FF;">.</span><span style="color: #000000;">e</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">init_zc</span><span style="color: #0000FF;">()</span>
<span style="color: #004080;">sequence</span> <span style="color: #000000;">zc</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">repeat</span><span style="color: #0000FF;">(</span><span style="color: #000000;">0</span><span style="color: #0000FF;">,</span><span style="color: #000000;">999</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">x</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #000000;">9</span> <span style="color: #008080;">do</span>
<span style="color: #000000;">zc</span><span style="color: #0000FF;">[</span><span style="color: #000000;">x</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">2</span> <span style="color: #000080;font-style:italic;">-- 00x</span>
<span style="color: #000000;">zc</span><span style="color: #0000FF;">[</span><span style="color: #000000;">10</span><span style="color: #0000FF;">*</span><span style="color: #000000;">x</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">2</span> <span style="color: #000080;font-style:italic;">-- 0x0</span>
<span style="color: #000000;">zc</span><span style="color: #0000FF;">[</span><span style="color: #000000;">100</span><span style="color: #0000FF;">*</span><span style="color: #000000;">x</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">2</span> <span style="color: #000080;font-style:italic;">-- x00</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">y</span><span style="color: #0000FF;">=</span><span style="color: #000000;">10</span> <span style="color: #008080;">to</span> <span style="color: #000000;">90</span> <span style="color: #008080;">by</span> <span style="color: #000000;">10</span> <span style="color: #008080;">do</span>
<span style="color: #000000;">zc</span><span style="color: #0000FF;">[</span><span style="color: #000000;">y</span><span style="color: #0000FF;">+</span><span style="color: #000000;">x</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">1</span> <span style="color: #000080;font-style:italic;">-- 0yx</span>
<span style="color: #000000;">zc</span><span style="color: #0000FF;">[</span><span style="color: #000000;">10</span><span style="color: #0000FF;">*</span><span style="color: #000000;">y</span><span style="color: #0000FF;">+</span><span style="color: #000000;">x</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">1</span> <span style="color: #000080;font-style:italic;">-- y0x</span>
<span style="color: #000000;">zc</span><span style="color: #0000FF;">[</span><span style="color: #000000;">10</span><span style="color: #0000FF;">*(</span><span style="color: #000000;">y</span><span style="color: #0000FF;">+</span><span style="color: #000000;">x</span><span style="color: #0000FF;">)]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">1</span> <span style="color: #000080;font-style:italic;">-- yx0</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">zc</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">constant</span> <span style="color: #000000;">zc</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">init_zc</span><span style="color: #0000FF;">()</span>
<span style="color: #004080;">atom</span> <span style="color: #000000;">context</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">zmq_init</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">atom</span> <span style="color: #000000;">t0</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">time</span><span style="color: #0000FF;">(),</span>
<span style="color: #000000;">zmq_assert</span><span style="color: #0000FF;">(</span><span style="color: #000000;">context</span><span style="color: #0000FF;">,</span> <span style="color: #008000;">"zmq_init"</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">total</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">trail</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">1</span><span style="color: #0000FF;">,</span>
<span style="color: #000000;">first</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">f</span><span style="color: #0000FF;">=</span><span style="color: #000000;">2</span> <span style="color: #008080;">to</span> <span style="color: #008080;">iff</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">platform</span><span style="color: #0000FF;">()=</span><span style="color: #004600;">JS</span><span style="color: #0000FF;">?</span><span style="color: #000000;">10000</span><span style="color: #0000FF;">:</span><span style="color: #000000;">50000</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">carry</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">d999</span><span style="color: #0000FF;">,</span>
<span style="color: #000000;">zeroes</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">(</span><span style="color: #000000;">trail</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)*</span><span style="color: #000000;">3</span><span style="color: #0000FF;">,</span>
<span style="color: #000000;">j</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">trail</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">l</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">rfs</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">while</span> <span style="color: #000000;">j</span><span style="color: #0000FF;"><=</span><span style="color: #000000;">l</span> <span style="color: #008080;">or</span> <span style="color: #000000;">carry</span> <span style="color: #008080;">do</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">j</span><span style="color: #0000FF;"><=</span><span style="color: #000000;">l</span> <span style="color: #008080;">then</span>
<span style="color: #000000;">carry</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">(</span><span style="color: #000000;">rfs</span><span style="color: #0000FF;">[</span><span style="color: #000000;">j</span><span style="color: #0000FF;">])*</span><span style="color: #000000;">f</span><span style="color: #0000FF;">+</span><span style="color: #000000;">carry</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #000000;">d999</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">remainder</span><span style="color: #0000FF;">(</span><span style="color: #000000;">carry</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1000</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">j</span><span style="color: #0000FF;"><=</span><span style="color: #000000;">l</span> <span style="color: #008080;">then</span>
<span style="color: #000000;">rfs</span><span style="color: #0000FF;">[</span><span style="color: #000000;">j</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">d999</span>
<span style="color: #008080;">else</span>
<span style="color: #000000;">rfs</span> <span style="color: #0000FF;">&=</span> <span style="color: #000000;">d999</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #000000;">zeroes</span> <span style="color: #0000FF;">+=</span> <span style="color: #008080;">iff</span><span style="color: #0000FF;">(</span><span style="color: #000000;">d999</span><span style="color: #0000FF;">=</span><span style="color: #000000;">0</span><span style="color: #0000FF;">?</span><span style="color: #000000;">3</span><span style="color: #0000FF;">:</span><span style="color: #000000;">zc</span><span style="color: #0000FF;">[</span><span style="color: #000000;">d999</span><span style="color: #0000FF;">])</span>
<span style="color: #000000;">carry</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">floor</span><span style="color: #0000FF;">(</span><span style="color: #000000;">carry</span><span style="color: #0000FF;">/</span><span style="color: #000000;">1000</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">j</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">1</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">while</span>
<span style="color: #008080;">while</span> <span style="color: #000000;">rfs</span><span style="color: #0000FF;">[</span><span style="color: #000000;">trail</span><span style="color: #0000FF;">]=</span><span style="color: #000000;">0</span> <span style="color: #008080;">do</span> <span style="color: #000000;">trail</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">1</span> <span style="color: #008080;">end</span> <span style="color: #008080;">while</span>
<span style="color: #000080;font-style:italic;">-- d999 := quick correction for length and zeroes:</span>
<span style="color: #000000;">d999</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">rfs</span><span style="color: #0000FF;">[$]</span>
<span style="color: #000000;">d999</span> <span style="color: #0000FF;">=</span> <span style="color: #008080;">iff</span><span style="color: #0000FF;">(</span><span style="color: #000000;">d999</span><span style="color: #0000FF;"><</span><span style="color: #000000;">100</span><span style="color: #0000FF;">?</span><span style="color: #008080;">iff</span><span style="color: #0000FF;">(</span><span style="color: #000000;">d999</span><span style="color: #0000FF;"><</span><span style="color: #000000;">10</span><span style="color: #0000FF;">?</span><span style="color: #000000;">2</span><span style="color: #0000FF;">:</span><span style="color: #000000;">1</span><span style="color: #0000FF;">):</span><span style="color: #000000;">0</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">zeroes</span> <span style="color: #0000FF;">-=</span> <span style="color: #000000;">d999</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">digits</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">rfs</span><span style="color: #0000FF;">)*</span><span style="color: #000000;">3</span><span style="color: #0000FF;">-</span><span style="color: #000000;">d999</span>
<span style="color: #000080;font-style:italic;">--// subscriber tells us when it's ready here</span>
<span style="color: #000000;">total</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">zeroes</span><span style="color: #0000FF;">/</span><span style="color: #000000;">digits</span>
<span style="color: #004080;">atom</span> <span style="color: #000000;">sync</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">zmq_socket</span><span style="color: #0000FF;">(</span><span style="color: #000000;">context</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">ZMQ_PULL</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">atom</span> <span style="color: #000000;">ratio</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">total</span><span style="color: #0000FF;">/</span><span style="color: #000000;">f</span>
<span style="color: #000000;">zmq_bind</span><span style="color: #0000FF;">(</span><span style="color: #000000;">sync</span><span style="color: #0000FF;">,</span> <span style="color: #008000;">"tcp://*:5564"</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">ratio</span><span style="color: #0000FF;">>=</span><span style="color: #000000;">0.16</span> <span style="color: #008080;">then</span>
<span style="color: #000000;">first</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
<span style="color: #000080;font-style:italic;">--// send update via this socket</span>
<span style="color: #008080;">elsif</span> <span style="color: #000000;">first</span><span style="color: #0000FF;">=</span><span style="color: #000000;">0</span> <span style="color: #008080;">then</span>
<span style="color: #004080;">atom</span> <span style="color: #000000;">publisher</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">zmq_socket</span><span style="color: #0000FF;">(</span><span style="color: #000000;">context</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">ZMQ_PUB</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">first</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">f</span>
<span style="color: #000000;">zmq_bind</span><span style="color: #0000FF;">(</span><span style="color: #000000;">publisher</span><span style="color: #0000FF;">,</span> <span style="color: #008000;">"tcp://*:5565"</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">if</span> <span style="color: #7060A8;">find</span><span style="color: #0000FF;">(</span><span style="color: #000000;">f</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">100</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1000</span><span style="color: #0000FF;">,</span><span style="color: #000000;">10000</span><span style="color: #0000FF;">})</span> <span style="color: #008080;">then</span>
<span style="color: #004080;">string</span> <span style="color: #000000;">e</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">elapsed</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">time</span><span style="color: #0000FF;">()-</span><span style="color: #000000;">t0</span><span style="color: #0000FF;">)</span>
<span style="color: #000080;font-style:italic;">--// broadcast 10 updates, with pause</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">update_nbr</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #000000;">10</span> <span style="color: #008080;">do</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"Mean proportion of zero digits in factorials to %d is %.10f (%s)\n"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">f</span><span style="color: #0000FF;">,</span><span style="color: #000000;">ratio</span><span style="color: #0000FF;">,</span><span style="color: #000000;">e</span><span style="color: #0000FF;">})</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #004080;">string</span> <span style="color: #000000;">s</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">sprintf</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"Update %d"</span><span style="color: #0000FF;">,</span> <span style="color: #0000FF;">{</span> <span style="color: #000000;">update_nbr</span> <span style="color: #0000FF;">})</span>
<span style="color: #000000;">zmq_s_send</span><span style="color: #0000FF;">(</span><span style="color: #000000;">publisher</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">s</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #7060A8;">sleep</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">if</span> <span style="color: #7060A8;">platform</span><span style="color: #0000FF;">()!=</span><span style="color: #004600;">JS</span> <span style="color: #008080;">then</span>
<span style="color: #004080;">string</span> <span style="color: #000000;">e</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">elapsed</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">time</span><span style="color: #0000FF;">()-</span><span style="color: #000000;">t0</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"The mean proportion dips permanently below 0.16 at %d. (%s)\n"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">first</span><span style="color: #0000FF;">,</span><span style="color: #000000;">e</span><span style="color: #0000FF;">})</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<!--</lang>-->
{{out}}
<pre>
Mean proportion of zero digits in factorials to 100 is 0.2467531862 (0s)
Mean proportion of zero digits in factorials to 1000 is 0.2035445511 (0.2s)
Mean proportion of zero digits in factorials to 10000 is 0.1730038482 (2.3s)
The mean proportion dips permanently below 0.16 at 47332. (1 minute and 2s)
</pre>
<small>(stretch goal removed under pwa/p2js since otherwise you'd get a blank screen for 2 or 3 minutes)</small>
=== trailing zeroes only ===
Should you only be interested in the ratio of trailing zeroes, you can do that much faster:
<!--<lang Phix>(phixonline)-->
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #004080;">atom</span> <span style="color: #000000;">t0</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">time</span><span style="color: #0000FF;">(),</span>
<span style="color: #000000;">f10</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">log10</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">),</span>
<span style="color: #000000;">total</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">first</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">f</span><span style="color: #0000FF;">=</span><span style="color: #000000;">2</span> <span style="color: #008080;">to</span> <span style="color: #000000;">50000</span> <span style="color: #008080;">do</span>
<span style="color: #000000;">f10</span> <span style="color: #0000FF;">+=</span> <span style="color: #7060A8;">log10</span><span style="color: #0000FF;">(</span><span style="color: #000000;">f</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">digits</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">ceil</span><span style="color: #0000FF;">(</span><span style="color: #000000;">f10</span><span style="color: #0000FF;">),</span>
<span style="color: #000000;">zeroes</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span><span style="color: #0000FF;">,</span>
<span style="color: #000000;">v</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">5</span>
<span style="color: #008080;">while</span> <span style="color: #000000;">v</span><span style="color: #0000FF;"><=</span><span style="color: #000000;">f</span> <span style="color: #008080;">do</span>
<span style="color: #000000;">zeroes</span> <span style="color: #0000FF;">+=</span> <span style="color: #7060A8;">floor</span><span style="color: #0000FF;">(</span><span style="color: #000000;">f</span><span style="color: #0000FF;">/</span><span style="color: #000000;">v</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">v</span> <span style="color: #0000FF;">*=</span> <span style="color: #000000;">5</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">while</span>
<span style="color: #000000;">total</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">zeroes</span><span style="color: #0000FF;">/</span><span style="color: #000000;">digits</span>
<span style="color: #004080;">atom</span> <span style="color: #000000;">ratio</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">total</span><span style="color: #0000FF;">/</span><span style="color: #000000;">f</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">ratio</span><span style="color: #0000FF;">>=</span><span style="color: #000000;">0.07</span> <span style="color: #008080;">then</span>
<span style="color: #000000;">first</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
<span style="color: #008080;">elsif</span> <span style="color: #000000;">first</span><span style="color: #0000FF;">=</span><span style="color: #000000;">0</span> <span style="color: #008080;">then</span>
<span style="color: #000000;">first</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">f</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">if</span> <span style="color: #7060A8;">find</span><span style="color: #0000FF;">(</span><span style="color: #000000;">f</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">100</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1000</span><span style="color: #0000FF;">,</span><span style="color: #000000;">10000</span><span style="color: #0000FF;">})</span> <span style="color: #008080;">then</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"Mean proportion of trailing zeroes in factorials to %d is %f\n"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">f</span><span style="color: #0000FF;">,</span><span style="color: #000000;">ratio</span><span style="color: #0000FF;">})</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #004080;">string</span> <span style="color: #000000;">e</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">elapsed</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">time</span><span style="color: #0000FF;">()-</span><span style="color: #000000;">t0</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">zmq_s_send</span><span style="color: #0000FF;">(</span><span style="color: #000000;">publisher</span><span style="color: #0000FF;">,</span> <span style="color: #008000;">"END"</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"The mean proportion dips permanently below 0.07 at %d. (%s)\n"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">first</span><span style="color: #0000FF;">,</span><span style="color: #000000;">e</span><span style="color: #0000FF;">})</span>
<!--</lang>-->
<span style="color: #7060A8;">sleep</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)</span>
{{out}}
<pre>
<span style="color: #000000;">zmq_close</span><span style="color: #0000FF;">(</span><span style="color: #000000;">sync</span><span style="color: #0000FF;">)</span>
Mean proportion of trailing zeroes in factorials to 100 is 0.170338
<span style="color: #000000;">zmq_close</span><span style="color: #0000FF;">(</span><span style="color: #000000;">publisher</span><span style="color: #0000FF;">)</span>
Mean proportion of trailing zeroes in factorials to 1000 is 0.116334
<span style="color: #000000;">zmq_term</span><span style="color: #0000FF;">(</span><span style="color: #000000;">context</span><span style="color: #0000FF;">)</span>
Mean proportion of trailing zeroes in factorials to 10000 is 0.081267
<!--</syntaxhighlight>-->
The mean proportion dips permanently below 0.07 at 31549. (0.1s)

