Closest-pair problem: Difference between revisions

From Rosetta Code
Content added Content deleted
(Closest-pair problem en Yabsic)
m (→‎{{header|REXX}}: added/changed whitespace and comments.)
Line 4,191: Line 4,191:
<br>manifest itself as a minimum distance of zero &nbsp; (the variable &nbsp; <big> <tt> '''dd''' </tt> </big> &nbsp; on line 17).
<br>manifest itself as a minimum distance of zero &nbsp; (the variable &nbsp; <big> <tt> '''dd''' </tt> </big> &nbsp; on line 17).
<lang rexx>/*REXX program solves the closest pair of points problem (in two dimensions). */
<lang rexx>/*REXX program solves the closest pair of points problem (in two dimensions). */
parse arg N low high seed . /*obtain optional arguments from the CL*/
parse arg N LO HI seed . /*obtain optional arguments from the CL*/
if N=='' | N=="," then N= 100 /*Not specified? Then use the default.*/
if N=='' | N=="," then N= 100 /*Not specified? Then use the default.*/
if low=='' | low=="," then low= 0 /* " " " " " " */
if LO=='' | LO=="," then LO= 0 /* " " " " " " */
if high=='' | high=="," then high= 20000 /* " " " " " " */
if HI=='' | HI=="," then HI= 20000 /* " " " " " " */
if datatype(seed, 'W') then call random ,,seed /*seed for RANDOM (BIF) repeatability.*/
if datatype(seed, 'W') then call random ,,seed /*seed for RANDOM (BIF) repeatability.*/
w= length(high); w= w + (w//2==0) /*W: for aligning the output columns.*/
w= length(HI); w= w + (w//2==0) /*W: for aligning the output columns.*/
/*╔══════════════════════╗*/ do j=1 for N /*generate N random points*/
/*╔══════════════════════╗*/ do j=1 for N /*generate N random points*/
/*║ generate N points. ║*/ @x.j= random(low, high) /* " a random X */
/*║ generate N points. ║*/ @x.j= random(LO, HI) /* " a " X */
/*╚══════════════════════╝*/ @y.j= random(low, high) /* " " " Y */
/*╚══════════════════════╝*/ @y.j= random(LO, HI) /* " a " Y */
end /*j*/ /*X & Y make the point.*/
end /*j*/ /*X & Y make the point.*/
A= 1; B= 2 /* [↓] MINDD is actually the squared*/
A= 1; B= 2 /* [↓] MIND is actually the squared */
minDD= (@x.A - @x.B)**2 + (@y.A - @y.B)**2 /*distance between the first two points*/
minD= (@x.A - @x.B)**2 + (@y.A - @y.B)**2 /* distance between the 1st two points.*/
/* [↓] use of XJ & YJ speed things up.*/
/* [↓] use of XJ & YJ speed things up.*/
do j=1 for N-1; xj= @x.j; yj= @y.j /*find minimum distance between a ··· */
do j=1 for N-1; xj= @x.j; yj= @y.j /*find minimum distance between a ··· */
do k=j+1 for N-j-1 /* ··· point and all the other points.*/
do k=j+1 for N-j-1 /* ··· point and all the other points.*/
dd= (xj - @x.k)**2 + (yj - @y.k)**2 /*compute squared distance from points.*/
sd= (xj - @x.k)**2 + (yj - @y.k)**2 /*compute squared distance from points.*/
if dd<minDD then parse value dd j k with minDD A B
if sd<minD then parse value sd j k with minD A B
end /*k*/ /* [↑] needn't take SQRT of DD (yet).*/
end /*k*/ /* [↑] needn't take SQRT of SD (yet).*/
end /*j*/ /* [↑] when done, A & B are the points*/
end /*j*/ /* [↑] when done, A & B are the points*/
$= 'For ' N " points, the minimum distance between the two points: "
$= 'For ' N " points, the minimum distance between the two points: "
say $ center("x", w, '═')" " center('y', w, "═") ' is: ' sqrt(abs(minDD))/1
say $ center("x", w, '═')" " center('y', w, "═") ' is: ' sqrt( abs(minD)) / 1
say left('', length($) - 1) "["right(@x.A, w)',' right(@y.A, w)"]"
say left('', length($) - 1) "["right(@x.A, w)',' right(@y.A, w)"]"
say left('', length($) - 1) "["right(@x.B, w)',' right(@y.B, w)"]"
say left('', length($) - 1) "["right(@x.B, w)',' right(@y.B, w)"]"
exit 0 /*stick a fork in it, we're all done. */
exit 0 /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
/*──────────────────────────────────────────────────────────────────────────────────────*/

Revision as of 14:21, 13 June 2021

Task
Closest-pair problem
You are encouraged to solve this task according to the task description, using any language you may know.
This page uses content from Wikipedia. The original article was at Closest pair of points problem. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)


Task

Provide a function to find the closest two points among a set of given points in two dimensions,   i.e. to solve the   Closest pair of points problem   in the   planar   case.

The straightforward solution is a   O(n2)   algorithm   (which we can call brute-force algorithm);   the pseudo-code (using indexes) could be simply:

bruteForceClosestPair of P(1), P(2), ... P(N)
if N < 2 then
  returnelse
  minDistance ← |P(1) - P(2)|
  minPoints ← { P(1), P(2) }
  foreach i ∈ [1, N-1]
    foreach j ∈ [i+1, N]
      if |P(i) - P(j)| < minDistance then
        minDistance ← |P(i) - P(j)|
        minPoints ← { P(i), P(j) } 
      endif
    endfor
  endfor
  return minDistance, minPoints
 endif

A better algorithm is based on the recursive divide&conquer approach,   as explained also at   Wikipedia's Closest pair of points problem,   which is   O(n log n);   a pseudo-code could be:

closestPair of (xP, yP)
               where xP is P(1) .. P(N) sorted by x coordinate, and
                     yP is P(1) .. P(N) sorted by y coordinate (ascending order)
if N ≤ 3 then
  return closest points of xP using brute-force algorithm
else
  xL ← points of xP from 1 to ⌈N/2⌉
  xR ← points of xP from ⌈N/2⌉+1 to N
  xm ← xP(⌈N/2⌉)x
  yL ← { p ∈ yP : px ≤ xm }
  yR ← { p ∈ yP : px > xm }
  (dL, pairL) ← closestPair of (xL, yL)
  (dR, pairR) ← closestPair of (xR, yR)
  (dmin, pairMin) ← (dR, pairR)
  if dL < dR then
    (dmin, pairMin) ← (dL, pairL)
  endif
  yS ← { p ∈ yP : |xm - px| < dmin }
  nS ← number of points in yS
  (closest, closestPair) ← (dmin, pairMin)
  for i from 1 to nS - 1
    k ← i + 1
    while k ≤ nS and yS(k)y - yS(i)y < dmin
      if |yS(k) - yS(i)| < closest then
        (closest, closestPair) ← (|yS(k) - yS(i)|, {yS(k), yS(i)})
      endif
      k ← k + 1
    endwhile
  endfor
  return closest, closestPair
endif


References and further readings



360 Assembly

<lang 360asm>* Closest Pair Problem 10/03/2017 CLOSEST CSECT

        USING  CLOSEST,R13        base register
        B      72(R15)            skip savearea
        DC     17F'0'             savearea
        STM    R14,R12,12(R13)    save previous context
        ST     R13,4(R15)         link backward
        ST     R15,8(R13)         link forward
        LR     R13,R15            set addressability
        LA     R6,1               i=1
        LA     R7,2               j=2
        BAL    R14,DDCALC         dd=(px(i)-px(j))^2+(py(i)-py(j))^2
        BAL    R14,DDSTORE        ddmin=dd; ii=i; jj=j
        LA     R6,1               i=1
      DO WHILE=(C,R6,LE,N)        do i=1 to n
        LA     R7,1                 j=1
      DO WHILE=(C,R7,LE,N)          do j=1 to n
        BAL    R14,DDCALC         dd=(px(i)-px(j))^2+(py(i)-py(j))^2
      IF CP,DD,GT,=P'0' THEN          if dd>0 then
      IF CP,DD,LT,DDMIN THEN            if dd<ddmin then
        BAL    R14,DDSTORE                ddmin=dd; ii=i; jj=j
      ENDIF    ,                        endif
      ENDIF    ,                      endif
        LA     R7,1(R7)               j++
      ENDDO    ,                    enddo j
        LA     R6,1(R6)             i++
      ENDDO    ,                  enddo i
        ZAP    WPD,DDMIN          ddmin
        DP     WPD,=PL8'2'        ddmin/2
        ZAP    SQRT2,WPD(8)       sqrt2=ddmin/2
        ZAP    SQRT1,DDMIN        sqrt1=ddmin
      DO WHILE=(CP,SQRT1,NE,SQRT2)  do while sqrt1<>sqrt2
        ZAP    SQRT1,SQRT2          sqrt1=sqrt2
        ZAP    WPD,DDMIN            ddmin
        DP     WPD,SQRT1            /sqrt1
        ZAP    WP1,WPD(8)           ddmin/sqrt1
        AP     WP1,SQRT1            +sqrt1
        ZAP    WPD,WP1              ~
        DP     WPD,=PL8'2'          /2
        ZAP    SQRT2,WPD(8)         sqrt2=(sqrt1+(ddmin/sqrt1))/2
      ENDDO    ,                  enddo while
        MVC    PG,=CL80'the minimum distance '
        ZAP    WP1,SQRT2          sqrt2
        BAL    R14,EDITPK         edit 
        MVC    PG+21(L'WC),WC     output
        XPRNT  PG,L'PG            print buffer
        XPRNT  =CL22'is between the points:',22
        MVC    PG,PGP             init buffer
        L      R1,II              ii
        SLA    R1,4               *16
        LA     R4,PXY-16(R1)      @px(ii)
        MVC    WP1,0(R4)          px(ii)
        BAL    R14,EDITPK         edit 
        MVC    PG+3(L'WC),WC      output
        MVC    WP1,8(R4)          py(ii)
        BAL    R14,EDITPK         edit 
        MVC    PG+21(L'WC),WC     output
        XPRNT  PG,L'PG            print buffer
        MVC    PG,PGP             init buffer
        L      R1,JJ              jj
        SLA    R1,4               *16
        LA     R4,PXY-16(R1)      @px(jj)
        MVC    WP1,0(R4)          px(jj)
        BAL    R14,EDITPK         edit 
        MVC    PG+3(L'WC),WC      output
        MVC    WP1,8(R4)          py(jj)
        BAL    R14,EDITPK         edit 
        MVC    PG+21(L'WC),WC     output
        XPRNT  PG,L'PG            print buffer
        L      R13,4(0,R13)       restore previous savearea pointer
        LM     R14,R12,12(R13)    restore previous context
        XR     R15,R15            rc=0
        BR     R14                exit

DDCALC EQU * ---- dd=(px(i)-px(j))^2+(py(i)-py(j))^2

        LR     R1,R6              i
        SLA    R1,4               *16
        LA     R4,PXY-16(R1)      @px(i)
        LR     R1,R7              j
        SLA    R1,4               *16
        LA     R5,PXY-16(R1)      @px(j)
        ZAP    WP1,0(8,R4)        px(i)
        ZAP    WP2,0(8,R5)        px(j)
        SP     WP1,WP2            px(i)-px(j)
        ZAP    WPS,WP1            =
        MP     WP1,WPS            (px(i)-px(j))*(px(i)-px(j))
        ZAP    WP2,8(8,R4)        py(i)
        ZAP    WP3,8(8,R5)        py(j)
        SP     WP2,WP3            py(i)-py(j)
        ZAP    WPS,WP2            =
        MP     WP2,WPS            (py(i)-py(j))*(py(i)-py(j))
        AP     WP1,WP2            (px(i)-px(j))^2+(py(i)-py(j))^2
        ZAP    DD,WP1             dd=(px(i)-px(j))^2+(py(i)-py(j))^2
        BR     R14           ---- return

DDSTORE EQU * ---- ddmin=dd; ii=i; jj=j

        ZAP    DDMIN,DD           ddmin=dd
        ST     R6,II              ii=i
        ST     R7,JJ              jj=j
        BR     R14           ---- return

EDITPK EQU * ----

        MVC    WM,MASK            set mask
        EDMK   WM,WP1             edit and mark
        BCTR   R1,0               -1
        MVC    0(1,R1),WM+17      set sign
        MVC    WC,WM              len17<-len18
        BR     R14           ---- return

N DC A((PGP-PXY)/16) PXY DC PL8'0.654682',PL8'0.925557',PL8'0.409382',PL8'0.619391'

        DC     PL8'0.891663',PL8'0.888594',PL8'0.716629',PL8'0.996200'
        DC     PL8'0.477721',PL8'0.946355',PL8'0.925092',PL8'0.818220'
        DC     PL8'0.624291',PL8'0.142924',PL8'0.211332',PL8'0.221507'
        DC     PL8'0.293786',PL8'0.691701',PL8'0.839186',PL8'0.728260'

PGP DC CL80' [+xxxxxxxxx.xxxxxx,+xxxxxxxxx.xxxxxx]' MASK DC C' ',7X'20',X'21',X'20',C'.',6X'20',C'-' CL18 15num II DS F JJ DS F DD DS PL8 DDMIN DS PL8 SQRT1 DS PL8 SQRT2 DS PL8 WP1 DS PL8 WP2 DS PL8 WP3 DS PL8 WPS DS PL8 WPD DS PL16 WM DS CL18 WC DS CL17 PG DS CL80

        YREGS
        END    CLOSEST</lang>
Output:
the minimum distance          0.077910
is between the points:
  [         0.891663,         0.888594]
  [         0.925092,         0.818220]

Ada

Dimension independent, but has to be defined at procedure call time (could be a parameter). Output is simple, can be formatted using Float_IO.

closest.adb: (uses brute force algorithm) <lang Ada>with Ada.Numerics.Generic_Elementary_Functions; with Ada.Text_IO;

procedure Closest is

  package Math is new Ada.Numerics.Generic_Elementary_Functions (Float);
  Dimension : constant := 2;
  type Vector is array (1 .. Dimension) of Float;
  type Matrix is array (Positive range <>) of Vector;
  -- calculate the distance of two points
  function Distance (Left, Right : Vector) return Float is
     Result : Float := 0.0;
     Offset : Natural := 0;
  begin
     loop
        Result := Result + (Left(Left'First + Offset) - Right(Right'First + Offset))**2;
        Offset := Offset + 1;
        exit when Offset >= Left'Length;
     end loop;
     return Math.Sqrt (Result);
  end Distance;
  -- determine the two closest points inside a cloud of vectors
  function Get_Closest_Points (Cloud : Matrix) return Matrix is
     Result : Matrix (1..2);
     Min_Distance : Float;
  begin
     if Cloud'Length(1) < 2 then
        raise Constraint_Error;
     end if;
     Result := (Cloud (Cloud'First), Cloud (Cloud'First + 1));
     Min_Distance := Distance (Cloud (Cloud'First), Cloud (Cloud'First + 1));
     for I in Cloud'First (1) .. Cloud'Last(1) - 1 loop
        for J in I + 1 .. Cloud'Last(1) loop
           if Distance (Cloud (I), Cloud (J)) < Min_Distance then
              Min_Distance := Distance (Cloud (I), Cloud (J));
              Result := (Cloud (I), Cloud (J));
           end if;
        end loop;
     end loop;
     return Result;
  end Get_Closest_Points;
  Test_Cloud : constant Matrix (1 .. 10) := ( (5.0, 9.0),  (9.0, 3.0),
                                              (2.0, 0.0),  (8.0, 4.0),
                                              (7.0, 4.0),  (9.0, 10.0),
                                              (1.0, 9.0),  (8.0, 2.0),
                                              (0.0, 10.0), (9.0, 6.0));
  Closest_Points : Matrix := Get_Closest_Points (Test_Cloud);
  Second_Test : constant Matrix (1 .. 10) := ( (0.654682, 0.925557), (0.409382, 0.619391),
                                               (0.891663, 0.888594), (0.716629,   0.9962),
                                               (0.477721, 0.946355), (0.925092,  0.81822),
                                               (0.624291, 0.142924), (0.211332, 0.221507),
                                               (0.293786, 0.691701), (0.839186,  0.72826));
  Second_Points : Matrix := Get_Closest_Points (Second_Test);

begin

  Ada.Text_IO.Put_Line ("Closest Points:");
  Ada.Text_IO.Put_Line ("P1: " & Float'Image (Closest_Points (1) (1)) & " " & Float'Image (Closest_Points (1) (2)));
  Ada.Text_IO.Put_Line ("P2: " & Float'Image (Closest_Points (2) (1)) & " " & Float'Image (Closest_Points (2) (2)));
  Ada.Text_IO.Put_Line ("Distance: " & Float'Image (Distance (Closest_Points (1), Closest_Points (2))));
  Ada.Text_IO.Put_Line ("Closest Points 2:");
  Ada.Text_IO.Put_Line ("P1: " & Float'Image (Second_Points (1) (1)) & " " & Float'Image (Second_Points (1) (2)));
  Ada.Text_IO.Put_Line ("P2: " & Float'Image (Second_Points (2) (1)) & " " & Float'Image (Second_Points (2) (2)));
  Ada.Text_IO.Put_Line ("Distance: " & Float'Image (Distance (Second_Points (1), Second_Points (2))));

end Closest;</lang>

Output:
Closest Points:
P1:  8.00000E+00  4.00000E+00
P2:  7.00000E+00  4.00000E+00
Distance:  1.00000E+00
Closest Points 2:
P1:  8.91663E-01  8.88594E-01
P2:  9.25092E-01  8.18220E-01
Distance:  7.79101E-02

