Cyclotomic polynomial

From Rosetta Code
Task
Cyclotomic polynomial
You are encouraged to solve this task according to the task description, using any language you may know.

The nth Cyclotomic polynomial, for any positive integer n, is the unique irreducible polynomial of largest degree with integer coefficients that is a divisor of x^n − 1, and is not a divisor of x^k − 1 for any k < n.


Task
  • Find and print the first 30 cyclotomic polynomials.
  • Find and print the order of the first 10 cyclotomic polynomials that have n or -n as a coefficient.


See also
  • Wikipedia article, Cyclotomic polynomial, showing ways to calculate them.
  • The sequence A013594 with the smallest order of cyclotomic polynomial containing n or -n as a coefficient.

C++

Translation of: Java

<lang cpp>#include <algorithm>

  1. include <iostream>
  2. include <initializer_list>
  3. include <map>
  4. include <vector>

const int MAX_ALL_FACTORS = 100'000; const int algorithm = 2; int divisions = 0;

//Note: Cyclotomic Polynomials have small coefficients. Not appropriate for general polynomial usage. class Term { private:

   long m_coefficient;
   long m_exponent;

public:

   Term(long c, long e) : m_coefficient(c), m_exponent(e) {
       // empty
   }
   Term(const Term &t) : m_coefficient(t.m_coefficient), m_exponent(t.m_exponent) {
       // empty
   }
   long coefficient() const {
       return m_coefficient;
   }
   long degree() const {
       return m_exponent;
   }
   Term operator -() const {
       return { -m_coefficient, m_exponent };
   }
   Term operator *(const Term &rhs) const {
       return { m_coefficient * rhs.m_coefficient, m_exponent + rhs.m_exponent };
   }
   Term operator +(const Term &rhs) const {
       if (m_exponent != rhs.m_exponent) {
           throw std::runtime_error("Exponents not equal");
       }
       return { m_coefficient + rhs.m_coefficient, m_exponent };
   }
   friend std::ostream &operator<<(std::ostream &, const Term &);

};

std::ostream &operator<<(std::ostream &os, const Term &t) {

   if (t.m_coefficient == 0) {
       return os << '0';
   }
   if (t.m_exponent == 0) {
       return os << t.m_coefficient;
   }
   if (t.m_coefficient == 1) {
       if (t.m_exponent == 1) {
           return os << 'x';
       }
       return os << "x^" << t.m_exponent;
   }
   if (t.m_coefficient == -1) {
       if (t.m_exponent == 1) {
           return os << "-x";
       }
       return os << "-x^" << t.m_exponent;
   }
   if (t.m_exponent == 1) {
       return os << t.m_coefficient << 'x';
   }
   return os << t.m_coefficient << "x^" << t.m_exponent;

}

class Polynomial { public:

   std::vector<Term> polynomialTerms;
   Polynomial() {
       polynomialTerms.push_back({ 0, 0 });
   }
   Polynomial(std::initializer_list<int> values) {
       if (values.size() % 2 != 0) {
           throw std::runtime_error("Length must be even.");
       }
       bool ready = false;
       long t;
       for (auto v : values) {
           if (ready) {
               polynomialTerms.push_back({ t, v });
           } else {
               t = v;
           }
           ready = !ready;
       }
       std::sort(
           polynomialTerms.begin(), polynomialTerms.end(),
           [](const Term &t, const Term &u) {
               return u.degree() < t.degree();
           }
       );
   }
   Polynomial(const std::vector<Term> &termList) {
       if (termList.size() == 0) {
           polynomialTerms.push_back({ 0, 0 });
       } else {
           for (auto t : termList) {
               if (t.coefficient() != 0) {
                   polynomialTerms.push_back(t);
               }
           }
           if (polynomialTerms.size() == 0) {
               polynomialTerms.push_back({ 0, 0 });
           }
           std::sort(
               polynomialTerms.begin(), polynomialTerms.end(),
               [](const Term &t, const Term &u) {
                   return u.degree() < t.degree();
               }
           );
       }
   }
   Polynomial(const Polynomial &p) : Polynomial(p.polynomialTerms) {
       // empty
   }
   long leadingCoefficient() const {
       return polynomialTerms[0].coefficient();
   }
   long degree() const {
       return polynomialTerms[0].degree();
   }
   bool hasCoefficientAbs(int coeff) {
       for (auto term : polynomialTerms) {
           if (abs(term.coefficient()) == coeff) {
               return true;
           }
       }
       return false;
   }
   Polynomial operator+(const Term &term) const {
       std::vector<Term> termList;
       bool added = false;
       for (size_t index = 0; index < polynomialTerms.size(); index++) {
           auto currentTerm = polynomialTerms[index];
           if (currentTerm.degree() == term.degree()) {
               added = true;
               if (currentTerm.coefficient() + term.coefficient() != 0) {
                   termList.push_back(currentTerm + term);
               }
           } else {
               termList.push_back(currentTerm);
           }
       }
       if (!added) {
           termList.push_back(term);
       }
       return Polynomial(termList);
   }
   Polynomial operator*(const Term &term) const {
       std::vector<Term> termList;
       for (size_t index = 0; index < polynomialTerms.size(); index++) {
           auto currentTerm = polynomialTerms[index];
           termList.push_back(currentTerm * term);
       }
       return Polynomial(termList);
   }
   Polynomial operator+(const Polynomial &p) const {
       std::vector<Term> termList;
       int thisCount = polynomialTerms.size();
       int polyCount = p.polynomialTerms.size();
       while (thisCount > 0 || polyCount > 0) {
           if (thisCount == 0) {
               auto polyTerm = p.polynomialTerms[polyCount - 1];
               termList.push_back(polyTerm);
               polyCount--;
           } else if (polyCount == 0) {
               auto thisTerm = polynomialTerms[thisCount - 1];
               termList.push_back(thisTerm);
               thisCount--;
           } else {
               auto polyTerm = p.polynomialTerms[polyCount - 1];
               auto thisTerm = polynomialTerms[thisCount - 1];
               if (thisTerm.degree() == polyTerm.degree()) {
                   auto t = thisTerm + polyTerm;
                   if (t.coefficient() != 0) {
                       termList.push_back(t);
                   }
                   thisCount--;
                   polyCount--;
               } else if (thisTerm.degree() < polyTerm.degree()) {
                   termList.push_back(thisTerm);
                   thisCount--;
               } else {
                   termList.push_back(polyTerm);
                   polyCount--;
               }
           }
       }
       return Polynomial(termList);
   }
   Polynomial operator/(const Polynomial &v) {
       divisions++;
       Polynomial q;
       Polynomial r(*this);
       long lcv = v.leadingCoefficient();
       long dv = v.degree();
       while (r.degree() >= v.degree()) {
           long lcr = r.leadingCoefficient();
           long s = lcr / lcv;
           Term term(s, r.degree() - dv);
           q = q + term;
           r = r + v * -term;
       }
       return q;
   }
   friend std::ostream &operator<<(std::ostream &, const Polynomial &);

};

std::ostream &operator<<(std::ostream &os, const Polynomial &p) {

   auto it = p.polynomialTerms.cbegin();
   auto end = p.polynomialTerms.cend();
   if (it != end) {
       os << *it;
       it = std::next(it);
   }
   while (it != end) {
       if (it->coefficient() > 0) {
           os << " + " << *it;
       } else {
           os << " - " << -*it;
       }
       it = std::next(it);
   }
   return os;

}

std::vector<int> getDivisors(int number) {

   std::vector<int> divisiors;
   long root = (long)sqrt(number);
   for (int i = 1; i <= root; i++) {
       if (number % i == 0) {
           divisiors.push_back(i);
           int div = number / i;
           if (div != i && div != number) {
               divisiors.push_back(div);
           }
       }
   }
   return divisiors;

}

std::map<int, std::map<int, int>> allFactors;

std::map<int, int> getFactors(int number) {

   if (allFactors.find(number) != allFactors.end()) {
       return allFactors[number];
   }
   std::map<int, int> factors;
   if (number % 2 == 0) {
       auto factorsDivTwo = getFactors(number / 2);
       factors.insert(factorsDivTwo.begin(), factorsDivTwo.end());
       if (factors.find(2) != factors.end()) {
           factors[2]++;
       } else {
           factors.insert(std::make_pair(2, 1));
       }
       if (number < MAX_ALL_FACTORS) {
           allFactors.insert(std::make_pair(number, factors));
       }
       return factors;
   }
   long root = (long)sqrt(number);
   long i = 3;
   while (i <= root) {
       if (number % i == 0) {
           auto factorsDivI = getFactors(number / i);
           factors.insert(factorsDivI.begin(), factorsDivI.end());
           if (factors.find(i) != factors.end()) {
               factors[i]++;
           } else {
               factors.insert(std::make_pair(i, 1));
           }
           if (number < MAX_ALL_FACTORS) {
               allFactors.insert(std::make_pair(number, factors));
           }
           return factors;
       }
       i += 2;
   }
   factors.insert(std::make_pair(number, 1));
   if (number < MAX_ALL_FACTORS) {
       allFactors.insert(std::make_pair(number, factors));
   }
   return factors;

}

std::map<int, Polynomial> COMPUTED; Polynomial cyclotomicPolynomial(int n) {

   if (COMPUTED.find(n) != COMPUTED.end()) {
       return COMPUTED[n];
   }
   if (n == 1) {
       // Polynomial: x - 1
       Polynomial p({ 1, 1, -1, 0 });
       COMPUTED.insert(std::make_pair(1, p));
       return p;
   }
   auto factors = getFactors(n);
   if (factors.find(n) != factors.end()) {
       // n prime
       std::vector<Term> termList;
       for (int index = 0; index < n; index++) {
           termList.push_back({ 1, index });
       }
       Polynomial cyclo(termList);
       COMPUTED.insert(std::make_pair(n, cyclo));
       return cyclo;
   } else if (factors.size() == 2 && factors.find(2) != factors.end() && factors[2] == 1 && factors.find(n / 2) != factors.end() && factors[n / 2] == 1) {
       // n = 2p
       int prime = n / 2;
       std::vector<Term> termList;
       int coeff = -1;
       for (int index = 0; index < prime; index++) {
           coeff *= -1;
           termList.push_back({ coeff, index });
       }
       Polynomial cyclo(termList);
       COMPUTED.insert(std::make_pair(n, cyclo));
       return cyclo;
   } else if (factors.size() == 1 && factors.find(2) != factors.end()) {
       // n = 2^h
       int h = factors[2];
       std::vector<Term> termList;
       termList.push_back({ 1, (int)pow(2, h - 1) });
       termList.push_back({ 1, 0 });
       Polynomial cyclo(termList);
       COMPUTED.insert(std::make_pair(n, cyclo));
       return cyclo;
   } else if (factors.size() == 1 && factors.find(n) != factors.end()) {
       // n = p^k
       int p = 0;
       int k = 0;
       for (auto iter = factors.begin(); iter != factors.end(); ++iter) {
           p = iter->first;
           k = iter->second;
       }
       std::vector<Term> termList;
       for (int index = 0; index < p; index++) {
           termList.push_back({ 1, index * (int)pow(p, k - 1) });
       }
       Polynomial cyclo(termList);
       COMPUTED.insert(std::make_pair(n, cyclo));
       return cyclo;
   } else if (factors.size() == 2 && factors.find(2) != factors.end()) {
       // n = 2^h * p^k
       int p = 0;
       for (auto iter = factors.begin(); iter != factors.end(); ++iter) {
           if (iter->first != 2) {
               p = iter->first;
           }
       }
       std::vector<Term> termList;
       int coeff = -1;
       int twoExp = (int)pow(2, factors[2] - 1);
       int k = factors[p];
       for (int index = 0; index < p; index++) {
           coeff *= -1;
           termList.push_back({ coeff, index * twoExp * (int)pow(p, k - 1) });
       }
       Polynomial cyclo(termList);
       COMPUTED.insert(std::make_pair(n, cyclo));
       return cyclo;
   } else if (factors.find(2) != factors.end() && ((n / 2) % 2 == 1) && (n / 2) > 1) {
       //  CP(2m)[x] = CP(-m)[x], n odd integer > 1
       auto cycloDiv2 = cyclotomicPolynomial(n / 2);
       std::vector<Term> termList;
       for (auto term : cycloDiv2.polynomialTerms) {
           if (term.degree() % 2 == 0) {
               termList.push_back(term);
           } else {
               termList.push_back(-term);
           }
       }
       Polynomial cyclo(termList);
       COMPUTED.insert(std::make_pair(n, cyclo));
       return cyclo;
   }
   // General Case
   if (algorithm == 0) {
       // slow - uses basic definition
       auto divisors = getDivisors(n);
       // Polynomial: (x^n - 1)
       Polynomial cyclo({ 1, n, -1, 0 });
       for (auto i : divisors) {
           auto p = cyclotomicPolynomial(i);
           cyclo = cyclo / p;
       }
       COMPUTED.insert(std::make_pair(n, cyclo));
       return cyclo;
   } else if (algorithm == 1) {
       //  Faster.  Remove Max divisor (and all divisors of max divisor) - only one divide for all divisors of Max Divisor
       auto divisors = getDivisors(n);
       int maxDivisor = INT_MIN;
       for (auto div : divisors) {
           maxDivisor = std::max(maxDivisor, div);
       }
       std::vector<int> divisorExceptMax;
       for (auto div : divisors) {
           if (maxDivisor % div != 0) {
               divisorExceptMax.push_back(div);
           }
       }
       //  Polynomial:  ( x^n - 1 ) / ( x^m - 1 ), where m is the max divisor
       auto cyclo = Polynomial({ 1, n, -1, 0 }) / Polynomial({ 1, maxDivisor, -1, 0 });
       for (int i : divisorExceptMax) {
           auto p = cyclotomicPolynomial(i);
           cyclo = cyclo / p;
       }
       COMPUTED.insert(std::make_pair(n, cyclo));
       return cyclo;
   } else if (algorithm == 2) {
       //  Fastest
       //  Let p ; q be primes such that p does not divide n, and q q divides n.
       //  Then CP(np)[x] = CP(n)[x^p] / CP(n)[x]
       int m = 1;
       auto cyclo = cyclotomicPolynomial(m);
       std::vector<int> primes;
       for (auto iter = factors.begin(); iter != factors.end(); ++iter) {
           primes.push_back(iter->first);
       }
       std::sort(primes.begin(), primes.end());
       for (auto prime : primes) {
           //  CP(m)[x]
           auto cycloM = cyclo;
           //  Compute CP(m)[x^p].
           std::vector<Term> termList;
           for (auto t : cycloM.polynomialTerms) {
               termList.push_back({ t.coefficient(), t.degree() * prime });
           }
           cyclo = Polynomial(termList) / cycloM;
           m = m * prime;
       }
       //  Now, m is the largest square free divisor of n
       int s = n / m;
       //  Compute CP(n)[x] = CP(m)[x^s]
       std::vector<Term> termList;
       for (auto t : cyclo.polynomialTerms) {
           termList.push_back({ t.coefficient(), t.degree() * s });
       }
       cyclo = Polynomial(termList);
       COMPUTED.insert(std::make_pair(n, cyclo));
       return cyclo;
   } else {
       throw std::runtime_error("Invalid algorithm");
   }