</pre>
<!--<syntaxhighlight lang="phix">(notonline)-->
<span style="color: #008080;">without</span> <span style="color: #008080;">js</span> <span style="color: #000080;font-style:italic;">-- (zmq dll/so)</span>
<span style="color: #7060A8;">puts</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span> <span style="color: #008000;">"durasub:\n"</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">include</span> <span style="color: #000000;">zmq</span><span style="color: #0000FF;">/</span><span style="color: #000000;">zmq</span><span style="color: #0000FF;">.</span><span style="color: #000000;">e</span>
<span style="color: #004080;">atom</span> <span style="color: #000000;">context</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">zmq_init</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">zmq_assert</span><span style="color: #0000FF;">(</span><span style="color: #000000;">context</span><span style="color: #0000FF;">,</span> <span style="color: #008000;">"zmq_init"</span><span style="color: #0000FF;">)</span>
<span style="color: #000080;font-style:italic;">--// connect our subscriber socket</span>
<span style="color: #004080;">atom</span> <span style="color: #000000;">subscriber</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">zmq_socket</span><span style="color: #0000FF;">(</span><span style="color: #000000;">context</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">ZMQ_SUB</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">atom</span> <span style="color: #000000;">id</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">allocate_string</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"Hello"</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">zmq_setsockopt</span><span style="color: #0000FF;">(</span><span style="color: #000000;">subscriber</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">ZMQ_IDENTITY</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">id</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">5</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">zmq_setsockopt</span><span style="color: #0000FF;">(</span><span style="color: #000000;">subscriber</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">ZMQ_SUBSCRIBE</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">0</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">0</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">zmq_connect</span><span style="color: #0000FF;">(</span><span style="color: #000000;">subscriber</span><span style="color: #0000FF;">,</span> <span style="color: #008000;">"tcp://localhost:5565"</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">free</span><span style="color: #0000FF;">(</span><span style="color: #000000;">id</span><span style="color: #0000FF;">)</span>
<span style="color: #000080;font-style:italic;">--// synchronise with publisher</span>
<span style="color: #004080;">atom</span> <span style="color: #000000;">sync</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">zmq_socket</span><span style="color: #0000FF;">(</span><span style="color: #000000;">context</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">ZMQ_PUSH</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">zmq_connect</span><span style="color: #0000FF;">(</span><span style="color: #000000;">sync</span><span style="color: #0000FF;">,</span> <span style="color: #008000;">"tcp://localhost:5564"</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">zmq_s_send</span><span style="color: #0000FF;">(</span><span style="color: #000000;">sync</span><span style="color: #0000FF;">,</span> <span style="color: #008000;">""</span><span style="color: #0000FF;">)</span>
<span style="color: #000080;font-style:italic;">--// get updates, Ctrl-C break</span>
<span style="color: #008080;">while</span> <span style="color: #004600;">true</span> <span style="color: #008080;">do</span>
<span style="color: #004080;">string</span> <span style="color: #000000;">s</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">zmq_s_recv</span><span style="color: #0000FF;">(</span><span style="color: #000000;">subscriber</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span> <span style="color: #008000;">"%s\n"</span><span style="color: #0000FF;">,</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">s</span><span style="color: #0000FF;">})</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">s</span><span style="color: #0000FF;">==</span><span style="color: #008000;">"END"</span> <span style="color: #008080;">then</span> <span style="color: #008080;">exit</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">while</span>
<span style="color: #000000;">zmq_close</span><span style="color: #0000FF;">(</span><span style="color: #000000;">sync</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">zmq_close</span><span style="color: #0000FF;">(</span><span style="color: #000000;">subscriber</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">zmq_term</span><span style="color: #0000FF;">(</span><span style="color: #000000;">context</span><span style="color: #0000FF;">)</span>
<!--</syntaxhighlight>-->

=={{header|PicoLisp}}==
===Server===
<syntaxhighlight lang="picolisp">(task (port 12321) # Background server task
(let? Sock (accept @)
(unless (fork) # Handle request in child process
(in Sock
(while (rd) # Handle requests
(out Sock
(pr (eval @)) ) ) ) # Evaluate and send reply
(bye) ) # Exit child process
(close Sock) ) ) # Close socket in parent process</syntaxhighlight>
===Client===
<syntaxhighlight lang="picolisp">(let? Sock (connect "localhost" 12321)
(out Sock (pr '*Pid)) # Query PID from server
(println 'PID (in Sock (rd))) # Receive and print reply
(out Sock (pr '(* 3 4))) # Request some calculation
(println 'Result (in Sock (rd))) # Print result
(close Sock) ) # Close connection to server</syntaxhighlight>
Output:
<pre>PID 18372
Result 12</pre>


=={{header|Python}}==
=={{header|Python}}==
<lang python>def facpropzeros(N, verbose = True):
{{works with|Python|2.4 and 2.6}}
proportions = [0.0] * N
fac, psum = 1, 0.0
for i in range(N):
fac *= i + 1
d = list(str(fac))
psum += sum(map(lambda x: x == '0', d)) / len(d)
proportions[i] = psum / (i + 1)


if verbose:
=== XML-RPC ===
print("The mean proportion of 0 in factorials from 1 to {} is {}.".format(N, psum / N))
'''Protocol:''' XML-RPC


return proportions
==== Server ====
<syntaxhighlight lang="python">#!/usr/bin/env python
# -*- coding: utf-8 -*-


import SimpleXMLRPCServer


for n in [100, 1000, 10000]:
class MyHandlerInstance:
def echo(self, data):
facpropzeros(n)
'''Method for returning data got from client'''
return 'Server responded: %s' % data


props = facpropzeros(47500, False)
def div(self, num1, num2):
n = (next(i for i in reversed(range(len(props))) if props[i] > 0.16))
'''Method for divide 2 numbers'''
return num1/num2


print("The mean proportion dips permanently below 0.16 at {}.".format(n + 2))
def foo_function():
</lang>{{out}}
'''A function (not an instance method)'''
<pre>
return True
The mean proportion of 0 in factorials from 1 to 100 is 0.24675318616743216.
The mean proportion of 0 in factorials from 1 to 1000 is 0.20354455110316458.
The mean proportion of 0 in factorials from 1 to 10000 is 0.17300384824186707.
The mean proportion dips permanently below 0.16 at 47332.
</pre>
The means can be plotted, showing a jump from 0 to over 0.25, followed by a slowly dropping curve:
<lang python>import matplotlib.pyplot as plt
plt.plot([i+1 for i in range(len(props))], props)
</lang>
=== Base 1000 version ===
{{trans|Go via Phix via Pascal}}
<lang python>def zinit():
zc = [0] * 999
for x in range(1, 10):
zc[x - 1] = 2 # 00x
zc[10 * x - 1] = 2 # 0x0
zc[100 * x - 1] = 2 # x00
for y in range(10, 100, 10):
zc[y + x - 1] = 1 # 0yx
zc[10 * y + x - 1] = 1 # y0x
zc[10 * (y + x) - 1] = 1 # yx0


return zc
HOST = "localhost"
PORT = 8000


def meanfactorialdigits():
server = SimpleXMLRPCServer.SimpleXMLRPCServer((HOST, PORT))
zc = zinit()
rfs = [1]
total, trail, first = 0.0, 1, 0
for f in range(2, 50000):
carry, d999, zeroes = 0, 0, (trail - 1) * 3
j, l = trail, len(rfs)
while j <= l or carry != 0:
if j <= l:
carry = rfs[j-1] * f + carry


d999 = carry % 1000
# register built-in system.* functions.
if j <= l:
server.register_introspection_functions()
rfs[j-1] = d999

# register our instance
server.register_instance(MyHandlerInstance())

# register our function as well
server.register_function(foo_function)

try:
# serve forever
server.serve_forever()
except KeyboardInterrupt:
print 'Exiting...'
server.server_close()</syntaxhighlight>

==== Client ====
<syntaxhighlight lang="python">#!/usr/bin/env python
# -*- coding: utf-8 -*-

import xmlrpclib

HOST = "localhost"
PORT = 8000

rpc = xmlrpclib.ServerProxy("http://%s:%d" % (HOST, PORT))

# print what functions does server support
print 'Server supports these functions:',
print ' '.join(rpc.system.listMethods())

# echo something
rpc.echo("We sent this data to server")

# div numbers
print 'Server says: 8 / 4 is: %d' % rpc.div(8, 4)

# control if foo_function returns True
if rpc.foo_function():
print 'Server says: foo_function returned True'</syntaxhighlight>

===HTTP===
'''Protocol:''' HTTP

==== Server ====
<syntaxhighlight lang="python">#!/usr/bin/python
# -*- coding: utf-8 -*-

import BaseHTTPServer

HOST = "localhost"
PORT = 8000

# we just want to write own class, we replace do_GET method. This could be extended, I just added basics
# see; http://docs.python.org/lib/module-BaseHTTPServer.html
class MyHTTPHandler(BaseHTTPServer.BaseHTTPRequestHandler):
def do_GET(self):
# send 200 (OK) message
self.send_response(200)
# send header
self.send_header("Content-type", "text/html")
self.end_headers()

# send context
self.wfile.write("<html><head><title>Our Web Title</title></head>")
self.wfile.write("<body><p>This is our body. You wanted to visit <b>%s</b> page</p></body>" % self.path)
self.wfile.write("</html>")

if __name__ == '__main__':
server = BaseHTTPServer.HTTPServer((HOST, PORT), MyHTTPHandler)
try:
server.serve_forever()
except KeyboardInterrupt:
print 'Exiting...'
server.server_close()</syntaxhighlight>

==== Client ====
<syntaxhighlight lang="python">#!/usr/bin/python
# -*- coding: utf-8 -*-

import httplib

HOST = "localhost"
PORT = 8000

conn = httplib.HTTPConnection(HOST, PORT)
conn.request("GET", "/somefile")

response = conn.getresponse()
print 'Server Status: %d' % response.status

print 'Server Message: %s' % response.read()</syntaxhighlight>

===Socket, Pickle format===

'''Protocol:''' raw socket / pickle format

This example builds a very basic RPC mechanism on top of sockets and the [http://docs.python.org/library/pickle.html#module-pickle pickle module]. Please note that the pickle module is not secure - a malicious client can build malformed data to execute arbitrary code on the server. If untrusted clients can access the server, the [http://docs.python.org/library/json.html json module] could be used as a substitute, but we lose the ability to transfer arbitrary Python objects that way.