AutoHotkey

<lang AutoHotkey>ClosestPair(points){ if (points.count() <= 3) return bruteForceClosestPair(points) split := xSplit(Points) LP := split.1 ; left points LD := ClosestPair(LP) ; recursion : left closest pair RP := split.2 ; right points RD := ClosestPair(RP) ; recursion : right closest pair minD := min(LD, RD) ; minimum of LD & RD xmin := Split.3 - minD ; strip left boundary xmax := Split.3 + minD ; strip right boundary S := strip(points, xmin, xmax) if (s.count()>=2) { SD := ClosestPair(S) ; recursion : strip closest pair return min(SD, minD) } return minD }

---------------------------------------------------------------

strip(points, xmin, xmax){ strip:=[] for i, coord in points if (coord.1 >= xmin) && (coord.1 <= xmax) strip.push([coord.1, coord.2]) return strip }

---------------------------------------------------------------

bruteForceClosestPair(points){ minD := [] loop, % points.count()-1{ p1 := points.RemoveAt(1) loop, % points.count(){ p2 := points[A_Index] d := dist(p1, p2) minD.push(d) } } return min(minD*) }

---------------------------------------------------------------

dist(p1, p2){ return Sqrt((p2.1-p1.1)**2 + (p2.2-p1.2)**2) }

---------------------------------------------------------------

xSplit(Points){ xL := [], xR := [] p := xSort(Points) Loop % Ceil(p.count()/2) xL.push(p.RemoveAt(1)) while p.count() xR.push(p.RemoveAt(1)) mid := (xL[xl.count(),1] + xR[1,1])/2 return [xL, xR, mid] }

---------------------------------------------------------------

xSort(Points){ S := [], Res :=[] for i, coord in points S[coord.1, coord.2] := true for x, coord in S for y, v in coord res.push([x, y]) return res }

---------------------------------------------------------------</lang>

Examples:<lang AutoHotkey>points := [[1, 1], [12, 30], [40, 50], [5, 1], [12, 10], [3, 4], [17,25], [45,50],[51,34],[2,1],[2,2],[10,10]] MsgBox % ClosestPair(points)</lang>

Output:
1.000000

AWK

<lang AWK>

  1. syntax: GAWK -f CLOSEST-PAIR_PROBLEM.AWK

BEGIN {

   x[++n] = 0.654682 ; y[n] = 0.925557
   x[++n] = 0.409382 ; y[n] = 0.619391
   x[++n] = 0.891663 ; y[n] = 0.888594
   x[++n] = 0.716629 ; y[n] = 0.996200
   x[++n] = 0.477721 ; y[n] = 0.946355
   x[++n] = 0.925092 ; y[n] = 0.818220
   x[++n] = 0.624291 ; y[n] = 0.142924
   x[++n] = 0.211332 ; y[n] = 0.221507
   x[++n] = 0.293786 ; y[n] = 0.691701
   x[++n] = 0.839186 ; y[n] = 0.728260
   min = 1E20
   for (i=1; i<=n-1; i++) {
     for (j=i+1; j<=n; j++) {
       dsq = (x[i]-x[j])^2 + (y[i]-y[j])^2
       if (dsq < min) {
         min = dsq
         mini = i
         minj = j
       }
     }
   }
   printf("distance between (%.6f,%.6f) and (%.6f,%.6f) is %g\n",x[mini],y[mini],x[minj],y[minj],sqrt(min))
   exit(0)

} </lang>

Output:
distance between (0.891663,0.888594) and (0.925092,0.818220) is 0.0779102

BASIC256

Versión de fuerza bruta: <lang BASIC256> Dim x(9) x = {0.654682, 0.409382, 0.891663, 0.716629, 0.477721, 0.925092, 0.624291, 0.211332, 0.293786, 0.839186} Dim y(9) y = {0.925557, 0.619391, 0.888594, 0.996200, 0.946355, 0.818220, 0.142924, 0.221507, 0.691701, 0.728260}

minDist = 1^30 For i = 0 To 8 For j = i+1 To 9 dist = (x[i] - x[j])^2 + (y[i] - y[j])^2 If dist < minDist Then minDist = dist : minDisti = i : minDistj = j Next j Next i Print "El par más cercano es "; minDisti; " y "; minDistj; " a una distancia de "; Sqr(minDist) End </lang>

Output:
El par más cercano es 2 y 5 a una distancia de 0,077910191355

BBC BASIC

To find the closest pair it is sufficient to compare the squared-distances, it is not necessary to perform the square root for each pair! <lang bbcbasic> DIM x(9), y(9)

     FOR I% = 0 TO 9
       READ x(I%), y(I%)
     NEXT
     
     min = 1E30
     FOR I% = 0 TO 8
       FOR J% = I%+1 TO 9
         dsq = (x(I%) - x(J%))^2 + (y(I%) - y(J%))^2
         IF dsq < min min = dsq : mini% = I% : minj% = J%
       NEXT
     NEXT I%
     PRINT "Closest pair is ";mini% " and ";minj% " at distance "; SQR(min)
     END
     
     DATA  0.654682, 0.925557
     DATA  0.409382, 0.619391
     DATA  0.891663, 0.888594
     DATA  0.716629, 0.996200
     DATA  0.477721, 0.946355
     DATA  0.925092, 0.818220
     DATA  0.624291, 0.142924
     DATA  0.211332, 0.221507
     DATA  0.293786, 0.691701
     DATA  0.839186, 0.728260

</lang>

Output:
Closest pair is 2 and 5 at distance 0.0779101913

C

See Closest-pair problem/C

C#

We provide a small helper class for distance comparisons: <lang csharp>class Segment {

   public Segment(PointF p1, PointF p2)
   {
       P1 = p1;
       P2 = p2;
   }
   public readonly PointF P1;
   public readonly PointF P2;
   public float Length()
   {
       return (float)Math.Sqrt(LengthSquared());
   }
   public float LengthSquared()
   {
       return (P1.X - P2.X) * (P1.X - P2.X)
           + (P1.Y - P2.Y) * (P1.Y - P2.Y);
   }

}</lang>

Brute force: <lang csharp>Segment Closest_BruteForce(List<PointF> points) {

   int n = points.Count;
   var result = Enumerable.Range( 0, n-1)
       .SelectMany( i => Enumerable.Range( i+1, n-(i+1) )
           .Select( j => new Segment( points[i], points[j] )))
           .OrderBy( seg => seg.LengthSquared())
           .First();
   return result;

}</lang>


And divide-and-conquer. <lang csharp> public static Segment MyClosestDivide(List<PointF> points) {

  return MyClosestRec(points.OrderBy(p => p.X).ToList());

}

private static Segment MyClosestRec(List<PointF> pointsByX) {

  int count = pointsByX.Count;
  if (count <= 4)
     return Closest_BruteForce(pointsByX);
  // left and right lists sorted by X, as order retained from full list
  var leftByX = pointsByX.Take(count/2).ToList();
  var leftResult = MyClosestRec(leftByX);
  var rightByX = pointsByX.Skip(count/2).ToList();
  var rightResult = MyClosestRec(rightByX);
  var result = rightResult.Length() < leftResult.Length() ? rightResult : leftResult;
  // There may be a shorter distance that crosses the divider
  // Thus, extract all the points within result.Length either side
  var midX = leftByX.Last().X;
  var bandWidth = result.Length();
  var inBandByX = pointsByX.Where(p => Math.Abs(midX - p.X) <= bandWidth);
  // Sort by Y, so we can efficiently check for closer pairs
  var inBandByY = inBandByX.OrderBy(p => p.Y).ToArray();
  int iLast = inBandByY.Length - 1;
  for (int i = 0; i < iLast; i++ )
  {
     var pLower = inBandByY[i];
     for (int j = i + 1; j <= iLast; j++)
     {
        var pUpper = inBandByY[j];
        // Comparing each point to successivly increasing Y values
        // Thus, can terminate as soon as deltaY is greater than best result
        if ((pUpper.Y - pLower.Y) >= result.Length())
           break;
        if (Segment.Length(pLower, pUpper) < result.Length())
           result = new Segment(pLower, pUpper);
     }
  }
  return result;

} </lang>

However, the difference in speed is still remarkable. <lang csharp>var randomizer = new Random(10); var points = Enumerable.Range( 0, 10000).Select( i => new PointF( (float)randomizer.NextDouble(), (float)randomizer.NextDouble())).ToList(); Stopwatch sw = Stopwatch.StartNew(); var r1 = Closest_BruteForce(points); sw.Stop(); Debugger.Log(1, "", string.Format("Time used (Brute force) (float): {0} ms", sw.Elapsed.TotalMilliseconds)); Stopwatch sw2 = Stopwatch.StartNew(); var result2 = Closest_Recursive(points); sw2.Stop(); Debugger.Log(1, "", string.Format("Time used (Divide & Conquer): {0} ms",sw2.Elapsed.TotalMilliseconds)); Assert.Equal(r1.Length(), result2.Length());</lang>

Output:
Time used (Brute force) (float): 145731.8935 ms
Time used (Divide & Conquer): 1139.2111 ms

Non Linq Brute Force: <lang csharp>

       Segment Closest_BruteForce(List<PointF> points)
       {
           Trace.Assert(points.Count >= 2);
           int count = points.Count;
           
           // Seed the result - doesn't matter what points are used
           // This just avoids having to do null checks in the main loop below
           var result = new Segment(points[0], points[1]);
           var bestLength = result.Length();
           for (int i = 0; i < count; i++)
               for (int j = i + 1; j < count; j++)
                   if (Segment.Length(points[i], points[j]) < bestLength)
                   {
                       result = new Segment(points[i], points[j]);
                       bestLength = result.Length();
                   }
           return result;
       }</lang>

Targeted Search: Much simpler than divide and conquer, and actually runs faster for the random points. Key optimization is that if the distance along the X axis is greater than the best total length you already have, you can terminate the inner loop early. However, as only sorts in the X direction, it degenerates into an N^2 algorithm if all the points have the same X.

<lang csharp>

       Segment Closest(List<PointF> points)
       {
           Trace.Assert(points.Count >= 2);
           int count = points.Count;
           points.Sort((lhs, rhs) => lhs.X.CompareTo(rhs.X));
           var result = new Segment(points[0], points[1]);
           var bestLength = result.Length();
           for (int i = 0; i < count; i++)
           {
               var from = points[i];
               for (int j = i + 1; j < count; j++)
               {
                   var to = points[j];
                   var dx = to.X - from.X;
                   if (dx >= bestLength)
                   {
                       break;
                   }
                   if (Segment.Length(from, to) < bestLength)
                   {
                       result = new Segment(from, to);
                       bestLength = result.Length();
                   }
               }
           }
           return result;
       }

</lang>

C++

<lang cpp>/* Author: Kevin Bacon Date: 04/03/2014 Task: Closest-pair problem

  • /
  1. include <iostream>
  2. include <vector>
  3. include <utility>
  4. include <cmath>
  5. include <random>
  6. include <chrono>
  7. include <algorithm>
  8. include <iterator>

typedef std::pair<double, double> point_t; typedef std::pair<point_t, point_t> points_t;

double distance_between(const point_t& a, const point_t& b) { return std::sqrt(std::pow(b.first - a.first, 2) + std::pow(b.second - a.second, 2)); }

std::pair<double, points_t> find_closest_brute(const std::vector<point_t>& points) { if (points.size() < 2) { return { -1, { { 0, 0 }, { 0, 0 } } }; } auto minDistance = std::abs(distance_between(points.at(0), points.at(1))); points_t minPoints = { points.at(0), points.at(1) }; for (auto i = std::begin(points); i != (std::end(points) - 1); ++i) { for (auto j = i + 1; j < std::end(points); ++j) { auto newDistance = std::abs(distance_between(*i, *j)); if (newDistance < minDistance) { minDistance = newDistance; minPoints.first = *i; minPoints.second = *j; } } } return { minDistance, minPoints }; }

std::pair<double, points_t> find_closest_optimized(const std::vector<point_t>& xP, const std::vector<point_t>& yP) { if (xP.size() <= 3) { return find_closest_brute(xP); } auto N = xP.size(); auto xL = std::vector<point_t>(); auto xR = std::vector<point_t>(); std::copy(std::begin(xP), std::begin(xP) + (N / 2), std::back_inserter(xL)); std::copy(std::begin(xP) + (N / 2), std::end(xP), std::back_inserter(xR)); auto xM = xP.at((N-1) / 2).first; auto yL = std::vector<point_t>(); auto yR = std::vector<point_t>(); std::copy_if(std::begin(yP), std::end(yP), std::back_inserter(yL), [&xM](const point_t& p) { return p.first <= xM; }); std::copy_if(std::begin(yP), std::end(yP), std::back_inserter(yR), [&xM](const point_t& p) { return p.first > xM; }); auto p1 = find_closest_optimized(xL, yL); auto p2 = find_closest_optimized(xR, yR); auto minPair = (p1.first <= p2.first) ? p1 : p2; auto yS = std::vector<point_t>(); std::copy_if(std::begin(yP), std::end(yP), std::back_inserter(yS), [&minPair, &xM](const point_t& p) { return std::abs(xM - p.first) < minPair.first; }); auto result = minPair; for (auto i = std::begin(yS); i != (std::end(yS) - 1); ++i) { for (auto k = i + 1; k != std::end(yS) && ((k->second - i->second) < minPair.first); ++k) { auto newDistance = std::abs(distance_between(*k, *i)); if (newDistance < result.first) { result = { newDistance, { *k, *i } }; } } } return result; }

void print_point(const point_t& point) { std::cout << "(" << point.first << ", " << point.second << ")"; }

int main(int argc, char * argv[]) { std::default_random_engine re(std::chrono::system_clock::to_time_t( std::chrono::system_clock::now())); std::uniform_real_distribution<double> urd(-500.0, 500.0); std::vector<point_t> points(100); std::generate(std::begin(points), std::end(points), [&urd, &re]() {

               return point_t { 1000 + urd(re), 1000 + urd(re) };
       });

auto answer = find_closest_brute(points); std::sort(std::begin(points), std::end(points), [](const point_t& a, const point_t& b) { return a.first < b.first; }); auto xP = points; std::sort(std::begin(points), std::end(points), [](const point_t& a, const point_t& b) { return a.second < b.second; }); auto yP = points; std::cout << "Min distance (brute): " << answer.first << " "; print_point(answer.second.first); std::cout << ", "; print_point(answer.second.second); answer = find_closest_optimized(xP, yP); std::cout << "\nMin distance (optimized): " << answer.first << " "; print_point(answer.second.first); std::cout << ", "; print_point(answer.second.second); return 0; }</lang>

Output:
Min distance (brute): 6.95886 (932.735, 1002.7), (939.216, 1000.17)
Min distance (optimized): 6.95886 (932.735, 1002.7), (939.216, 1000.17)

Clojure

<lang clojure> (defn distance [[x1 y1] [x2 y2]]

 (let [dx (- x2 x1), dy (- y2 y1)]
   (Math/sqrt (+ (* dx dx) (* dy dy)))))

(defn brute-force [points]

 (let [n (count points)]
   (when (< 1 n)
     (apply min-key first
            (for [i (range 0 (dec n)), :let [p1 (nth points i)],
                  j (range (inc i) n), :let [p2 (nth points j)]]
              [(distance p1 p2) p1 p2])))))

(defn combine [yS [dmin pmin1 pmin2]]

 (apply min-key first
        (conj (for [[p1 p2] (partition 2 1 yS)
                    :let [[_ py1] p1 [_ py2] p2]
                    :while (< (- py1 py2) dmin)]
                [(distance p1 p2) p1 p2])
              [dmin pmin1 pmin2])))

(defn closest-pair

 ([points]
    (closest-pair
     (sort-by first points)
     (sort-by second points)))
 ([xP yP]
    (if (< (count xP) 4)
      (brute-force xP)
      (let [[xL xR] (partition-all (Math/ceil (/ (count xP) 2)) xP)
            [xm _] (last xL)
            {yL true yR false} (group-by (fn px _ (<= px xm)) yP)
            dL&pairL (closest-pair xL yL)
            dR&pairR (closest-pair xR yR)
            [dmin pmin1 pmin2] (min-key first dL&pairL dR&pairR)
            {yS true} (group-by (fn px _ (< (Math/abs (- xm px)) dmin)) yP)]
        (combine yS [dmin pmin1 pmin2])))))

</lang>

Common Lisp

Points are conses whose cars are x coördinates and whose cdrs are y coördinates. This version includes the optimizations given in the McGill description of the algorithm.