}

int main() {

   // initialization
   std::map<int, int> factors;
   factors.insert(std::make_pair(2, 1));
   allFactors.insert(std::make_pair(2, factors));
   // rest of main
   std::cout << "Task 1:  cyclotomic polynomials for n <= 30:\n";
   for (int i = 1; i <= 30; i++) {
       auto p = cyclotomicPolynomial(i);
       std::cout << "CP[" << i << "] = " << p << '\n';
   }
   std::cout << "Task 2:  Smallest cyclotomic polynomial with n or -n as a coefficient:\n";
   int n = 0;
   for (int i = 1; i <= 10; i++) {
       while (true) {
           n++;
           auto cyclo = cyclotomicPolynomial(n);
           if (cyclo.hasCoefficientAbs(i)) {
               std::cout << "CP[" << n << "] has coefficient with magnitude = " << i << '\n';
               n--;
               break;
           }
       }
   }
   return 0;

}</lang>

Output:
Task 1:  cyclotomic polynomials for n <= 30:
CP[1] = x - 1
CP[2] = x + 1
CP[3] = x^2 + x + 1
CP[4] = x^2 + 1
CP[5] = x^4 + x^3 + x^2 + x + 1
CP[6] = x^2 - x + 1
CP[7] = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[8] = x^4 + 1
CP[9] = x^6 + x^3 + 1
CP[10] = x^4 - x^3 + x^2 - x + 1
CP[11] = x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[12] = x^4 - x^2 + 1
CP[13] = x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[14] = x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[15] = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1
CP[16] = x^8 + 1
CP[17] = x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[18] = x^6 - x^3 + 1
CP[19] = x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[20] = x^8 - x^6 + x^4 - x^2 + 1
CP[21] = x^12 - x^11 + x^9 - x^8 + x^6 - x^4 + x^3 - x + 1
CP[22] = x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[23] = x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[24] = x^8 - x^4 + 1
CP[25] = x^20 + x^15 + x^10 + x^5 + 1
CP[26] = x^12 - x^11 + x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[27] = x^18 + x^9 + 1
CP[28] = x^12 - x^10 + x^8 - x^6 + x^4 - x^2 + 1
CP[29] = x^28 + x^27 + x^26 + x^25 + x^24 + x^23 + x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[30] = x^8 + x^7 - x^5 - x^4 - x^3 + x + 1

Task 2:  Smallest cyclotomic polynomial with n or -n as a coefficient:
CP[1] has coefficient with magnitude = 1
CP[105] has coefficient with magnitude = 2
CP[385] has coefficient with magnitude = 3
CP[1365] has coefficient with magnitude = 4
CP[1785] has coefficient with magnitude = 5
CP[2805] has coefficient with magnitude = 6
CP[3135] has coefficient with magnitude = 7
CP[6545] has coefficient with magnitude = 8
CP[6545] has coefficient with magnitude = 9
CP[10465] has coefficient with magnitude = 10

C#

Translation of: Java
Works with: C sharp version 8

<lang csharp>using System; using System.Collections; using System.Collections.Generic; using System.Linq; using IntMap = System.Collections.Generic.Dictionary<int, int>;

public static class CyclotomicPolynomial {

   public static void Main2() {
       Console.WriteLine("Task 1: Cyclotomic polynomials for n <= 30:");
       for (int i = 1; i <= 30; i++) {
           var p = GetCyclotomicPolynomial(i);
           Console.WriteLine($"CP[{i}] = {p.ToString()}");
       }
       Console.WriteLine();
       Console.WriteLine("Task 2: Smallest cyclotomic polynomial with n or -n as a coefficient:");
       for (int i = 1, n = 0; i <= 10; i++) {
           while (true) {
               n++;
               var p = GetCyclotomicPolynomial(n);
               if (p.Any(t => Math.Abs(t.Coefficient) == i)) {
                   Console.WriteLine($"CP[{n}] has coefficient with magnitude = {i}");
                   n--;
                   break;
               }
           }
       }
   }
   private const int MaxFactors = 100_000;
   private const int Algorithm = 2;
   private static readonly Term x = new Term(1, 1);
   private static readonly Dictionary<int, Polynomial> polyCache =
       new Dictionary<int, Polynomial> { [1] = x - 1 };
   private static readonly Dictionary<int, IntMap> factorCache =
       new Dictionary<int, IntMap> { [2] = new IntMap { [2] = 1 } };
   private static Polynomial GetCyclotomicPolynomial(in int n) {
       if (polyCache.TryGetValue(n, out var result)) return result;
       var factors = GetFactors(n);
       if (factors.ContainsKey(n)) { //n is prime
           result = new Polynomial(from exp in ..n select x[exp]);
       } else if (factors.Count == 2 && factors.Contains(2, 1) && factors.Contains(n/2, 1)) { //n = 2p
           result = new Polynomial(from i in ..(n/2) select (IsOdd(i) ? -x : x)[i]);
       } else if (factors.Count == 1 && factors.TryGetValue(2, out int h)) { //n = 2^h
           result = x[1<<(h-1)] + 1;
       } else if (factors.Count == 1 && !factors.ContainsKey(n)) { // n = p^k
           (int p, int k) = factors.First();
           result = new Polynomial(from i in ..p select x[i * (int)Math.Pow(p, k-1)]);
       } else if (factors.Count == 2 && factors.ContainsKey(2)) { //n = 2^h * p^k
           (int p, int k) = factors.First(entry => entry.Key != 2);
           int twoExp = 1 << (factors[2] - 1);
           result = new Polynomial(from i in ..p select (IsOdd(i) ? -x : x)[i * twoExp * (int)Math.Pow(p, k-1)]);
       } else if (factors.ContainsKey(2) && IsOdd(n/2) && n/2 > 1) { // CP(2m)[x] = CP[-m][x], n is odd > 1
           Polynomial cycloDiv2 = GetCyclotomicPolynomial(n/2);
           result = new Polynomial(from term in cycloDiv2 select IsOdd(term.Exponent) ? -term : term);
           #pragma warning disable CS0162
       } else if (Algorithm == 0) {
           var divisors = GetDivisors(n);
           result = x[n] - 1;
           foreach (int d in divisors) result /= GetCyclotomicPolynomial(d);
       } else if (Algorithm == 1) {
           var divisors = GetDivisors(n).ToList();
           int maxDivisor = divisors.Max();
           result = (x[n] - 1) / (x[maxDivisor] - 1);
           foreach (int d in divisors.Where(div => maxDivisor % div == 0)) {
               result /= GetCyclotomicPolynomial(d);
           }
       } else if (Algorithm == 2) {
           int m = 1;
           result = GetCyclotomicPolynomial(m);
           var primes = factors.Keys.ToList();
           primes.Sort();
           foreach (int prime in primes) {
               var cycloM = result;
               result = new Polynomial(from term in cycloM select term.Coefficient * x[term.Exponent * prime]);
               result /= cycloM;
               m *= prime;
           }
           int s = n / m;
           result = new Polynomial(from term in result select term.Coefficient * x[term.Exponent * s]);
           #pragma warning restore CS0162
       } else {
           throw new InvalidOperationException("Invalid algorithm");
       }
       polyCache[n] = result;
       return result;
   }
   private static bool IsOdd(int i) => (i & 1) != 0;
   private static bool Contains(this IntMap map, int key, int value) => map.TryGetValue(key, out int v) && v == value;
   private static int GetOrZero(this IntMap map, int key) => map.TryGetValue(key, out int v) ? v : 0;
   private static IEnumerable<T> Select<T>(this Range r, Func<int, T> f) => Enumerable.Range(r.Start.Value, r.End.Value - r.Start.Value).Select(f);
   private static IntMap GetFactors(in int n) {
       if (factorCache.TryGetValue(n, out var factors)) return factors;
       factors = new IntMap();
       if (!IsOdd(n)) {
           foreach (var entry in GetFactors(n/2)) factors.Add(entry.Key, entry.Value);
           factors[2] = factors.GetOrZero(2) + 1;
           return Cache(n, factors);
       }
       for (int i = 3; i * i <= n; i+=2) {
           if (n % i == 0) {
               foreach (var entry in GetFactors(n/i)) factors.Add(entry.Key, entry.Value);
               factors[i] = factors.GetOrZero(i) + 1;
               return Cache(n, factors);
           }
       }
       factors[n] = 1;
       return Cache(n, factors);
   }
   private static IntMap Cache(int n, IntMap factors) {
       if (n < MaxFactors) factorCache[n] = factors;
       return factors;
   }
   private static IEnumerable<int> GetDivisors(int n) {
       for (int i = 1; i * i <= n; i++) {
           if (n % i == 0) {
               yield return i;
               int div = n / i;
               if (div != i && div != n) yield return div;
           }
       }
   }
   public sealed class Polynomial : IEnumerable<Term>
   {
       public Polynomial() { }
       public Polynomial(params Term[] terms) : this(terms.AsEnumerable()) { }
       public Polynomial(IEnumerable<Term> terms) {
           Terms.AddRange(terms);
           Simplify();
       }
       private List<Term>? terms;
       private List<Term> Terms => terms ??= new List<Term>();
       public int Count => terms?.Count ?? 0;
       public int Degree => Count == 0 ? -1 : Terms[0].Exponent;
       public int LeadingCoefficient => Count == 0 ? 0 : Terms[0].Coefficient;
       public IEnumerator<Term> GetEnumerator() => Terms.GetEnumerator();
       IEnumerator IEnumerable.GetEnumerator() => GetEnumerator();
       public override string ToString() => Count == 0 ? "0" : string.Join(" + ", Terms).Replace("+ -", "- ");
       public static Polynomial operator *(Polynomial p, Term t) => new Polynomial(from s in p select s * t);
       public static Polynomial operator +(Polynomial p, Polynomial q) => new Polynomial(p.Terms.Concat(q.Terms));
       public static Polynomial operator -(Polynomial p, Polynomial q) => new Polynomial(p.Terms.Concat(q.Terms.Select(t => -t)));
       public static Polynomial operator *(Polynomial p, Polynomial q) => new Polynomial(from s in p from t in q select s * t);
       public static Polynomial operator /(Polynomial p, Polynomial q) => p.Divide(q).quotient;
       public (Polynomial quotient, Polynomial remainder) Divide(Polynomial divisor) {
           if (Degree < 0) return (new Polynomial(), this);
           Polynomial quotient = new Polynomial();
           Polynomial remainder = this;
           int lcv = divisor.LeadingCoefficient;
           int dv = divisor.Degree;
           while (remainder.Degree >= divisor.Degree) {
               int lcr = remainder.LeadingCoefficient;
               Term div = new Term(lcr / lcv, remainder.Degree - dv);
               quotient.Terms.Add(div);
               remainder += divisor * -div;
           }
           quotient.Simplify();
           remainder.Simplify();
           return (quotient, remainder);
       }
       private void Simplify() {
           if (Count < 2) return;
           Terms.Sort((a, b) => -a.CompareTo(b));
           for (int i = Terms.Count - 1; i > 0; i--) {
               Term s = Terms[i-1];
               Term t = Terms[i];
               if (t.Exponent == s.Exponent) {
                   Terms[i-1] = new Term(s.Coefficient + t.Coefficient, s.Exponent);
                   Terms.RemoveAt(i);
               }
           }
           Terms.RemoveAll(t => t.IsZero);
       }
   }
   
   public readonly struct Term : IEquatable<Term>, IComparable<Term>
   {
       public Term(int coefficient, int exponent = 0) => (Coefficient, Exponent) = (coefficient, exponent);
       public Term this[int exponent] => new Term(Coefficient, exponent); //Using x[exp] because x^exp has low precedence
       public int Coefficient { get; }
       public int Exponent { get; }
       public bool IsZero => Coefficient == 0;
       public static Polynomial operator +(Term left, Term right) => new Polynomial(left, right);
       public static Polynomial operator -(Term left, Term right) => new Polynomial(left, -right);
       public static implicit operator Term(int coefficient) => new Term(coefficient);
       public static Term operator -(Term t) => new Term(-t.Coefficient, t.Exponent);
       public static Term operator *(Term left, Term right) => new Term(left.Coefficient * right.Coefficient, left.Exponent + right.Exponent);
       public static bool operator ==(Term left, Term right) => left.Equals(right);
       public static bool operator !=(Term left, Term right) => !left.Equals(right);
       public static bool operator  <(Term left, Term right) => left.CompareTo(right)  < 0;
       public static bool operator  >(Term left, Term right) => left.CompareTo(right)  > 0;
       public static bool operator <=(Term left, Term right) => left.CompareTo(right) <= 0;
       public static bool operator >=(Term left, Term right) => left.CompareTo(right) >= 0;
       public bool Equals(Term other) => Exponent == other.Exponent && Coefficient == other.Coefficient;
       public override bool Equals(object? obj) => obj is Term t && Equals(t);
       public override int GetHashCode() => Coefficient.GetHashCode() * 31 + Exponent.GetHashCode();
       public int CompareTo(Term other) {
           int c = Exponent.CompareTo(other.Exponent);
           if (c != 0) return c;
           return Coefficient.CompareTo(other.Coefficient);
       }
       public override string ToString() => (Coefficient, Exponent) switch {
           (0,  _) => "0",
           (_,  0) => $"{Coefficient}",
           (1,  1) => "x",
           (-1, 1) => "-x",
           (_,  1) => $"{Coefficient}x",
           (1,  _) => $"x^{Exponent}",
           (-1, _) => $"-x^{Exponent}",
                   _ => $"{Coefficient}x^{Exponent}"
       };
   }

}</lang>

Output:
Task 1: Cyclotomic polynomials for n <= 30:
CP[1] = x - 1
CP[2] = x + 1
CP[3] = x^2 + x + 1
CP[4] = x^2 + 1
CP[5] = x^4 + x^3 + x^2 + x + 1
CP[6] = x^2 - x + 1
CP[7] = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[8] = x^4 + 1
CP[9] = x^6 + x^3 + 1
CP[10] = x^4 - x^3 + x^2 - x + 1
CP[11] = x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[12] = x^4 - x^2 + 1
CP[13] = x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[14] = x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[15] = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1
CP[16] = x^8 + 1
CP[17] = x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[18] = x^6 - x^3 + 1
CP[19] = x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[20] = x^8 - x^6 + x^4 - x^2 + 1
CP[21] = x^12 - x^11 + x^9 - x^8 + x^6 - x^4 + x^3 - x + 1
CP[22] = x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[23] = x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[24] = x^8 - x^4 + 1
CP[25] = x^20 + x^15 + x^10 + x^5 + 1
CP[26] = x^12 - x^11 + x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[27] = x^18 + x^9 + 1
CP[28] = x^12 - x^10 + x^8 - x^6 + x^4 - x^2 + 1
CP[29] = x^28 + x^27 + x^26 + x^25 + x^24 + x^23 + x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[30] = x^8 + x^7 - x^5 - x^4 - x^3 + x + 1