==== Server ====
<syntaxhighlight lang="python">#!/usr/bin/python
# -*- coding: utf-8 -*-
import SocketServer
import pickle
HOST = "localhost"
PORT = 8000

class RPCServer(SocketServer.ThreadingMixIn, SocketServer.TCPServer):
# The object_to_proxy member should be set to the object we want
# methods called on. Unfortunately, we can't do this in the constructor
# because the constructor should not be overridden in TCPServer...

daemon_threads = True

class RPCHandler(SocketServer.StreamRequestHandler):
def handle(self):
in_channel = pickle.Unpickler(self.rfile)
out_channel = pickle.Pickler(self.wfile, protocol=2)
while True:
try:
name, args, kwargs = in_channel.load()
print 'got %s %s %s' % (name, args, kwargs)
except EOFError:
# EOF means we're done with this request.
# Catching this exception to detect EOF is a bit hackish,
# but will work for a quick demo like this
break
try:
method = getattr(self.server.object_to_proxy, name)
result = method(*args, **kwargs)
except Exception, e:
out_channel.dump(('Error',e))
else:
else:
out_channel.dump(('OK',result))
rfs.append(d999)


zeroes += 3 if d999 == 0 else zc[d999-1]
class MyHandlerInstance(object):
carry //= 1000
def echo(self, data):
'''Method for returning data got from client'''
j += 1
return 'Server responded: %s' % data
def div(self, dividend, divisor):
'''Method to divide 2 numbers'''
return dividend/divisor
def is_computer_on(self):
return True
if __name__ == '__main__':
rpcserver = RPCServer((HOST, PORT), RPCHandler)
rpcserver.object_to_proxy = MyHandlerInstance()
try:
rpcserver.serve_forever()
except KeyboardInterrupt:
print 'Exiting...'
rpcserver.server_close()
</syntaxhighlight>


while rfs[trail-1] == 0:
==== Client ====
trail += 1
<syntaxhighlight lang="python">#!/usr/bin/python
# -*- coding: utf-8 -*-
import socket
import pickle
HOST = "localhost"
PORT = 8000


# d999 is a quick correction for length and zeros
class RPCClient(object):
d999 = rfs[-1]
def __init__(self, host, port):
d999 = 0 if d999 >= 100 else 2 if d999 < 10 else 1
self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
self.socket.connect((host, port))
self.rfile = self.socket.makefile('rb')
self.wfile = self.socket.makefile('wb')
self.in_channel = pickle.Unpickler(self.rfile)
self.out_channel = pickle.Pickler(self.wfile, protocol=2)


zeroes -= d999
def _close(self):
self.socket.close()
digits = len(rfs) * 3 - d999
self.rfile.close()
total += zeroes / digits
self.wfile.close()
ratio = total / f
if f in [100, 1000, 10000]:
print("The mean proportion of zero digits in factorials to {} is {}".format(f, ratio))
if ratio >= 0.16:
first = 0
elif first == 0:
first = f


print("The mean proportion dips permanently below 0.16 at {}.".format(first))
# Make calling remote methods easy by overriding attribute access.
# Accessing any attribute on our instances will give a proxy method that
# calls the method with the same name on the remote machine.
def __getattr__(self, name):
def proxy(*args, **kwargs):
self.out_channel.dump((name, args, kwargs))
self.wfile.flush() # to make sure the server won't wait forever
status, result = self.in_channel.load()
if status == 'OK':
return result
else:
raise result


return proxy
if __name__ == '__main__':
# connect to server and send data
rpcclient = RPCClient(HOST, PORT)


print 'Testing the echo() method:'
print rpcclient.echo('Hello world!')
print
print 'Calculating 42/2 on the remote machine:'
print rpcclient.div(42, 2)
print
print 'is_computer_on on the remote machine returns:'
print rpcclient.is_computer_on()
print
print 'Testing keyword args:'
print '42/2 is:', rpcclient.div(divisor=2, dividend=42)
rpcclient._close()
del rpcclient</syntaxhighlight>


import time
===Pyro===
TIME0 = time.perf_counter()
'''Note:''' You should install Pyro (http://pyro.sourceforge.net) first and run '''pyro-ns''' binary to run code below.
meanfactorialdigits()
print("\nTotal time:", time.perf_counter() - TIME0, "seconds.")
</lang>{{out}}
<pre>
The mean proportion of zero digits in factorials to 100 is 0.24675318616743216
The mean proportion of zero digits in factorials to 1000 is 0.20354455110316458
The mean proportion of zero digits in factorials to 10000 is 0.17300384824186707
The mean proportion dips permanently below 0.16 at 47332.


Total time: 648.3583232999999 seconds.
==== Server ====
</pre>
<syntaxhighlight lang="python">#!/usr/bin/python
# -*- coding: utf-8 -*-

import Pyro.core
import Pyro.naming

# create instance that will return upper case
class StringInstance(Pyro.core.ObjBase):
def makeUpper(self, data):
return data.upper()

class MathInstance(Pyro.core.ObjBase):
def div(self, num1, num2):
return num1/num2

if __name__ == '__main__':
server = Pyro.core.Daemon()
name_server = Pyro.naming.NameServerLocator().getNS()
server.useNameServer(name_server)
server.connect(StringInstance(), 'string')
server.connect(MathInstance(), 'math')
try:
server.requestLoop()
except KeyboardInterrupt:
print 'Exiting...'
server.shutdown()</syntaxhighlight>

==== Client ====
<syntaxhighlight lang="python">#!/usr/bin/python
# -*- coding: utf-8 -*-

import Pyro.core

DATA = "my name is eren"
NUM1 = 10
NUM2 = 5

string = Pyro.core.getProxyForURI("PYRONAME://string")
math = Pyro.core.getProxyForURI("PYRONAME://math")

print 'We sent: %s' % DATA
print 'Server responded: %s\n' % string.makeUpper(DATA)

print 'We sent two numbers to divide: %d and %d' % (NUM1, NUM2)
print 'Server responded the result: %s' % math.div(NUM1, NUM2)</syntaxhighlight>

=== Spread ===
'''Note:''' You should install Spread (http://www.spread.org) and its python bindings (http://www.python.org/other/spread/)

==== Server ====
You don't need any code for server. You should start "spread" daemon by typing "spread -c /etc/spread.conf -n localhost". If you want more configuration, look at /etc/spread.conf.

After starting daemon, if you want to make sure that it is running, enter '''spuser -s 4803''' command where 4803 is your port set in spread.conf, you will see prompt, type '''j user''', you should see something like this message: ''Received REGULAR membership for group test with 3 members, where I am member 2''

==== Client (Listener) ====
<syntaxhighlight lang="python">#!/usr/bin/python
# -*- coding: utf-8 -*-

import spread

PORT = '4803'

# connect spread daemon
conn = spread.connect(PORT)
# join the room
conn.join('test')

print 'Waiting for messages... If you want to stop this script, please stop spread daemon'
while True:
recv = conn.receive()
if hasattr(recv, 'sender') and hasattr(recv, 'message'):
print 'Sender: %s' % recv.sender
print 'Message: %s' % recv.message</syntaxhighlight>

==== Client (Sender) ====
<syntaxhighlight lang="python">#!/usr/bin/python
# -*- coding: utf-8 -*-

import spread

PORT = '4803'

conn = spread.connect(PORT)
conn.join('test')

conn.multicast(spread.RELIABLE_MESS, 'test', 'hello, this is message sent from python')
conn.disconnect()</syntaxhighlight>

=={{header|Racket}}==
Server and client in the same piece of code, running a useless (fib 42) computation, four times, on four hosts (which all happen to be "localhost", but that can change, of course).

<syntaxhighlight lang="racket">
#lang racket/base
(require racket/place/distributed racket/place)

(define (fib n)
(if (<= n 1) n (+ (fib (- n 1)) (fib (- n 2)))))

(provide work)
(define (work)
(place ch
(place-channel-put ch (fib (place-channel-get ch)))))

(module+ main
(define places
(for/list ([host '("localhost" "localhost" "localhost" "localhost")]
[port (in-naturals 12345)])
(define-values [node place]
(spawn-node-supervise-place-at host #:listen-port port #:thunk #t
(quote-module-path "..") 'work))
place))
(message-router
(after-seconds 1
(for ([p places]) (*channel-put p 42))
(printf "Results: ~s\n" (map *channel-get places))
(exit))))
</syntaxhighlight>


=={{header|Raku}}==
=={{header|Raku}}==
Works, but depressingly slow for 10000.
(formerly Perl 6)


<lang perl6>sub postfix:<!> (Int $n) { ( constant factorial = 1, 1, |[\*] 2..* )[$n] }
Server listens for JSON encoded messages. It processes requests for set|get|dump. 'set' stores a message, 'get' returns message, 'dump' returns all stored messages. Optional parameters for ip address and port.
sink 10000!; # prime the iterator to allow multithreading


sub zs ($n) { ( constant zero-share = (^Inf).race(:32batch).map: { (.!.comb.Bag){'0'} / .!.chars } )[$n+1] }
Server.raku:
<pre>./server.raku --usage
Usage:
server.p6 [--server=<Any>] [--port=<Any>]</pre>
<syntaxhighlight lang="raku" line>#!/usr/bin/env raku
use JSON::Fast ;
sub MAIN( :$server='0.0.0.0' , :$port=3333 ) {
my %db ;
react {
whenever IO::Socket::Async.listen( $server , $port ) -> $conn {
whenever $conn.Supply.lines -> $line {
my %response = 'status' => '' ;
my $msg = from-json $line ;
say $msg.raku;
given $msg{"function"} {
when 'set' {
%db{ $msg<topic> } = $msg<message> ;
%response<status> = 'ok' ;
}
when 'get' {
%response<topic> = $msg<topic> ;
%response<message> = %db{ $msg<topic> } ;
%response<status> = 'ok' ;
}
when 'dump' {
%response = %db ;
}
when 'delete' {
%db{ $msg<topic> }:delete;
%response<status> = 'ok' ;
}
}
$conn.print( to-json(%response, :!pretty) ~ "\n" ) ;
LAST { $conn.close ; }
QUIT { default { $conn.close ; say "oh no, $_";}}
CATCH { default { say .^name, ': ', .Str , " handled in $?LINE";}}
}
}
}
}</syntaxhighlight>
client.raku:
<pre>Usage:
client.raku [--server=<Any>] [--port=<Any>] [--json=<Any>] set <topic> [<message>]
client.raku [--server=<Any>] [--port=<Any>] get <topic>
client.raku [--server=<Any>] [--port=<Any>] dump</pre>
<syntaxhighlight lang="raku" line>#!/usr/bin/env raku
use JSON::Fast ;
multi MAIN('set', $topic, $message='', :$server='localhost', :$port='3333', :$json='') {
my %msg = function => 'set' , topic=> $topic , message=> $message ;
%msg{"message"} = from-json( $json ) if $json ;
sendmsg( %msg , $server, $port) ;
}
multi MAIN('get', $topic, :$server='localhost', :$port='3333') {
my %msg = function => 'get' , topic=> $topic ;
sendmsg( %msg , $server, $port) ;
}
multi MAIN('delete', $topic, :$server='localhost', :$port='3333') {
my %msg = function => 'delete' , topic=> $topic ;
sendmsg( %msg , $server, $port) ;
}
multi MAIN('dump', :$server='localhost', :$port='3333') {
my %msg = function => 'dump' ;
sendmsg( %msg , $server, $port) ;
}
sub sendmsg( %msg , $server, $port){
my $conn = await IO::Socket::Async.connect( $server , $port );
$conn.print: to-json( %msg,:!pretty)~"\n";
react {
whenever $conn.Supply -> $data {
print $data;
$conn.close;
}
}
}</syntaxhighlight>
examples:
<pre>echo '{"function":"set","topic":"push","message":["perl5","raku","rakudo"]}' | nc localhost 3333