<lang lisp>(defun point-distance (p1 p2)

 (destructuring-bind (x1 . y1) p1
   (destructuring-bind (x2 . y2) p2
     (let ((dx (- x2 x1)) (dy (- y2 y1)))
       (sqrt (+ (* dx dx) (* dy dy)))))))

(defun closest-pair-bf (points)

 (let ((pair (list (first points) (second points)))
       (dist (point-distance (first points) (second points))))
   (dolist (p1 points (values pair dist))
     (dolist (p2 points)
       (unless (eq p1 p2)
         (let ((pdist (point-distance p1 p2)))
           (when (< pdist dist)
             (setf (first pair) p1
                   (second pair) p2
                   dist pdist))))))))

(defun closest-pair (points)

 (labels
     ((cp (xp &aux (length (length xp)))
        (if (<= length 3)
          (multiple-value-bind (pair distance) (closest-pair-bf xp)
            (values pair distance (sort xp '< :key 'cdr)))
          (let* ((xr (nthcdr (1- (floor length 2)) xp))
                 (xm (/ (+ (caar xr) (caadr xr)) 2)))
            (psetf xr (rest xr)
                   (rest xr) '())
            (multiple-value-bind (lpair ldist yl) (cp xp)
              (multiple-value-bind (rpair rdist yr) (cp xr)
                (multiple-value-bind (dist pair)
                    (if (< ldist rdist)
                      (values ldist lpair)
                      (values rdist rpair))
                  (let* ((all-ys (merge 'vector yl yr '< :key 'cdr))
                         (ys (remove-if #'(lambda (p)
                                            (> (abs (- (car p) xm)) dist))
                                        all-ys))
                         (ns (length ys)))
                    (dotimes (i ns)
                      (do ((k (1+ i) (1+ k)))
                          ((or (= k ns)
                               (> (- (cdr (aref ys k))
                                     (cdr (aref ys i)))
                                  dist)))
                        (let ((pd (point-distance (aref ys i)
                                                  (aref ys k))))
                          (when (< pd dist)
                            (setf dist pd
                                  (first pair) (aref ys i)
                                  (second pair) (aref ys k))))))
                    (values pair dist all-ys)))))))))
   (multiple-value-bind (pair distance)
       (cp (sort (copy-list points) '< :key 'car))
     (values pair distance))))</lang>

Crystal

D

Compact Versions

<lang d>import std.stdio, std.typecons, std.math, std.algorithm,

      std.random, std.traits, std.range, std.complex;

auto bruteForceClosestPair(T)(in T[] points) pure nothrow @nogc { // return pairwise(points.length.iota, points.length.iota) // .reduce!(min!((i, j) => abs(points[i] - points[j])));

 auto minD = Unqual!(typeof(T.re)).infinity;
 T minI, minJ;
 foreach (immutable i, const p1; points.dropBackOne)
   foreach (const p2; points[i + 1 .. $]) {
     immutable dist = abs(p1 - p2);
     if (dist < minD) {
       minD = dist;
       minI = p1;
       minJ = p2;
     }
   }
 return tuple(minD, minI, minJ);

}

auto closestPair(T)(T[] points) pure nothrow {

 static Tuple!(typeof(T.re), T, T) inner(in T[] xP, /*in*/ T[] yP)
 pure nothrow {
   if (xP.length <= 3)
     return xP.bruteForceClosestPair;
   const Pl = xP[0 .. $ / 2];
   const Pr = xP[$ / 2 .. $];
   immutable xDiv = Pl.back.re;
   auto Yr = yP.partition!(p => p.re <= xDiv);
   immutable dl_pairl = inner(Pl, yP[0 .. yP.length - Yr.length]);
   immutable dr_pairr = inner(Pr, Yr);
   immutable dm_pairm = dl_pairl[0]<dr_pairr[0] ? dl_pairl : dr_pairr;
   immutable dm = dm_pairm[0];
   const nextY = yP.filter!(p => abs(p.re - xDiv) < dm).array;
   if (nextY.length > 1) {
     auto minD = typeof(T.re).infinity;
     size_t minI, minJ;
     foreach (immutable i; 0 .. nextY.length - 1)
       foreach (immutable j; i + 1 .. min(i + 8, nextY.length)) {
         immutable double dist = abs(nextY[i] - nextY[j]);
         if (dist < minD) {
           minD = dist;
           minI = i;
           minJ = j;
         }
       }
     return dm <= minD ? dm_pairm :
                       typeof(return)(minD, nextY[minI], nextY[minJ]);
   } else
     return dm_pairm;
 }
 points.sort!q{ a.re < b.re };
 const xP = points.dup;
 points.sort!q{ a.im < b.im };
 return inner(xP, points);

}

void main() {

 alias C = complex;
 auto pts = [C(5,9), C(9,3), C(2), C(8,4), C(7,4), C(9,10), C(1,9),
             C(8,2), C(0,10), C(9,6)];
 pts.writeln;
 writeln("bruteForceClosestPair: ", pts.bruteForceClosestPair);
 writeln("          closestPair: ", pts.closestPair);
 rndGen.seed = 1;
 Complex!double[10_000] points;
 foreach (ref p; points)
   p = C(uniform(0.0, 1000.0) + uniform(0.0, 1000.0));
 writeln("bruteForceClosestPair: ", points.bruteForceClosestPair);
 writeln("          closestPair: ", points.closestPair);

}</lang>

Output:
[5+9i, 9+3i, 2+0i, 8+4i, 7+4i, 9+10i, 1+9i, 8+2i, 0+10i, 9+6i]
bruteForceClosestPair: Tuple!(double, Complex!double, Complex!double)(1, 8+4i, 7+4i)
          closestPair: Tuple!(double, Complex!double, Complex!double)(1, 7+4i, 8+4i)
bruteForceClosestPair: Tuple!(double, Complex!double, Complex!double)(1.76951e-05, 1040.2+0i, 1040.2+0i)
          closestPair: Tuple!(double, Complex!double, Complex!double)(1.76951e-05, 1040.2+0i, 1040.2+0i)

About 1.87 seconds run-time for data generation and brute force version, and about 0.03 seconds for data generation and divide & conquer (10_000 points in both cases) with ldc2 compiler.

Faster Brute-force Version

<lang d>import std.stdio, std.random, std.math, std.typecons, std.complex,

      std.traits;

Nullable!(Tuple!(size_t, size_t)) bfClosestPair2(T)(in Complex!T[] points) pure nothrow @nogc {

   auto minD = Unqual!(typeof(points[0].re)).infinity;
   if (points.length < 2)
       return typeof(return)();
   size_t minI, minJ;
   foreach (immutable i; 0 .. points.length - 1)
       foreach (immutable j; i + 1 .. points.length) {
           auto dist = (points[i].re - points[j].re) ^^ 2;
           if (dist < minD) {
               dist += (points[i].im - points[j].im) ^^ 2;
               if (dist < minD) {
                   minD = dist;
                   minI = i;
                   minJ = j;
               }
           }
       }
   return typeof(return)(tuple(minI, minJ));

}

void main() {

   alias C = Complex!double;
   auto rng = 31415.Xorshift;
   C[10_000] pts;
   foreach (ref p; pts)
       p = C(uniform(0.0, 1000.0, rng), uniform(0.0, 1000.0, rng));
   immutable ij = pts.bfClosestPair2;
   if (ij.isNull)
       return;
   writefln("Closest pair: Distance: %f  p1, p2: %f, %f",
            abs(pts[ij[0]] - pts[ij[1]]), pts[ij[0]], pts[ij[1]]);

}</lang>

Output:
Closest pair: Distance: 0.019212  p1, p2: 9.74223+119.419i, 9.72306+119.418i

About 0.12 seconds run-time for brute-force version 2 (10_000 points) with with LDC2 compiler.

Delphi

See Pascal.

Elixir

<lang elixir>defmodule Closest_pair do

 # brute-force algorithm:
 def bruteForce([p0,p1|_] = points), do: bf_loop(points, {distance(p0, p1), {p0, p1}})
 
 defp bf_loop([_], acc), do: acc
 defp bf_loop([h|t], acc), do: bf_loop(t, bf_loop(h, t, acc))
 
 defp bf_loop(_, [], acc), do: acc
 defp bf_loop(p0, [p1|t], {minD, minP}) do
   dist = distance(p0, p1)
   if dist < minD, do: bf_loop(p0, t, {dist, {p0, p1}}),
                 else: bf_loop(p0, t, {minD, minP})
 end
 
 defp distance({p0x,p0y}, {p1x,p1y}) do
   :math.sqrt( (p1x - p0x) * (p1x - p0x) + (p1y - p0y) * (p1y - p0y) )
 end
 
 # recursive divide&conquer approach:
 def recursive(points) do
   recursive(Enum.sort(points), Enum.sort_by(points, fn {_x,y} -> y end))
 end
 
 def recursive(xP, _yP) when length(xP) <= 3, do: bruteForce(xP)
 def recursive(xP, yP) do
   {xL, xR} = Enum.split(xP, div(length(xP), 2))
   {xm, _} = hd(xR)
   {yL, yR} = Enum.partition(yP, fn {x,_} -> x < xm end)
   {dL, pairL} = recursive(xL, yL)
   {dR, pairR} = recursive(xR, yR)
   {dmin, pairMin} = if dL<dR, do: {dL, pairL}, else: {dR, pairR}
   yS = Enum.filter(yP, fn {x,_} -> abs(xm - x) < dmin end)
   merge(yS, {dmin, pairMin})
 end
 
 defp merge([_], acc), do: acc
 defp merge([h|t], acc), do: merge(t, merge_loop(h, t, acc))
 
 defp merge_loop(_, [], acc), do: acc
 defp merge_loop(p0, [p1|_], {dmin,_}=acc) when dmin <= elem(p1,1) - elem(p0,1), do: acc
 defp merge_loop(p0, [p1|t], {dmin, pair}) do
   dist = distance(p0, p1)
   if dist < dmin, do: merge_loop(p0, t, {dist, {p0, p1}}),
                 else: merge_loop(p0, t, {dmin, pair})
 end

end

data = [{0.654682, 0.925557}, {0.409382, 0.619391}, {0.891663, 0.888594}, {0.716629, 0.996200},

       {0.477721, 0.946355}, {0.925092, 0.818220}, {0.624291, 0.142924}, {0.211332, 0.221507},
       {0.293786, 0.691701}, {0.839186, 0.728260}]

IO.inspect Closest_pair.bruteForce(data) IO.inspect Closest_pair.recursive(data)

data2 = for _ <- 1..5000, do: {:rand.uniform, :rand.uniform} IO.puts "\nBrute-force:" IO.inspect :timer.tc(fn -> Closest_pair.bruteForce(data2) end) IO.puts "Recursive divide&conquer:" IO.inspect :timer.tc(fn -> Closest_pair.recursive(data2) end)</lang>

Output:
{0.07791019135517516, {{0.891663, 0.888594}, {0.925092, 0.81822}}}
{0.07791019135517516, {{0.891663, 0.888594}, {0.925092, 0.81822}}}

Brute-force:
{9579000,
 {2.068674444452469e-4,
  {{0.9397601102440695, 0.020420581980209674},
   {0.9399398976079764, 0.020522908141823986}}}}
Recursive divide&conquer:
{109000,
 {2.068674444452469e-4,
  {{0.9397601102440695, 0.020420581980209674},
   {0.9399398976079764, 0.020522908141823986}}}}

F#

Brute force: <lang fsharp> let closest_pairs (xys: Point []) =

 let n = xys.Length
 seq { for i in 0..n-2 do
         for j in i+1..n-1 do
           yield xys.[i], xys.[j] }
 |> Seq.minBy (fun (p0, p1) -> (p1 - p0).LengthSquared)

</lang> For example: <lang fsharp> closest_pairs

 [|Point(0.0, 0.0); Point(1.0, 0.0); Point (2.0, 2.0)|]

</lang> gives: <lang fsharp> (0,0, 1,0) </lang>

Divide And Conquer:

<lang fsharp>

open System; open System.Drawing; open System.Diagnostics;

let Length (seg : (PointF * PointF) option) =

   match seg with
   | None -> System.Single.MaxValue
   | Some(line) ->
       let f = fst line
       let t = snd line

       let dx = f.X - t.X
       let dy = f.Y - t.Y
       sqrt (dx*dx + dy*dy)


let Shortest a b =

   if Length(a) < Length(b) then
       a
   else
       b


let rec ClosestBoundY from maxY (ptsByY : PointF list) =

   match ptsByY with
   | [] -> None
   | hd :: tl ->
       if hd.Y > maxY then
           None
       else
           let toHd = Some(from, hd)
           let bestToRest = ClosestBoundY from maxY tl
           Shortest toHd bestToRest


let rec ClosestWithinRange ptsByY maxDy =

   match ptsByY with
   | [] -> None
   | hd :: tl ->
       let fromHd = ClosestBoundY hd (hd.Y + maxDy) tl
       let fromRest = ClosestWithinRange tl  maxDy
       Shortest fromHd fromRest


// Cuts pts half way through it's length // Order is not maintained in result lists however let Halve pts =

   let rec ShiftToFirst first second n =
       match (n, second) with
       | 0, _ -> (first, second)   // finished the split, so return current state
       | _, [] -> (first, [])      // not enough items, so first takes the whole original list
       | n, hd::tl -> ShiftToFirst (hd :: first) tl (n-1)  // shift 1st item from second to first, then recurse with n-1
   let n = (List.length pts) / 2
   ShiftToFirst [] pts n
   

let rec ClosestPair (pts : PointF list) =

   if List.length pts < 2 then
       None
   else
       let ptsByX = pts |> List.sortBy(fun(p) -> p.X)

       let (left, right) = Halve ptsByX
       let leftResult = ClosestPair left
       let rightResult = ClosestPair right

       let bestInHalf = Shortest  leftResult rightResult
       let bestLength = Length bestInHalf

       let divideX = List.head(right).X
       let inBand = pts |> List.filter(fun(p) -> Math.Abs(p.X - divideX) < bestLength)

       let byY = inBand |> List.sortBy(fun(p) -> p.Y)
       let bestCross = ClosestWithinRange byY bestLength
       Shortest bestInHalf bestCross


let GeneratePoints n =

   let rand = new Random()
   [1..n] |> List.map(fun(i) -> new PointF(float32(rand.NextDouble()), float32(rand.NextDouble())))

let timer = Stopwatch.StartNew() let pts = GeneratePoints (50 * 1000) let closest = ClosestPair pts let takenMs = timer.ElapsedMilliseconds

printfn "Closest Pair '%A'. Distance %f" closest (Length closest) printfn "Took %d [ms]" takenMs </lang>

Fantom

(Based on the Ruby example.)