Task 2: Smallest cyclotomic polynomial with n or -n as a coefficient:
CP[1] has coefficient with magnitude = 1
CP[105] has coefficient with magnitude = 2
CP[385] has coefficient with magnitude = 3
CP[1365] has coefficient with magnitude = 4
CP[1785] has coefficient with magnitude = 5
CP[2805] has coefficient with magnitude = 6
CP[3135] has coefficient with magnitude = 7
CP[6545] has coefficient with magnitude = 8
CP[6545] has coefficient with magnitude = 9
CP[10465] has coefficient with magnitude = 10

D

Translation of: Kotlin

<lang d>import std.algorithm; import std.exception; import std.format; import std.functional; import std.math; import std.range; import std.stdio;

immutable MAX_ALL_FACTORS = 100_000; immutable ALGORITHM = 2;

//Note: Cyclotomic Polynomials have small coefficients. Not appropriate for general polynomial usage.

struct Term {

   private long m_coefficient;
   private long m_exponent;
   public this(long c, long e) {
       m_coefficient = c;
       m_exponent = e;
   }
   public long coefficient() const {
       return m_coefficient;
   }
   public long exponent() const {
       return m_exponent;
   }
   public Term opUnary(string op)() const {
       static if (op == "-") {
           return Term(-m_coefficient, m_exponent);
       } else {
           assert(false, "Not implemented");
       }
   }
   public Term opBinary(string op)(Term term) const {
       static if (op == "+") {
           if (exponent() != term.exponent()) {
               assert(false, "Error 102: Exponents not equals.");
           }
           return Term(coefficient() + term.coefficient(), exponent());
       } else if (op == "*") {
           return Term(coefficient() * term.coefficient(), exponent() + term.exponent());
       } else {
           assert(false, "Not implemented: " ~ op);
       }
   }
   public void toString(scope void delegate(const(char)[]) sink) const {
       auto spec = singleSpec("%s");
       if (m_coefficient == 0) {
           sink("0");
       } else if (m_exponent == 0) {
           formatValue(sink, m_coefficient, spec);
       } else if (m_coefficient == 1) {
           if (m_exponent == 1) {
               sink("x");
           } else {
               sink("x^");
               formatValue(sink, m_exponent, spec);
           }
       } else if (m_coefficient == -1) {
           if (m_exponent == 1) {
               sink("-x");
           } else {
               sink("-x^");
               formatValue(sink, m_exponent, spec);
           }
       } else if (m_exponent == 1) {
           formatValue(sink, m_coefficient, spec);
           sink("x");
       } else {
           formatValue(sink, m_coefficient, spec);
           sink("x^");
           formatValue(sink, m_exponent, spec);
       }
   }

}

struct Polynomial {

   private Term[] terms;
   public this(const Term[] ts...) {
       terms = ts.dup;
       terms.sort!"b.exponent < a.exponent";
   }
   bool hasCoefficientAbs(int coeff) const {
       foreach (term; terms) {
           if (abs(term.coefficient) == coeff) {
               return true;
           }
       }
       return false;
   }
   public long leadingCoefficient() const {
       return terms[0].coefficient();
   }
   public long degree() const {
       if (terms.empty) {
           return -1;
       }
       return terms[0].exponent();
   }
   public Polynomial opBinary(string op)(Term term) const {
       static if (op == "+") {
           Term[] newTerms;
           auto added = false;
           foreach (currentTerm; terms) {
               if (currentTerm.exponent() == term.exponent()) {
                   added = true;
                   if (currentTerm.coefficient() + term.coefficient() != 0) {
                       newTerms ~= currentTerm + term;
                   }
               } else {
                   newTerms ~= currentTerm;
               }
           }
           if (!added) {
               newTerms ~= term;
           }
           return Polynomial(newTerms);
       } else if (op == "*") {
           Term[] newTerms;
           foreach (currentTerm; terms) {
               newTerms ~= currentTerm * term;
           }
           return Polynomial(newTerms);
       } else {
           assert(false, "Not implemented: " ~ op);
       }
   }
   public Polynomial opBinary(string op)(Polynomial rhs) const {
       static if (op == "+") {
           Term[] newTerms;
           auto thisCount = terms.length;
           auto polyCount = rhs.terms.length;
           while (thisCount > 0 || polyCount > 0) {
               if (thisCount == 0) {
                   newTerms ~= rhs.terms[polyCount - 1];
                   polyCount--;
               } else if (polyCount == 0) {
                   newTerms ~= terms[thisCount - 1];
                   thisCount--;
               } else {
                   auto thisTerm = terms[thisCount - 1];
                   auto polyTerm = rhs.terms[polyCount - 1];
                   if (thisTerm.exponent() == polyTerm.exponent()) {
                       auto t = thisTerm + polyTerm;
                       if (t.coefficient() != 0) {
                           newTerms ~= t;
                       }
                       thisCount--;
                       polyCount--;
                   } else if (thisTerm.exponent() < polyTerm.exponent()) {
                       newTerms ~= thisTerm;
                       thisCount--;
                   } else {
                       newTerms ~= polyTerm;
                       polyCount--;
                   }
               }
           }
           return Polynomial(newTerms);
       } else if (op == "/") {
           Polynomial q;
           auto r = Polynomial(terms);
           auto lcv = rhs.leadingCoefficient();
           auto dv = rhs.degree();
           while (r.degree() >= rhs.degree()) {
               auto lcr = r.leadingCoefficient();
               auto s = lcr / lcv;
               auto term = Term(s, r.degree() - dv);
               q = q + term;
               r = r + rhs * -term;
           }
           return q;
       } else {
           assert(false, "Not implemented: " ~ op);
       }
   }
   public int opApply(int delegate(Term) dg) const {
       foreach (term; terms) {
           auto rv = dg(term);
           if (rv != 0) {
               return rv;
           }
       }
       return 0;
   }
   public void toString(scope void delegate(const(char)[]) sink) const {
       auto spec = singleSpec("%s");
       if (!terms.empty) {
           formatValue(sink, terms[0], spec);
           foreach (t; terms[1..$]) {
               if (t.coefficient > 0) {
                   sink(" + ");
                   formatValue(sink, t, spec);
               } else {
                   sink(" - ");
                   formatValue(sink, -t, spec);
               }
           }
       }
   }

}

void putAll(K, V)(ref V[K] a, V[K] b) {

   foreach (k, v; b) {
       a[k] = v;
   }

}

void merge(K, V, F)(ref V[K] a, K k, V v, F f) {

   if (k in a) {
       a[k] = f(a[k], v);
   } else {
       a[k] = v;
   }

}

int sum(int a, int b) {

   return a + b;

}

int[int] getFactorsImpl(int number) {

   int[int] factors;
   if (number % 2 == 0) {
       if (number > 2) {
           auto factorsDivTwo = memoize!getFactorsImpl(number / 2);
           factors.putAll(factorsDivTwo);
       }
       factors.merge(2, 1, &sum);
       return factors;
   }
   auto root = sqrt(cast(real) number);
   auto i = 3;
   while (i <= root) {
       if (number % i == 0) {
           factors.putAll(memoize!getFactorsImpl(number / i));
           factors.merge(i, 1, &sum);
           return factors;
       }
       i += 2;
   }
   factors[number] = 1;
   return factors;

} alias getFactors = memoize!getFactorsImpl;

int[] getDivisors(int number) {

   int[] divisors;
   auto root = cast(int)sqrt(cast(real) number);
   foreach (i; 1..root) {
       if (number % i == 0) {
           divisors ~= i;
       }
       auto div = number / i;
       if (div != i && div != number) {
           divisors ~= div;
       }
   }
   return divisors;

}

Polynomial cyclotomicPolynomialImpl(int n) {

   if (n == 1) {
       //  Polynomial:  x - 1
       return Polynomial(Term(1, 1), Term(-1, 0));
   }
   auto factors = getFactors(n);
   if (n in factors) {
       // n prime
       Term[] terms;
       foreach (i; 0..n) {
           terms ~= Term(1, i);
       }
       return Polynomial(terms);
   } else if (factors.length == 2 && 2 in factors && factors[2] == 1 && (n / 2) in factors && factors[n / 2] == 1) {
       //  n = 2p
       auto prime = n / 2;
       Term[] terms;
       auto coeff = -1;
       foreach (i; 0..prime) {
           coeff *= -1;
           terms ~= Term(coeff, i);
       }
       return Polynomial(terms);
   } else if (factors.length == 1 && 2 in factors) {
       //  n = 2^h
       auto h = factors[2];
       Term[] terms;
       terms ~= Term(1, 2 ^^ (h - 1));
       terms ~= Term(1, 0);
       return Polynomial(terms);
   } else if (factors.length == 1 && n !in factors) {
       // n = p^k
       auto p = 0;
       auto k = 0;
       foreach (prime, v; factors) {
           if (prime > p) {
               p = prime;
               k = v;
           }
       }
       Term[] terms;
       foreach (i; 0..p) {
           terms ~= Term(1, (i * p) ^^ (k - 1));
       }
       return Polynomial(terms);
   } else if (factors.length == 2 && 2 in factors) {
       // n = 2^h * p^k
       auto p = 0;
       auto k = 0;
       foreach (prime, v; factors) {
           if (prime != 2 && prime > p) {
               p = prime;
               k = v;
           }
       }
       Term[] terms;
       auto coeff = -1;
       auto twoExp = 2 ^^ (factors[2] - 1);
       foreach (i; 0..p) {
           coeff *= -1;
           auto exponent = i * twoExp * p ^^ (k - 1);
           terms ~= Term(coeff, exponent);
       }
       return Polynomial(terms);
   } else if (2 in factors && n / 2 % 2 == 1 && n / 2 > 1) {
       //  CP(2m)[x] = CP(-m)[x], n odd integer > 1
       auto cycloDiv2 = memoize!cyclotomicPolynomialImpl(n / 2);
       Term[] terms;
       foreach (term; cycloDiv2) {
           if (term.exponent() % 2 == 0) {
               terms ~= term;
           } else {
               terms ~= -term;
           }
       }
       return Polynomial(terms);
   }
   if (ALGORITHM == 0) {
       //  Slow - uses basic definition.
       auto divisors = getDivisors(n);
       //  Polynomial:  ( x^n - 1 )
       auto cyclo = Polynomial(Term(1, n), Term(-1, 0));
       foreach (i; divisors) {
           auto p = memoize!cyclotomicPolynomialImpl(i);
           cyclo = cyclo / p;
       }
       return cyclo;
   }
   if (ALGORITHM == 1) {
       //  Faster.  Remove Max divisor (and all divisors of max divisor) - only one divide for all divisors of Max Divisor
       auto divisors = getDivisors(n);
       auto maxDivisor = int.min;
       foreach (div; divisors) {
           maxDivisor = max(maxDivisor, div);
       }
       int[] divisorsExceptMax;
       foreach (div; divisors) {
           if (maxDivisor % div != 0) {
               divisorsExceptMax ~= div;
           }
       }
       //  Polynomial:  ( x^n - 1 ) / ( x^m - 1 ), where m is the max divisor
       auto cyclo = Polynomial(Term(1, n), Term(-1, 0)) / Polynomial(Term(1, maxDivisor), Term(-1, 0));
       foreach (i; divisorsExceptMax) {
           auto p = memoize!cyclotomicPolynomialImpl(i);
           cyclo = cyclo / p;
       }
       return cyclo;
   }
   if (ALGORITHM == 2) {
       //  Fastest
       //  Let p ; q be primes such that p does not divide n, and q q divides n.
       //  Then CP(np)[x] = CP(n)[x^p] / CP(n)[x]
       auto m = 1;
       auto cyclo = memoize!cyclotomicPolynomialImpl(m);
       auto primes = factors.keys;
       primes.sort;
       foreach (prime; primes) {
           //  CP(m)[x]
           auto cycloM = cyclo;
           //  Compute CP(m)[x^p].
           Term[] terms;
           foreach (term; cycloM) {
               terms ~= Term(term.coefficient(), term.exponent() * prime);
           }
           cyclo = Polynomial(terms) / cycloM;
           m *= prime;
       }
       //  Now, m is the largest square free divisor of n
       auto s = n / m;
       //  Compute CP(n)[x] = CP(m)[x^s]
       Term[] terms;
       foreach (term; cyclo) {
           terms ~= Term(term.coefficient(), term.exponent() * s);
       }
       return Polynomial(terms);
   }
   assert(false, "Error 103: Invalid algorithm");

} alias cyclotomicPolynomial = memoize!cyclotomicPolynomialImpl;

void main() {

   writeln("Task 1:  cyclotomic polynomials for n <= 30:");
  foreach (i; 1 .. 31) {
       auto p = cyclotomicPolynomial(i);
       writefln("CP[%d] = %s", i, p);
  }
   writeln;
   writeln("Task 2:  Smallest cyclotomic polynomial with n or -n as a coefficient:");
   auto n = 0;
   foreach (i; 1 .. 11) {
        while (true) {
           n++;
           auto cyclo = cyclotomicPolynomial(n);
           if (cyclo.hasCoefficientAbs(i)) {
               writefln("CP[%d] has coefficient with magnitude = %d", n, i);
               n--;
               break;
           }
        }
   }

}</lang>

Output:
Task 1:  cyclotomic polynomials for n <= 30:
CP[1] = x - 1
CP[2] = x + 1
CP[3] = x^2 + x + 1
CP[4] = x^2 + 1
CP[5] = x^4 + x^3 + x^2 + x + 1
CP[6] = x^2 - x + 1
CP[7] = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[8] = x^4 + 1
CP[9] = x^6 + x^3 + 1
CP[10] = x^4 - x^3 + x^2 - x + 1
CP[11] = x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[12] = x^4 - x^2 + 1
CP[13] = x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[14] = x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[15] = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1
CP[16] = x^8 + 1
CP[17] = x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[18] = x^6 - x^3 + 1
CP[19] = x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[20] = x^8 - x^6 + x^4 - x^2 + 1
CP[21] = x^12 - x^11 + x^9 - x^8 + x^6 - x^4 + x^3 - x + 1
CP[22] = x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[23] = x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[24] = x^8 - x^4 + 1
CP[25] = x^20 + x^15 + x^10 + x^5 + 1
CP[26] = x^12 - x^11 + x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[27] = x^36 + x^9 + 1
CP[28] = x^12 - x^10 + x^8 - x^6 + x^4 - x^2 + 1
CP[29] = x^28 + x^27 + x^26 + x^25 + x^24 + x^23 + x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[30] = x^8 + x^7 - x^5 - x^4 - x^3 + x + 1

Task 2:  Smallest cyclotomic polynomial with n or -n as a coefficient:
CP[1] has coefficient with magnitude = 1
CP[105] has coefficient with magnitude = 2
CP[385] has coefficient with magnitude = 3
CP[1365] has coefficient with magnitude = 4
CP[1785] has coefficient with magnitude = 5
CP[2805] has coefficient with magnitude = 6
CP[3135] has coefficient with magnitude = 7
CP[6545] has coefficient with magnitude = 8
CP[6545] has coefficient with magnitude = 9
CP[10465] has coefficient with magnitude = 10

Go

Translation of: Java

<lang go>package main

import (

   "fmt"
   "log"
   "math"
   "sort"
   "strings"

)

const (

   algo          = 2
   maxAllFactors = 100000

)

func iabs(i int) int {

   if i < 0 {
       return -i
   }
   return i

}

type term struct{ coef, exp int }

func (t term) mul(t2 term) term {

   return term{t.coef * t2.coef, t.exp + t2.exp}

}

func (t term) add(t2 term) term {

   if t.exp != t2.exp {
       log.Fatal("exponents unequal in term.add method")
   }
   return term{t.coef + t2.coef, t.exp}