.say for (
./client.raku set version raku
100
{"status": "ok"}
,1000
./client.raku get version
,10000
{"status": "ok","topic": "version","message": "raku"}
).map: -> \n { "{n}: {([+] (^n).map: *.&zs) / n}" }</lang>
./client.raku --json='["one","two","three"]' set mylist
{{out}}
{"status": "ok"}
<pre>100: 0.24675318616743216
./client.raku dump
1000: 0.20354455110316458
{"push": ["perl5","raku","rakudo"],"version": "raku","mylist": ["one","two","three"]}
10000: 0.17300384824186605
./client.raku delete version
</pre>
{"status": "ok"}


=={{header|REXX}}==
server output:
<lang rexx>/*REXX program computes the mean of the proportion of "0" digits a series of factorials.*/
${:function("set"), :message($["perl5", "raku", "rakudo"]), :topic("push")}
parse arg $ /*obtain optional arguments from the CL*/
${:function("set"), :message("raku"), :topic("version")}
if $='' | $="," then $= 100 1000 10000 /*not specified? Then use the default.*/
${:function("get"), :topic("version")}
#= words($) /*the number of ranges to be used here.*/
${:function("set"), :message($["one", "two", "three"]), :topic("mylist")}
numeric digits 100 /*increase dec. digs, but only to 100. */
${:function("dump")}
big= word($, #); != 1 /*obtain the largest number in ranges. */
${:function("delete"), :topic("version")}</pre>
do i=1 for big /*calculate biggest ! using 100 digs.*/
!= ! * i /*calculate the factorial of BIG. */
end /*i*/
if pos('E', !)>0 then do /*In exponential format? Then get EXP.*/
parse var ! 'E' x /*parse the exponent from the number. */
numeric digits x+1 /*set the decimal digits to X plus 1.*/
end /* [↑] the +1 is for the dec. point.*/


title= ' mean proportion of zeros in the (decimal) factorial products for N'
=={{header|Ruby}}==
say ' N │'center(title, 80) /*display the title for the output. */
Uses the distributed Ruby (dRuby) from the standard library. The "druby:" protocol uses TCP/IP sockets for communication.
say '───────────┼'center("" , 80, '─') /* " a sep " " " */


do j=1 for #; n= word($, j) /*calculate some factorial ranges. */
'''Server'''
say center( commas(n), 11)'│' left(0dist(n), 75)... /*show results for above range.*/
<syntaxhighlight lang="ruby">require 'drb/drb'
end /*j*/


say '───────────┴'center("" , 80, '─') /*display a foot sep for the output. */
# The URI for the server to connect to
exit 0 /*stick a fork in it, we're all done. */
URI="druby://localhost:8787"
/*──────────────────────────────────────────────────────────────────────────────────────*/
commas: parse arg ?; do jc=length(?)-3 to 1 by -3; ?=insert(',', ?, jc); end; return ?
/*──────────────────────────────────────────────────────────────────────────────────────*/
0dist: procedure; parse arg z; != 1; y= 0
do k=1 for z; != ! * k; y= y + countstr(0, !) / length(!)
end /*k*/
return y/z</lang>
{{out|output|text=&nbsp; when using the default inputs:}}
<pre>
N │ mean proportion of zeros in the (decimal) factorial products for N
───────────┼────────────────────────────────────────────────────────────────────────────────
100 │ 0.2467531861674322177784158871973526991129407033266153063813195937196095976...
1,000 │ 0.2035445511031646356400438031711455302985741167890402203486699704599684047...
10,000 │ 0.1730038482418660531800366428930706156810278809057883361518852958446868172...
───────────┴────────────────────────────────────────────────────────────────────────────────
</pre>


=={{header|Rust}}==
class TimeServer
{{trans|Phix}}

<lang rust>fn init_zc() -> Vec<usize> {
def get_current_time
let mut zc = vec![0; 1000];
return Time.now
zc[0] = 3;
end
for x in 1..=9 {

zc[x] = 2;
end
zc[10 * x] = 2;

zc[100 * x] = 2;
# The object that handles requests on the server
let mut y = 10;
FRONT_OBJECT = TimeServer.new
while y <= 90 {

zc[y + x] = 1;
$SAFE = 1 # disable eval() and friends
zc[10 * y + x] = 1;

zc[10 * (y + x)] = 1;
DRb.start_service(URI, FRONT_OBJECT)
y += 10;
# Wait for the drb server thread to finish before exiting.
DRb.thread.join</syntaxhighlight>

'''Client'''
<syntaxhighlight lang="ruby">require 'drb/drb'

# The URI to connect to
SERVER_URI = "druby://localhost:8787"

# Start a local DRbServer to handle callbacks.
#
# Not necessary for this small example, but will be required
# as soon as we pass a non-marshallable object as an argument
# to a dRuby call.
DRb.start_service

timeserver = DRbObject.new_with_uri(SERVER_URI)
puts timeserver.get_current_time</syntaxhighlight>

=={{header|Tcl}}==
A rudimentary IRC Server
<syntaxhighlight lang="tcl">proc main {} {
global connections
set connections [dict create]
socket -server handleConnection 12345
vwait dummyVar ;# enter the event loop
}

proc handleConnection {channel clientaddr clientport} {
global connections
dict set connections $channel address "$clientaddr:$clientport"
fconfigure $channel -buffering line
fileevent $channel readable [list handleMessage $channel]
}

proc handleMessage {channel} {
global connections
if {[gets $channel line] == -1} {
disconnect $channel
} else {
if {[string index [string trimleft $line] 0] eq "/"} {
set words [lassign [split [string trim $line]] command]
handleCommand $command $words $channel
} else {
echo $line $channel
}
}
}
}
zc
}
}


fn main() {
proc disconnect {channel} {
use std::time::Instant;
global connections
let zc = init_zc();
dict unset connections $channel
let t0 = Instant::now();
fileevent $channel readable ""
close $channel
let mut trail = 1;
let mut first = 0;
}
let mut total: f64 = 0.0;
let mut rfs = vec![1];


for f in 2..=50000 {
proc handleCommand {command words channel} {
let mut carry = 0;
global connections
let mut d999: usize;
switch -exact -- [string tolower $command] {
/nick {
let mut zeroes = (trail - 1) * 3;
let len = rfs.len();
dict set connections $channel nick [lindex $words 0]
let mut j = trail - 1;
while j < len || carry != 0 {
if j < len {
carry += rfs[j] * f;
}
d999 = carry % 1000;
if j < len {
rfs[j] = d999;
} else {
rfs.push(d999);
}
zeroes += zc[d999];
carry /= 1000;
j += 1;
}
}
/quit {
while rfs[trail - 1] == 0 {
echo bye $channel
trail += 1;
disconnect $channel
}
}
default {
d999 = rfs[rfs.len() - 1];
puts $channel "\"$command\" not implemented"
d999 = if d999 < 100 {
if d999 < 10 {
2
} else {
1
}
} else {
0
};
zeroes -= d999;
let digits = rfs.len() * 3 - d999;
total += (zeroes as f64) / (digits as f64);
let ratio = total / (f as f64);
if ratio >= 0.16 {
first = 0;
} else if first == 0 {
first = f;
}
}
if f == 100 || f == 1000 || f == 10000 {
}
let duration = t0.elapsed();
}
println!(

"Mean proportion of zero digits in factorials to {} is {:.10}. ({}ms)",
proc echo {message senderchannel} {
global connections
f,
ratio,
foreach channel [dict keys $connections] {
duration.as_millis()
if {$channel ne $senderchannel} {
);
set time [clock format [clock seconds] -format "%T"]
set nick [dict get $connections $channel nick]
puts $channel [format "\[%s\] %s: %s" $time $nick $message]
}
}
}
}
let duration = t0.elapsed();
}
println!(
"The mean proportion dips permanently below 0.16 at {}. ({}ms)",
first,
duration.as_millis()
);
}</lang>


{{out}}
main</syntaxhighlight>
<pre>
Client
Mean proportion of zero digits in factorials to 100 is 0.2467531862. (0ms)
<syntaxhighlight lang="tcl">proc main {} {
Mean proportion of zero digits in factorials to 1000 is 0.2035445511. (1ms)
global argv argc
Mean proportion of zero digits in factorials to 10000 is 0.1730038482. (149ms)
if {$argc != 2} {
The mean proportion dips permanently below 0.16 at 47332. (4485ms)
error "usage: [info script] serveraddress serverport"
</pre>
}
connect {*}$argv
vwait dummyVar
}


=={{header|Sidef}}==
proc connect {addr port} {
<lang ruby>func mean_factorial_digits(n, d = 0) {
global sock

set sock [socket $addr $port]
var v = 1
fconfigure $sock -buffering line
var total = 0.float
fileevent $sock readable getFromServer
fileevent stdin readable sendToServer
}


for k in (1..n) {
proc getFromServer {} {
global sock
v *= k
total += v.digits.count(d)/v.len
if {[gets $sock line] == -1} {
puts "disconnected..."
exit
} else {
puts $line
}
}
}


total / n
proc sendToServer {} {
global sock
set msg [string trim [gets stdin]]
if {[string length $msg] > 0} {
puts $sock $msg
}
}
}


say mean_factorial_digits(100)
main</syntaxhighlight>
say mean_factorial_digits(1000)

say mean_factorial_digits(10000)</lang>
=={{header|UnixPipes}}==
{{libheader|nc}}
{{out}}
<pre>
Uses netcat and a buffer to cycle the server shell's stdout back to netcat's stdin.
0.246753186167432217778415887197352699112940703327

0.203544551103164635640043803171145530298574116789
===Server===
0.173003848241866053180036642893070615681027880906
{{alertbox|yellow|'''Security risk!''' Anything, able to reach 127.0.0.1 port 1234, can run shell commands as the user who runs the server. This allows other users to gain privileges.}}
</pre>

<syntaxhighlight lang="bash">: >/tmp/buffer
tail -f /tmp/buffer | nc -l 127.0.0.1 1234 | sh >/tmp/buffer 2>&1</syntaxhighlight>

Limitations:

* The server can accept only one connection (but continues to run, not exit, after this connection dies).
* With some systems, <code>tail -f</code> might be slow to notice changes to /tmp/buffer.

===Client===
<syntaxhighlight lang="bash">nc 127.0.0.1 1234</syntaxhighlight>

Now you can enter commands in the client terminal and get the output back through the same connection.


=={{header|Wren}}==
=={{header|Wren}}==
===Brute force===
{{trans|Go}}
{{libheader|WrenGo}}
{{libheader|Wren-big}}
{{libheader|Wren-fmt}}
{{libheader|Wren-fmt}}
Very slow indeed, 10.75 minutes to reach N = 10,000.
As Wren has no networking support at present, we use embedded programs for both the server and client with a Go host using the net/rpc package in its standard library.
<lang ecmascript>import "/big" for BigInt
import "/fmt" for Fmt


var fact = BigInt.one
Moreover, as Wren's VM is not re-entrant, we need to run two VMs from the server side, one to call Go from Wren and the other to call Wren from Go.
var sum = 0
System.print("The mean proportion of zero digits in factorials up to the following are:")
for (n in 1..10000) {
fact = fact * n
var bytes = fact.toString.bytes
var digits = bytes.count
var zeros = bytes.count { |b| b == 48 }
sum = sum + zeros / digits
if (n == 100 || n == 1000 || n == 10000) {
Fmt.print("$,6d = $12.10f", n, sum / n)
}
}</lang>


{{out}}
'''Server:'''
<pre>
The mean proportion of zero digits in factorials up to the following are:
100 = 0.2467531862
1,000 = 0.2035445511
10,000 = 0.1730038482
</pre>
<br>
<br>
==='String math' and base 1000===
We need two Wren scripts one for each VM:
{{trans|Phix}}
<syntaxhighlight lang="ecmascript">/* distributed_programming_server.wren */
Around 60 times faster than before with 10,000 now being reached in about 10.5 seconds. Even the stretch goal is now viable and comes in at 5 minutes 41 seconds.
<lang ecmascript>import "/fmt" for Fmt


var rfs = [1] // reverse factorial(1) in base 1000
class Rpc {
foreign static register()


var init = Fn.new { |zc|
foreign static handleHTTP()
for (x in 1..9) {
}
zc[x-1] = 2 // 00x

zc[10*x - 1] = 2 // 0x0
foreign class Listener {
zc[100*x - 1] = 2 // x00
construct listen(network, address) {}
var y = 10
}
while (y <= 90) {

zc[y + x - 1] = 1 // 0yx
class HTTP {
zc[10*y + x - 1] = 1 // y0x
foreign static serve(listener)
zc[10*(y + x) - 1] = 1 // yx0
}
y = y + 10