<lang fantom> class Point {

 Float x
 Float y
 // create a random point 
 new make (Float x := Float.random * 10, Float y := Float.random * 10)
 {
   this.x = x
   this.y = y
 }
 Float distance (Point p)
 {
   ((x-p.x)*(x-p.x) + (y-p.y)*(y-p.y)).sqrt
 }
 override Str toStr () { "($x, $y)" }

}

class Main {

 // use brute force approach
 static Point[] findClosestPair1 (Point[] points)
 {
   if (points.size < 2) return points  // list too small
   Point[] closestPair := [points[0], points[1]]
   Float closestDistance := points[0].distance(points[1])
   (1..<points.size).each |Int i|
   {
     ((i+1)..<points.size).each |Int j|
     {
       Float trydistance := points[i].distance(points[j])
       if (trydistance < closestDistance)
       {
         closestPair = [points[i], points[j]]
         closestDistance = trydistance
       }        
     }
   }
   return closestPair
 }
 // use recursive divide-and-conquer approach
 static Point[] findClosestPair2 (Point[] points)
 { 
   if (points.size <= 3) return findClosestPair1(points)
   points.sort |Point a, Point b -> Int| { a.x <=> b.x }
   bestLeft := findClosestPair2 (points[0..(points.size/2)])
   bestRight := findClosestPair2 (points[(points.size/2)..-1])
   Float minDistance
   Point[] closePoints := [,]
   if (bestLeft[0].distance(bestLeft[1]) < bestRight[0].distance(bestRight[1]))
   {
     minDistance = bestLeft[0].distance(bestLeft[1])
     closePoints = bestLeft
   }
   else
   {
     minDistance = bestRight[0].distance(bestRight[1])
     closePoints = bestRight
   }  
   yPoints := points.findAll |Point p -> Bool|
   {
     (points.last.x - p.x).abs < minDistance
   }.sort |Point a, Point b -> Int| { a.y <=> b.y }
   closestPair := [,]
   closestDist := Float.posInf
   for (Int i := 0; i < yPoints.size - 1; ++i)
   { 
     for (Int j := (i+1); j < yPoints.size; ++j)
     { 
       if ((yPoints[j].y - yPoints[i].y) >= minDistance)
       {
         break
       }
       else
       { 
         dist := yPoints[i].distance (yPoints[j])
         if (dist < closestDist) 
         {
           closestDist = dist
           closestPair = [yPoints[i], yPoints[j]]
         }
       }
     }
   } 
   if (closestDist < minDistance)
     return closestPair
   else
     return closePoints
 }
 public static Void main (Str[] args)
 {
   Int numPoints := 10 // default value, in case a number not given on command line
   if ((args.size > 0) && (args[0].toInt(10, false) != null))
   {
     numPoints = args[0].toInt(10, false)
   }
   Point[] points := [,]
   numPoints.times { points.add (Point()) }
   Int t1 := Duration.now.toMillis
   echo (findClosestPair1(points.dup))
   Int t2 := Duration.now.toMillis
   echo ("Time taken: ${(t2-t1)}ms")
   echo (findClosestPair2(points.dup))
   Int t3 := Duration.now.toMillis
   echo ("Time taken: ${(t3-t2)}ms")
 }

} </lang>

Output:
$ fan closestPoints 1000
[(1.4542885676006445, 8.238581003965352), (1.4528464044751888, 8.234724407229772)]
Time taken: 88ms
[(1.4528464044751888, 8.234724407229772), (1.4542885676006445, 8.238581003965352)]
Time taken: 80ms
$ fan closestPoints 10000
[(3.454790171891945, 5.307252398266497), (3.4540208686702245, 5.308350223433488)]
Time taken: 6248ms
[(3.454790171891945, 5.307252398266497), (3.4540208686702245, 5.308350223433488)]
Time taken: 228ms

Fortran

See Closest pair problem/Fortran

FreeBASIC

Versión de fuerza bruta: <lang freebasic> Dim As Integer i, j Dim As Double minDist = 1^30 Dim As Double x(9), y(9), dist, mini, minj

Data 0.654682, 0.925557 Data 0.409382, 0.619391 Data 0.891663, 0.888594 Data 0.716629, 0.996200 Data 0.477721, 0.946355 Data 0.925092, 0.818220 Data 0.624291, 0.142924 Data 0.211332, 0.221507 Data 0.293786, 0.691701 Data 0.839186, 0.728260

For i = 0 To 9

   Read x(i), y(i)

Next i

For i = 0 To 8

   For j = i+1 To 9
       dist = (x(i) - x(j))^2 + (y(i) - y(j))^2
       If dist < minDist Then 
           minDist = dist 
           mini = i 
           minj = j
       End If
   Next j

Next i

Print "El par más cercano es "; mini; " y "; minj; " a una distancia de "; Sqr(minDist) End </lang>

Output:
El par más cercano es 2 y 5 a una distancia de 0.07791019135517516

Go

Brute force <lang go>package main

import (

   "fmt"
   "math"
   "math/rand"
   "time"

)

type xy struct {

   x, y float64

}

const n = 1000 const scale = 100.

func d(p1, p2 xy) float64 {

   return math.Hypot(p2.x-p1.x, p2.y-p1.y)

}

func main() {

   rand.Seed(time.Now().Unix())
   points := make([]xy, n)
   for i := range points {
       points[i] = xy{rand.Float64() * scale, rand.Float64() * scale}
   }
   p1, p2 := closestPair(points)
   fmt.Println(p1, p2)
   fmt.Println("distance:", d(p1, p2))

}

func closestPair(points []xy) (p1, p2 xy) {

   if len(points) < 2 {
       panic("at least two points expected")
   }
   min := 2 * scale
   for i, q1 := range points[:len(points)-1] {
       for _, q2 := range points[i+1:] {
           if dq := d(q1, q2); dq < min {
               p1, p2 = q1, q2
               min = dq
           }
       }
   }
   return

}</lang> O(n) <lang go>// implementation following algorithm described in // http://www.cs.umd.edu/~samir/grant/cp.pdf package main

import (

   "fmt"
   "math"
   "math/rand"
   "time"

)

// number of points to search for closest pair const n = 1e6

// size of bounding box for points. // x and y will be random with uniform distribution in the range [0,scale). const scale = 100.

// point struct type xy struct {

   x, y float64 // coordinates
   key  int64   // an annotation used in the algorithm

}

func d(p1, p2 xy) float64 {

   return math.Hypot(p2.x-p1.x, p2.y-p1.y)

}

func main() {

   rand.Seed(time.Now().Unix())
   points := make([]xy, n)
   for i := range points {
       points[i] = xy{rand.Float64() * scale, rand.Float64() * scale, 0}
   }
   p1, p2 := closestPair(points)
   fmt.Println(p1, p2)
   fmt.Println("distance:", d(p1, p2))

}

func closestPair(s []xy) (p1, p2 xy) {

   if len(s) < 2 {
       panic("2 points required")
   }
   var dxi float64
   // step 0
   for s1, i := s, 1; ; i++ {
       // step 1: compute min distance to a random point
       // (for the case of random data, it's enough to just try
       // to pick a different point)
       rp := i % len(s1)
       xi := s1[rp]
       dxi = 2 * scale
       for p, xn := range s1 {
           if p != rp {
               if dq := d(xi, xn); dq < dxi {
                   dxi = dq
               }
           }
       }
       // step 2: filter
       invB := 3 / dxi             // b is size of a mesh cell
       mx := int64(scale*invB) + 1 // mx is number of cells along a side
       // construct map as a histogram:
       // key is index into mesh.  value is count of points in cell
       hm := map[int64]int{}
       for ip, p := range s1 {
           key := int64(p.x*invB)*mx + int64(p.y*invB)
           s1[ip].key = key
           hm[key]++
       }
       // construct s2 = s1 less the points without neighbors
       s2 := make([]xy, 0, len(s1))
       nx := []int64{-mx - 1, -mx, -mx + 1, -1, 0, 1, mx - 1, mx, mx + 1}
       for i, p := range s1 {
           nn := 0
           for _, ofs := range nx {
               nn += hm[p.key+ofs]
               if nn > 1 {
                   s2 = append(s2, s1[i])
                   break
               }
           }
       }
       // step 3: done?
       if len(s2) == 0 {
           break
       }
       s1 = s2
   }
   // step 4: compute answer from approximation
   invB := 1 / dxi
   mx := int64(scale*invB) + 1
   hm := map[int64][]int{}
   for i, p := range s {
       key := int64(p.x*invB)*mx + int64(p.y*invB)
       s[i].key = key
       hm[key] = append(hm[key], i)
   }
   nx := []int64{-mx - 1, -mx, -mx + 1, -1, 0, 1, mx - 1, mx, mx + 1}
   var min = scale * 2
   for ip, p := range s {
       for _, ofs := range nx {
           for _, iq := range hm[p.key+ofs] {
               if ip != iq {
                   if d1 := d(p, s[iq]); d1 < min {
                       min = d1
                       p1, p2 = p, s[iq]
                   }
               }
           }
       }
   }
   return p1, p2

}</lang>

Groovy

Point class: <lang groovy>class Point {

   final Number x, y
   Point(Number x = 0, Number y = 0) { this.x = x; this.y = y }
   Number distance(Point that) { ((this.x - that.x)**2 + (this.y - that.y)**2)**0.5 }
   String toString() { "{x:${x}, y:${y}}" } 

}</lang>

Brute force solution. Incorporates X-only and Y-only pre-checks in two places to cut down on the square root calculations: <lang groovy>def bruteClosest(Collection pointCol) {

   assert pointCol
   List l = pointCol
   int n = l.size()
   assert n > 1
   if (n == 2) return [distance:l[0].distance(l[1]), points:[l[0],l[1]]]
   def answer = [distance: Double.POSITIVE_INFINITY]
   (0..<(n-1)).each { i ->
       ((i+1)..<n).findAll { j ->
           (l[i].x - l[j].x).abs() < answer.distance &&
           (l[i].y - l[j].y).abs() < answer.distance 
       }.each { j ->
           if ((l[i].x - l[j].x).abs() < answer.distance &&
               (l[i].y - l[j].y).abs() < answer.distance) {
               def dist = l[i].distance(l[j])
               if (dist < answer.distance) {
                   answer = [distance:dist, points:[l[i],l[j]]]
               }
           }
       }
   }
   answer

}</lang>

Elegant (divide-and-conquer reduction) solution. Incorporates X-only and Y-only pre-checks in two places (four if you count the inclusion of the brute force solution) to cut down on the square root calculations: <lang groovy>def elegantClosest(Collection pointCol) {

   assert pointCol
   List xList = (pointCol as List).sort { it.x }
   List yList = xList.clone().sort { it.y }
   reductionClosest(xList, xList)

}

def reductionClosest(List xPoints, List yPoints) { // assert xPoints && yPoints // assert (xPoints as Set) == (yPoints as Set)

   int n = xPoints.size()
   if (n < 10) return bruteClosest(xPoints)
   
   int nMid = Math.ceil(n/2)
   List xLeft = xPoints[0..<nMid]
   List xRight = xPoints[nMid..<n]
   Number xMid = xLeft[-1].x
   List yLeft = yPoints.findAll { it.x <= xMid }
   List yRight = yPoints.findAll { it.x > xMid }
   if (xRight[0].x == xMid) {
       yLeft = xLeft.collect{ it }.sort { it.y }
       yRight = xRight.collect{ it }.sort { it.y }
   }
   
   Map aLeft = reductionClosest(xLeft, yLeft)
   Map aRight = reductionClosest(xRight, yRight)
   Map aMin = aRight.distance < aLeft.distance ? aRight : aLeft
   List yMid = yPoints.findAll { (xMid - it.x).abs() < aMin.distance }
   int nyMid = yMid.size()
   if (nyMid < 2) return aMin
   
   Map answer = aMin
   (0..<(nyMid-1)).each { i ->
       ((i+1)..<nyMid).findAll { j ->
           (yMid[j].x - yMid[i].x).abs() < aMin.distance &&
           (yMid[j].y - yMid[i].y).abs() < aMin.distance &&
           yMid[j].distance(yMid[i]) < aMin.distance
       }.each { k ->
           if ((yMid[k].x - yMid[i].x).abs() < answer.distance && (yMid[k].y - yMid[i].y).abs() < answer.distance) {
               def ikDist = yMid[i].distance(yMid[k])
               if ( ikDist < answer.distance) {
                   answer = [distance:ikDist, points:[yMid[i],yMid[k]]]
               }
           }
       }
   }
   answer

}</lang>

Benchmark/Test: <lang groovy>def random = new Random()

(1..4).each { def point10 = (0..<(10**it)).collect { new Point(random.nextInt(1000001) - 500000,random.nextInt(1000001) - 500000) }

def startE = System.currentTimeMillis() def closestE = elegantClosest(point10) def elapsedE = System.currentTimeMillis() - startE println """ ${10**it} POINTS


Elegant reduction: elapsed: ${elapsedE/1000} s closest: ${closestE} """


def startB = System.currentTimeMillis() def closestB = bruteClosest(point10) def elapsedB = System.currentTimeMillis() - startB println """Brute force: elapsed: ${elapsedB/1000} s closest: ${closestB}

Speedup ratio (B/E): ${elapsedB/elapsedE}

=============================

""" }</lang>

Results:

10 POINTS
-----------------------------------------
Elegant reduction:
elapsed: 0.019 s
closest: [distance:85758.5249173515, points:[{x:310073, y:-27339}, {x:382387, y:18761}]]

Brute force:
elapsed: 0.001 s
closest: [distance:85758.5249173515, points:[{x:310073, y:-27339}, {x:382387, y:18761}]]

Speedup ratio (B/E): 0.0526315789
=========================================


100 POINTS
-----------------------------------------
Elegant reduction:
elapsed: 0.019 s
closest: [distance:3166.229934796271, points:[{x:-343735, y:-244394}, {x:-341099, y:-246148}]]

Brute force:
elapsed: 0.027 s
closest: [distance:3166.229934796271, points:[{x:-343735, y:-244394}, {x:-341099, y:-246148}]]

Speedup ratio (B/E): 1.4210526316
=========================================


1000 POINTS
-----------------------------------------
Elegant reduction:
elapsed: 0.241 s
closest: [distance:374.22586762542215, points:[{x:411817, y:-83016}, {x:412038, y:-82714}]]

Brute force:
elapsed: 0.618 s
closest: [distance:374.22586762542215, points:[{x:411817, y:-83016}, {x:412038, y:-82714}]]

Speedup ratio (B/E): 2.5643153527
=========================================


10000 POINTS
-----------------------------------------
Elegant reduction:
elapsed: 1.957 s
closest: [distance:79.00632886041473, points:[{x:187928, y:-452338}, {x:187929, y:-452259}]]

Brute force:
elapsed: 51.567 s
closest: [distance:79.00632886041473, points:[{x:187928, y:-452338}, {x:187929, y:-452259}]]

Speedup ratio (B/E): 26.3500255493
=========================================

Haskell

BF solution: <lang Haskell>import Data.List (minimumBy, tails, unfoldr, foldl1') --'

import System.Random (newStdGen, randomRs)

import Control.Arrow ((&&&))

import Data.Ord (comparing)

vecLeng [[a, b], [p, q]] = sqrt $ (a - p) ^ 2 + (b - q) ^ 2

findClosestPair =

 foldl1 ((minimumBy (comparing vecLeng) .) . (. return) . (:)) .
 concatMap (\(x:xs) -> map ((x :) . return) xs) . init . tails

testCP = do

 g <- newStdGen
 let pts :: Double
     pts = take 1000 . unfoldr (Just . splitAt 2) $ randomRs (-1, 1) g
 print . (id &&& vecLeng) . findClosestPair $ pts

main = testCP

foldl1 = foldl1' </lang>

Output:

<lang Haskell>*Main> testCP ([[0.8347201880148426,0.40774840545089647],[0.8348731214261784,0.4087113189531284]],9.749825850154334e-4) (4.02 secs, 488869056 bytes)</lang>

Icon and Unicon

This is a brute force solution. It combines reading the points with computing the closest pair seen so far. <lang unicon>record point(x,y)

procedure main()

   minDist := 0
   minPair := &null
   every (points := [],p1 := readPoint()) do {
       if *points == 1 then minDist := dSquared(p1,points[1])
       every minDist >=:= dSquared(p1,p2 := !points) do minPair := [p1,p2]
       push(points, p1)
       }
   if \minPair then {
       write("(",minPair[1].x,",",minPair[1].y,") -> ",
             "(",minPair[2].x,",",minPair[2].y,")")
       }
   else write("One or fewer points!")

end

procedure readPoint() # Skips lines that don't have two numbers on them

   suspend !&input ? point(numeric(tab(upto(', '))), numeric((move(1),tab(0))))

end

procedure dSquared(p1,p2) # Compute the square of the distance

   return (p2.x-p1.x)^2 + (p2.y-p1.y)^2  # (sufficient for closeness)

end</lang>

IS-BASIC

<lang IS-BASIC>100 PROGRAM "Closestp.bas" 110 NUMERIC X(1 TO 10),Y(1 TO 10) 120 FOR I=1 TO 10 130 READ X(I),Y(I) 140 PRINT X(I),Y(I) 150 NEXT 160 LET MN=INF 170 FOR I=1 TO 9 180 FOR J=I+1 TO 10 190 LET DSQ=(X(I)-X(J))^2+(Y(I)-Y(J))^2 200 IF DSQ<MN THEN LET MN=DSQ:LET MINI=I:LET MINJ=J 210 NEXT 220 NEXT 230 PRINT "Closest pair is (";X(MINI);",";Y(MINI);") and (";X(MINJ);",";Y(MINJ);")":PRINT "at distance";SQR(MN) 240 DATA 0.654682,0.925557 250 DATA 0.409382,0.619391 260 DATA 0.891663,0.888594 270 DATA 0.716629,0.996200 280 DATA 0.477721,0.946355 290 DATA 0.925092,0.818220 300 DATA 0.624291,0.142924 310 DATA 0.211332,0.221507 320 DATA 0.293786,0.691701 330 DATA 0.839186,0.728260</lang>

J

Solution of the simpler (brute-force) problem: <lang j>vecl =: +/"1&.:*: NB. length of each vector dist =: <@:vecl@:({: -"1 }:)\ NB. calculate all distances among vectors minpair=: ({~ > {.@($ #: I.@,)@:= <./@;)dist NB. find one pair of the closest points closestpairbf =: (; vecl@:-/)@minpair NB. the pair and their distance</lang> Examples of use: <lang j> ]pts=:10 2 ?@$ 0 0.654682 0.925557 0.409382 0.619391 0.891663 0.888594 0.716629 0.9962 0.477721 0.946355 0.925092 0.81822 0.624291 0.142924 0.211332 0.221507 0.293786 0.691701 0.839186 0.72826

  closestpairbf pts

+-----------------+---------+ |0.891663 0.888594|0.0779104| |0.925092 0.81822| | +-----------------+---------+</lang> The program also works for higher dimensional vectors: <lang j> ]pts=:10 4 ?@$ 0 0.559164 0.482993 0.876 0.429769 0.217911 0.729463 0.97227 0.132175 0.479206 0.169165 0.495302 0.362738 0.316673 0.797519 0.745821 0.0598321 0.662585 0.726389 0.658895 0.653457 0.965094 0.664519 0.084712 0.20671 0.840877 0.591713 0.630206 0.99119 0.221416 0.114238 0.0991282 0.174741 0.946262 0.505672 0.776017 0.307362 0.262482 0.540054 0.707342 0.465234

  closestpairbf pts

+------------------------------------+--------+ |0.217911 0.729463 0.97227 0.132175|0.708555| |0.316673 0.797519 0.745821 0.0598321| | +------------------------------------+--------+</lang>

Java

Both the brute-force and the divide-and-conquer methods are implemented.