}

func (t term) negate() term { return term{-t.coef, t.exp} }

func (t term) String() string {

   switch {
   case t.coef == 0:
       return "0"
   case t.exp == 0:
       return fmt.Sprintf("%d", t.coef)
   case t.coef == 1:
       if t.exp == 1 {
           return "x"
       } else {
           return fmt.Sprintf("x^%d", t.exp)
       }
   case t.exp == 1:
       return fmt.Sprintf("%dx", t.coef)
   }
   return fmt.Sprintf("%dx^%d", t.coef, t.exp)

}

type poly struct{ terms []term }

// pass coef, exp in pairs as parameters func newPoly(values ...int) poly {

   le := len(values)
   if le == 0 {
       return poly{[]term{term{0, 0}}}
   }
   if le%2 != 0 {
       log.Fatalf("odd number of parameters (%d) passed to newPoly function", le)
   }
   var terms []term
   for i := 0; i < le; i += 2 {
       terms = append(terms, term{values[i], values[i+1]})
   }
   p := poly{terms}.tidy()
   return p

}

func (p poly) hasCoefAbs(coef int) bool {

   for _, t := range p.terms {
       if iabs(t.coef) == coef {
           return true
       }
   }
   return false

}

func (p poly) add(p2 poly) poly {

   p3 := newPoly()
   le, le2 := len(p.terms), len(p2.terms)
   for le > 0 || le2 > 0 {
       if le == 0 {
           p3.terms = append(p3.terms, p2.terms[le2-1])
           le2--
       } else if le2 == 0 {
           p3.terms = append(p3.terms, p.terms[le-1])
           le--
       } else {
           t := p.terms[le-1]
           t2 := p2.terms[le2-1]
           if t.exp == t2.exp {
               t3 := t.add(t2)
               if t3.coef != 0 {
                   p3.terms = append(p3.terms, t3)
               }
               le--
               le2--
           } else if t.exp < t2.exp {
               p3.terms = append(p3.terms, t)
               le--
           } else {
               p3.terms = append(p3.terms, t2)
               le2--
           }
       }
   }
   return p3.tidy()

}

func (p poly) addTerm(t term) poly {

   q := newPoly()
   added := false
   for i := 0; i < len(p.terms); i++ {
       ct := p.terms[i]
       if ct.exp == t.exp {
           added = true
           if ct.coef+t.coef != 0 {
               q.terms = append(q.terms, ct.add(t))
           }
       } else {
           q.terms = append(q.terms, ct)
       }
   }
   if !added {
       q.terms = append(q.terms, t)
   }
   return q.tidy()

}

func (p poly) mulTerm(t term) poly {

   q := newPoly()
   for i := 0; i < len(p.terms); i++ {
       ct := p.terms[i]
       q.terms = append(q.terms, ct.mul(t))
   }
   return q.tidy()

}

func (p poly) div(v poly) poly {

   q := newPoly()
   lcv := v.leadingCoef()
   dv := v.degree()
   for p.degree() >= v.degree() {
       lcp := p.leadingCoef()
       s := lcp / lcv
       t := term{s, p.degree() - dv}
       q = q.addTerm(t)
       p = p.add(v.mulTerm(t.negate()))
   }
   return q.tidy()

}

func (p poly) leadingCoef() int {

   return p.terms[0].coef

}

func (p poly) degree() int {

   return p.terms[0].exp

}

func (p poly) String() string {

   var sb strings.Builder
   first := true
   for _, t := range p.terms {
       if first {
           sb.WriteString(t.String())
           first = false
       } else {
           sb.WriteString(" ")
           if t.coef > 0 {
               sb.WriteString("+ ")
               sb.WriteString(t.String())
           } else {
               sb.WriteString("- ")
               sb.WriteString(t.negate().String())
           }
       }
   }
   return sb.String()

}

// in place descending sort by term.exp func (p poly) sortTerms() {

   sort.Slice(p.terms, func(i, j int) bool {
       return p.terms[i].exp > p.terms[j].exp
   })

}

// sort terms and remove any unnecesary zero terms func (p poly) tidy() poly {

   p.sortTerms()
   if p.degree() == 0 {
       return p
   }
   for i := len(p.terms) - 1; i >= 0; i-- {
       if p.terms[i].coef == 0 {
           copy(p.terms[i:], p.terms[i+1:])
           p.terms[len(p.terms)-1] = term{0, 0}
           p.terms = p.terms[:len(p.terms)-1]
       }
   }
   if len(p.terms) == 0 {
       p.terms = append(p.terms, term{0, 0})
   }
   return p

}

func getDivisors(n int) []int {

   var divs []int
   sqrt := int(math.Sqrt(float64(n)))
   for i := 1; i <= sqrt; i++ {
       if n%i == 0 {
           divs = append(divs, i)
           d := n / i
           if d != i && d != n {
               divs = append(divs, d)
           }
       }
   }
   return divs

}

var (

   computed   = make(map[int]poly)
   allFactors = make(map[int]map[int]int)

)

func init() {

   f := map[int]int{2: 1}
   allFactors[2] = f

}

func getFactors(n int) map[int]int {

   if f, ok := allFactors[n]; ok {
       return f
   }
   factors := make(map[int]int)
   if n%2 == 0 {
       factorsDivTwo := getFactors(n / 2)
       for k, v := range factorsDivTwo {
           factors[k] = v
       }
       factors[2]++
       if n < maxAllFactors {
           allFactors[n] = factors
       }
       return factors
   }
   prime := true
   sqrt := int(math.Sqrt(float64(n)))
   for i := 3; i <= sqrt; i += 2 {
       if n%i == 0 {
           prime = false
           for k, v := range getFactors(n / i) {
               factors[k] = v
           }
           factors[i]++
           if n < maxAllFactors {
               allFactors[n] = factors
           }
           return factors
       }
   }
   if prime {
       factors[n] = 1
       if n < maxAllFactors {
           allFactors[n] = factors
       }
   }
   return factors

}

func cycloPoly(n int) poly {

   if p, ok := computed[n]; ok {
       return p
   }
   if n == 1 {
       // polynomial: x - 1
       p := newPoly(1, 1, -1, 0)
       computed[1] = p
       return p
   }
   factors := getFactors(n)
   cyclo := newPoly()
   if _, ok := factors[n]; ok {
       // n is prime
       for i := 0; i < n; i++ {
           cyclo.terms = append(cyclo.terms, term{1, i})
       }
   } else if len(factors) == 2 && factors[2] == 1 && factors[n/2] == 1 {
       // n == 2p
       prime := n / 2
       coef := -1
       for i := 0; i < prime; i++ {
           coef *= -1
           cyclo.terms = append(cyclo.terms, term{coef, i})
       }
   } else if len(factors) == 1 {
       if h, ok := factors[2]; ok {
           // n == 2^h
           cyclo.terms = append(cyclo.terms, term{1, 1 << (h - 1)}, term{1, 0})
       } else if _, ok := factors[n]; !ok {
           // n == p ^ k
           p := 0
           for prime := range factors {
               p = prime
           }
           k := factors[p]
           for i := 0; i < p; i++ {
               pk := int(math.Pow(float64(p), float64(k-1)))
               cyclo.terms = append(cyclo.terms, term{1, i * pk})
           }
       }
   } else if len(factors) == 2 && factors[2] != 0 {
       // n = 2^h * p^k
       p := 0
       for prime := range factors {
           if prime != 2 {
               p = prime
           }
       }
       coef := -1
       twoExp := 1 << (factors[2] - 1)
       k := factors[p]
       for i := 0; i < p; i++ {
           coef *= -1
           pk := int(math.Pow(float64(p), float64(k-1)))
           cyclo.terms = append(cyclo.terms, term{coef, i * twoExp * pk})
       }
   } else if factors[2] != 0 && ((n/2)%2 == 1) && (n/2) > 1 {
       //  CP(2m)[x] == CP(-m)[x], n odd integer > 1
       cycloDiv2 := cycloPoly(n / 2)
       for _, t := range cycloDiv2.terms {
           t2 := t
           if t.exp%2 != 0 {
               t2 = t.negate()
           }
           cyclo.terms = append(cyclo.terms, t2)
       }
   } else if algo == 0 {
       // slow - uses basic definition
       divs := getDivisors(n)
       // polynomial: x^n - 1
       cyclo = newPoly(1, n, -1, 0)
       for _, i := range divs {
           p := cycloPoly(i)
           cyclo = cyclo.div(p)
       }
   } else if algo == 1 {
       //  faster - remove max divisor (and all divisors of max divisor)
       //  only one divide for all divisors of max divisor
       divs := getDivisors(n)
       maxDiv := math.MinInt32
       for _, d := range divs {
           if d > maxDiv {
               maxDiv = d
           }
       }
       var divsExceptMax []int
       for _, d := range divs {
           if maxDiv%d != 0 {
               divsExceptMax = append(divsExceptMax, d)
           }
       }
       // polynomial:  ( x^n - 1 ) / ( x^m - 1 ), where m is the max divisor
       cyclo = newPoly(1, n, -1, 0)
       cyclo = cyclo.div(newPoly(1, maxDiv, -1, 0))
       for _, i := range divsExceptMax {
           p := cycloPoly(i)
           cyclo = cyclo.div(p)
       }
   } else if algo == 2 {
       //  fastest
       //  let p, q be primes such that p does not divide n, and q divides n
       //  then CP(np)[x] = CP(n)[x^p] / CP(n)[x]
       m := 1
       cyclo = cycloPoly(m)
       var primes []int
       for prime := range factors {
           primes = append(primes, prime)
       }
       sort.Ints(primes)
       for _, prime := range primes {
           //  CP(m)[x]
           cycloM := cyclo
           //  compute CP(m)[x^p]
           var terms []term
           for _, t := range cycloM.terms {
               terms = append(terms, term{t.coef, t.exp * prime})
           }
           cyclo = newPoly()
           cyclo.terms = append(cyclo.terms, terms...)
           cyclo = cyclo.tidy()
           cyclo = cyclo.div(cycloM)
           m *= prime
       }
       //  now, m is the largest square free divisor of n
       s := n / m
       //  Compute CP(n)[x] = CP(m)[x^s]
       var terms []term
       for _, t := range cyclo.terms {
           terms = append(terms, term{t.coef, t.exp * s})
       }
       cyclo = newPoly()
       cyclo.terms = append(cyclo.terms, terms...)
   } else {
       log.Fatal("invalid algorithm")
   }
   cyclo = cyclo.tidy()
   computed[n] = cyclo
   return cyclo

}

func main() {

   fmt.Println("Task 1:  cyclotomic polynomials for n <= 30:")
   for i := 1; i <= 30; i++ {
       p := cycloPoly(i)
       fmt.Printf("CP[%2d] = %s\n", i, p)
   }
   fmt.Println("\nTask 2:  Smallest cyclotomic polynomial with n or -n as a coefficient:")
   n := 0
   for i := 1; i <= 10; i++ {
       for {
           n++
           cyclo := cycloPoly(n)
           if cyclo.hasCoefAbs(i) {
               fmt.Printf("CP[%d] has coefficient with magnitude = %d\n", n, i)
               n--
               break
           }
       }
   }

}</lang>

Output:
Task 1:  cyclotomic polynomials for n <= 30:
CP[ 1] = x - 1
CP[ 2] = x + 1
CP[ 3] = x^2 + x + 1
CP[ 4] = x^2 + 1
CP[ 5] = x^4 + x^3 + x^2 + x + 1
CP[ 6] = x^2 - x + 1
CP[ 7] = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[ 8] = x^4 + 1
CP[ 9] = x^6 + x^3 + 1
CP[10] = x^4 - x^3 + x^2 - x + 1
CP[11] = x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[12] = x^4 - x^2 + 1
CP[13] = x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[14] = x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[15] = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1
CP[16] = x^8 + 1
CP[17] = x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[18] = x^6 - x^3 + 1
CP[19] = x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[20] = x^8 - x^6 + x^4 - x^2 + 1
CP[21] = x^12 - x^11 + x^9 - x^8 + x^6 - x^4 + x^3 - x + 1
CP[22] = x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[23] = x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[24] = x^8 - x^4 + 1
CP[25] = x^20 + x^15 + x^10 + x^5 + 1
CP[26] = x^12 - x^11 + x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[27] = x^18 + x^9 + 1
CP[28] = x^12 - x^10 + x^8 - x^6 + x^4 - x^2 + 1
CP[29] = x^28 + x^27 + x^26 + x^25 + x^24 + x^23 + x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[30] = x^8 + x^7 - x^5 - x^4 - x^3 + x + 1

Task 2:  Smallest cyclotomic polynomial with n or -n as a coefficient:
CP[1] has coefficient with magnitude = 1
CP[105] has coefficient with magnitude = 2
CP[385] has coefficient with magnitude = 3
CP[1365] has coefficient with magnitude = 4
CP[1785] has coefficient with magnitude = 5
CP[2805] has coefficient with magnitude = 6
CP[3135] has coefficient with magnitude = 7
CP[6545] has coefficient with magnitude = 8
CP[6545] has coefficient with magnitude = 9
CP[10465] has coefficient with magnitude = 10

Java

<lang java> import java.util.ArrayList; import java.util.Collections; import java.util.Comparator; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.TreeMap;

public class CyclotomicPolynomial {

   @SuppressWarnings("unused")
   private static int divisions = 0;
   private static int algorithm = 2;
   
   public static void main(String[] args) throws Exception {
       System.out.println("Task 1:  cyclotomic polynomials for n <= 30:");
       for ( int i = 1 ; i <= 30 ; i++ ) {
           Polynomial p = cyclotomicPolynomial(i);
           System.out.printf("CP[%d] = %s%n", i, p);
       }
       System.out.println("Task 2:  Smallest cyclotomic polynomial with n or -n as a coefficient:");
       int n = 0;
       for ( int i = 1 ; i <= 10 ; i++ ) {
           while ( true ) {
               n++;
               Polynomial cyclo = cyclotomicPolynomial(n);
               if ( cyclo.hasCoefficientAbs(i) ) {
                   System.out.printf("CP[%d] has coefficient with magnitude = %d%n", n, i);
                   n--;
                   break;
               }
           }
       }
   }
   private static final Map<Integer, Polynomial> COMPUTED = new HashMap<>();
   
   private static Polynomial cyclotomicPolynomial(int n) {
       if ( COMPUTED.containsKey(n) ) {
           return COMPUTED.get(n);
       }
       
       //System.out.println("COMPUTE:  n = " + n);
       
       if ( n == 1 ) {
           //  Polynomial:  x - 1
           Polynomial p = new Polynomial(1, 1, -1, 0);
           COMPUTED.put(1, p);
           return p;
       }
       Map<Integer,Integer> factors = getFactors(n);
       
       if ( factors.containsKey(n) ) {
           //  n prime
           List<Term> termList = new ArrayList<>();
           for ( int index = 0 ; index < n ; index++ ) {
               termList.add(new Term(1, index));
           }
           