}
Rpc.register()
Rpc.handleHTTP()
var listener = Listener.listen("tcp", ":1234")
HTTP.serve(listener)</syntaxhighlight>
<br>
<syntaxhighlight lang="ecmascript">/* distributed_programming_server2.wren */

class TaxComputer {
static tax(amount, rate) {
if (amount < 0) Fiber.abort("Negative values not allowed.")
return amount * rate
}
}
}</syntaxhighlight>
<br>
We now embed these scripts in the following Go program and run it on one terminal.
<syntaxhighlight lang="go">/* go run distributed_programming_server.go */

package main

import(
wren "github.com/crazyinfin8/WrenGo"
"log"
"net"
"net/http"
"net/rpc"
)

type any = interface{}

type TaxComputer float64

var vm2 *wren.VM

var fileName = "distributed_programming_server.wren"
var fileName2 = "distributed_programming_server2.wren"

func (taxRate TaxComputer) Tax(x float64, r *float64) error {
wrenVar, _ := vm2.GetVariable(fileName2, "TaxComputer")
wrenClass, _ := wrenVar.(*wren.Handle)
defer wrenClass.Free()
wrenMethod, _ := wrenClass.Func("tax(_,_)")
defer wrenMethod.Free()
ret, _ := wrenMethod.Call(x, float64(taxRate))
*r = ret.(float64)
return nil
}
}


var zc = List.filled(999, 0)
func register(vm *wren.VM, parameters []any) (any, error) {
init.call(zc)
c := TaxComputer(0.05) // 5% tax rate
var total = 0
rpc.Register(c)
var trail = 1
return nil, nil
var first = 0
}
var firstRatio = 0

System.print("The mean proportion of zero digits in factorials up to the following are:")
func handleHTTP(vm *wren.VM, parameters []any) (any, error) {
for (f in 2..50000) {
rpc.HandleHTTP()
return nil, nil
var carry = 0
var d999 = 0
}
var zeros = (trail-1) * 3

var j = trail
func serve(vm *wren.VM, parameters []any) (any, error) {
var l = rfs.count
handle := parameters[1].(*wren.ForeignHandle)
ifc, _ := handle.Get()
while (j <= l || carry != 0) {
if (j <= l) carry = rfs[j-1]*f + carry
listener := ifc.(*net.Listener)
d999 = carry % 1000
http.Serve(*listener, nil)
if (j <= l) {
return nil, nil
rfs[j-1] = d999
}
} else {

rfs.add(d999)
func listen(vm *wren.VM, parameters []any) (any, error) {
}
network := parameters[1].(string)
zeros = zeros + ((d999 == 0) ? 3 : zc[d999-1])
address := parameters[2].(string)
carry = (carry/1000).floor
listener, err := net.Listen(network, address)
if err != nil {
j = j + 1
log.Fatal(err)
}
}
while (rfs[trail-1] == 0) trail = trail + 1
return &listener, nil
// d999 = quick correction for length and zeros
}
d999 = rfs[-1]

d999 = (d999 < 100) ? ((d999 < 10) ? 2 : 1) : 0
func main() {
vm := wren.NewVM()
zeros = zeros - d999
vm2 = wren.NewVM()
var digits = rfs.count * 3 - d999
total = total + zeros/digits
vm2.InterpretFile(fileName2)
var ratio = total / f

rpcMethodMap := wren.MethodMap {
if (ratio >= 0.16) {
"static register()": register,
first = 0
"static handleHTTP()": handleHTTP,
firstRatio = 0
} else if (first == 0) {
first = f
firstRatio = ratio
}
}
if (f == 100 || f == 1000 || f == 10000) {

Fmt.print("$,6d = $12.10f", f, ratio)
httpMethodMap := wren.MethodMap { "static serve(_)":serve }

classMap := wren.ClassMap {
"Listener": wren.NewClass(listen, nil, nil),
"Rpc" : wren.NewClass(nil, nil, rpcMethodMap),
"HTTP" : wren.NewClass(nil, nil, httpMethodMap),
}
}

module := wren.NewModule(classMap)
vm.SetModule(fileName, module)
vm.InterpretFile(fileName)
vm.Free()
vm2.Free()
}</syntaxhighlight>
<br>
'''Client:'''
<br>
Just one Wren script needed here:
<syntaxhighlight lang="ecmascript">/* distributed_programming_client.wren */

import "./fmt" for Fmt

foreign class Client {
construct dialHTTP(network, address) {}

foreign call(serviceMethod, arg)
}
}
Fmt.write("$,6d = $12.10f", first, firstRatio)

System.print(" (stays below 0.16 after this)")
var client = Client.dialHTTP("tcp", "localhost:1234")
Fmt.print("$,6d = $12.10f", 50000, total/50000)</lang>
var amounts = [3, 5.6]
for (amount in amounts) {
var tax = client.call("TaxComputer.Tax", amount)
Fmt.print("Tax on $0.2f = $0.2f", amount, tax)
}</syntaxhighlight>
<br>
which we embed in the following Go program and run it on a different terminal.
<syntaxhighlight lang="go">/* go run distributed_programming_client.go */

package main

import(
wren "github.com/crazyinfin8/WrenGo"
"log"
"net/rpc"
"strings"
)

type any = interface{}

func dialHTTP(vm *wren.VM, parameters []any) (any, error) {
network := parameters[1].(string)
address := parameters[2].(string)
client, err := rpc.DialHTTP(network, address)
if err != nil {
log.Fatal(err)
}
return &client, nil
}

func call(vm *wren.VM, parameters []any) (any, error) {
handle := parameters[0].(*wren.ForeignHandle)
ifc, _ := handle.Get()
client := ifc.(**rpc.Client)
serviceMethod := parameters[1].(string)
amount := parameters[2].(float64)
var tax float64
err := (*client).Call(serviceMethod, amount, &tax)
if err != nil {
log.Fatal(err)
}
return tax, nil
}

func moduleFn(vm *wren.VM, name string) (string, bool) {
if name != "meta" && name != "random" && !strings.HasSuffix(name, ".wren") {
name += ".wren"
}
return wren.DefaultModuleLoader(vm, name)
}

func main() {
cfg := wren.NewConfig()
cfg.LoadModuleFn = moduleFn
vm := cfg.NewVM()
fileName := "distributed_programming_client.wren"
clientMethodMap := wren.MethodMap { "call(_,_)": call }
classMap := wren.ClassMap { "Client": wren.NewClass(dialHTTP, nil, clientMethodMap) }
module := wren.NewModule(classMap)
vm.SetModule(fileName, module)
vm.InterpretFile(fileName)
vm.Free()
}</syntaxhighlight>


{{out}}
{{out}}
Output on the client terminal:
<pre>
<pre>
The mean proportion of zero digits in factorials up to the following are:
Tax on 3.00 = 0.15
Tax on 5.60 = 0.28
100 = 0.2467531862
1,000 = 0.2035445511
10,000 = 0.1730038482
47,332 = 0.1599999958 (stays below 0.16 after this)
50,000 = 0.1596200546
</pre>
</pre>

{{omit from|Lotus 123 Macro Scripting}}
{{omit from|Maxima}}
{{omit from|PARI/GP}}
{{omit from|Retro}}

Revision as of 22:10, 2 September 2022

Distribution of 0 digits in factorial series is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

Large Factorials and the Distribution of '0' in base 10 digits.

About the task

We can see that some features of factorial numbers (the series of numbers 1!, 2!, 3!, ...) come about because such numbers are the product of a series of counting numbers, and so those products have predictable factors. For example, all factorials above 1! are even numbers, since they have 2 as a factor. Similarly, all factorials from 5! up end in a 0, because they have 5 and 2 as factors, and thus have 10 as a factor. In fact, the factorial integers add another 0 at the end of the factorial for every step of 5 upward: 5! = 120, 10! = 3628800, 15! = 1307674368000, 16! = 20922789888000 and so on.

Because factorial numbers, which quickly become quite large, continue to have another terminal 0 on the right hand side of the number for every factor of 5 added to the factorial product, one might think that the proportion of zeros in a base 10 factorial number might be close to 1/5. However, though the factorial products add another terminating 0 every factor of 5 multiplied into the product, as the numbers become quite large, the number of digits in the factorial product expands exponentially, and so the number above the terminating zeros tends toward 10% of each digit from 0 to 1 as the factorial becomes larger. Thus, as the factorials become larger, the proportion of 0 digits in the factorial products shifts slowly from around 1/5 toward 1/10, since the number of terminating zeros in n! increases only in proportion to n, whereas the number of digits of n! in base 10 increases exponentially.

The task

Create a function to calculate the mean of the proportions of 0 digits out of the total digits found in each factorial product from 1! to N!. This proportion of 0 digits in base 10 should be calculated using the number as printed as a base 10 integer.

Example: for 1 to 6 we have 1!, 2!, 3!, 4!, 5!, 6!, or (1, 2, 6, 24, 120, 720), so we need the mean of (0/1, 0/1, 0/1, 0/2, 1/3, 1/3) = (2/3) (totals of each proportion) / 6 (= N), or 0.1111111...

Example: for 1 to 25 the mean of the proportions of 0 digits in the factorial products series of N! with N from 1 to 25 is 0.26787.

Do this task for 1 to N where N is in (100, 1000, and 10000), so, compute the mean of the proportion of 0 digits for each product in the series of each of the factorials from 1 to 100, 1 to 1000, and 1 to 10000.

Stretch task

Find the N in 10000 < N < 50000 where the mean of the proportions of 0 digits in the factorial products from 1 to N permanently falls below 0.16. This task took many hours in the Python example, though I wonder if there is a faster algorithm out there.

11l

Translation of: Python

<lang 11l>F facpropzeros(n, verbose = 1B)

  V proportions = [0.0] * n
  V (fac, psum) = (BigInt(1), 0.0)
  L(i) 0 .< n
     fac *= i + 1
     V d = String(fac)
     psum += sum(d.map(x -> Int(x == ‘0’))) / Float(d.len)
     proportions[i] = psum / (i + 1)
  I verbose
     print(‘The mean proportion of 0 in factorials from 1 to #. is #..’.format(n, psum / n))
  R proportions

L(n) [100, 1000, 10000]

  facpropzeros(n)</lang>
Output:
The mean proportion of 0 in factorials from 1 to 100 is 0.246753186.
The mean proportion of 0 in factorials from 1 to 1000 is 0.203544551.
The mean proportion of 0 in factorials from 1 to 10000 is 0.173003848.

Base 1000 version

<lang 11l>F zinit()

  V zc = [0] * 999
  L(x) 1..9
     zc[x - 1] = 2
     zc[10 * x - 1] = 2
     zc[100 * x - 1] = 2
     L(y) (10.<100).step(10)
        zc[y + x - 1] = 1
        zc[10 * y + x - 1] = 1
        zc[10 * (y + x) - 1] = 1
  R zc

F meanfactorialdigits()

  V zc = zinit()
  V rfs = [1]
  V (total, trail, first) = (0.0, 1, 0)
  L(f) 2 .< 50000
     V (carry, d999, zeroes) = (0, 0, (trail - 1) * 3)
     V (j, l) = (trail, rfs.len)
     L j <= l | carry != 0
        I j <= l
           carry = rfs[j - 1] * f + carry
        d999 = carry % 1000
        I j <= l
           rfs[j - 1] = d999
        E
           rfs.append(d999)
        zeroes += I d999 == 0 {3} E zc[d999 - 1]
        carry I/= 1000
        j++
     L rfs[trail - 1] == 0
        trail++
     d999 = rfs.last
     d999 = I d999 >= 100 {0} E I d999 < 10 {2} E 1
     zeroes -= d999
     V digits = rfs.len * 3 - d999
     total += Float(zeroes) / digits
     V ratio = total / f
     I f C [100, 1000, 10000]
        print(‘The mean proportion of zero digits in factorials to #. is #.’.format(f, ratio))
     I ratio >= 0.16
        first = 0
     E I first == 0
        first = f
  print(‘The mean proportion dips permanently below 0.16 at ’first‘.’)

meanfactorialdigits()</lang>

Output:
The mean proportion of zero digits in factorials to 100 is 0.246753186
The mean proportion of zero digits in factorials to 1000 is 0.203544551
The mean proportion of zero digits in factorials to 10000 is 0.173003848
The mean proportion dips permanently below 0.16 at 47332.