Code: <lang Java>import java.util.*;

public class ClosestPair {

 public static class Point
 {
   public final double x;
   public final double y;
   
   public Point(double x, double y)
   {
     this.x = x;
     this.y = y;
   }
   
   public String toString()
   {  return "(" + x + ", " + y + ")";  }
 }
 
 public static class Pair
 {
   public Point point1 = null;
   public Point point2 = null;
   public double distance = 0.0;
   
   public Pair()
   {  }
   
   public Pair(Point point1, Point point2)
   {
     this.point1 = point1;
     this.point2 = point2;
     calcDistance();
   }
   
   public void update(Point point1, Point point2, double distance)
   {
     this.point1 = point1;
     this.point2 = point2;
     this.distance = distance;
   }
   
   public void calcDistance()
   {  this.distance = distance(point1, point2);  }
   
   public String toString()
   {  return point1 + "-" + point2 + " : " + distance;  }
 }
 
 public static double distance(Point p1, Point p2)
 {
   double xdist = p2.x - p1.x;
   double ydist = p2.y - p1.y;
   return Math.hypot(xdist, ydist);
 }
 
 public static Pair bruteForce(List<? extends Point> points)
 {
   int numPoints = points.size();
   if (numPoints < 2)
     return null;
   Pair pair = new Pair(points.get(0), points.get(1));
   if (numPoints > 2)
   {
     for (int i = 0; i < numPoints - 1; i++)
     {
       Point point1 = points.get(i);
       for (int j = i + 1; j < numPoints; j++)
       {
         Point point2 = points.get(j);
         double distance = distance(point1, point2);
         if (distance < pair.distance)
           pair.update(point1, point2, distance);
       }
     }
   }
   return pair;
 }
 
 public static void sortByX(List<? extends Point> points)
 {
   Collections.sort(points, new Comparator<Point>() {
       public int compare(Point point1, Point point2)
       {
         if (point1.x < point2.x)
           return -1;
         if (point1.x > point2.x)
           return 1;
         return 0;
       }
     }
   );
 }
 
 public static void sortByY(List<? extends Point> points)
 {
   Collections.sort(points, new Comparator<Point>() {
       public int compare(Point point1, Point point2)
       {
         if (point1.y < point2.y)
           return -1;
         if (point1.y > point2.y)
           return 1;
         return 0;
       }
     }
   );
 }
 
 public static Pair divideAndConquer(List<? extends Point> points)
 {
   List<Point> pointsSortedByX = new ArrayList<Point>(points);
   sortByX(pointsSortedByX);
   List<Point> pointsSortedByY = new ArrayList<Point>(points);
   sortByY(pointsSortedByY);
   return divideAndConquer(pointsSortedByX, pointsSortedByY);
 }
 
 private static Pair divideAndConquer(List<? extends Point> pointsSortedByX, List<? extends Point> pointsSortedByY)
 {
   int numPoints = pointsSortedByX.size();
   if (numPoints <= 3)
     return bruteForce(pointsSortedByX);
   
   int dividingIndex = numPoints >>> 1;
   List<? extends Point> leftOfCenter = pointsSortedByX.subList(0, dividingIndex);
   List<? extends Point> rightOfCenter = pointsSortedByX.subList(dividingIndex, numPoints);
   
   List<Point> tempList = new ArrayList<Point>(leftOfCenter);
   sortByY(tempList);
   Pair closestPair = divideAndConquer(leftOfCenter, tempList);
   
   tempList.clear();
   tempList.addAll(rightOfCenter);
   sortByY(tempList);
   Pair closestPairRight = divideAndConquer(rightOfCenter, tempList);
   
   if (closestPairRight.distance < closestPair.distance)
     closestPair = closestPairRight;
   
   tempList.clear();
   double shortestDistance =closestPair.distance;
   double centerX = rightOfCenter.get(0).x;
   for (Point point : pointsSortedByY)
     if (Math.abs(centerX - point.x) < shortestDistance)
       tempList.add(point);
   
   for (int i = 0; i < tempList.size() - 1; i++)
   {
     Point point1 = tempList.get(i);
     for (int j = i + 1; j < tempList.size(); j++)
     {
       Point point2 = tempList.get(j);
       if ((point2.y - point1.y) >= shortestDistance)
         break;
       double distance = distance(point1, point2);
       if (distance < closestPair.distance)
       {
         closestPair.update(point1, point2, distance);
         shortestDistance = distance;
       }
     }
   }
   return closestPair;
 }
 
 public static void main(String[] args)
 {
   int numPoints = (args.length == 0) ? 1000 : Integer.parseInt(args[0]);
   List<Point> points = new ArrayList<Point>();
   Random r = new Random();
   for (int i = 0; i < numPoints; i++)
     points.add(new Point(r.nextDouble(), r.nextDouble()));
   System.out.println("Generated " + numPoints + " random points");
   long startTime = System.currentTimeMillis();
   Pair bruteForceClosestPair = bruteForce(points);
   long elapsedTime = System.currentTimeMillis() - startTime;
   System.out.println("Brute force (" + elapsedTime + " ms): " + bruteForceClosestPair);
   startTime = System.currentTimeMillis();
   Pair dqClosestPair = divideAndConquer(points);
   elapsedTime = System.currentTimeMillis() - startTime;
   System.out.println("Divide and conquer (" + elapsedTime + " ms): " + dqClosestPair);
   if (bruteForceClosestPair.distance != dqClosestPair.distance)
     System.out.println("MISMATCH");
 }

}</lang>

Output:
java ClosestPair 10000
Generated 10000 random points
Brute force (1594 ms): (0.9246533850872104, 0.098709007587097)-(0.924591196030625, 0.09862206991823985) : 1.0689077146927108E-4
Divide and conquer (250 ms): (0.924591196030625, 0.09862206991823985)-(0.9246533850872104, 0.098709007587097) : 1.0689077146927108E-4

JavaScript

Using bruteforce algorithm, the bruteforceClosestPair method below expects an array of objects with x- and y-members set to numbers, and returns an object containing the members distance and points.

<lang javascript>function distance(p1, p2) {

 var dx = Math.abs(p1.x - p2.x);
 var dy = Math.abs(p1.y - p2.y);
 return Math.sqrt(dx*dx + dy*dy);

}

function bruteforceClosestPair(arr) {

 if (arr.length < 2) {
   return Infinity;
 } else {
   var minDist = distance(arr[0], arr[1]);
   var minPoints = arr.slice(0, 2);
   
   for (var i=0; i<arr.length-1; i++) {
     for (var j=i+1; j<arr.length; j++) {
       if (distance(arr[i], arr[j]) < minDist) {
         minDist = distance(arr[i], arr[j]);
         minPoints = [ arr[i], arr[j] ];
       }
     }
   }
   return {
     distance: minDist,
     points: minPoints
   };
 }

}</lang>

divide-and-conquer method: <lang javascript>

var Point = function(x, y) { this.x = x; this.y = y; }; Point.prototype.getX = function() { return this.x; }; Point.prototype.getY = function() { return this.y; };

var mergeSort = function mergeSort(points, comp) { if(points.length < 2) return points;


var n = points.length, i = 0, j = 0, leftN = Math.floor(n / 2), rightN = leftN;


var leftPart = mergeSort( points.slice(0, leftN), comp), rightPart = mergeSort( points.slice(rightN), comp );

var sortedPart = [];

while((i < leftPart.length) && (j < rightPart.length)) { if(comp(leftPart[i], rightPart[j]) < 0) { sortedPart.push(leftPart[i]); i += 1; } else { sortedPart.push(rightPart[j]); j += 1; } } while(i < leftPart.length) { sortedPart.push(leftPart[i]); i += 1; } while(j < rightPart.length) { sortedPart.push(rightPart[j]); j += 1; } return sortedPart; };

var closestPair = function _closestPair(Px, Py) { if(Px.length < 2) return { distance: Infinity, pair: [ new Point(0, 0), new Point(0, 0) ] }; if(Px.length < 3) { //find euclid distance var d = Math.sqrt( Math.pow(Math.abs(Px[1].x - Px[0].x), 2) + Math.pow(Math.abs(Px[1].y - Px[0].y), 2) ); return { distance: d, pair: [ Px[0], Px[1] ] }; }

var n = Px.length, leftN = Math.floor(n / 2), rightN = leftN;

var Xl = Px.slice(0, leftN), Xr = Px.slice(rightN), Xm = Xl[leftN - 1], Yl = [], Yr = []; //separate Py for(var i = 0; i < Py.length; i += 1) { if(Py[i].x <= Xm.x) Yl.push(Py[i]); else Yr.push(Py[i]); }

var dLeft = _closestPair(Xl, Yl), dRight = _closestPair(Xr, Yr);

var minDelta = dLeft.distance, closestPair = dLeft.pair; if(dLeft.distance > dRight.distance) { minDelta = dRight.distance; closestPair = dRight.pair; }


//filter points around Xm within delta (minDelta) var closeY = []; for(i = 0; i < Py.length; i += 1) { if(Math.abs(Py[i].x - Xm.x) < minDelta) closeY.push(Py[i]); } //find min within delta. 8 steps max for(i = 0; i < closeY.length; i += 1) { for(var j = i + 1; j < Math.min( (i + 8), closeY.length ); j += 1) { var d = Math.sqrt( Math.pow(Math.abs(closeY[j].x - closeY[i].x), 2) + Math.pow(Math.abs(closeY[j].y - closeY[i].y), 2) ); if(d < minDelta) { minDelta = d; closestPair = [ closeY[i], closeY[j] ] } } }

return { distance: minDelta, pair: closestPair }; };


var points = [ new Point(0.748501, 4.09624), new Point(3.00302, 5.26164), new Point(3.61878, 9.52232), new Point(7.46911, 4.71611), new Point(5.7819, 2.69367), new Point(2.34709, 8.74782), new Point(2.87169, 5.97774), new Point(6.33101, 0.463131), new Point(7.46489, 4.6268), new Point(1.45428, 0.087596) ];

var sortX = function (a, b) { return (a.x < b.x) ? -1 : ((a.x > b.x) ? 1 : 0); } var sortY = function (a, b) { return (a.y < b.y) ? -1 : ((a.y > b.y) ? 1 : 0); }

var Px = mergeSort(points, sortX); var Py = mergeSort(points, sortY);

console.log(JSON.stringify(closestPair(Px, Py))) // {"distance":0.0894096443343775,"pair":[{"x":7.46489,"y":4.6268},{"x":7.46911,"y":4.71611}]}

var points2 = [new Point(37100, 13118), new Point(37134, 1963), new Point(37181, 2008), new Point(37276, 21611), new Point(37307, 9320)];

Px = mergeSort(points2, sortX); Py = mergeSort(points2, sortY);

console.log(JSON.stringify(closestPair(Px, Py))); // {"distance":65.06919393998976,"pair":[{"x":37134,"y":1963},{"x":37181,"y":2008}]}

</lang>

jq

Works with: jq version 1.4

The solution presented here is essentially a direct translation into jq of the pseudo-code presented in the task description, but "closest_pair" is added so that any list of [x,y] points can be presented, and extra lines are added to ensure that xL and yL have the same lengths.

Infrastructure: <lang jq># This definition of "until" is included in recent versions (> 1.4) of jq

  1. Emit the first input that satisfied the condition

def until(cond; next):

 def _until:
   if cond then . else (next|_until) end;
 _until;
  1. Euclidean 2d distance

def dist(x;y):

 [x[0] - y[0], x[1] - y[1]] | map(.*.) | add | sqrt;</lang>

<lang jq>

  1. P is an array of points, [x,y].
  2. Emit the solution in the form [dist, [P1, P2]]

def bruteForceClosestPair(P):

 (P|length) as $length
 | if $length < 2 then null
   else
     reduce range(0; $length-1) as $i
       ( null;
         reduce range($i+1; $length) as $j
           (.;
            dist(P[$i]; P[$j]) as $d
            | if . == null or $d < .[0] then [$d, [ P[$i], P[$j] ] ] else . end ) )
   end;

def closest_pair:

 def abs: if . < 0 then -. else . end;
 def ceil: floor as $floor
   | if . == $floor then $floor else $floor + 1 end;
 # xP is an array [P(1), .. P(N)] sorted by x coordinate, and
 # yP is an array [P(1), .. P(N)] sorted by y coordinate (ascending order).
 # if N <= 3 then return closest points of xP using the brute-force algorithm.
 def closestPair(xP; yP):
   if xP|length <= 3 then bruteForceClosestPair(xP)
   else
     ((xP|length)/2|ceil) as $N
     | xP[0:$N]  as $xL
     | xP[$N:]   as $xR
     | xP[$N-1][0] as $xm                        # middle
     | (yP | map(select(.[0] <= $xm ))) as $yL0  # might be too long
     | (yP | map(select(.[0] >  $xm ))) as $yR0  # might be too short
     | (if $yL0|length == $N then $yL0 else $yL0[0:$N] end) as $yL
     | (if $yL0|length == $N then $yR0 else $yL0[$N:] + $yR0 end) as $yR
     | closestPair($xL; $yL) as $pairL           #  [dL, pairL]
     | closestPair($xR; $yR) as $pairR           #  [dR, pairR]
     | (if $pairL[0] < $pairR[0] then $pairL else $pairR end) as $pair # [ dmin, pairMin]
     | (yP | map(select( (($xm - .[0])|abs) < $pair[0]))) as $yS
     | ($yS | length) as $nS
     | $pair[0] as $dmin
     | reduce range(0; $nS - 1) as $i
         ( [0, $pair];                         # state: [k, [d, [P1,P2]]]
           .[0] = $i + 1
           | until( .[0] as $k | $k >= $nS or ($yS[$k][1] - $yS[$i][1]) >= $dmin;
                      .[0] as $k
                      | dist($yS[$k]; $yS[$i]) as $d
                      | if $d < .[1][0]
                        then [$k+1, [ $d, [$yS[$k], $yS[$i]]]]
                        else .[0] += 1
                        end) )
     | .[1] 
   end;
 closestPair( sort_by(.[0]); sort_by(.[1])) ;</lang>

Example from the Mathematica section: <lang jq>def data:

[[0.748501, 4.09624],
 [3.00302,  5.26164],
 [3.61878,  9.52232],
 [7.46911,  4.71611],
 [5.7819,   2.69367],
 [2.34709,  8.74782],
 [2.87169,  5.97774],
 [6.33101,  0.463131],
 [7.46489,  4.6268],
 [1.45428,  0.087596] ];

data | closest_pair</lang>

Output:
$jq -M -c -n -f closest_pair.jq
[0.0894096443343775,[[7.46489,4.6268],[7.46911,4.71611]]]

Julia

Works with: Julia version 0.6

Brute-force algorithm: <lang julia>function closestpair(P::Vector{Vector{T}}) where T <: Number

   N = length(P)
   if N < 2 return (Inf, ()) end
   mindst = norm(P[1] - P[2])
   minpts = (P[1], P[2])
   for i in 1:N-1, j in i+1:N
       tmpdst = norm(P[i] - P[j])
       if tmpdst < mindst
           mindst = tmpdst
           minpts = (P[i], P[j])
       end
   end
   return mindst, minpts

end

closestpair([[0, -0.3], [1., 1.], [1.5, 2], [2, 2], [3, 3]])</lang>

Kotlin

<lang scala>// version 1.1.2

typealias Point = Pair<Double, Double>

fun distance(p1: Point, p2: Point) = Math.hypot(p1.first- p2.first, p1.second - p2.second)

fun bruteForceClosestPair(p: List<Point>): Pair<Double, Pair<Point, Point>> {

   val n = p.size
   if (n < 2) throw IllegalArgumentException("Must be at least two points")
   var minPoints = p[0] to p[1]
   var minDistance = distance(p[0], p[1])
   for (i in 0 until n - 1)
       for (j in i + 1 until n) {
           val dist = distance(p[i], p[j])
           if (dist < minDistance) {
               minDistance = dist
               minPoints = p[i] to p[j]
           }
       }
   return minDistance to Pair(minPoints.first, minPoints.second)