           Polynomial cyclo = new Polynomial(termList);
           COMPUTED.put(n, cyclo);
           return cyclo;
       }
       else if ( factors.size() == 2 && factors.containsKey(2) && factors.get(2) == 1 && factors.containsKey(n/2) && factors.get(n/2) == 1 ) {
           //  n = 2p
           int prime = n/2;
           List<Term> termList = new ArrayList<>();
           int coeff = -1;
           for ( int index = 0 ; index < prime ; index++ ) {
               coeff *= -1;
               termList.add(new Term(coeff, index));
           }
           Polynomial cyclo = new Polynomial(termList);
           COMPUTED.put(n, cyclo);
           return cyclo;
       }
       else if ( factors.size() == 1 && factors.containsKey(2) ) {
           //  n = 2^h
           int h = factors.get(2);
           List<Term> termList = new ArrayList<>();
           termList.add(new Term(1, (int) Math.pow(2, h-1)));
           termList.add(new Term(1, 0));
           Polynomial cyclo = new Polynomial(termList);
           COMPUTED.put(n, cyclo);
           return cyclo;
       }
       else if ( factors.size() == 1 && ! factors.containsKey(n) ) {
           // n = p^k
           int p = 0;
           for ( int prime : factors.keySet() ) {
               p = prime;
           }
           int k = factors.get(p);
           List<Term> termList = new ArrayList<>();
           for ( int index = 0 ; index < p ; index++ ) {
               termList.add(new Term(1, index * (int) Math.pow(p, k-1)));
           }
           Polynomial cyclo = new Polynomial(termList);
           COMPUTED.put(n, cyclo);
           return cyclo;
       }
       else if ( factors.size() == 2 && factors.containsKey(2) ) {
           //  n = 2^h * p^k
           int p = 0;
           for ( int prime : factors.keySet() ) {
               if ( prime != 2 ) {
                   p = prime;
               }
           }
           List<Term> termList = new ArrayList<>();
           int coeff = -1;
           int twoExp = (int) Math.pow(2, factors.get(2)-1);
           int k = factors.get(p);
           for ( int index = 0 ; index < p ; index++ ) {
               coeff *= -1;
               termList.add(new Term(coeff, index * twoExp * (int) Math.pow(p, k-1)));
           }
           Polynomial cyclo = new Polynomial(termList);
           COMPUTED.put(n, cyclo);
           return cyclo;            
       }
       else if ( factors.containsKey(2) && ((n/2) % 2 == 1) && (n/2) > 1 ) {
           //  CP(2m)[x] = CP(-m)[x], n odd integer > 1
           Polynomial cycloDiv2 = cyclotomicPolynomial(n/2);
           List<Term> termList = new ArrayList<>();
           for ( Term term : cycloDiv2.polynomialTerms ) {
               termList.add(term.exponent % 2 == 0 ? term : term.negate());
           }
           Polynomial cyclo = new Polynomial(termList);
           COMPUTED.put(n, cyclo);
           return cyclo;            
       }
       
       //  General Case
       
       if ( algorithm == 0 ) {
           //  Slow - uses basic definition.
           List<Integer> divisors = getDivisors(n);
           //  Polynomial:  ( x^n - 1 )
           Polynomial cyclo = new Polynomial(1, n, -1, 0);
           for ( int i : divisors ) {
               Polynomial p = cyclotomicPolynomial(i);
               cyclo = cyclo.divide(p);
           }
           
           COMPUTED.put(n, cyclo);            
           return cyclo;
       }
       else if ( algorithm == 1 ) {
           //  Faster.  Remove Max divisor (and all divisors of max divisor) - only one divide for all divisors of Max Divisor
           List<Integer> divisors = getDivisors(n);
           int maxDivisor = Integer.MIN_VALUE;
           for ( int div : divisors ) {
               maxDivisor = Math.max(maxDivisor, div);
           }
           List<Integer> divisorsExceptMax = new ArrayList<Integer>();
           for ( int div : divisors ) {
               if ( maxDivisor % div != 0 ) {
                   divisorsExceptMax.add(div);
               }
           }
           //  Polynomial:  ( x^n - 1 ) / ( x^m - 1 ), where m is the max divisor
           Polynomial cyclo = new Polynomial(1, n, -1, 0).divide(new Polynomial(1, maxDivisor, -1, 0));
           for ( int i : divisorsExceptMax ) {
               Polynomial p = cyclotomicPolynomial(i);
               cyclo = cyclo.divide(p);
           }
           COMPUTED.put(n, cyclo);
           return cyclo;
       }
       else if ( algorithm == 2 ) {
           //  Fastest
           //  Let p ; q be primes such that p does not divide n, and q q divides n.
           //  Then CP(np)[x] = CP(n)[x^p] / CP(n)[x]
           int m = 1;
           Polynomial cyclo = cyclotomicPolynomial(m);
           List<Integer> primes = new ArrayList<>(factors.keySet());
           Collections.sort(primes);
           for ( int prime : primes ) {
               //  CP(m)[x]
               Polynomial cycloM = cyclo;
               //  Compute CP(m)[x^p].
               List<Term> termList = new ArrayList<>();
               for ( Term t : cycloM.polynomialTerms ) {
                   termList.add(new Term(t.coefficient, t.exponent * prime));
               }
               cyclo = new Polynomial(termList).divide(cycloM);
               m = m * prime;
           }
           //  Now, m is the largest square free divisor of n
           int s = n / m;
           //  Compute CP(n)[x] = CP(m)[x^s]
           List<Term> termList = new ArrayList<>();
           for ( Term t : cyclo.polynomialTerms ) {
               termList.add(new Term(t.coefficient, t.exponent * s));
           }
           cyclo = new Polynomial(termList);
           COMPUTED.put(n, cyclo);
           return cyclo;
       }
       else {
           throw new RuntimeException("ERROR 103:  Invalid algorithm.");
       }
   }
   
   private static final List<Integer> getDivisors(int number) {
       List<Integer> divisors = new ArrayList<Integer>();
       long sqrt = (long) Math.sqrt(number);
       for ( int i = 1 ; i <= sqrt ; i++ ) {
           if ( number % i == 0 ) {
               divisors.add(i);
               int div = number / i;
               if ( div != i && div != number ) {
                   divisors.add(div);
               }
           }
       }
       return divisors;
   }
   private static final Map<Integer,Map<Integer,Integer>> allFactors = new TreeMap<Integer,Map<Integer,Integer>>();
   static {
       Map<Integer,Integer> factors = new TreeMap<Integer,Integer>();
       factors.put(2, 1);
       allFactors.put(2, factors);
   }
   public static Integer MAX_ALL_FACTORS = 100000;
   public static final Map<Integer,Integer> getFactors(Integer number) {
       if ( allFactors.containsKey(number) ) {
           return allFactors.get(number);
       }
       Map<Integer,Integer> factors = new TreeMap<Integer,Integer>();
       if ( number % 2 == 0 ) {
           Map<Integer,Integer> factorsdDivTwo = getFactors(number/2);
           factors.putAll(factorsdDivTwo);
           factors.merge(2, 1, (v1, v2) -> v1 + v2);
           if ( number < MAX_ALL_FACTORS ) 
               allFactors.put(number, factors);
           return factors;
       }
       boolean prime = true;
       long sqrt = (long) Math.sqrt(number);
       for ( int i = 3 ; i <= sqrt ; i += 2 ) {
           if ( number % i == 0 ) {
               prime = false;
               factors.putAll(getFactors(number/i));
               factors.merge(i, 1, (v1, v2) -> v1 + v2);
               if ( number < MAX_ALL_FACTORS ) 
                   allFactors.put(number, factors);
               return factors;
           }
       }
       if ( prime ) {
           factors.put(number, 1);
           if ( number < MAX_ALL_FACTORS ) 
               allFactors.put(number, factors);
       }
       return factors;
   }
   
   private static final class Polynomial {
       private List<Term> polynomialTerms;
       
       //  Format - coeff, exp, coeff, exp, (repeating in pairs) . . .
       public Polynomial(int ... values) {
           if ( values.length % 2 != 0 ) {
               throw new IllegalArgumentException("ERROR 102:  Polynomial constructor.  Length must be even.  Length = " + values.length);
           }
           polynomialTerms = new ArrayList<>();
           for ( int i = 0 ; i < values.length ; i += 2 ) {
               Term t = new Term(values[i], values[i+1]);
               polynomialTerms.add(t);
           }
           Collections.sort(polynomialTerms, new TermSorter());
       }
       
       public Polynomial() {
           //  zero
           polynomialTerms = new ArrayList<>();
           polynomialTerms.add(new Term(0,0));
       }
       
       private boolean hasCoefficientAbs(int coeff) {
           for ( Term term : polynomialTerms ) {
               if ( Math.abs(term.coefficient) == coeff ) {
                   return true;
               }
           }
           return false;
       }
       
       private Polynomial(List<Term> termList) {
           if ( termList.size() == 0 ) {
               //  zero
               termList.add(new Term(0,0));
           }
           else {
               //  Remove zero terms if needed
               for ( int i = 0 ; i < termList.size() ; i++ ) {
                   if ( termList.get(i).coefficient == 0 ) {
                       termList.remove(i);
                   }
               }
           }
           if ( termList.size() == 0 ) {
               //  zero
               termList.add(new Term(0,0));
           }
           polynomialTerms = termList;
           Collections.sort(polynomialTerms, new TermSorter());
       }
       
       public Polynomial divide(Polynomial v) {
           //long start = System.currentTimeMillis();
           divisions++;
           Polynomial q = new Polynomial();
           Polynomial r = this;
           long lcv = v.leadingCoefficient();
           long dv = v.degree();
           while ( r.degree() >= v.degree() ) {
               long lcr = r.leadingCoefficient();
               long s = lcr / lcv;  //  Integer division
               Term term = new Term(s, r.degree() - dv);
               q = q.add(term);
               r = r.add(v.multiply(term.negate()));
           }
           //long end = System.currentTimeMillis();
           //System.out.printf("Divide:  Elapsed = %d, Degree 1 = %d, Degree 2 = %d%n", (end-start), this.degree(), v.degree());
           return q;
       }
       public Polynomial add(Polynomial polynomial) {
           List<Term> termList = new ArrayList<>();
           int thisCount = polynomialTerms.size();
           int polyCount = polynomial.polynomialTerms.size();
           while ( thisCount > 0 || polyCount > 0 ) {
               Term thisTerm = thisCount == 0 ? null : polynomialTerms.get(thisCount-1);
               Term polyTerm = polyCount == 0 ? null : polynomial.polynomialTerms.get(polyCount-1);
               if ( thisTerm == null ) {
                   termList.add(polyTerm.clone());
                   polyCount--;
               }
               else if (polyTerm == null ) {
                   termList.add(thisTerm.clone());
                   thisCount--;
               }
               else if ( thisTerm.degree() == polyTerm.degree() ) {
                   Term t = thisTerm.add(polyTerm);
                   if ( t.coefficient != 0 ) {
                       termList.add(t);
                   }
                   thisCount--;
                   polyCount--;
               }
               else if ( thisTerm.degree() < polyTerm.degree() ) {
                   termList.add(thisTerm.clone());
                   thisCount--;
               }
               else {
                   termList.add(polyTerm.clone());
                   polyCount--;
               }
           }
           return new Polynomial(termList);
       }
       public Polynomial add(Term term) {
           List<Term> termList = new ArrayList<>();
           boolean added = false;
           for ( int index = 0 ; index < polynomialTerms.size() ; index++ ) {
               Term currentTerm = polynomialTerms.get(index);
               if ( currentTerm.exponent == term.exponent ) {
                   added = true;
                   if ( currentTerm.coefficient + term.coefficient != 0 ) {
                       termList.add(currentTerm.add(term));
                   }
               }
               else {
                   termList.add(currentTerm.clone());
               }
           }
           if ( ! added ) {
               termList.add(term.clone());
           }
           return new Polynomial(termList);
       }
       public Polynomial multiply(Term term) {
           List<Term> termList = new ArrayList<>();
           for ( int index = 0 ; index < polynomialTerms.size() ; index++ ) {
               Term currentTerm = polynomialTerms.get(index);
               termList.add(currentTerm.clone().multiply(term));
           }
           return new Polynomial(termList);
       }
       public Polynomial clone() {
           List<Term> clone = new ArrayList<>();
           for ( Term t : polynomialTerms ) {
               clone.add(new Term(t.coefficient, t.exponent));
           }
           return new Polynomial(clone);
       }
       public long leadingCoefficient() {

// long coefficient = 0; // long degree = Integer.MIN_VALUE; // for ( Term t : polynomialTerms ) { // if ( t.degree() > degree ) { // coefficient = t.coefficient; // degree = t.degree(); // } // }

           return polynomialTerms.get(0).coefficient;
       }
       public long degree() {

// long degree = Integer.MIN_VALUE; // for ( Term t : polynomialTerms ) { // if ( t.degree() > degree ) { // degree = t.degree(); // } // }

           return polynomialTerms.get(0).exponent;
       }
       
       @Override
       public String toString() {
           StringBuilder sb = new StringBuilder();
           boolean first = true;
           for ( Term term : polynomialTerms ) {
               if ( first ) {
                   sb.append(term);
                   first = false;
               }
               else {
                   sb.append(" ");
                   if ( term.coefficient > 0 ) {
                       sb.append("+ ");
                       sb.append(term);
                   }
                   else {
                       sb.append("- ");
                       sb.append(term.negate());
                   }
               }
           }
           return sb.toString();
       }
   }
   
   private static final class TermSorter implements Comparator<Term> {
       @Override
       public int compare(Term o1, Term o2) {
           return (int) (o2.exponent - o1.exponent);
       }        
   }
   
   //  Note:  Cyclotomic Polynomials have small coefficients.  Not appropriate for general polynomial usage.
   private static final class Term {
       long coefficient;
       long exponent;
       
       public Term(long c, long e) {
           coefficient = c;
           exponent = e;
       }
       
       public Term clone() {
           return new Term(coefficient, exponent);
       }
       
       public Term multiply(Term term) {
           return new Term(coefficient * term.coefficient, exponent + term.exponent);
       }
       
       public Term add(Term term) {
           if ( exponent != term.exponent ) {
               throw new RuntimeException("ERROR 102:  Exponents not equal.");
           }
           return new Term(coefficient + term.coefficient, exponent);
       }
       public Term negate() {
           return new Term(-coefficient, exponent);
       }
       
       public long degree() {
           return exponent;
       }
       
       @Override
       public String toString() {
           if ( coefficient == 0 ) {
               return "0";
           }
           if ( exponent == 0 ) {
               return "" + coefficient;
           }
           if ( coefficient == 1 ) {
               if ( exponent == 1 ) {
                   return "x";
               }
               else {
                   return "x^" + exponent;
               }
           }
           if ( exponent == 1 ) {
               return coefficient + "x";
           }
           return coefficient + "x^" + exponent;
       }
   }