C++

Translation of: Phix

<lang cpp>#include <array>

  1. include <chrono>
  2. include <iomanip>
  3. include <iostream>
  4. include <vector>

auto init_zc() {

   std::array<int, 1000> zc;
   zc.fill(0);
   zc[0] = 3;
   for (int x = 1; x <= 9; ++x) {
       zc[x] = 2;
       zc[10 * x] = 2;
       zc[100 * x] = 2;
       for (int y = 10; y <= 90; y += 10) {
           zc[y + x] = 1;
           zc[10 * y + x] = 1;
           zc[10 * (y + x)] = 1;
       }
   }
   return zc;

}

template <typename clock_type> auto elapsed(const std::chrono::time_point<clock_type>& t0) {

   auto t1 = clock_type::now();
   auto duration =
       std::chrono::duration_cast<std::chrono::milliseconds>(t1 - t0);
   return duration.count();

}

int main() {

   auto zc = init_zc();
   auto t0 = std::chrono::high_resolution_clock::now();
   int trail = 1, first = 0;
   double total = 0;
   std::vector<int> rfs{1};
   std::cout << std::fixed << std::setprecision(10);
   for (int f = 2; f <= 50000; ++f) {
       int carry = 0, d999, zeroes = (trail - 1) * 3, len = rfs.size();
       for (int j = trail - 1; j < len || carry != 0; ++j) {
           if (j < len)
               carry += rfs[j] * f;
           d999 = carry % 1000;
           if (j < len)
               rfs[j] = d999;
           else
               rfs.push_back(d999);
           zeroes += zc[d999];
           carry /= 1000;
       }
       while (rfs[trail - 1] == 0)
           ++trail;
       d999 = rfs.back();
       d999 = d999 < 100 ? (d999 < 10 ? 2 : 1) : 0;
       zeroes -= d999;
       int digits = rfs.size() * 3 - d999;
       total += double(zeroes) / digits;
       double ratio = total / f;
       if (ratio >= 0.16)
           first = 0;
       else if (first == 0)
           first = f;
       if (f == 100 || f == 1000 || f == 10000) {
           std::cout << "Mean proportion of zero digits in factorials to " << f
                     << " is " << ratio << ". (" << elapsed(t0) << "ms)\n";
       }
   }
   std::cout << "The mean proportion dips permanently below 0.16 at " << first
             << ". (" << elapsed(t0) << "ms)\n";

}</lang>

Output:
Mean proportion of zero digits in factorials to 100 is 0.2467531862. (0ms)
Mean proportion of zero digits in factorials to 1000 is 0.2035445511. (1ms)
Mean proportion of zero digits in factorials to 10000 is 0.1730038482. (152ms)
The mean proportion dips permanently below 0.16 at 47332. (4598ms)

Go

Brute force

Library: Go-rcu

Timings here are 2.8 seconds for the basic task and 182.5 seconds for the stretch goal. <lang go>package main

import (

   "fmt"
   big "github.com/ncw/gmp"
   "rcu"

)

func main() {

   fact  := big.NewInt(1)
   sum   := 0.0
   first := int64(0)
   firstRatio := 0.0    
   fmt.Println("The mean proportion of zero digits in factorials up to the following are:")
   for n := int64(1); n <= 50000; n++  {
       fact.Mul(fact, big.NewInt(n))
       bytes  := []byte(fact.String())
       digits := len(bytes)
       zeros  := 0
       for _, b := range bytes {
           if b == '0' {
               zeros++
           }
       }
       sum += float64(zeros)/float64(digits)
       ratio := sum / float64(n)
       if n == 100 || n == 1000 || n == 10000 {
           fmt.Printf("%6s = %12.10f\n", rcu.Commatize(int(n)), ratio)
       } 
       if first > 0 && ratio >= 0.16 {
           first = 0
           firstRatio = 0.0
       } else if first == 0 && ratio < 0.16 {
           first = n
           firstRatio = ratio           
       }
   }
   fmt.Printf("%6s = %12.10f", rcu.Commatize(int(first)), firstRatio)
   fmt.Println(" (stays below 0.16 after this)")
   fmt.Printf("%6s = %12.10f\n", "50,000", sum / 50000)

}</lang>

Output:
The mean proportion of zero digits in factorials up to the following are:
   100 = 0.2467531862
 1,000 = 0.2035445511
10,000 = 0.1730038482
47,332 = 0.1599999958 (stays below 0.16 after this)
50,000 = 0.1596200546


'String math' and base 1000

Translation of: Phix

Much quicker than before with 10,000 now being reached in 0.35 seconds and the stretch goal in about 5.5 seconds. <lang go>package main

import (

   "fmt"
   "rcu"

)

var rfs = []int{1} // reverse factorial(1) in base 1000 var zc = make([]int, 999)

func init() {

   for x := 1; x <= 9; x++ {
       zc[x-1] = 2     // 00x
       zc[10*x-1] = 2  // 0x0
       zc[100*x-1] = 2 // x00
       var y = 10
       for y <= 90 {
           zc[y+x-1] = 1      // 0yx
           zc[10*y+x-1] = 1   // y0x
           zc[10*(y+x)-1] = 1 // yx0
           y += 10
       }
   }

}

func main() {

   total := 0.0
   trail := 1
   first := 0
   firstRatio := 0.0
   fmt.Println("The mean proportion of zero digits in factorials up to the following are:")
   for f := 2; f <= 10000; f++ {
       carry := 0
       d999 := 0
       zeros := (trail - 1) * 3
       j := trail
       l := len(rfs)
       for j <= l || carry != 0 {
           if j <= l {
               carry = rfs[j-1]*f + carry
           }
           d999 = carry % 1000
           if j <= l {
               rfs[j-1] = d999
           } else {
               rfs = append(rfs, d999)
           }
           if d999 == 0 {
               zeros += 3
           } else {
               zeros += zc[d999-1]
           }
           carry /= 1000
           j++
       }
       for rfs[trail-1] == 0 {
           trail++
       }
       // d999 = quick correction for length and zeros
       d999 = rfs[len(rfs)-1]
       if d999 < 100 {
           if d999 < 10 {
               d999 = 2
           } else {
               d999 = 1
           }
       } else {
           d999 = 0
       }
       zeros -= d999
       digits := len(rfs)*3 - d999
       total += float64(zeros) / float64(digits)
       ratio := total / float64(f)
       if ratio >= 0.16 {
           first = 0
           firstRatio = 0.0
       } else if first == 0 {
           first = f
           firstRatio = ratio
       }
       if f == 100 || f == 1000 || f == 10000 {
           fmt.Printf("%6s = %12.10f\n", rcu.Commatize(f), ratio)
       }
   }
   fmt.Printf("%6s = %12.10f", rcu.Commatize(first), firstRatio)
   fmt.Println(" (stays below 0.16 after this)")
   fmt.Printf("%6s = %12.10f\n", "50,000", total/50000)

}</lang>

Output:
Same as 'brute force' version.

jq

Works with jq

The precision of jq's integer arithmetic is not up to this task, so in the following we borrow from the "BigInt" library and use a string representation of integers.

Unfortunately, although gojq (the Go implementation of jq) does support unbounded-precision integer arithmetic, it is unsuited for the task because of memory management issues.

From BigInt.jq <lang jq>

  1. multiply two decimal strings, which may be signed (+ or -)

def long_multiply(num1; num2):

 def stripsign:
   .[0:1] as $a
   | if $a == "-" then [ -1, .[1:]] 
   elif $a == "+" then [  1, .[1:]] 
   else [1, .]
   end;
 def adjustsign(sign):
    if sign == 1 then . else "-" + . end;
 # mult/2 assumes neither argument has a sign
 def mult(num1;num2):
     (num1 | explode | map(.-48) | reverse) as $a1
   | (num2 | explode | map(.-48) | reverse) as $a2
   | reduce range(0; num1|length) as $i1
       ([];  # result
        reduce range(0; num2|length) as $i2
          (.;
           ($i1 + $i2) as $ix
           | ( $a1[$i1] * $a2[$i2] + (if $ix >= length then 0 else .[$ix] end) ) as $r
           | if $r > 9 # carrying
             then
               .[$ix + 1] = ($r / 10 | floor) +  (if $ix + 1 >= length then 0 else .[$ix + 1] end )
               | .[$ix] = $r - ( $r / 10 | floor ) * 10
             else
               .[$ix] = $r
             end
        )
       ) 
   | reverse | map(.+48) | implode;
 (num1|stripsign) as $a1
 | (num2|stripsign) as $a2
 | if $a1[1] == "0" or  $a2[1] == "0" then "0"
   elif $a1[1] == "1" then $a2[1]|adjustsign( $a1[0] * $a2[0] )
   elif $a2[1] == "1" then $a1[1]|adjustsign( $a1[0] * $a2[0] )
   else mult($a1[1]; $a2[1]) | adjustsign( $a1[0] * $a2[0] )
   end;

</lang> The task <lang jq> def count(s): reduce s as $x (0; .+1);

def meanfactorialdigits:

  def digits: tostring | explode;
  def nzeros: count( .[] | select(. == 48) ); # "0" is 48
  
  . as $N
  | 0.16 as $goal
  | label $out
  | reduce range( 1; 1+$N ) as $i ( {factorial: "1", proportionsum: 0.0, first: null };
       .factorial = long_multiply(.factorial; $i|tostring)
       | (.factorial|digits) as $d
       | .proportionsum += ($d | (nzeros / length)) 
       | (.proportionsum / $i) as $propmean

| if .first then if $propmean > $goal then .first = null else . end elif $propmean <= $goal then .first = $i else . end)

   | "Mean proportion of zero digits in factorials to \($N) is \(.proportionsum/$N);" +
      (if .first then " mean <= \($goal) from N=\(.first) on." else " goal (\($goal)) unmet." end);
  1. The task:

100, 1000, 10000 | meanfactorialdigits</lang>

Output:
Mean proportion of zero digits in factorials to 100 is 0.24675318616743216; goal (0.16) unmet.
Mean proportion of zero digits in factorials to 1000 is 0.20354455110316458; goal (0.16) unmet.
Mean proportion of zero digits in factorials to 10000 is 0.17300384824186707; goal (0.16) unmet.

Julia

<lang julia>function meanfactorialdigits(N, goal = 0.0)

   factoril, proportionsum = big"1", 0.0
   for i in 1:N
       factoril *= i
       d = digits(factoril)
       zero_proportion_in_fac = count(x -> x == 0, d) / length(d)
       proportionsum += zero_proportion_in_fac
       propmean = proportionsum / i
       if i > 15 && propmean <= goal
           println("The mean proportion dips permanently below $goal at $i.")
           break
       end
       if i == N
           println("Mean proportion of zero digits in factorials to $N is ", propmean)
       end
   end

end

@time foreach(meanfactorialdigits, [100, 1000, 10000])

@time meanfactorialdigits(50000, 0.16)

</lang>

Output:
Mean proportion of zero digits in factorials to 100 is 0.24675318616743216
Mean proportion of zero digits in factorials to 1000 is 0.20354455110316458
Mean proportion of zero digits in factorials to 10000 is 0.17300384824186707
  3.030182 seconds (297.84 k allocations: 1.669 GiB, 0.83% gc time, 0.28% compilation time)
The mean proportion dips permanently below 0.16 at 47332.
179.157788 seconds (3.65 M allocations: 59.696 GiB, 1.11% gc time)

Base 1000 version

Translation of: Pascal, Phix

<lang julia>function init_zc()

   zc = zeros(Int, 999)
   for x in 1:9
       zc[x] = 2       # 00x
       zc[10*x] = 2    # 0x0
       zc[100*x] = 2   # x00
       for y in 10:10:90
           zc[y+x] = 1         # 0yx
           zc[10*y+x] = 1      # y0x
           zc[10*(y+x)] = 1    # yx0
       end
   end
   return zc

end

function meanfactorialzeros(N = 50000, verbose = true)

   zc = init_zc()
   rfs = [1]
   total, trail, first, firstratio = 0.0, 1, 0, 0.0
   for f in 2:N
       carry, d999, zeroes = 0, 0, (trail - 1) * 3
       j, l = trail, length(rfs)
       while j <= l || carry != 0
           if j <= l
               carry = (rfs[j]) * f + carry
           end
           d999 = carry % 1000
           if j <= l
               rfs[j] = d999
           else
               push!(rfs, d999)
           end
           zeroes += (d999 == 0) ? 3 : zc[d999]
           carry ÷= 1000
           j += 1
       end
       while rfs[trail] == 0
           trail += 1
       end
       # d999 = quick correction for length and zeroes:
       d999 = rfs[end]
       d999 = d999 < 100 ? d999 < 10 ? 2 : 1 : 0
       zeroes -= d999
       digits = length(rfs) * 3 - d999
       total += zeroes / digits
       ratio = total / f
       if ratio >= 0.16
          first = 0
          firstratio = 0.0
       elseif first == 0
           first = f
           firstratio = ratio
       end
       if f in [100, 1000, 10000]
           verbose && println("Mean proportion of zero digits in factorials to $f is $ratio")
       end
   end
   verbose && println("The mean proportion dips permanently below 0.16 at $first.")