}

fun optimizedClosestPair(xP: List<Point>, yP: List<Point>): Pair<Double, Pair<Point, Point>> {

   val n = xP.size
   if (n <= 3) return bruteForceClosestPair(xP)
   val xL = xP.take(n / 2)
   val xR = xP.drop(n / 2)
   val xm = xP[n / 2 - 1].first
   val yL = yP.filter { it.first <= xm }
   val yR = yP.filter { it.first >  xm }
   val (dL, pairL) = optimizedClosestPair(xL, yL)
   val (dR, pairR) = optimizedClosestPair(xR, yR)
   var dmin = dR
   var pairMin = pairR
   if (dL < dR) {
       dmin = dL
       pairMin = pairL
   }
   val yS = yP.filter { Math.abs(xm - it.first) < dmin }
   val nS = yS.size
   var closest = dmin
   var closestPair = pairMin
   for (i in 0 until nS - 1) {
       var k = i + 1
       while (k < nS && (yS[k].second - yS[i].second < dmin)) {
           val dist = distance(yS[k], yS[i])
           if (dist < closest) {
               closest = dist
               closestPair = Pair(yS[k], yS[i])
           }
           k++
       }
   }
   return closest to closestPair

}


fun main(args: Array<String>) {

   val points = listOf(
       listOf(
           5.0 to  9.0, 9.0 to 3.0,  2.0 to 0.0, 8.0 to  4.0, 7.0 to 4.0,
           9.0 to 10.0, 1.0 to 9.0,  8.0 to 2.0, 0.0 to 10.0, 9.0 to 6.0
       ),
       listOf(
           0.654682 to 0.925557, 0.409382 to 0.619391, 0.891663 to 0.888594,
           0.716629 to 0.996200, 0.477721 to 0.946355, 0.925092 to 0.818220,
           0.624291 to 0.142924, 0.211332 to 0.221507, 0.293786 to 0.691701,
           0.839186 to 0.728260
       )
   )
   for (p in points) {
       val (dist, pair) = bruteForceClosestPair(p)
       println("Closest pair (brute force) is ${pair.first} and ${pair.second}, distance $dist")
       val xP = p.sortedBy { it.first }
       val yP = p.sortedBy { it.second }
       val (dist2, pair2) = optimizedClosestPair(xP, yP)
       println("Closest pair (optimized)   is ${pair2.first} and ${pair2.second}, distance $dist2\n")
   }

}</lang>

Output:
Closest pair (brute force) is (8.0, 4.0) and (7.0, 4.0), distance 1.0
Closest pair (optimized)   is (7.0, 4.0) and (8.0, 4.0), distance 1.0

Closest pair (brute force) is (0.891663, 0.888594) and (0.925092, 0.81822), distance 0.07791019135517516
Closest pair (optimized)   is (0.891663, 0.888594) and (0.925092, 0.81822), distance 0.07791019135517516

Liberty BASIC

NB array terms can not be READ directly. <lang lb> N =10

dim x( N), y( N)

firstPt =0 secondPt =0

for i =1 to N

   read f: x( i) =f
   read f: y( i) =f

next i

minDistance =1E6

for i =1 to N -1

   for j =i +1 to N
     dxSq =( x( i) -x( j))^2
     dySq =( y( i) -y( j))^2
     D    =abs( ( dxSq +dySq)^0.5)
     if D <minDistance then
       minDistance =D
       firstPt     =i
       secondPt    =j
     end if
   next j

next i

print "Distance ="; minDistance; " between ( "; x( firstPt); ", "; y( firstPt); ") and ( "; x( secondPt); ", "; y( secondPt); ")"

end

data 0.654682, 0.925557 data 0.409382, 0.619391 data 0.891663, 0.888594 data 0.716629, 0.996200 data 0.477721, 0.946355 data 0.925092, 0.818220 data 0.624291, 0.142924 data 0.211332, 0.221507 data 0.293786, 0.691701 data 0.839186, 0.72826

</lang>

Distance =0.77910191e-1 between ( 0.891663, 0.888594) and ( 0.925092, 0.81822)

Maple

<lang Maple>ClosestPair := module()

local

   ModuleApply := proc(L::list,$)
   local Lx, Ly, out;
       Ly := sort(L, 'key'=(i->i[2]), 'output'='permutation');
       Lx := sort(L, 'key'=(i->i[1]), 'output'='permutation');
       out := Recurse(L, Lx, Ly, 1, numelems(L));
       return sqrt(out[1]), out[2];
   end proc; # ModuleApply

local

   BruteForce := proc(L, Lx, r1:=1, r2:=numelems(L), $)
   local d, p, n, i, j;
       d := infinity;
       for i from r1 to r2-1 do
           for j from i+1 to r2 do
               n := dist( L[Lx[i]],  L[Lx[j]] );
               if n < d then
                   d := n;
                   p := [ L[Lx[i]], L[Lx[j]] ];
               end if;
           end do; # j
       end do; # i
       return (d, p);
   end proc; # BruteForce

local dist := (p, q)->(( (p[1]-q[1])^2+(p[2]-q[2])^2 ));

local Recurse := proc(L, Lx, Ly, r1, r2)

   local m, xm, rDist, rPair, lDist, lPair, minDist, minPair, S, i, j, Lyr, Lyl;
   if r2-r1 <= 3 then
       return BruteForce(L, Lx, r1, r2);
   end if;
   m := ceil((r2-r1)/2)+r1;
   xm := (L[Lx[m]][1] + L[Lx[m-1]][1])/2;
   (Lyr, Lyl) := selectremove( i->L[i][1] < xm, Ly);
   (rDist, rPair) := thisproc(L, Lx, Lyr, r1, m-1);
   (lDist, lPair) := thisproc(L, Lx, Lyl, m, r2);
   if rDist < lDist then
       minDist := rDist;
       minPair := rPair;
   else
       minDist := lDist;
       minPair := lPair;
   end if;
   S := [ seq( `if`(abs(xm - L[i][1])^2< minDist, L[i], NULL ), i in Ly ) ];
   for i from 1 to nops(S)-1 do
       for j from i+1 to nops(S) do
           if abs( S[i][2] - S[j][2] )^2 >= minDist then
               break;
           elif dist(S[i], S[j]) < minDist then
               minDist := dist(S[i], S[j]);
               minPair := [S[i], S[j]];
           end if;
       end do;
   end do;
   return (minDist, minPair);
   end proc; #Recurse

end module; #ClosestPair</lang>

Output:

<lang Maple>

> L := RandomTools:-Generate(list(list(float(range=0..1),2),512)): > ClosestPair(L);

0.002576770304, [[0.4265584800, 0.7443097852], [0.4240649736, 0.7449595321]]

</lang>

Mathematica / Wolfram Language

O(n2) <lang Mathematica>nearestPair[data_] :=

Block[{pos, dist = N[Outer[EuclideanDistance, data, data, 1]]},
 pos = Position[dist, Min[DeleteCases[Flatten[dist], 0.]]];
 data[[pos1]]]</lang>

O(n2) output: <lang Mathematica>nearestPair[{{0.748501, 4.09624}, {3.00302, 5.26164}, {3.61878,

 9.52232}, {7.46911, 4.71611}, {5.7819, 2.69367}, {2.34709, 
 8.74782}, {2.87169, 5.97774}, {6.33101, 0.463131}, {7.46489, 
 4.6268}, {1.45428, 0.087596}}]

{{7.46911, 4.71611}, {7.46489, 4.6268}}</lang>


O(nlog n) <lang Mathematica>closestPair[ptsIn_] :=

Module[{xP, yP, 
  pts},(*Top level function.Sorts the pts by x and by y and then \

calls closestPairR[]*)pts = N[ptsIn];

 xP = Sort[pts, #11 < #21 &];
 yP = Sort[pts, #12 < #22 &];
 closestPairR[xP, yP]]

closestPairR[xP_, yP_] :=

Module[{n, mid, xL, xR, xm, yL, yR, dL, pairL, dmin, pairMin, yS, nS,
   closest, closestP, k, 
  cDist},(*where xP is P(1).. P(n) sorted by x coordinate,
 and yP is P(1).. P(n) sorted by y coordinate (ascending order)*)
 n = Length[xP];
 If[n <= 3,(*Brute Force*)
  Piecewise[{{{\[Infinity], {}}, 
     n < 2}, {{EuclideanDistance[xP1, xP2], {xP1, 
       xP2}}, 
     n == 2}, {Last@
      MinimalBy[{{EuclideanDistance[xP1, xP2], {xP1, 
          xP2}}, {EuclideanDistance[xP1, xP3], {xP1, 
          xP3}}, {EuclideanDistance[xP3, xP2], {xP3, 
          xP2}}}, First], n == 3}}], mid = Ceiling[n/2];
  xL = xP1 ;; mid;
  xR = xPmid + 1 ;; n;
  xm = xPmid;
  yL = Select[yP, #1 <= xm1 &];
  yR = Select[yP, #1 > xm1 &];
  {dL, pairL} = closestPairR[xL, yL];
  {dmin, pairMin} = closestPairR[xR, yR];
  If[dL < dmin, {dmin, pairMin} = {dL, pairL}];
  yS = Select[yP, Abs[#1 - xm1] <= dmin &];
  nS = Length[yS];
  {closest, closestP} = {dmin, pairMin};
  Table[k = i + 1;
   While[(k <= nS) && (ySk, 2 - ySi, 2 < dmin), 
    cDist = EuclideanDistance[ySk, ySi];
    If[cDist < 
      closest, {closest, closestP} = {cDist, {ySk, ySi}}];
    k = k + 1], {i, 1, nS - 1}];
  {closest, closestP}](*end if*)]

</lang>

O(nlogn) output: <lang Mathematica>closestPair[{{0.748501, 4.09624}, {3.00302, 5.26164}, {3.61878,

  9.52232}, {7.46911, 4.71611}, {5.7819, 2.69367}, {2.34709, 
  8.74782}, {2.87169, 5.97774}, {6.33101, 0.463131}, {7.46489, 
  4.6268}, {1.45428, 0.087596}}]

{0.0894096, {{7.46489, 4.6268}, {7.46911, 4.71611}}}</lang>

MATLAB

This solution is an almost direct translation of the above pseudo-code into MATLAB. <lang MATLAB>function [closest,closestpair] = closestPair(xP,yP)

   N = numel(xP);
   if(N <= 3)
       
       %Brute force closestpair
       if(N < 2)
           closest = +Inf;
           closestpair = {};
       else        
           closest = norm(xP{1}-xP{2});
           closestpair = {xP{1},xP{2}};
           for i = ( 1:N-1 )
               for j = ( (i+1):N )
                   if ( norm(xP{i} - xP{j}) < closest )
                       closest = norm(xP{i}-xP{j});
                       closestpair = {xP{i},xP{j}};
                   end %if
               end %for
           end %for
       end %if (N < 2)
   else
       
       halfN = ceil(N/2);
       
       xL = { xP{1:halfN} };
       xR = { xP{halfN+1:N} };
       xm = xP{halfN}(1);
       
       %cellfun( @(p)le(p(1),xm),yP ) is the same as { p ∈ yP : px ≤ xm }
       yLIndicies = cellfun( @(p)le(p(1),xm),yP );
       
       yL = { yP{yLIndicies} };
       yR = { yP{~yLIndicies} };
       [dL,pairL] = closestPair(xL,yL);
       [dR,pairR] = closestPair(xR,yR);
       
       if dL < dR
           dmin = dL;
           pairMin = pairL;
       else
           dmin = dR;
           pairMin = pairR;
       end
       %cellfun( @(p)lt(norm(xm-p(1)),dmin),yP ) is the same as
       %{ p ∈ yP : |xm - px| < dmin }
       yS = {yP{ cellfun( @(p)lt(norm(xm-p(1)),dmin),yP ) }};
       nS = numel(yS);
       closest = dmin;
       closestpair = pairMin;
       for i = (1:nS-1)
           k = i+1;
           while( (k<=nS) && (yS{k}(2)-yS{i}(2) < dmin) )
               if norm(yS{k}-yS{i}) < closest
                   closest = norm(yS{k}-yS{i});
                   closestpair = {yS{k},yS{i}};
               end
               k = k+1;
           end %while
       end %for
   end %if (N <= 3)

end %closestPair</lang>

Output:

<lang MATLAB>[distance,pair]=closestPair({[0 -.3],[1 1],[1.5 2],[2 2],[3 3]},{[0 -.3],[1 1],[1.5 2],[2 2],[3 3]})

distance =

  0.500000000000000


pair =

   [1x2 double]    [1x2 double] %The pair is [1.5 2] and [2 2] which is correct</lang>

Microsoft Small Basic

<lang smallbasic>' Closest Pair Problem s="0.654682,0.925557,0.409382,0.619391,0.891663,0.888594,0.716629,0.996200,0.477721,0.946355,0.925092,0.818220,0.624291,0.142924,0.211332,0.221507,0.293786,0.691701,0.839186,0.728260,"

 i=0
 While s<>""
   i=i+1
   For j=1 To 2
     k=Text.GetIndexOf(s,",")
     ss=Text.GetSubText(s,1,k-1)
     s=Text.GetSubTextToEnd(s,k+1)
     pxy[i][j]=ss
   EndFor
 EndWhile
 n=i
 i=1
 j=2
 dd=Math.Power(pxy[i][1]-pxy[j][1],2)+Math.Power(pxy[i][2]-pxy[j][2],2)
 ddmin=dd
 ii=i 
 jj=j
 For i=1 To n
   For j=1 To n
     dd=Math.Power(pxy[i][1]-pxy[j][1],2)+Math.Power(pxy[i][2]-pxy[j][2],2)
     If dd>0 Then
       If dd<ddmin Then
         ddmin=dd 
         ii=i 
         jj=j
       EndIf
     EndIf
   EndFor
 EndFor
 sqrt1=ddmin
 sqrt2=ddmin/2
 For i=1 To 20
   If sqrt1=sqrt2 Then 
     Goto exitfor
   EndIf
   sqrt1=sqrt2
   sqrt2=(sqrt1+(ddmin/sqrt1))/2
 EndFor

exitfor:

 TextWindow.WriteLine("the minimum distance "+sqrt2)
 TextWindow.WriteLine("is between the points:")
 TextWindow.WriteLine("  ["+pxy[ii][1]+","+pxy[ii][2]+"] and")
 TextWindow.WriteLine("  ["+pxy[jj][1]+","+pxy[jj][2]+"]")</lang>
Output:
the minimum distance 0,0779101913551750943201426138
is between the points:
  [0.891663,0.888594] and
  [0.925092,0.818220]

Nim

<lang Nim>import math, algorithm

type

 Point = tuple[x, y: float]
 Pair = tuple[p1, p2: Point]
 Result = tuple[minDist: float; minPoints: Pair]
  1. ---------------------------------------------------------------------------------------------------

template sqr(x: float): float = x * x

  1. ---------------------------------------------------------------------------------------------------

func dist(point1, point2: Point): float =

 sqrt(sqr(point2.x - point1.x) + sqr(point2.y - point1.y))
  1. ---------------------------------------------------------------------------------------------------

func bruteForceClosestPair*(points: openArray[Point]): Result =

 doAssert(points.len >= 2, "At least two points required.")
 result.minDist = Inf
 for i in 0..<points.high:
   for j in (i + 1)..points.high:
     let d = dist(points[i], points[j])
     if  d < result.minDist:
       result = (d, (points[i], points[j]))
  1. ---------------------------------------------------------------------------------------------------

func closestPair(xP, yP: openArray[Point]): Result =

 ## Recursive function which takes two open arrays as arguments: the first
 ## sorted by increasing values of x, the second sorted by increasing values of y.
 if xP.len <= 3:
   return xP.bruteForceClosestPair()
 let m = xP.high div 2
 let xL = xP[0..m]
 let xR = xP[(m + 1)..^1]
 let xm = xP[m].x
 var yL, yR: seq[Point]
 for p in yP:
   if p.x <= xm: yL.add(p)
   else: yR.add(p)
 let (dL, pairL) = closestPair(xL, yL)
 let (dR, pairR) = closestPair(xR, yR)
 let (dMin, pairMin) = if dL < dR: (dL, pairL) else: (dR, pairR)
 var yS: seq[Point]
 for p in yP:
   if abs(xm - p.x) < dmin: yS.add(p)
 result = (dMin, pairMin)
 for i in 0..<yS.high:
   var k = i + 1
   while k < yS.len and ys[k].y - yS[i].y < dMin:
     let d = dist(yS[i], yS[k])
     if d < result.minDist:
       result = (d, (yS[i], yS[k]))
     inc k
  1. ---------------------------------------------------------------------------------------------------

func closestPair*(points: openArray[Point]): Result =

 let xP = points.sortedByIt(it.x)
 let yP = points.sortedByIt(it.y)
 doAssert(points.len >= 2, "At least two points required.")
 result = closestPair(xP, yP)
  1. ———————————————————————————————————————————————————————————————————————————————————————————————————

import random, times, strformat

randomize()

const N = 50_000 const Max = 10_000.0 var points: array[N, Point] for pt in points.mitems: pt = (rand(Max), rand(Max))

echo "Sample contains ", N, " random points." echo ""

let t0 = getTime() echo "Brute force algorithm:" echo points.bruteForceClosestPair() let t1 = getTime() echo "Optimized algorithm:" echo points.closestPair() let t2 = getTime()

echo "" echo fmt"Execution time for brute force algorithm: {(t1 - t0).inMilliseconds:>4} ms" echo fmt"Execution time for optimized algorithm: {(t2 - t1).inMilliseconds:>4} ms"</lang>

Output:
Sample contains 50000 random points.