} </lang>

Output:
Task 1:  cyclotomic polynomials for n <= 30:
CP[1] = x - 1
CP[2] = x + 1
CP[3] = x^2 + x + 1
CP[4] = x^2 + 1
CP[5] = x^4 + x^3 + x^2 + x + 1
CP[6] = x^2 - x + 1
CP[7] = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[8] = x^4 + 1
CP[9] = x^6 + x^3 + 1
CP[10] = x^4 - x^3 + x^2 - x + 1
CP[11] = x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[12] = x^4 - x^2 + 1
CP[13] = x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[14] = x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[15] = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1
CP[16] = x^8 + 1
CP[17] = x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[18] = x^6 - x^3 + 1
CP[19] = x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[20] = x^8 - x^6 + x^4 - x^2 + 1
CP[21] = x^12 - x^11 + x^9 - x^8 + x^6 - x^4 + x^3 - x + 1
CP[22] = x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[23] = x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[24] = x^8 - x^4 + 1
CP[25] = x^20 + x^15 + x^10 + x^5 + 1
CP[26] = x^12 - x^11 + x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[27] = x^18 + x^9 + 1
CP[28] = x^12 - x^10 + x^8 - x^6 + x^4 - x^2 + 1
CP[29] = x^28 + x^27 + x^26 + x^25 + x^24 + x^23 + x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[30] = x^8 + x^7 - x^5 - x^4 - x^3 + x + 1

Task 2:  Smallest cyclotomic polynomial with n or -n as a coefficient:
CP[1] has coefficient with magnitude = 1
CP[105] has coefficient with magnitude = 2
CP[385] has coefficient with magnitude = 3
CP[1365] has coefficient with magnitude = 4
CP[1785] has coefficient with magnitude = 5
CP[2805] has coefficient with magnitude = 6
CP[3135] has coefficient with magnitude = 7
CP[6545] has coefficient with magnitude = 8
CP[6545] has coefficient with magnitude = 9
CP[10465] has coefficient with magnitude = 10

Julia

<lang julia>using Primes, Polynomials

  1. memoize cache for recursive calls

const cyclotomics = Dict([1 => Poly([big"-1", big"1"]), 2 => Poly([big"1", big"1"])])

  1. get all integer divisors of an integer, except itself

function divisors(n::Integer)

   f = [one(n)]
   for (p, e) in factor(n)
       f = reduce(vcat, [f * p^j for j in 1:e], init=f)
   end
   return resize!(f, length(f) - 1)

end

"""

   cyclotomic(n::Integer)

Calculate the n -th cyclotomic polynomial. See wikipedia article at bottom of section /wiki/Cyclotomic_polynomial#Fundamental_tools The algorithm is reliable but slow for large n > 1000. """ function cyclotomic(n::Integer)

   if haskey(cyclotomics, n)
       c = cyclotomics[n]
   elseif isprime(n)
       c = Poly(ones(BigInt, n))
       cyclotomics[n] = c
   else  # recursive formula seen in wikipedia article
       c = Poly([big"-1"; zeros(BigInt, n - 1); big"1"])
       for d in divisors(n)
           c ÷= cyclotomic(d)
       end
       cyclotomics[n] = c
   end
   return c

end

println("First 30 cyclotomic polynomials:") for i in 1:30

   println(rpad("$i:  ", 5), cyclotomic(BigInt(i)))

end

const dig = zeros(BigInt, 10) for i in 1:1000000

   if all(x -> x != 0, dig)
       break
   end
   for coef in coeffs(cyclotomic(i))
       x = abs(coef)
       if 0 < x < 11 && dig[Int(x)] == 0
           dig[Int(x)] = coef < 0 ? -i : i
       end
   end

end for (i, n) in enumerate(dig)

   println("The cyclotomic polynomial Φ(", abs(n), ") has a coefficient that is ", n < 0 ? -i : i)

end

</lang>

Output:
First 30 cyclotomic polynomials:
1:   Poly(-1 + x)
2:   Poly(1 + x)
3:   Poly(1 + x + x^2)
4:   Poly(1.0 + 1.0*x^2)
5:   Poly(1 + x + x^2 + x^3 + x^4)
6:   Poly(1.0 - 1.0*x + 1.0*x^2)
7:   Poly(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)
8:   Poly(1.0 + 1.0*x^4)
9:   Poly(1.0 + 1.0*x^3 + 1.0*x^6)
10:  Poly(1.0 - 1.0*x + 1.0*x^2 - 1.0*x^3 + 1.0*x^4)
11:  Poly(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10)
12:  Poly(1.0 - 1.0*x^2 + 1.0*x^4)
13:  Poly(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12)
14:  Poly(1.0 - 1.0*x + 1.0*x^2 - 1.0*x^3 + 1.0*x^4 - 1.0*x^5 + 1.0*x^6)
15:  Poly(1.0 - 1.0*x + 1.0*x^3 - 1.0*x^4 + 1.0*x^5 - 1.0*x^7 + 1.0*x^8)
16:  Poly(1.0 + 1.0*x^8)
17:  Poly(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15 + x^16)
18:  Poly(1.0 - 1.0*x^3 + 1.0*x^6)
19:  Poly(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15 + x^16 + x^17 + x^18)
20:  Poly(1.0 - 1.0*x^2 + 1.0*x^4 - 1.0*x^6 + 1.0*x^8)
21:  Poly(1.0 - 1.0*x + 1.0*x^3 - 1.0*x^4 + 1.0*x^6 - 1.0*x^8 + 1.0*x^9 - 1.0*x^11 + 1.0*x^12)
22:  Poly(1.0 - 1.0*x + 1.0*x^2 - 1.0*x^3 + 1.0*x^4 - 1.0*x^5 + 1.0*x^6 - 1.0*x^7 + 1.0*x^8 - 1.0*x^9 + 1.0*x^10)
23:  Poly(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15 + x^16 + x^17 + x^18 + x^19 + x^20 + x^21 + x^22)
24:  Poly(1.0 - 1.0*x^4 + 1.0*x^8)
25:  Poly(1.0 + 1.0*x^5 + 1.0*x^10 + 1.0*x^15 + 1.0*x^20)
26:  Poly(1.0 - 1.0*x + 1.0*x^2 - 1.0*x^3 + 1.0*x^4 - 1.0*x^5 + 1.0*x^6 - 1.0*x^7 + 1.0*x^8 - 1.0*x^9 + 1.0*x^10 - 1.0*x^11 + 1.0*x^12)
27:  Poly(1.0 + 1.0*x^9 + 1.0*x^18)
28:  Poly(1.0 - 1.0*x^2 + 1.0*x^4 - 1.0*x^6 + 1.0*x^8 - 1.0*x^10 + 1.0*x^12)
29:  Poly(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15 + x^16 + x^17 + x^18 + x^19 + x^20 + x^21 + x^22 + x^23 + x^24 + x^25 + x^26 + x^27 + x^28)
30:  Poly(1.0 + 1.0*x - 1.0*x^3 - 1.0*x^4 - 1.0*x^5 + 1.0*x^7 + 1.0*x^8)
The cyclotomic polynomial Φ(1) has a coefficient that is -1
The cyclotomic polynomial Φ(105) has a coefficient that is -2
The cyclotomic polynomial Φ(385) has a coefficient that is -3
The cyclotomic polynomial Φ(1365) has a coefficient that is -4
The cyclotomic polynomial Φ(1785) has a coefficient that is 5
The cyclotomic polynomial Φ(2805) has a coefficient that is -6
The cyclotomic polynomial Φ(3135) has a coefficient that is 7
The cyclotomic polynomial Φ(6545) has a coefficient that is -8
The cyclotomic polynomial Φ(6545) has a coefficient that is 9
The cyclotomic polynomial Φ(10465) has a coefficient that is 10

Kotlin

Translation of: Java

<lang scala>import java.util.TreeMap import kotlin.math.abs import kotlin.math.pow import kotlin.math.sqrt

private const val algorithm = 2

fun main() {

   println("Task 1:  cyclotomic polynomials for n <= 30:")
   for (i in 1..30) {
       val p = cyclotomicPolynomial(i)
       println("CP[$i] = $p")
   }
   println()
   println("Task 2:  Smallest cyclotomic polynomial with n or -n as a coefficient:")
   var n = 0
   for (i in 1..10) {
       while (true) {
           n++
           val cyclo = cyclotomicPolynomial(n)
           if (cyclo!!.hasCoefficientAbs(i)) {
               println("CP[$n] has coefficient with magnitude = $i")
               n--
               break
           }
       }
   }

}

private val COMPUTED: MutableMap<Int, Polynomial> = HashMap() private fun cyclotomicPolynomial(n: Int): Polynomial? {

   if (COMPUTED.containsKey(n)) {
       return COMPUTED[n]
   }
   if (n == 1) {
       //  Polynomial:  x - 1
       val p = Polynomial(1, 1, -1, 0)
       COMPUTED[1] = p
       return p
   }
   val factors = getFactors(n)
   if (factors.containsKey(n)) {
       //  n prime
       val termList: MutableList<Term> = ArrayList()
       for (index in 0 until n) {
           termList.add(Term(1, index.toLong()))
       }
       val cyclo = Polynomial(termList)
       COMPUTED[n] = cyclo
       return cyclo
   } else if (factors.size == 2 && factors.containsKey(2) && factors[2] == 1 && factors.containsKey(n / 2) && factors[n / 2] == 1) {
       //  n = 2p
       val prime = n / 2
       val termList: MutableList<Term> = ArrayList()
       var coeff = -1
       for (index in 0 until prime) {
           coeff *= -1
           termList.add(Term(coeff.toLong(), index.toLong()))
       }
       val cyclo = Polynomial(termList)
       COMPUTED[n] = cyclo
       return cyclo
   } else if (factors.size == 1 && factors.containsKey(2)) {
       //  n = 2^h
       val h = factors[2]!!
       val termList: MutableList<Term> = ArrayList()
       termList.add(Term(1, 2.0.pow((h - 1).toDouble()).toLong()))
       termList.add(Term(1, 0))
       val cyclo = Polynomial(termList)
       COMPUTED[n] = cyclo
       return cyclo
   } else if (factors.size == 1 && !factors.containsKey(n)) {
       // n = p^k
       var p = 0
       for (prime in factors.keys) {
           p = prime
       }
       val k = factors[p]!!
       val termList: MutableList<Term> = ArrayList()
       for (index in 0 until p) {
           termList.add(Term(1, (index * p.toDouble().pow(k - 1.toDouble()).toInt()).toLong()))
       }
       val cyclo = Polynomial(termList)
       COMPUTED[n] = cyclo
       return cyclo
   } else if (factors.size == 2 && factors.containsKey(2)) {
       //  n = 2^h * p^k
       var p = 0
       for (prime in factors.keys) {
           if (prime != 2) {
               p = prime
           }
       }
       val termList: MutableList<Term> = ArrayList()
       var coeff = -1
       val twoExp = 2.0.pow((factors[2]!!) - 1.toDouble()).toInt()
       val k = factors[p]!!
       for (index in 0 until p) {
           coeff *= -1
           termList.add(Term(coeff.toLong(), (index * twoExp * p.toDouble().pow(k - 1.toDouble()).toInt()).toLong()))
       }
       val cyclo = Polynomial(termList)
       COMPUTED[n] = cyclo
       return cyclo
   } else if (factors.containsKey(2) && n / 2 % 2 == 1 && n / 2 > 1) {
       //  CP(2m)[x] = CP(-m)[x], n odd integer > 1
       val cycloDiv2 = cyclotomicPolynomial(n / 2)
       val termList: MutableList<Term> = ArrayList()
       for (term in cycloDiv2!!.polynomialTerms) {
           termList.add(if (term.exponent % 2 == 0L) term else term.negate())
       }
       val cyclo = Polynomial(termList)
       COMPUTED[n] = cyclo
       return cyclo
   }
   //  General Case
   return when (algorithm) {
       0 -> {
           //  Slow - uses basic definition.
           val divisors = getDivisors(n)
           //  Polynomial:  ( x^n - 1 )
           var cyclo = Polynomial(1, n, -1, 0)
           for (i in divisors) {
               val p = cyclotomicPolynomial(i)
               cyclo = cyclo.divide(p)
           }
           COMPUTED[n] = cyclo
           cyclo
       }
       1 -> {
           //  Faster.  Remove Max divisor (and all divisors of max divisor) - only one divide for all divisors of Max Divisor
           val divisors = getDivisors(n)
           var maxDivisor = Int.MIN_VALUE
           for (div in divisors) {
               maxDivisor = maxDivisor.coerceAtLeast(div)
           }
           val divisorsExceptMax: MutableList<Int> = ArrayList()
           for (div in divisors) {
               if (maxDivisor % div != 0) {
                   divisorsExceptMax.add(div)
               }
           }
           //  Polynomial:  ( x^n - 1 ) / ( x^m - 1 ), where m is the max divisor
           var cyclo = Polynomial(1, n, -1, 0).divide(Polynomial(1, maxDivisor, -1, 0))
           for (i in divisorsExceptMax) {
               val p = cyclotomicPolynomial(i)
               cyclo = cyclo.divide(p)
           }
           COMPUTED[n] = cyclo
           cyclo
       }
       2 -> {
           //  Fastest
           //  Let p ; q be primes such that p does not divide n, and q q divides n.
           //  Then CP(np)[x] = CP(n)[x^p] / CP(n)[x]
           var m = 1
           var cyclo = cyclotomicPolynomial(m)
           val primes = factors.keys.toMutableList()
           primes.sort()
           for (prime in primes) {
               //  CP(m)[x]
               val cycloM = cyclo
               //  Compute CP(m)[x^p].
               val termList: MutableList<Term> = ArrayList()
               for (t in cycloM!!.polynomialTerms) {
                   termList.add(Term(t.coefficient, t.exponent * prime))
               }
               cyclo = Polynomial(termList).divide(cycloM)
               m *= prime
           }
           //  Now, m is the largest square free divisor of n
           val s = n / m
           //  Compute CP(n)[x] = CP(m)[x^s]
           val termList: MutableList<Term> = ArrayList()
           for (t in cyclo!!.polynomialTerms) {
               termList.add(Term(t.coefficient, t.exponent * s))
           }
           cyclo = Polynomial(termList)
           COMPUTED[n] = cyclo
           cyclo
       }
       else -> {
           throw RuntimeException("ERROR 103:  Invalid algorithm.")
       }
   }

}

private fun getDivisors(number: Int): List<Int> {

   val divisors: MutableList<Int> = ArrayList()
   val sqrt = sqrt(number.toDouble()).toLong()
   for (i in 1..sqrt) {
       if (number % i == 0L) {
           divisors.add(i.toInt())
           val div = (number / i).toInt()
           if (div.toLong() != i && div != number) {
               divisors.add(div)
           }
       }
   }
   return divisors

}

private fun crutch(): MutableMap<Int, Map<Int, Int>> {

   val allFactors: MutableMap<Int, Map<Int, Int>> = TreeMap()
   val factors: MutableMap<Int, Int> = TreeMap()
   factors[2] = 1
   allFactors[2] = factors
   return allFactors