end

meanfactorialzeros(100, false) @time meanfactorialzeros()

</lang>

Output:
Mean proportion of zero digits in factorials to 100 is 0.24675318616743216
Mean proportion of zero digits in factorials to 1000 is 0.20354455110316458
Mean proportion of zero digits in factorials to 10000 is 0.17300384824186707
The mean proportion dips permanently below 0.16 at 47332.
  4.638323 seconds (50.08 k allocations: 7.352 MiB)

Mathematica/Wolfram Language

<lang Mathematica>ClearAll[ZeroDigitsFractionFactorial] ZeroDigitsFractionFactorial[n_Integer] := Module[{m},

 m = IntegerDigits[n!];
 Count[m, 0]/Length[m]
 ]

ZeroDigitsFractionFactorial /@ Range[6] // Mean // N ZeroDigitsFractionFactorial /@ Range[25] // Mean // N ZeroDigitsFractionFactorial /@ Range[100] // Mean // N ZeroDigitsFractionFactorial /@ Range[1000] // Mean // N ZeroDigitsFractionFactorial /@ Range[10000] // Mean // N

fracs = ParallelMap[ZeroDigitsFractionFactorial, Range[50000], Method -> ("ItemsPerEvaluation" -> 100)]; means = Accumulate[N@fracs]/Range[Length[fracs]]; len = LengthWhile[Reverse@means, # < 0.16 &]; 50000 - len + 1</lang>

Output:
0.111111
0.267873
0.246753
0.203545
0.173004
47332

Nim

Task

Library: bignum

<lang Nim>import strutils, std/monotimes import bignum

let t0 = getMonoTime() var sum = 0.0 var f = newInt(1) var lim = 100 for n in 1..10_000:

 f *= n
 let str = $f
 sum += str.count('0') / str.len
 if n == lim:
   echo n, ":\t", sum / float(n)
   lim *= 10

echo() echo getMonoTime() - t0</lang>

Output:
100:    0.2467531861674322
1000:   0.2035445511031646
10000:  0.1730038482418671

(seconds: 2, nanosecond: 857794404)

Stretch task

Library: bignum

At each step, we eliminate the trailing zeroes to reduce the length of the number and save some time. But this is not much, about 8%.

<lang Nim>import strutils, std/monotimes import bignum

let t0 = getMonoTime() var sum = 0.0 var first = 0 var f = newInt(1) var count0 = 0 for n in 1..<50_000:

 f *= n
 while f mod 10 == 0:    # Reduce the length of "f".
   f = f div 10
   inc count0
 let str = $f
 sum += (str.count('0') + count0) / (str.len + count0)
 if sum / float(n) < 0.16:
   if first == 0: first = n
 else:
   first = 0

echo "Permanently below 0.16 at n = ", first echo "Execution time: ", getMonoTime() - t0</lang>

Output:
Permanently below 0.16 at n = 47332
Execution time: (seconds: 190, nanosecond: 215845101)

Pascal

Doing the calculation in Base 1,000,000,000 like in Primorial_numbers#alternative.
The most time consuming is converting to string and search for zeros.
Therefor I do not convert to string.I divide the base in sections of 3 digits with counting zeros in a lookup table. <lang pascal>program Factorial; {$IFDEF FPC} {$MODE DELPHI} {$Optimization ON,ALL} {$ENDIF} uses

 sysutils;

type

 tMul = array of LongWord;
 tpMul = pLongWord;

const

 LongWordDec = 1000*1000*1000;
 LIMIT = 50000;

var

 CountOfZero : array[0..999] of byte;
 SumOfRatio :array[0..LIMIT] of extended;


procedure OutMul(pMul:tpMul;Lmt :NativeInt); // for testing Begin

 write(pMul[lmt]);
 For lmt := lmt-1  downto 0 do
   write(Format('%.9d',[pMul[lmt]]));
 writeln;

end;

procedure InitCoZ; //Init Lookup table for 3 digits var

 x,y : integer;

begin

 fillchar(CountOfZero,SizeOf(CountOfZero),#0);
 CountOfZero[0] := 3; //000
 For x := 1 to 9 do
 Begin
   CountOfZero[x] := 2;     //00x
   CountOfZero[10*x] := 2;  //0x0
   CountOfZero[100*x] := 2; //x00
   y := 10;
   repeat
     CountOfZero[y+x] := 1;      //0yx
     CountOfZero[10*y+x] := 1;   //y0x
     CountOfZero[10*(y+x)] := 1; //yx0
     inc(y,10)
   until y > 100;
 end;

end;

function getFactorialDecDigits(n:NativeInt):NativeInt; var

 res: extended;

Begin

 result := -1;
 IF (n > 0) AND (n <= 1000*1000) then
 Begin
   res := 0;
   repeat res := res+ln(n); dec(n); until n < 2;
   result := trunc(res/ln(10))+1;
 end;

end;

function CntZero(pMul:tpMul;Lmt :NativeInt):NativeUint; //count zeros in Base 1,000,000,000 number var

 q,r : LongWord;
 i : NativeInt;

begin

 result := 0;
 For i := Lmt-1 downto 0 do
 Begin
   q := pMul[i];
   r := q DIV 1000;
   result +=CountOfZero[q-1000*r];//q-1000*r == q mod 1000
   q := r;
   r := q DIV 1000;
   result +=CountOfZero[q-1000*r];
   q := r;
   r := q DIV 1000;
   result +=CountOfZero[q-1000*r];
 end;

//special case first digits no leading '0'

 q := pMul[lmt];
 while q >= 1000 do
 begin
   r := q DIV 1000;
   result +=CountOfZero[q-1000*r];
   q := r;
 end;
 while q > 0 do
 begin
   r := q DIV 10;
   result += Ord( q-10*r= 0);
   q := r;
 end;

end;

function GetCoD(pMul:tpMul;Lmt :NativeInt):NativeUint; //count of decimal digits var

 i : longWord;

begin

 result := 9*Lmt;
 i := pMul[Lmt];
 while i > 1000 do
 begin
   i := i DIV 1000;
   inc(result,3);
 end;
 while i > 0 do
 begin
   i := i DIV 10;
   inc(result);
 end;

end;

procedure DoChecks(pMul:tpMul;Lmt,i :NativeInt); //(extended(1.0)* makes TIO.RUN faster // only using FPU? Begin

 SumOfRatio[i] := SumOfRatio[i-1] + (extended(1.0)*CntZero(pMul,Lmt))/GetCoD(pMul,Lmt);

end;

function MulByI(pMul:tpMul;UL,i :NativeInt):NativeInt; var

 prod  : Uint64;
 j     : nativeInt;
 carry : LongWord;

begin

 result := UL;
 carry := 0;
 For j := 0 to result do
 Begin
   prod  := i*pMul[0]+Carry;
   Carry := prod Div LongWordDec;
   pMul[0] := Prod - LongWordDec*Carry;
   inc(pMul);
 end;
 IF Carry <> 0 then
 Begin
   inc(result);
   pMul[0]:= Carry;
 End;

end;

procedure getFactorialExact(n:NativeInt); var

 MulArr : tMul;
 pMul : tpMul;
 i,ul : NativeInt;

begin

 i := getFactorialDecDigits(n) DIV 9 +10;
 Setlength(MulArr,i);
 pMul := @MulArr[0];
 Ul := 0;
 pMul[Ul]:= 1;
 i := 1;
 repeat
   UL := MulByI(pMul,UL,i);
   //Now do what you like to do with i!
   DoChecks(pMul,UL,i);
   inc(i);
 until i> n;

end;

procedure Out_(i: integer); begin

 if i > LIMIT then
   EXIT;
 writeln(i:8,SumOfRatio[i]/i:18:15);

end;

var

 i : integer;

Begin

 InitCoZ;
 SumOfRatio[0]:= 0;
 getFactorialExact(LIMIT);
 Out_(100);
 Out_(1000);
 Out_(10000);
 Out_(50000);
 i := limit;
 while i >0 do
 Begin
   if SumOfRatio[i]/i >0.16 then
     break;
   dec(i);
 end;
 inc(i);
 writeln('First ratio < 0.16 ', i:8,SumOfRatio[i]/i:20:17);

end.</lang>

Output:
     100 0.246753186167432
    1000 0.203544551103165
   10000 0.173003848241866
   50000 0.159620054602269
First ratio < 0.16    47332 0.15999999579985665 
Real time: 4.898 s  CPU share: 99.55 % // 2.67s on 2200G freepascal 3.2.2

Perl

Library: ntheory

<lang perl>use strict; use warnings; use ntheory qw/factorial/;

for my $n (100, 1000, 10000) {

   my($sum,$f) = 0;
   $f = factorial $_ and $sum += ($f =~ tr/0//) / length $f for 1..$n;
   printf "%5d: %.5f\n", $n, $sum/$n;

}</lang>

Output:
  100: 0.24675
 1000: 0.20354
10000: 0.17300

Phix

Using "string math" to create reversed factorials, for slightly easier skipping of "trailing" zeroes, but converted to base 1000 and with the zero counting idea from Pascal, which sped it up threefold.

with javascript_semantics
sequence rfs = {1}  -- reverse factorial(1) in base 1000
         
function init_zc()
    sequence zc = repeat(0,999)
    for x=1 to 9 do
        zc[x] = 2       -- 00x
        zc[10*x] = 2    -- 0x0
        zc[100*x] = 2   -- x00
        for y=10 to 90 by 10 do
            zc[y+x] = 1         -- 0yx
            zc[10*y+x] = 1      -- y0x
            zc[10*(y+x)] = 1    -- yx0
        end for
    end for
    return zc
end function
constant zc = init_zc()

atom t0 = time(),
     total = 0
integer trail = 1,
        first = 0
for f=2 to iff(platform()=JS?10000:50000) do
    integer carry = 0, d999, 
            zeroes = (trail-1)*3, 
            j = trail, l = length(rfs)
    while j<=l or carry do
        if j<=l then
            carry = (rfs[j])*f+carry
        end if
        d999 = remainder(carry,1000)
        if j<=l then
            rfs[j] = d999
        else
            rfs &= d999
        end if
        zeroes += iff(d999=0?3:zc[d999])
        carry = floor(carry/1000)
        j += 1
    end while
    while rfs[trail]=0 do trail += 1 end while
    -- d999 := quick correction for length and zeroes:
    d999 = rfs[$]
    d999 = iff(d999<100?iff(d999<10?2:1):0)
    zeroes -= d999
    integer digits = length(rfs)*3-d999

    total += zeroes/digits
    atom ratio = total/f
    if ratio>=0.16 then
        first = 0
    elsif first=0 then
        first = f
    end if
    if find(f,{100,1000,10000}) then
        string e = elapsed(time()-t0)
        printf(1,"Mean proportion of zero digits in factorials to %d is %.10f (%s)\n",{f,ratio,e})
    end if
end for
if platform()!=JS then
    string e = elapsed(time()-t0)
    printf(1,"The mean proportion dips permanently below 0.16 at %d. (%s)\n",{first,e})
end if
Output:
Mean proportion of zero digits in factorials to 100 is 0.2467531862 (0s)
Mean proportion of zero digits in factorials to 1000 is 0.2035445511 (0.2s)
Mean proportion of zero digits in factorials to 10000 is 0.1730038482 (2.3s)
The mean proportion dips permanently below 0.16 at 47332. (1 minute and 2s)

(stretch goal removed under pwa/p2js since otherwise you'd get a blank screen for 2 or 3 minutes)

trailing zeroes only

Should you only be interested in the ratio of trailing zeroes, you can do that much faster:

with javascript_semantics
atom t0 = time(),
     f10 = log10(1),
     total = 0
integer first = 0
for f=2 to 50000 do
    f10 += log10(f)
    integer digits = ceil(f10),
            zeroes = 0,
            v = 5
    while v<=f do
        zeroes += floor(f/v)
        v *= 5
    end while
    total += zeroes/digits
    atom ratio = total/f
    if ratio>=0.07 then
        first = 0
    elsif first=0 then
        first = f
    end if
    if find(f,{100,1000,10000}) then
        printf(1,"Mean proportion of trailing zeroes in factorials to %d is %f\n",{f,ratio})
    end if
end for
string e = elapsed(time()-t0)
printf(1,"The mean proportion dips permanently below 0.07 at %d. (%s)\n",{first,e})
Output:
Mean proportion of trailing zeroes in factorials to 100 is 0.170338
Mean proportion of trailing zeroes in factorials to 1000 is 0.116334
Mean proportion of trailing zeroes in factorials to 10000 is 0.081267
The mean proportion dips permanently below 0.07 at 31549. (0.1s)

Python

<lang python>def facpropzeros(N, verbose = True):

   proportions = [0.0] * N
   fac, psum = 1, 0.0
   for i in range(N):
       fac *= i + 1
       d = list(str(fac))
       psum += sum(map(lambda x: x == '0', d)) / len(d)
       proportions[i] = psum / (i + 1)
   if verbose:
       print("The mean proportion of 0 in factorials from 1 to {} is {}.".format(N, psum / N))
   return proportions


for n in [100, 1000, 10000]:

   facpropzeros(n)

props = facpropzeros(47500, False) n = (next(i for i in reversed(range(len(props))) if props[i] > 0.16))

print("The mean proportion dips permanently below 0.16 at {}.".format(n + 2))

</lang>

Output:
The mean proportion of 0 in factorials from 1 to 100 is 0.24675318616743216.
The mean proportion of 0 in factorials from 1 to 1000 is 0.20354455110316458.
The mean proportion of 0 in factorials from 1 to 10000 is 0.17300384824186707.
The mean proportion dips permanently below 0.16 at 47332.