Brute force algorithm:
(minDist: 0.1177082437919083, minPoints: (p1: (x: 3686.601318778875, y: 2187.261792916939), p2: (x: 3686.483703931143, y: 2187.257104820359)))
Optimized algorithm:
(minDist: 0.1177082437919083, minPoints: (p1: (x: 3686.483703931143, y: 2187.257104820359), p2: (x: 3686.601318778875, y: 2187.261792916939)))

Execution time for brute force algorithm: 2656 ms
Execution time for optimized algorithm:     63 ms

Objective-C

See Closest-pair problem/Objective-C

OCaml

<lang ocaml>

type point = { x : float; y : float }


let cmpPointX (a : point) (b : point) = compare a.x b.x let cmpPointY (a : point) (b : point) = compare a.y b.y


let distSqrd (seg : (point * point) option) =

 match seg with
 | None -> max_float
 | Some(line) ->
   let a = fst line in
   let b = snd line in
   let dx = a.x -. b.x in
   let dy = a.y -. b.y in
 
   dx*.dx +. dy*.dy


let dist seg =

 sqrt (distSqrd seg)


let shortest l1 l2 =

 if distSqrd l1 < distSqrd l2 then
   l1
 else
   l2


let halve l =

 let n = List.length l in
 BatList.split_at (n/2) l


let rec closestBoundY from maxY (ptsByY : point list) =

 match ptsByY with
 | [] -> None
 | hd :: tl ->
   if hd.y > maxY then
     None
   else
     let toHd = Some(from, hd) in
     let bestToRest = closestBoundY from maxY tl in
     shortest toHd bestToRest


let rec closestInRange ptsByY maxDy =

 match ptsByY with
 | [] -> None
 | hd :: tl ->
   let fromHd = closestBoundY hd (hd.y +. maxDy) tl in
   let fromRest = closestInRange tl maxDy in
   shortest fromHd fromRest


let rec closestPairByX (ptsByX : point list) =

  if List.length ptsByX < 2 then
      None
  else
      let (left, right) = halve ptsByX in
      let leftResult = closestPairByX left in
      let rightResult = closestPairByX right in
      let bestInHalf = shortest  leftResult rightResult in
      let bestLength = dist bestInHalf in
      let divideX = (List.hd right).x in
      let inBand = List.filter(fun(p) -> abs_float(p.x -. divideX) < bestLength) ptsByX in
      let byY = List.sort cmpPointY inBand in
      let bestCross = closestInRange byY bestLength in
      shortest bestInHalf bestCross      


let closestPair pts =

 let ptsByX = List.sort cmpPointX pts in
 closestPairByX ptsByX


let parsePoint str =

 let sep = Str.regexp_string "," in
 let tokens = Str.split sep str in
 let xStr = List.nth tokens 0 in
 let yStr = List.nth tokens 1 in
 let xVal = (float_of_string xStr) in
 let yVal = (float_of_string yStr) in
 
 { x = xVal; y = yVal }


let loadPoints filename =

 let ic = open_in filename in
 let result = ref [] in
 try
   while true do
     let s = input_line ic in
     if s <> "" then
       let p = parsePoint s in
       result := p :: !result;
   done;
   !result
 with End_of_file ->
   close_in ic;
   !result

let loaded = (loadPoints "Points.txt") in let start = Sys.time() in let c = closestPair loaded in let taken = Sys.time() -. start in Printf.printf "Took %f [s]\n" taken;

match c with | None -> Printf.printf "No closest pair\n" | Some(seg) ->

 let a = fst seg in
 let b = snd seg in
 Printf.printf "(%f, %f) (%f, %f) Dist %f\n" a.x a.y b.x b.y (dist c)

</lang>

Oz

Translation of pseudocode: <lang oz>declare

 fun {Distance X1#Y1 X2#Y2}
    {Sqrt {Pow X2-X1 2.0} + {Pow Y2-Y1 2.0}}
 end
 %% brute force
 fun {BFClosestPair Points=P1|P2|_}
    Ps = {List.toTuple unit Points} %% for efficient random access
    N = {Width Ps}
    MinDist = {NewCell {Distance P1 P2}}
    MinPoints = {NewCell P1#P2}
 in
    for I in 1..N-1 do
       for J in I+1..N do
          IJDist = {Distance Ps.I Ps.J}
       in
          if IJDist < @MinDist then
             MinDist := IJDist
             MinPoints := Ps.I#Ps.J
          end
       end
    end
    @MinPoints
 end
 %% divide and conquer
 fun {ClosestPair Points}
    case {ClosestPair2
          {Sort Points {LessThanBy X}}
          {Sort Points {LessThanBy Y}}}
    of Distance#Pair then
       Pair
    end
 end
 %% XP: points sorted by X, YP: sorted by Y
 %% returns a pair Distance#Pair
 fun {ClosestPair2 XP YP}
    N = {Length XP} = {Length YP}
 in
    if N =< 3 then
       P = {BFClosestPair XP}
    in
       {Distance P.1 P.2}#P
    else
       XL XR
       {List.takeDrop XP (N div 2) ?XL ?XR}
       XM = {Nth XP (N div 2)}.X
       YL YR
       {List.partition YP fun {$ P} P.X =< XM end ?YL ?YR}
       DL#PairL = {ClosestPair2 XL YL}
       DR#PairR = {ClosestPair2 XR YR}
       DMin#PairMin = if DL < DR then DL#PairL else DR#PairR end
       YSList = {Filter YP fun {$ P} {Abs XM-P.X} < DMin end}
       YS = {List.toTuple unit YSList} %% for efficient random access
       NS = {Width YS}
       Closest = {NewCell DMin}
       ClosestPair = {NewCell PairMin}
    in
       for I in 1..NS-1 do
          for K in I+1..NS while:YS.K.Y - YS.I.Y < DMin do
             DistKI = {Distance YS.K YS.I}
          in
             if DistKI < @Closest then
                Closest := DistKI
                ClosestPair := YS.K#YS.I
             end
          end
       end
       @Closest#@ClosestPair
    end
 end
 %% To access components when points are represented as pairs
 X = 1
 Y = 2
 %% returns a less-than predicate that accesses feature F
 fun {LessThanBy F}
    fun {$ A B}
       A.F < B.F
    end
 end
 fun {Random Min Max}
    Min +
    {Int.toFloat {OS.rand}} * (Max-Min)
    / {Int.toFloat {OS.randLimits _}}
 end
 fun {RandomPoint}
    {Random 0.0 100.0}#{Random 0.0 100.0}
 end
 
 Points = {MakeList 5}

in

 {ForAll Points RandomPoint}
 {Show Points}
 {Show {ClosestPair Points}}</lang>

PARI/GP

Naive quadratic solution. <lang parigp>closestPair(v)={

 my(r=norml2(v[1]-v[2]),at=[1,2]);
 for(a=1,#v-1,
   for(b=a+1,#v,
     if(norml2(v[a]-v[b])<r,
       at=[a,b];
       r=norml2(v[a]-v[b])
     )
   )
 );
 [v[at[1]],v[at[2]]]

};</lang>

Pascal

Brute force only calc square of distance, like AWK etc... As fast as D . <lang pascal>program closestPoints; {$IFDEF FPC}

  {$MODE Delphi}

{$ENDIF} const

 PointCnt = 10000;//31623;

type

 TdblPoint = Record
              ptX,
              ptY : double;
             end;
 tPtLst =  array of TdblPoint;
 tMinDIstIdx  = record
                  md1,
                  md2 : NativeInt;
                end;

function ClosPointBruteForce(var ptl :tPtLst):tMinDIstIdx; Var

 i,j,k : NativeInt;
 mindst2,dst2: double; //square of distance, no need to sqrt
 p0,p1 : ^TdblPoint;   //using pointer, since calc of ptl[?] takes much time

Begin

 i := Low(ptl);
 j := High(ptl);
 result.md1 := i;result.md2 := j;
 mindst2 := sqr(ptl[i].ptX-ptl[j].ptX)+sqr(ptl[i].ptY-ptl[j].ptY);
 repeat
   p0 := @ptl[i];
   p1 := p0; inc(p1);
   For k := i+1 to j do
   Begin
     dst2:= sqr(p0^.ptX-p1^.ptX)+sqr(p0^.ptY-p1^.ptY);
     IF mindst2 > dst2  then
     Begin
       mindst2 :=  dst2;
       result.md1 := i;
       result.md2 := k;
     end;
     inc(p1);
   end;
   inc(i);
 until i = j;

end;

var

 PointLst :tPtLst;
 cloPt : tMinDIstIdx;
 i : NativeInt;

Begin

 randomize;
 setlength(PointLst,PointCnt);
 For i := 0 to PointCnt-1 do
   with PointLst[i] do
   Begin
     ptX := random;
     ptY := random;
   end;
 cloPt:=  ClosPointBruteForce(PointLst) ;
 i := cloPt.md1;
 Writeln('P[',i:4,']= x: ',PointLst[i].ptX:0:8,
                    ' y: ',PointLst[i].ptY:0:8);
 i := cloPt.md2;
 Writeln('P[',i:4,']= x: ',PointLst[i].ptX:0:8,
                    ' y: ',PointLst[i].ptY:0:8);

end.</lang>

Output:
PointCnt = 10000

//without randomize always same results //32-Bit P[ 324]= x: 0.26211815 y: 0.45851455 P[3391]= x: 0.26217852 y: 0.45849116 real 0m0.114s //fpc 3.1.1 32 Bit -O4 -MDelphi..cpu i4330 3.5 Ghz //64-Bit doubles the speed comp switch -O2 ..-O4 same timings P[ 324]= x: 0.26211815 y: 0.45851455 P[3391]= x: 0.26217852 y: 0.45849116 real 0m0.059s //fpc 3.1.1 64 Bit -O4 -MDelphi..cpu i4330 3.5 Ghz

//with randomize P[ 47]= x: 0.12408823 y: 0.04501338 P[9429]= x: 0.12399629 y: 0.04496700 //32-Bit

PointCnt = { 10000*sqrt(10) } 31623;-> real 0m1.112s 10x times runtime

Perl

The divide & conquer technique is about 100x faster than the brute-force algorithm. <lang perl>#! /usr/bin/perl use strict; use POSIX qw(ceil);

sub dist {

   my ( $a, $b) = @_;
   return sqrt( ($a->[0] - $b->[0])**2 +
                ($a->[1] - $b->[1])**2 );

}

sub closest_pair_simple {

   my $ra = shift;
   my @arr = @$ra;
   my $inf = 1e600;
   return $inf if scalar(@arr) < 2;
   my ( $a, $b, $d ) = ($arr[0], $arr[1], dist($arr[0], $arr[1]));
   while( @arr ) {

my $p = pop @arr; foreach my $l (@arr) { my $t = dist($p, $l); ($a, $b, $d) = ($p, $l, $t) if $t < $d; }

   }
   return ($a, $b, $d);

}

sub closest_pair {

   my $r = shift;
   my @ax = sort { $a->[0] <=> $b->[0] } @$r;
   my @ay = sort { $a->[1] <=> $b->[1] } @$r;
   return closest_pair_real(\@ax, \@ay);

}

sub closest_pair_real {

   my ($rx, $ry) = @_;
   my @xP = @$rx;
   my @yP = @$ry;
   my $N = @xP;
   return closest_pair_simple($rx) if scalar(@xP) <= 3;
   my $inf = 1e600;
   my $midx = ceil($N/2)-1;
   my @PL = @xP[0 .. $midx];
   my @PR = @xP[$midx+1 .. $N-1];
   my $xm = ${$xP[$midx]}[0];
   my @yR = ();
   my @yL = ();
   foreach my $p (@yP) {

if ( ${$p}[0] <= $xm ) { push @yR, $p; } else { push @yL, $p; }

   }
   my ($al, $bl, $dL) = closest_pair_real(\@PL, \@yR);
   my ($ar, $br, $dR) = closest_pair_real(\@PR, \@yL);
   my ($m1, $m2, $dmin) = ($al, $bl, $dL);
   ($m1, $m2, $dmin) = ($ar, $br, $dR) if $dR < $dL;
   my @yS = ();
   foreach my $p (@yP) {

push @yS, $p if abs($xm - ${$p}[0]) < $dmin;

   }
   if ( @yS ) {

my ( $w1, $w2, $closest ) = ($m1, $m2, $dmin); foreach my $i (0 .. ($#yS - 1)) {

my $k = $i + 1; while ( ($k <= $#yS) && ( (${$yS[$k]}[1] - ${$yS[$i]}[1]) < $dmin) ) { my $d = dist($yS[$k], $yS[$i]); ($w1, $w2, $closest) = ($yS[$k], $yS[$i], $d) if $d < $closest; $k++; }

} return ($w1, $w2, $closest);

   } else {

return ($m1, $m2, $dmin);

   } 

}


my @points = (); my $N = 5000;

foreach my $i (1..$N) {

   push @points, [rand(20)-10.0, rand(20)-10.0];

}


my ($a, $b, $d) = closest_pair_simple(\@points); print "$d\n";

my ($a1, $b1, $d1) = closest_pair(\@points); print "$d1\n";</lang>

Phix

Brute force and divide and conquer (translated from pseudocode) approaches compared <lang Phix>function bruteForceClosestPair(sequence s) atom {x1,y1} = s[1], {x2,y2} = s[2], dx = x1-x2, dy = y1-y2, mind = dx*dx+dy*dy sequence minp = s[1..2]

   for i=1 to length(s)-1 do
       {x1,y1} = s[i]
       for j=i+1 to length(s) do
           {x2,y2} = s[j]
           dx = x1-x2
           dx = dx*dx
           if dx<mind then
               dy = y1-y2
               dx += dy*dy
               if dx<mind then
                   mind = dx
                   minp = {s[i],s[j]}
               end if
           end if
       end for
   end for
   return {sqrt(mind),minp}

end function

sequence testset = sq_rnd(repeat({1,1},10000)) atom t0 = time() sequence points atom d {d,points} = bruteForceClosestPair(testset) -- (Sorting the final point pair makes brute/dc more likely to tally. Note however -- when >1 equidistant pairs exist, brute and dc may well return different pairs; -- it is only a problem if they decide to return different minimum distances.) atom {{x1,y1},{x2,y2}} = sort(points) printf(1,"Closest pair: {%f,%f} {%f,%f}, distance=%f (%3.2fs)\n",{x1,y2,x2,y2,d,time()-t0})

t0 = time() constant X = 1, Y = 2 sequence xP = sort(testset)

function byY(sequence p1, p2)

   return compare(p1[Y],p2[Y])

end function sequence yP = custom_sort(routine_id("byY"),testset)

function distsq(sequence p1,p2) atom {x1,y1} = p1, {x2,y2} = p2

   x1 -= x2
   y1 -= y2
   return x1*x1 + y1*y1

end function

function closestPair(sequence xP, yP) -- where xP is P(1) .. P(N) sorted by x coordinate, and -- yP is P(1) .. P(N) sorted by y coordinate (ascending order) integer N, midN, k, nS sequence xL, xR, yL, yR, pairL, pairR, pairMin, yS, cPair atom xm, dL, dR, dmin, closest

   N = length(xP)
   if length(yP)!=N then ?9/0 end if   -- (sanity check)
   if N<=3 then
       return bruteForceClosestPair(xP)
   end if
   midN = floor(N/2)
   xL = xP[1..midN]
   xR = xP[midN+1..N]
   xm = xP[midN][X]
   yL = {}
   yR = {}
   for i=1 to N do
       if yP[i][X]<=xm then
           yL = append(yL,yP[i])
       else
           yR = append(yR,yP[i])
       end if
   end for
   {dL, pairL} = closestPair(xL, yL)
   {dR, pairR} = closestPair(xR, yR)
   {dmin, pairMin} = {dR, pairR}
   if dL<dR then
       {dmin, pairMin} = {dL, pairL}
   end if
   yS = {}
   for i=1 to length(yP) do
       if abs(xm-yP[i][X])<dmin then
           yS = append(yS,yP[i])
       end if
   end for
   nS = length(yS)
   {closest, cPair} = {dmin*dmin, pairMin}
   for i=1 to nS-1 do
       k = i + 1
       while k<=nS and (yS[k][Y]-yS[i][Y])<dmin do
           d = distsq(yS[k],yS[i])
           if d<closest then
               {closest, cPair} = {d, {yS[k], yS[i]}}
           end if
           k += 1
       end while
   end for
   return {sqrt(closest), cPair}

end function

{d,points} = closestPair(xP,yP) {{x1,y1},{x2,y2}} = sort(points) -- (see note above) printf(1,"Closest pair: {%f,%f} {%f,%f}, distance=%f (%3.2fs)\n",{x1,y2,x2,y2,d,time()-t0})</lang>