}

private val allFactors = crutch()

var MAX_ALL_FACTORS = 100000

fun getFactors(number: Int): Map<Int, Int> {

   if (allFactors.containsKey(number)) {
       return allFactors[number]!!
   }
   val factors: MutableMap<Int, Int> = TreeMap()
   if (number % 2 == 0) {
       val factorsDivTwo = getFactors(number / 2)
       factors.putAll(factorsDivTwo)
       factors.merge(2, 1) { a: Int?, b: Int? -> Integer.sum(a!!, b!!) }
       if (number < MAX_ALL_FACTORS) allFactors[number] = factors
       return factors
   }
   val sqrt = sqrt(number.toDouble()).toLong()
   var i = 3
   while (i <= sqrt) {
       if (number % i == 0) {
           factors.putAll(getFactors(number / i))
           factors.merge(i, 1) { a: Int?, b: Int? -> Integer.sum(a!!, b!!) }
           if (number < MAX_ALL_FACTORS) {
               allFactors[number] = factors
           }
           return factors
       }
       i += 2
   }
   factors[number] = 1
   if (number < MAX_ALL_FACTORS) {
       allFactors[number] = factors
   }
   return factors

}

private class Polynomial {

   val polynomialTerms: MutableList<Term>
   //  Format - coeff, exp, coeff, exp, (repeating in pairs) . . .
   constructor(vararg values: Int) {
       require(values.size % 2 == 0) { "ERROR 102:  Polynomial constructor.  Length must be even.  Length = " + values.size }
       polynomialTerms = mutableListOf()
       var i = 0
       while (i < values.size) {
           val t = Term(values[i].toLong(), values[i + 1].toLong())
           polynomialTerms.add(t)
           i += 2
       }
       polynomialTerms.sortWith(TermSorter())
   }
   constructor() {
       //  zero
       polynomialTerms = ArrayList()
       polynomialTerms.add(Term(0, 0))
   }
   fun hasCoefficientAbs(coeff: Int): Boolean {
       for (term in polynomialTerms) {
           if (abs(term.coefficient) == coeff.toLong()) {
               return true
           }
       }
       return false
   }
   constructor(termList: MutableList<Term>) {
       if (termList.isEmpty()) {
           //  zero
           termList.add(Term(0, 0))
       } else {
           //  Remove zero terms if needed
           termList.removeIf { t -> t.coefficient == 0L }
       }
       if (termList.size == 0) {
           //  zero
           termList.add(Term(0, 0))
       }
       polynomialTerms = termList
       polynomialTerms.sortWith(TermSorter())
   }
   fun divide(v: Polynomial?): Polynomial {
       var q = Polynomial()
       var r = this
       val lcv = v!!.leadingCoefficient()
       val dv = v.degree()
       while (r.degree() >= v.degree()) {
           val lcr = r.leadingCoefficient()
           val s = lcr / lcv //  Integer division
           val term = Term(s, r.degree() - dv)
           q = q.add(term)
           r = r.add(v.multiply(term.negate()))
       }
       return q
   }
   fun add(polynomial: Polynomial): Polynomial {
       val termList: MutableList<Term> = ArrayList()
       var thisCount = polynomialTerms.size
       var polyCount = polynomial.polynomialTerms.size
       while (thisCount > 0 || polyCount > 0) {
           val thisTerm = if (thisCount == 0) null else polynomialTerms[thisCount - 1]
           val polyTerm = if (polyCount == 0) null else polynomial.polynomialTerms[polyCount - 1]
           when {
               thisTerm == null -> {
                   termList.add(polyTerm!!.clone())
                   polyCount--
               }
               polyTerm == null -> {
                   termList.add(thisTerm.clone())
                   thisCount--
               }
               thisTerm.degree() == polyTerm.degree() -> {
                   val t = thisTerm.add(polyTerm)
                   if (t.coefficient != 0L) {
                       termList.add(t)
                   }
                   thisCount--
                   polyCount--
               }
               thisTerm.degree() < polyTerm.degree() -> {
                   termList.add(thisTerm.clone())
                   thisCount--
               }
               else -> {
                   termList.add(polyTerm.clone())
                   polyCount--
               }
           }
       }
       return Polynomial(termList)
   }
   fun add(term: Term): Polynomial {
       val termList: MutableList<Term> = ArrayList()
       var added = false
       for (currentTerm in polynomialTerms) {
           if (currentTerm.exponent == term.exponent) {
               added = true
               if (currentTerm.coefficient + term.coefficient != 0L) {
                   termList.add(currentTerm.add(term))
               }
           } else {
               termList.add(currentTerm.clone())
           }
       }
       if (!added) {
           termList.add(term.clone())
       }
       return Polynomial(termList)
   }
   fun multiply(term: Term): Polynomial {
       val termList: MutableList<Term> = ArrayList()
       for (currentTerm in polynomialTerms) {
           termList.add(currentTerm.clone().multiply(term))
       }
       return Polynomial(termList)
   }
   fun leadingCoefficient(): Long {
       return polynomialTerms[0].coefficient
   }
   fun degree(): Long {
       return polynomialTerms[0].exponent
   }
   override fun toString(): String {
       val sb = StringBuilder()
       var first = true
       for (term in polynomialTerms) {
           if (first) {
               sb.append(term)
               first = false
           } else {
               sb.append(" ")
               if (term.coefficient > 0) {
                   sb.append("+ ")
                   sb.append(term)
               } else {
                   sb.append("- ")
                   sb.append(term.negate())
               }
           }
       }
       return sb.toString()
   }

}

private class TermSorter : Comparator<Term> {

   override fun compare(o1: Term, o2: Term): Int {
       return (o2.exponent - o1.exponent).toInt()
   }

}

// Note: Cyclotomic Polynomials have small coefficients. Not appropriate for general polynomial usage. private class Term(var coefficient: Long, var exponent: Long) {

   fun clone(): Term {
       return Term(coefficient, exponent)
   }
   fun multiply(term: Term): Term {
       return Term(coefficient * term.coefficient, exponent + term.exponent)
   }
   fun add(term: Term): Term {
       if (exponent != term.exponent) {
           throw RuntimeException("ERROR 102:  Exponents not equal.")
       }
       return Term(coefficient + term.coefficient, exponent)
   }
   fun negate(): Term {
       return Term(-coefficient, exponent)
   }
   fun degree(): Long {
       return exponent
   }
   override fun toString(): String {
       if (coefficient == 0L) {
           return "0"
       }
       if (exponent == 0L) {
           return "" + coefficient
       }
       if (coefficient == 1L) {
           return if (exponent == 1L) {
               "x"
           } else {
               "x^$exponent"
           }
       }
       return if (exponent == 1L) {
           coefficient.toString() + "x"
       } else coefficient.toString() + "x^" + exponent
   }

}</lang>

Output:
Task 1:  cyclotomic polynomials for n <= 30:
CP[1] = x - 1
CP[2] = x + 1
CP[3] = x^2 + x + 1
CP[4] = x^2 + 1
CP[5] = x^4 + x^3 + x^2 + x + 1
CP[6] = x^2 - x + 1
CP[7] = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[8] = x^4 + 1
CP[9] = x^6 + x^3 + 1
CP[10] = x^4 - x^3 + x^2 - x + 1
CP[11] = x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[12] = x^4 - x^2 + 1
CP[13] = x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[14] = x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[15] = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1
CP[16] = x^8 + 1
CP[17] = x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[18] = x^6 - x^3 + 1
CP[19] = x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[20] = x^8 - x^6 + x^4 - x^2 + 1
CP[21] = x^12 - x^11 + x^9 - x^8 + x^6 - x^4 + x^3 - x + 1
CP[22] = x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[23] = x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[24] = x^8 - x^4 + 1
CP[25] = x^20 + x^15 + x^10 + x^5 + 1
CP[26] = x^12 - x^11 + x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
CP[27] = x^18 + x^9 + 1
CP[28] = x^12 - x^10 + x^8 - x^6 + x^4 - x^2 + 1
CP[29] = x^28 + x^27 + x^26 + x^25 + x^24 + x^23 + x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
CP[30] = x^8 + x^7 - x^5 - x^4 - x^3 + x + 1

Task 2:  Smallest cyclotomic polynomial with n or -n as a coefficient:
CP[1] has coefficient with magnitude = 1
CP[105] has coefficient with magnitude = 2
CP[385] has coefficient with magnitude = 3
CP[1365] has coefficient with magnitude = 4
CP[1785] has coefficient with magnitude = 5
CP[2805] has coefficient with magnitude = 6
CP[3135] has coefficient with magnitude = 7
CP[6545] has coefficient with magnitude = 8
CP[6545] has coefficient with magnitude = 9
CP[10465] has coefficient with magnitude = 10

Perl

Conveniently, the module Math::Polynomial::Cyclotomic exists to do all the work. An exponent too large error prevents reaching the 10th step of the 2nd part of the task. <lang perl>use feature 'say'; use List::Util qw(first); use Math::Polynomial::Cyclotomic qw(cyclo_poly_iterate);

say 'First 30 cyclotomic polynomials:'; my $it = cyclo_poly_iterate(1); say "$_: " . $it->() for 1 .. 30;

say "\nSmallest cyclotomic polynomial with n or -n as a coefficient:"; $it = cyclo_poly_iterate(1);

for (my ($n, $k) = (1, 1) ; $n <= 10 ; ++$k) {

   my $poly = $it->();
   while (my $c = first { abs($_) == $n } $poly->coeff) {
       say "CP $k has coefficient with magnitude = $n";
       $n++;
   }

}</lang>

Output:
First 30 cyclotomic polynomials:
1: (x - 1)
2: (x + 1)
3: (x^2 + x + 1)
4: (x^2 + 1)
5: (x^4 + x^3 + x^2 + x + 1)
6: (x^2 - x + 1)
7: (x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)
8: (x^4 + 1)
9: (x^6 + x^3 + 1)
10: (x^4 - x^3 + x^2 - x + 1)
11: (x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)
12: (x^4 - x^2 + 1)
13: (x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)
14: (x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)
15: (x^8 - x^7 + x^5 - x^4 + x^3 - x + 1)
16: (x^8 + 1)
17: (x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)
18: (x^6 - x^3 + 1)
19: (x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)
20: (x^8 - x^6 + x^4 - x^2 + 1)
21: (x^12 - x^11 + x^9 - x^8 + x^6 - x^4 + x^3 - x + 1)
22: (x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)
23: (x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)
24: (x^8 - x^4 + 1)
25: (x^20 + x^15 + x^10 + x^5 + 1)
26: (x^12 - x^11 + x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)
27: (x^18 + x^9 + 1)
28: (x^12 - x^10 + x^8 - x^6 + x^4 - x^2 + 1)
29: (x^28 + x^27 + x^26 + x^25 + x^24 + x^23 + x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)
30: (x^8 + x^7 - x^5 - x^4 - x^3 + x + 1)

Smallest cyclotomic polynomial with n or -n as a coefficient:
CP 1 has coefficient with magnitude = 1
CP 105 has coefficient with magnitude = 2
CP 385 has coefficient with magnitude = 3
CP 1365 has coefficient with magnitude = 4
CP 1785 has coefficient with magnitude = 5
CP 2805 has coefficient with magnitude = 6
CP 3135 has coefficient with magnitude = 7
CP 6545 has coefficient with magnitude = 8
CP 6545 has coefficient with magnitude = 9

Phix

Translation of: Julia

Uses several routines from Polynomial_long_division#Phix, tweaked slightly to check remainder is zero and trim the quotient. <lang Phix>-- demo\rosetta\Cyclotomic_Polynomial.exw function degree(sequence p)

   for i=length(p) to 1 by -1 do
       if p[i]!=0 then return i end if
   end for
   return -1

end function

function poly_div(sequence n, d)

   while length(d)<length(n) do d &=0 end while
   integer dn = degree(n),
           dd = degree(d)
   if dd<0 then throw("divide by zero") end if
   sequence quot = repeat(0,dn)
   while dn>=dd do
       integer k = dn-dd
       integer qk = n[dn]/d[dd]
       quot[k+1] = qk
       sequence d2 = d[1..length(d)-k]
       for i=1 to length(d2) do
           n[-i] -= d2[-i]*qk
       end for
       dn = degree(n)
   end while

-- return {quot,n} -- (n is now the remainder)

   if n!=repeat(0,length(n)) then ?9/0 end if
   while quot[$]=0 do quot = quot[1..$-1] end while
   return quot

end function

function poly(sequence si) -- display helper

   string r = ""
   for t=length(si) to 1 by -1 do
       integer sit = si[t]
       if sit!=0 then
           if sit=1 and t>1 then
               r &= iff(r=""? "":" + ")
           elsif sit=-1 and t>1 then
               r &= iff(r=""?"-":" - ")
           else
               if r!="" then
                   r &= iff(sit<0?" - ":" + ")
                   sit = abs(sit)
               end if
               r &= sprintf("%d",sit)
           end if
           r &= iff(t>1?"x"&iff(t>2?sprintf("^%d",t-1):""):"")
       end if
   end for
   if r="" then r="0" end if
   return r

end function --</Polynomial_long_division.exw>

--# memoize cache for recursive calls constant cyclotomics = new_dict({{1,{-1,1}},{2,{1,1}}})

function cyclotomic(integer n) -- -- Calculate nth cyclotomic polynomial. -- See wikipedia article at bottom of section /wiki/Cyclotomic_polynomial#Fundamental_tools -- The algorithm is reliable but slow for large n > 1000. --

   sequence c
   if getd_index(n,cyclotomics)!=NULL then
       c = getd(n,cyclotomics)
   else
       if is_prime(n) then
           c = repeat(1,n)
       else  -- recursive formula seen in wikipedia article
           c = -1&repeat(0,n-1)&1
           sequence f = factors(n,-1)
           for i=1 to length(f) do
               c = poly_div(c,cyclotomic(f[i]))
           end for
       end if
       setd(n,c,cyclotomics)
   end if
   return c

end function

for i=1 to 30 do

   sequence z = cyclotomic(i)
   string s = poly(z)
   printf(1,"cp(%2d) = %s\n",{i,s})
   if i>1 and z!=reverse(z) then ?9/0 end if -- sanity check

end for

integer found = 0, n = 1, cheat = 0 sequence fn = repeat(false,10),

        nxt = {105,385,1365,1785,2805,3135,6545,6545,10465,10465}

atom t1 = time()+1 puts(1,"\n") while found<10 do

   sequence z = cyclotomic(n)
   for i=1 to length(z) do
       atom azi = abs(z[i])
       if azi>=1 and azi<=10 and fn[azi]=0 then
           printf(1,"cp(%d) has a coefficient with magnitude %d\n",{n,azi})
           cheat = azi -- (comment this out to prevent cheating!)
           found += 1
           fn[azi] = true
           t1 = time()+1
       end if
   end for
   if cheat then {n,cheat} = {nxt[cheat],0} else n += iff(n=1?4:10) end if
   if time()>t1 then
       printf(1,"working (%d) ...\r",n)
       t1 = time()+1
   end if

end while</lang>

Output:

If you disable the cheating, and if in a particularly self harming mood replace it with n+=1, you will get exactly the same output, eventually.
(The distributed version contains simple instrumentation showing cp(1260) executes the line in the heart of poly_div() that subtracts a multiple of qk over 15 million times.)