The means can be plotted, showing a jump from 0 to over 0.25, followed by a slowly dropping curve: <lang python>import matplotlib.pyplot as plt plt.plot([i+1 for i in range(len(props))], props) </lang>

Base 1000 version

Translation of: Go via Phix via Pascal

<lang python>def zinit():

   zc = [0] * 999
   for x in range(1, 10):
       zc[x - 1] = 2        # 00x
       zc[10 * x - 1] = 2   # 0x0
       zc[100 * x - 1] = 2  # x00
       for y in range(10, 100, 10):
           zc[y + x - 1] = 1           # 0yx
           zc[10 * y + x - 1] = 1      # y0x
           zc[10 * (y + x) - 1] = 1    # yx0
   return zc

def meanfactorialdigits():

   zc = zinit()
   rfs = [1]
   total, trail, first = 0.0, 1, 0
   for f in range(2, 50000):
       carry, d999, zeroes = 0, 0, (trail - 1) * 3
       j, l = trail, len(rfs)
       while j <= l or carry != 0:
           if j <= l:
               carry = rfs[j-1] * f + carry
           d999 = carry % 1000
           if j <= l:
               rfs[j-1] = d999
           else:
               rfs.append(d999)
           zeroes += 3 if d999 == 0 else zc[d999-1]
           carry //= 1000
           j += 1
       while rfs[trail-1] == 0:
           trail += 1
       # d999 is a quick correction for length and zeros
       d999 = rfs[-1]
       d999 = 0 if d999 >= 100 else 2 if d999 < 10 else 1
       zeroes -= d999
       digits = len(rfs) * 3 - d999
       total += zeroes / digits
       ratio = total / f
       if f in [100, 1000, 10000]:
           print("The mean proportion of zero digits in factorials to {} is {}".format(f, ratio))
           
       if ratio >= 0.16:
           first = 0
       elif first == 0:
           first = f
   print("The mean proportion dips permanently below 0.16 at {}.".format(first))


import time TIME0 = time.perf_counter() meanfactorialdigits() print("\nTotal time:", time.perf_counter() - TIME0, "seconds.")

</lang>

Output:
The mean proportion of zero digits in factorials to 100 is 0.24675318616743216
The mean proportion of zero digits in factorials to 1000 is 0.20354455110316458
The mean proportion of zero digits in factorials to 10000 is 0.17300384824186707
The mean proportion dips permanently below 0.16 at 47332.

Total time: 648.3583232999999 seconds.

Raku

Works, but depressingly slow for 10000.

<lang perl6>sub postfix:<!> (Int $n) { ( constant factorial = 1, 1, |[\*] 2..* )[$n] } sink 10000!; # prime the iterator to allow multithreading

sub zs ($n) { ( constant zero-share = (^Inf).race(:32batch).map: { (.!.comb.Bag){'0'} / .!.chars } )[$n+1] }

.say for (

    100
   ,1000
   ,10000

).map: -> \n { "{n}: {([+] (^n).map: *.&zs) / n}" }</lang>

Output:
100: 0.24675318616743216
1000: 0.20354455110316458
10000: 0.17300384824186605

REXX

<lang rexx>/*REXX program computes the mean of the proportion of "0" digits a series of factorials.*/ parse arg $ /*obtain optional arguments from the CL*/ if $= | $="," then $= 100 1000 10000 /*not specified? Then use the default.*/

  1. = words($) /*the number of ranges to be used here.*/

numeric digits 100 /*increase dec. digs, but only to 100. */ big= word($, #);  != 1 /*obtain the largest number in ranges. */

                               do i=1  for big  /*calculate biggest  !  using 100 digs.*/
                               != ! * i         /*calculate the factorial of  BIG.     */
                               end   /*i*/

if pos('E', !)>0 then do /*In exponential format? Then get EXP.*/

                      parse var !  'E'  x       /*parse the exponent from the number.  */
                      numeric digits    x+1     /*set the decimal digits to  X  plus 1.*/
                      end                       /* [↑]  the  +1  is for the dec. point.*/

title= ' mean proportion of zeros in the (decimal) factorial products for N' say ' N │'center(title, 80) /*display the title for the output. */ say '───────────┼'center("" , 80, '─') /* " a sep " " " */

 do j=1  for #;  n= word($, j)                  /*calculate some factorial ranges.     */
 say center( commas(n), 11)'│' left(0dist(n), 75)...    /*show results for above range.*/
 end   /*j*/

say '───────────┴'center("" , 80, '─') /*display a foot sep for the output. */ exit 0 /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ commas: parse arg ?; do jc=length(?)-3 to 1 by -3; ?=insert(',', ?, jc); end; return ? /*──────────────────────────────────────────────────────────────────────────────────────*/ 0dist: procedure; parse arg z;  != 1; y= 0

                    do k=1  for z;    != ! * k;     y= y   +   countstr(0, !) / length(!)
                    end   /*k*/
       return y/z</lang>
output   when using the default inputs:
     N     │       mean proportion of zeros in the (decimal) factorial products for  N
───────────┼────────────────────────────────────────────────────────────────────────────────
    100    │ 0.2467531861674322177784158871973526991129407033266153063813195937196095976...
   1,000   │ 0.2035445511031646356400438031711455302985741167890402203486699704599684047...
  10,000   │ 0.1730038482418660531800366428930706156810278809057883361518852958446868172...
───────────┴────────────────────────────────────────────────────────────────────────────────

Rust

Translation of: Phix

<lang rust>fn init_zc() -> Vec<usize> {

   let mut zc = vec![0; 1000];
   zc[0] = 3;
   for x in 1..=9 {
       zc[x] = 2;
       zc[10 * x] = 2;
       zc[100 * x] = 2;
       let mut y = 10;
       while y <= 90 {
           zc[y + x] = 1;
           zc[10 * y + x] = 1;
           zc[10 * (y + x)] = 1;
           y += 10;
       }
   }
   zc

}

fn main() {

   use std::time::Instant;
   let zc = init_zc();
   let t0 = Instant::now();
   let mut trail = 1;
   let mut first = 0;
   let mut total: f64 = 0.0;
   let mut rfs = vec![1];
   for f in 2..=50000 {
       let mut carry = 0;
       let mut d999: usize;
       let mut zeroes = (trail - 1) * 3;
       let len = rfs.len();
       let mut j = trail - 1;
       while j < len || carry != 0 {
           if j < len {
               carry += rfs[j] * f;
           }
           d999 = carry % 1000;
           if j < len {
               rfs[j] = d999;
           } else {
               rfs.push(d999);
           }
           zeroes += zc[d999];
           carry /= 1000;
           j += 1;
       }
       while rfs[trail - 1] == 0 {
           trail += 1;
       }
       d999 = rfs[rfs.len() - 1];
       d999 = if d999 < 100 {
           if d999 < 10 {
               2
           } else {
               1
           }
       } else {
           0
       };
       zeroes -= d999;
       let digits = rfs.len() * 3 - d999;
       total += (zeroes as f64) / (digits as f64);
       let ratio = total / (f as f64);
       if ratio >= 0.16 {
           first = 0;
       } else if first == 0 {
           first = f;
       }
       if f == 100 || f == 1000 || f == 10000 {
           let duration = t0.elapsed();
           println!(
               "Mean proportion of zero digits in factorials to {} is {:.10}. ({}ms)",
               f,
               ratio,
               duration.as_millis()
           );
       }
   }
   let duration = t0.elapsed();
   println!(
       "The mean proportion dips permanently below 0.16 at {}. ({}ms)",
       first,
       duration.as_millis()
   );

}</lang>

Output:
Mean proportion of zero digits in factorials to 100 is 0.2467531862. (0ms)
Mean proportion of zero digits in factorials to 1000 is 0.2035445511. (1ms)
Mean proportion of zero digits in factorials to 10000 is 0.1730038482. (149ms)
The mean proportion dips permanently below 0.16 at 47332. (4485ms)

Sidef

<lang ruby>func mean_factorial_digits(n, d = 0) {

   var v = 1
   var total = 0.float
   for k in (1..n) {
       v *= k
       total += v.digits.count(d)/v.len
   }
   total / n

}

say mean_factorial_digits(100) say mean_factorial_digits(1000) say mean_factorial_digits(10000)</lang>

Output:
0.246753186167432217778415887197352699112940703327
0.203544551103164635640043803171145530298574116789
0.173003848241866053180036642893070615681027880906

Wren

Brute force

Library: Wren-big
Library: Wren-fmt

Very slow indeed, 10.75 minutes to reach N = 10,000. <lang ecmascript>import "/big" for BigInt import "/fmt" for Fmt

var fact = BigInt.one var sum = 0 System.print("The mean proportion of zero digits in factorials up to the following are:") for (n in 1..10000) {

   fact = fact * n
   var bytes = fact.toString.bytes
   var digits = bytes.count
   var zeros  = bytes.count { |b| b == 48 }
   sum = sum + zeros / digits
   if (n == 100 || n == 1000 || n == 10000) {
       Fmt.print("$,6d = $12.10f", n, sum / n)
   }

}</lang>

Output:
The mean proportion of zero digits in factorials up to the following are:
   100 = 0.2467531862
 1,000 = 0.2035445511
10,000 = 0.1730038482


'String math' and base 1000

Translation of: Phix

Around 60 times faster than before with 10,000 now being reached in about 10.5 seconds. Even the stretch goal is now viable and comes in at 5 minutes 41 seconds. <lang ecmascript>import "/fmt" for Fmt

var rfs = [1] // reverse factorial(1) in base 1000

var init = Fn.new { |zc|

   for (x in 1..9) {
       zc[x-1] = 2         // 00x
       zc[10*x - 1] = 2    // 0x0
       zc[100*x - 1] = 2   // x00
       var y = 10
       while (y <= 90) {
           zc[y + x - 1] = 1       // 0yx
           zc[10*y + x - 1] = 1    // y0x
           zc[10*(y + x) - 1] = 1  // yx0
           y = y + 10
       }
   }

}

var zc = List.filled(999, 0) init.call(zc) var total = 0 var trail = 1 var first = 0 var firstRatio = 0 System.print("The mean proportion of zero digits in factorials up to the following are:") for (f in 2..50000) {

   var carry = 0
   var d999 = 0
   var zeros = (trail-1) * 3
   var j = trail
   var l = rfs.count
   while (j <= l || carry != 0) {
       if (j <= l) carry = rfs[j-1]*f + carry
       d999 = carry % 1000
       if (j <= l) {
           rfs[j-1] = d999
       } else {
           rfs.add(d999)
       }
       zeros = zeros + ((d999 == 0) ? 3 : zc[d999-1])
       carry = (carry/1000).floor
       j = j + 1
   }
   while (rfs[trail-1] == 0) trail = trail + 1
   // d999 = quick correction for length and zeros
   d999 = rfs[-1]
   d999 = (d999 < 100) ? ((d999 < 10) ? 2 : 1) : 0
   zeros = zeros - d999
   var digits = rfs.count * 3 - d999
   total = total + zeros/digits
   var ratio =  total / f
   if (ratio >= 0.16) {
       first = 0
       firstRatio = 0
   } else if (first == 0) {
       first = f
       firstRatio = ratio
   }
   if (f == 100 || f == 1000 || f == 10000) {
       Fmt.print("$,6d = $12.10f", f, ratio)
   }

} Fmt.write("$,6d = $12.10f", first, firstRatio) System.print(" (stays below 0.16 after this)") Fmt.print("$,6d = $12.10f", 50000, total/50000)</lang>

Output:
The mean proportion of zero digits in factorials up to the following are:
   100 = 0.2467531862
 1,000 = 0.2035445511
10,000 = 0.1730038482
47,332 = 0.1599999958 (stays below 0.16 after this)
50,000 = 0.1596200546