cp( 1) = x - 1
cp( 2) = x + 1
cp( 3) = x^2 + x + 1
cp( 4) = x^2 + 1
cp( 5) = x^4 + x^3 + x^2 + x + 1
cp( 6) = x^2 - x + 1
cp( 7) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
cp( 8) = x^4 + 1
cp( 9) = x^6 + x^3 + 1
cp(10) = x^4 - x^3 + x^2 - x + 1
cp(11) = x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
cp(12) = x^4 - x^2 + 1
cp(13) = x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
cp(14) = x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
cp(15) = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1
cp(16) = x^8 + 1
cp(17) = x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
cp(18) = x^6 - x^3 + 1
cp(19) = x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
cp(20) = x^8 - x^6 + x^4 - x^2 + 1
cp(21) = x^12 - x^11 + x^9 - x^8 + x^6 - x^4 + x^3 - x + 1
cp(22) = x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
cp(23) = x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
cp(24) = x^8 - x^4 + 1
cp(25) = x^20 + x^15 + x^10 + x^5 + 1
cp(26) = x^12 - x^11 + x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
cp(27) = x^18 + x^9 + 1
cp(28) = x^12 - x^10 + x^8 - x^6 + x^4 - x^2 + 1
cp(29) = x^28 + x^27 + x^26 + x^25 + x^24 + x^23 + x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
cp(30) = x^8 + x^7 - x^5 - x^4 - x^3 + x + 1

cp(1) has a coefficient with magnitude 1
cp(105) has a coefficient with magnitude 2
cp(385) has a coefficient with magnitude 3
cp(1365) has a coefficient with magnitude 4
cp(1785) has a coefficient with magnitude 5
cp(2805) has a coefficient with magnitude 6
cp(3135) has a coefficient with magnitude 7
cp(6545) has a coefficient with magnitude 8
cp(6545) has a coefficient with magnitude 9
cp(10465) has a coefficient with magnitude 10

Python

<lang python>from itertools import count, chain from collections import deque

def primes(_cache=[2, 3]):

   yield from _cache
   for n in count(_cache[-1]+2, 2):
       if isprime(n):
           _cache.append(n)
           yield n

def isprime(n):

   for p in primes():
       if n%p == 0:
           return False
       if p*p > n:
           return True

def factors(n):

   for p in primes():
   # prime factoring is such a non-issue for small numbers that, for
   # this example, we might even just say
   # for p in count(2):
       if p*p > n:
           if n > 1:
               yield(n, 1, 1)
           break
       if n%p == 0:
           cnt = 0
           while True:
               n, cnt = n//p, cnt+1
               if n%p != 0: break
           yield p, cnt, n
  1. ^^ not the most sophisticated prime number routines, because no need
  1. Returns (list1, list2) representing the division between
  2. two polinomials. A list p of integers means the product
  3. (x^p[0] - 1) * (x^p[1] - 1) * ...

def cyclotomic(n):

   def poly_div(num, den):
       return (num[0] + den[1], num[1] + den[0])
   def elevate(poly, n): # replace poly p(x) with p(x**n)
       powerup = lambda p, n: [a*n for a in p]
       return poly if n == 1 else (powerup(poly[0], n), powerup(poly[1], n))


   if n == 0:
       return ([], [])
   if n == 1:
       return ([1], [])
   p, m, r = next(factors(n))
   poly = cyclotomic(r)
   return elevate(poly_div(elevate(poly, p), poly), p**(m-1))

def to_text(poly):

   def getx(c, e):
       if e == 0:
           return '1'
       elif e == 1:
           return 'x'
       return 'x' + (.join('⁰¹²³⁴⁵⁶⁷⁸⁹'[i] for i in map(int, str(e))))
   parts = []
   for (c,e) in (poly):
       if c < 0:
           coef = ' - ' if c == -1 else f' - {-c} '
       else:
           coef = (parts and ' + ' or ) if c == 1 else f' + {c}'
       parts.append(coef + getx(c,e))
   return .join(parts)

def terms(poly):

   # convert above representation of division to (coef, power) pairs
   def merge(a, b):
       # a, b should be deques. They may change during the course.
       while a or b:
           l = a[0] if a else (0, -1) # sentinel value
           r = b[0] if b else (0, -1)
           if l[1] > r[1]:
               a.popleft()
           elif l[1] < r[1]:
               b.popleft()
               l = r
           else:
               a.popleft()
               b.popleft()
               l = (l[0] + r[0], l[1])
           yield l
   def mul(poly, p): # p means polynomial x^p - 1
       poly = list(poly)
       return merge(deque((c, e+p) for c,e in poly),
                    deque((-c, e) for c,e in poly))
   def div(poly, p): # p means polynomial x^p - 1
       q = deque()
       for c,e in merge(deque(poly), q):
           if c:
               q.append((c, e - p))
               yield (c, e - p)
           if e == p: break
   p = [(1, 0)]  # 1*x^0, i.e. 1
   for x in poly[0]: # numerator
       p = mul(p, x)
   for x in sorted(poly[1], reverse=True): # denominator
       p = div(p, x)
   return p

for n in chain(range(11), [2]):

   print(f'{n}: {to_text(terms(cyclotomic(n)))}')

want = 1 for n in count():

   c = [c for c,_ in terms(cyclotomic(n))]
   while want in c or -want in c:
       print(f'C[{want}]: {n}')
       want += 1</lang>
Output:

Only showing first 10 polynomials to avoid clutter.

0: 1
1: x - 1
2: x + 1
3: x² + x + 1
4: x² + 1
5: x⁴ + x³ + x² + x + 1
6: x² - x + 1
7: x⁶ + x⁵ + x⁴ + x³ + x² + x + 1
8: x⁴ + 1
9: x⁶ + x³ + 1
10: x⁴ - x³ + x² - x + 1
105: x⁴⁸ + x⁴⁷ + x⁴⁶ - x⁴³ - x⁴² - 2 x⁴¹ - x⁴⁰ - x³⁹ + x³⁶ + x³⁵ + x³⁴ + x³³ + x³² + x³¹ - x²⁸ - x²⁶ - x²⁴ - x²² - x²⁰ + x¹⁷ + x¹⁶ + x¹⁵ + x¹⁴ + x¹³ + x¹² - x⁹ - x⁸ - 2 x⁷ - x⁶ - x⁵ + x² + x + 1
C[1]: 0
C[2]: 105
C[3]: 385
C[4]: 1365
C[5]: 1785
C[6]: 2805
C[7]: 3135
C[8]: 6545
C[9]: 6545
C[10]: 10465
C[11]: 10465
C[12]: 10465
C[13]: 10465
C[14]: 10465
C[15]: 11305
C[16]: 11305
C[17]: 11305
C[18]: 11305
C[19]: 11305
C[20]: 11305
C[21]: 11305
C[22]: 15015
C[23]: 15015

Raku

(formerly Perl 6)

Works with: Rakudo version 2020.01
Translation of: Perl

Uses the same library as Perl, so comes with the same caveats. <lang perl6>use Math::Polynomial::Cyclotomic:from<Perl5> <cyclo_poly_iterate cyclo_poly>;

say 'First 30 cyclotomic polynomials:'; my $iterator = cyclo_poly_iterate(1); say "Φ($_) = " ~ super $iterator().Str for 1..30;

say "\nSmallest cyclotomic polynomial with |n| as a coefficient:"; say "Φ(1) has a coefficient magnitude: 1";

my $index = 0; for 2..9 -> $coefficient {

   loop {
       $index += 5;
       my \Φ = cyclo_poly($index);
       next unless Φ ~~ / $coefficient\* /;
       say "Φ($index) has a coefficient magnitude: $coefficient";
       $index -= 5;
       last;
   }

}

sub super ($str) {

   $str.subst( / '^' (\d+) /, { $0.trans([<0123456789>.comb] => [<⁰¹²³⁴⁵⁶⁷⁸⁹>.comb]) }, :g)

}</lang>

First 30 cyclotomic polynomials:
Φ(1) = (x - 1)
Φ(2) = (x + 1)
Φ(3) = (x² + x + 1)
Φ(4) = (x² + 1)
Φ(5) = (x⁴ + x³ + x² + x + 1)
Φ(6) = (x² - x + 1)
Φ(7) = (x⁶ + x⁵ + x⁴ + x³ + x² + x + 1)
Φ(8) = (x⁴ + 1)
Φ(9) = (x⁶ + x³ + 1)
Φ(10) = (x⁴ - x³ + x² - x + 1)
Φ(11) = (x¹⁰ + x⁹ + x⁸ + x⁷ + x⁶ + x⁵ + x⁴ + x³ + x² + x + 1)
Φ(12) = (x⁴ - x² + 1)
Φ(13) = (x¹² + x¹¹ + x¹⁰ + x⁹ + x⁸ + x⁷ + x⁶ + x⁵ + x⁴ + x³ + x² + x + 1)
Φ(14) = (x⁶ - x⁵ + x⁴ - x³ + x² - x + 1)
Φ(15) = (x⁸ - x⁷ + x⁵ - x⁴ + x³ - x + 1)
Φ(16) = (x⁸ + 1)
Φ(17) = (x¹⁶ + x¹⁵ + x¹⁴ + x¹³ + x¹² + x¹¹ + x¹⁰ + x⁹ + x⁸ + x⁷ + x⁶ + x⁵ + x⁴ + x³ + x² + x + 1)
Φ(18) = (x⁶ - x³ + 1)
Φ(19) = (x¹⁸ + x¹⁷ + x¹⁶ + x¹⁵ + x¹⁴ + x¹³ + x¹² + x¹¹ + x¹⁰ + x⁹ + x⁸ + x⁷ + x⁶ + x⁵ + x⁴ + x³ + x² + x + 1)
Φ(20) = (x⁸ - x⁶ + x⁴ - x² + 1)
Φ(21) = (x¹² - x¹¹ + x⁹ - x⁸ + x⁶ - x⁴ + x³ - x + 1)
Φ(22) = (x¹⁰ - x⁹ + x⁸ - x⁷ + x⁶ - x⁵ + x⁴ - x³ + x² - x + 1)
Φ(23) = (x²² + x²¹ + x²⁰ + x¹⁹ + x¹⁸ + x¹⁷ + x¹⁶ + x¹⁵ + x¹⁴ + x¹³ + x¹² + x¹¹ + x¹⁰ + x⁹ + x⁸ + x⁷ + x⁶ + x⁵ + x⁴ + x³ + x² + x + 1)
Φ(24) = (x⁸ - x⁴ + 1)
Φ(25) = (x²⁰ + x¹⁵ + x¹⁰ + x⁵ + 1)
Φ(26) = (x¹² - x¹¹ + x¹⁰ - x⁹ + x⁸ - x⁷ + x⁶ - x⁵ + x⁴ - x³ + x² - x + 1)
Φ(27) = (x¹⁸ + x⁹ + 1)
Φ(28) = (x¹² - x¹⁰ + x⁸ - x⁶ + x⁴ - x² + 1)
Φ(29) = (x²⁸ + x²⁷ + x²⁶ + x²⁵ + x²⁴ + x²³ + x²² + x²¹ + x²⁰ + x¹⁹ + x¹⁸ + x¹⁷ + x¹⁶ + x¹⁵ + x¹⁴ + x¹³ + x¹² + x¹¹ + x¹⁰ + x⁹ + x⁸ + x⁷ + x⁶ + x⁵ + x⁴ + x³ + x² + x + 1)
Φ(30) = (x⁸ + x⁷ - x⁵ - x⁴ - x³ + x + 1)

Smallest cyclotomic polynomial with |n| as a coefficient:
Φ(1) has a coefficient magnitude: 1
Φ(105) has a coefficient magnitude: 2
Φ(385) has a coefficient magnitude: 3
Φ(1365) has a coefficient magnitude: 4
Φ(1785) has a coefficient magnitude: 5
Φ(2805) has a coefficient magnitude: 6
Φ(3135) has a coefficient magnitude: 7
Φ(6545) has a coefficient magnitude: 8
Φ(6545) has a coefficient magnitude: 9

Sidef

Solution based on polynomial interpolation (slow). <lang ruby>var Poly = require('Math::Polynomial') Poly.string_config(Hash(fold_sign => true, prefix => "", suffix => ""))

func poly_interpolation(v) {

   v.len.of {|n| v.len.of {|k| n**k } }.msolve(v)

}

say "First 30 cyclotomic polynomials:" for k in (1..30) {

   var a = (k+1).of { cyclotomic(k, _) }
   var Φ = poly_interpolation(a)
   say ("Φ(#{k}) = ", Poly.new(Φ...))

}

say "\nSmallest cyclotomic polynomial with n or -n as a coefficient:" for n in (1..10) { # very slow

   var k = (1..Inf -> first {|k|
       poly_interpolation((k+1).of { cyclotomic(k, _) }).first { .abs == n }
   })
   say "Φ(#{k}) has coefficient with magnitude #{n}"

}</lang>

Slightly faster solution, using the Math::Polynomial::Cyclotomic Perl module. <lang ruby>var Poly = require('Math::Polynomial')

          require('Math::Polynomial::Cyclotomic')

Poly.string_config(Hash(fold_sign => true, prefix => "", suffix => ""))

say "First 30 cyclotomic polynomials:" for k in (1..30) {

   say ("Φ(#{k}) = ", Poly.new.cyclotomic(k))

}

say "\nSmallest cyclotomic polynomial with n or -n as a coefficient:" for n in (1..10) {

   var p = Poly.new
   var k = (1..Inf -> first {|k|
       [p.cyclotomic(k).coeff].first { .abs == n }
   })
   say "Φ(#{k}) has coefficient with magnitude = #{n}"

}</lang>

Output:
First 30 cyclotomic polynomials:
Φ(1) = x - 1
Φ(2) = x + 1
Φ(3) = x^2 + x + 1
Φ(4) = x^2 + 1
Φ(5) = x^4 + x^3 + x^2 + x + 1
Φ(6) = x^2 - x + 1
Φ(7) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
Φ(8) = x^4 + 1
Φ(9) = x^6 + x^3 + 1
Φ(10) = x^4 - x^3 + x^2 - x + 1
Φ(11) = x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
Φ(12) = x^4 - x^2 + 1
Φ(13) = x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
Φ(14) = x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
Φ(15) = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1
Φ(16) = x^8 + 1
Φ(17) = x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
Φ(18) = x^6 - x^3 + 1
Φ(19) = x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
Φ(20) = x^8 - x^6 + x^4 - x^2 + 1
Φ(21) = x^12 - x^11 + x^9 - x^8 + x^6 - x^4 + x^3 - x + 1
Φ(22) = x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
Φ(23) = x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
Φ(24) = x^8 - x^4 + 1
Φ(25) = x^20 + x^15 + x^10 + x^5 + 1
Φ(26) = x^12 - x^11 + x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1
Φ(27) = x^18 + x^9 + 1
Φ(28) = x^12 - x^10 + x^8 - x^6 + x^4 - x^2 + 1
Φ(29) = x^28 + x^27 + x^26 + x^25 + x^24 + x^23 + x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
Φ(30) = x^8 + x^7 - x^5 - x^4 - x^3 + x + 1

Smallest cyclotomic polynomial with n or -n as a coefficient:
Φ(1) has coefficient with magnitude = 1
Φ(105) has coefficient with magnitude = 2
Φ(385) has coefficient with magnitude = 3
Φ(1365) has coefficient with magnitude = 4
Φ(1785) has coefficient with magnitude = 5
Φ(2805) has coefficient with magnitude = 6
Φ(3135) has coefficient with magnitude = 7
^C