Output:
Closest pair: {0.0328051,0.0966250} {0.0328850,0.0966250}, distance=0.000120143 (2.37s)
Closest pair: {0.0328051,0.0966250} {0.0328850,0.0966250}, distance=0.000120143 (0.14s)

PicoLisp

<lang PicoLisp>(de closestPairBF (Lst)

  (let Min T
     (use (Pt1 Pt2)
        (for P Lst
           (for Q Lst
              (or
                 (== P Q)
                 (>=
                    (setq N
                       (let (A (- (car P) (car Q))  B (- (cdr P) (cdr Q)))
                          (+ (* A A) (* B B)) ) )
                    Min )
                 (setq Min N  Pt1 P  Pt2 Q) ) ) )
        (list Pt1 Pt2 (sqrt Min)) ) ) )</lang>

Test:

: (scl 6)
-> 6

: (closestPairBF
   (quote
      (0.654682 . 0.925557)
      (0.409382 . 0.619391)
      (0.891663 . 0.888594)
      (0.716629 . 0.996200)
      (0.477721 . 0.946355)
      (0.925092 . 0.818220)
      (0.624291 . 0.142924)
      (0.211332 . 0.221507)
      (0.293786 . 0.691701)
      (0.839186 . 0.728260) ) )
-> ((891663 . 888594) (925092 . 818220) 77910)

PL/I

<lang> /* Closest Pair Problem */ closest: procedure options (main);

  declare n fixed binary;
  get list (n);
  begin;
     declare 1 P(n),
              2 x float,
              2 y float;
     declare (i, ii, j, jj) fixed binary;
     declare (distance, min_distance initial (0) ) float;
     get list (P);
     min_distance = sqrt( (P.x(1) - P.x(2))**2 + (P.y(1) - P.y(2))**2 );
     ii = 1;  jj = 2;
     do i = 1 to n;
        do j = 1 to n;
           distance = sqrt( (P.x(i) - P.x(j))**2 + (P.y(i) - P.y(j))**2 );
           if distance > 0 then
            if distance < min_distance  then
              do;
                 min_distance = distance;
                 ii = i; jj = j;
              end;
        end;
     end;
     put skip edit ('The minimum distance ', min_distance,
                    ' is between the points [', P.x(ii),
                    ',', P.y(ii), '] and [', P.x(jj), ',', P.y(jj), ']' )
                    (a, f(6,2));
  end;

end closest; </lang>

Prolog

Brute force version, works with SWI-Prolog, tested on version 7.2.3. <lang Prolog> % main predicate, find and print closest point do_find_closest_points(Points) :- points_closest(Points, points(point(X1,Y1),point(X2,Y2),Dist)), format('Point 1 : (~p, ~p)~n', [X1,Y1]), format('Point 1 : (~p, ~p)~n', [X2,Y2]), format('Distance: ~p~n', [Dist]).

% Find the distance between two points distance(point(X1,Y1), point(X2,Y2), points(point(X1,Y1),point(X2,Y2),Dist)) :- Dx is X2 - X1, Dy is Y2 - Y1, Dist is sqrt(Dx * Dx + Dy * Dy).

% find the closest point that relatest to another point point_closest(Points, Point, Closest) :- select(Point, Points, Remaining), maplist(distance(Point), Remaining, PointList), foldl(closest, PointList, 0, Closest).

% find the closest point/dist pair for all points points_closest(Points, Closest) :- maplist(point_closest(Points), Points, ClosestPerPoint), foldl(closest, ClosestPerPoint, 0, Closest).

% used by foldl to get the lowest point/distance combination closest(points(P1,P2,Dist), 0, points(P1,P2,Dist)). closest(points(_,_,Dist), points(P1,P2,Dist2), points(P1,P2,Dist2)) :- Dist2 < Dist. closest(points(P1,P2,Dist), points(_,_,Dist2), points(P1,P2,Dist)) :- Dist =< Dist2. </lang> To test, pass in a list of points. <lang Prolog>do_find_closest_points([

   point(0.654682, 0.925557),
   point(0.409382, 0.619391),
   point(0.891663, 0.888594),
   point(0.716629, 0.996200),
   point(0.477721, 0.946355),
   point(0.925092, 0.818220),
   point(0.624291, 0.142924),
   point(0.211332, 0.221507),
   point(0.293786, 0.691701),
   point(0.839186, 0.728260)

]). </lang>

Output:
Point 1 : (0.925092, 0.81822)
Point 1 : (0.891663, 0.888594)
Distance: 0.07791019135517516
true ;
false.

PureBasic

Brute force version <lang PureBasic>Procedure.d bruteForceClosestPair(Array P.coordinate(1))

 Protected N=ArraySize(P()), i, j
 Protected mindistance.f=Infinity(), t.d
 Shared a, b
 If N<2
   a=0: b=0
 Else
   For i=0 To N-1
     For j=i+1 To N
       t=Pow(Pow(P(i)\x-P(j)\x,2)+Pow(P(i)\y-P(j)\y,2),0.5)
       If mindistance>t
         mindistance=t
         a=i: b=j
       EndIf
     Next
   Next
 EndIf
 ProcedureReturn mindistance

EndProcedure </lang>

Implementation can be as <lang PureBasic>Structure coordinate

 x.d
 y.d

EndStructure

Dim DataSet.coordinate(9) Define i, x.d, y.d, a, b

- Load data from datasection

Restore DataPoints For i=0 To 9

 Read.d x: Read.d y
 DataSet(i)\x=x
 DataSet(i)\y=y

Next i

If OpenConsole()

 PrintN("Mindistance= "+StrD(bruteForceClosestPair(DataSet()),6))
 PrintN("Point 1= "+StrD(DataSet(a)\x,6)+": "+StrD(DataSet(a)\y,6))
 PrintN("Point 2= "+StrD(DataSet(b)\x,6)+": "+StrD(DataSet(b)\y,6))
 Print(#CRLF$+"Press ENTER to quit"): Input()

EndIf

DataSection

 DataPoints:
 Data.d  0.654682, 0.925557, 0.409382, 0.619391, 0.891663, 0.888594
 Data.d  0.716629, 0.996200, 0.477721, 0.946355, 0.925092, 0.818220
 Data.d  0.624291, 0.142924, 0.211332, 0.221507, 0.293786, 0.691701, 0.839186,  0.72826

EndDataSection</lang>

Output:
Mindistance= 0.077910
Point 1= 0.891663: 0.888594
Point 2= 0.925092: 0.818220

Press ENTER to quit

Python

<lang python>"""

 Compute nearest pair of points using two algorithms
 
 First algorithm is 'brute force' comparison of every possible pair.
 Second, 'divide and conquer', is based on:
   www.cs.iupui.edu/~xkzou/teaching/CS580/Divide-and-conquer-closestPair.ppt 

"""

from random import randint, randrange from operator import itemgetter, attrgetter

infinity = float('inf')

  1. Note the use of complex numbers to represent 2D points making distance == abs(P1-P2)

def bruteForceClosestPair(point):

   numPoints = len(point)
   if numPoints < 2:
       return infinity, (None, None)
   return min( ((abs(point[i] - point[j]), (point[i], point[j]))
                for i in range(numPoints-1)
                for j in range(i+1,numPoints)),
               key=itemgetter(0))

def closestPair(point):

   xP = sorted(point, key= attrgetter('real'))
   yP = sorted(point, key= attrgetter('imag'))
   return _closestPair(xP, yP)

def _closestPair(xP, yP):

   numPoints = len(xP)
   if numPoints <= 3:
       return bruteForceClosestPair(xP)
   Pl = xP[:numPoints/2]
   Pr = xP[numPoints/2:]
   Yl, Yr = [], []
   xDivider = Pl[-1].real
   for p in yP:
       if p.real <= xDivider:
           Yl.append(p)
       else:
           Yr.append(p)
   dl, pairl = _closestPair(Pl, Yl)
   dr, pairr = _closestPair(Pr, Yr)
   dm, pairm = (dl, pairl) if dl < dr else (dr, pairr)
   # Points within dm of xDivider sorted by Y coord
   closeY = [p for p in yP  if abs(p.real - xDivider) < dm]
   numCloseY = len(closeY)
   if numCloseY > 1:
       # There is a proof that you only need compare a max of 7 next points
       closestY = min( ((abs(closeY[i] - closeY[j]), (closeY[i], closeY[j]))
                        for i in range(numCloseY-1)
                        for j in range(i+1,min(i+8, numCloseY))),
                       key=itemgetter(0))
       return (dm, pairm) if dm <= closestY[0] else closestY
   else:
       return dm, pairm
   

def times():

    Time the different functions
   
   import timeit
   functions = [bruteForceClosestPair, closestPair]
   for f in functions:
       print 'Time for', f.__name__, timeit.Timer(
           '%s(pointList)' % f.__name__,
           'from closestpair import %s, pointList' % f.__name__).timeit(number=1)
   


pointList = [randint(0,1000)+1j*randint(0,1000) for i in range(2000)]

if __name__ == '__main__':

   pointList = [(5+9j), (9+3j), (2+0j), (8+4j), (7+4j), (9+10j), (1+9j), (8+2j), 10j, (9+6j)]
   print pointList
   print '  bruteForceClosestPair:', bruteForceClosestPair(pointList)
   print '            closestPair:', closestPair(pointList)
   for i in range(10):
       pointList = [randrange(11)+1j*randrange(11) for i in range(10)]
       print '\n', pointList
       print ' bruteForceClosestPair:', bruteForceClosestPair(pointList)
       print '           closestPair:', closestPair(pointList)
   print '\n'
   times()
   times()
   times()</lang>
Output:

followed by timing comparisons

(Note how the two algorithms agree on the minimum distance, but may return a different pair of points if more than one pair of points share that minimum separation):

[(5+9j), (9+3j), (2+0j), (8+4j), (7+4j), (9+10j), (1+9j), (8+2j), 10j, (9+6j)]
  bruteForceClosestPair: (1.0, ((8+4j), (7+4j)))
            closestPair: (1.0, ((8+4j), (7+4j)))

[(10+6j), (7+0j), (9+4j), (4+8j), (7+5j), (6+4j), (1+9j), (6+4j), (1+3j), (5+0j)]
 bruteForceClosestPair: (0.0, ((6+4j), (6+4j)))
           closestPair: (0.0, ((6+4j), (6+4j)))

[(4+10j), (8+5j), (10+3j), (9+7j), (2+5j), (6+7j), (6+2j), (9+6j), (3+8j), (5+1j)]
 bruteForceClosestPair: (1.0, ((9+7j), (9+6j)))
           closestPair: (1.0, ((9+7j), (9+6j)))

[(10+0j), (3+10j), (10+7j), (1+8j), (5+10j), (8+8j), (4+7j), (6+2j), (6+10j), (9+3j)]
 bruteForceClosestPair: (1.0, ((5+10j), (6+10j)))
           closestPair: (1.0, ((5+10j), (6+10j)))

[(3+7j), (5+3j), 0j, (2+9j), (2+5j), (9+6j), (5+9j), (4+3j), (3+8j), (8+7j)]
 bruteForceClosestPair: (1.0, ((3+7j), (3+8j)))
           closestPair: (1.0, ((4+3j), (5+3j)))

[(4+3j), (10+9j), (2+7j), (7+8j), 0j, (3+10j), (10+2j), (7+10j), (7+3j), (1+4j)]
 bruteForceClosestPair: (2.0, ((7+8j), (7+10j)))
           closestPair: (2.0, ((7+8j), (7+10j)))

[(9+2j), (9+8j), (6+4j), (7+0j), (10+2j), (10+0j), (2+7j), (10+7j), (9+2j), (1+5j)]
 bruteForceClosestPair: (0.0, ((9+2j), (9+2j)))
           closestPair: (0.0, ((9+2j), (9+2j)))

[(3+3j), (8+2j), (4+0j), (1+1j), (9+10j), (5+0j), (2+3j), 5j, (5+0j), (7+0j)]
 bruteForceClosestPair: (0.0, ((5+0j), (5+0j)))
           closestPair: (0.0, ((5+0j), (5+0j)))

[(1+5j), (8+3j), (8+10j), (6+8j), (10+9j), (2+0j), (2+7j), (8+7j), (8+4j), (1+2j)]
 bruteForceClosestPair: (1.0, ((8+3j), (8+4j)))
           closestPair: (1.0, ((8+3j), (8+4j)))

[(8+4j), (8+6j), (8+0j), 0j, (10+7j), (10+6j), 6j, (1+3j), (1+8j), (6+9j)]
 bruteForceClosestPair: (1.0, ((10+7j), (10+6j)))
           closestPair: (1.0, ((10+7j), (10+6j)))

[(6+8j), (10+1j), 3j, (7+9j), (4+10j), (4+7j), (5+7j), (6+10j), (4+7j), (2+4j)]
 bruteForceClosestPair: (0.0, ((4+7j), (4+7j)))
           closestPair: (0.0, ((4+7j), (4+7j)))


Time for bruteForceClosestPair 4.57953371169
Time for closestPair 0.122539596513
Time for bruteForceClosestPair 5.13221177552
Time for closestPair 0.124602707886
Time for bruteForceClosestPair 4.83609397284
Time for closestPair 0.119326618327
>>> 

R

Works with: R version 2.8.1+

Brute force solution as per wikipedia pseudo-code <lang R>closest_pair_brute <-function(x,y,plotxy=F) {

   xy = cbind(x,y)
   cp = bruteforce(xy)
   cat("\n\nShortest path found = \n From:\t\t(",cp[1],',',cp[2],")\n To:\t\t(",cp[3],',',cp[4],")\n Distance:\t",cp[5],"\n\n",sep="")
   if(plotxy) {
       plot(x,y,pch=19,col='black',main="Closest Pair", asp=1)
       points(cp[1],cp[2],pch=19,col='red')
       points(cp[3],cp[4],pch=19,col='red')
   }
   distance <- function(p1,p2) {
       x1 = (p1[1])
       y1 = (p1[2]) 
       x2 = (p2[1])
       y2 = (p2[2]) 
       sqrt((x2-x1)^2 + (y2-y1)^2)
   }
   bf_iter <- function(m,p,idx=NA,d=NA,n=1) {
       dd = distance(p,m[n,])
       if((is.na(d) || dd<=d) && p!=m[n,]){d = dd; idx=n;}
       if(n == length(m[,1])) { c(m[idx,],d) }
       else bf_iter(m,p,idx,d,n+1)
   }
   bruteforce <- function(pmatrix,n=1,pd=c(NA,NA,NA,NA,NA)) {
       p = pmatrix[n,]
       ppd = c(p,bf_iter(pmatrix,p))
       if(ppd[5]<pd[5] || is.na(pd[5])) pd = ppd
       if(n==length(pmatrix[,1]))  pd 
       else bruteforce(pmatrix,n+1,pd)
   }

}</lang>

Quicker brute force solution for R that makes use of the apply function native to R for dealing with matrices. It expects x and y to take the form of separate vectors. <lang R>closestPair<-function(x,y)

 {
 distancev <- function(pointsv)
   {
   x1 <- pointsv[1]
   y1 <- pointsv[2]
   x2 <- pointsv[3]
   y2 <- pointsv[4]
   sqrt((x1 - x2)^2 + (y1 - y2)^2)
   }
 pairstocompare <- t(combn(length(x),2))
 pointsv <- cbind(x[pairstocompare[,1]],y[pairstocompare[,1]],x[pairstocompare[,2]],y[pairstocompare[,2]])
 pairstocompare <- cbind(pairstocompare,apply(pointsv,1,distancev))
 minrow <- pairstocompare[pairstocompare[,3] == min(pairstocompare[,3])]
 if (!is.null(nrow(minrow))) {print("More than one point at this distance!"); minrow <- minrow[1,]}
 cat("The closest pair is:\n\tPoint 1: ",x[minrow[1]],", ",y[minrow[1]],
                         "\n\tPoint 2: ",x[minrow[2]],", ",y[minrow[2]],
                         "\n\tDistance: ",minrow[3],"\n",sep="")
 c(distance=minrow[3],x1.x=x[minrow[1]],y1.y=y[minrow[1]],x2.x=x[minrow[2]],y2.y=y[minrow[2]])
 }</lang>


This is the quickest version, that makes use of the 'dist' function of R. It takes a two-column object of x,y-values as input, or creates such an object from seperate x and y-vectors.

<lang R>closest.pairs <- function(x, y=NULL, ...){

     # takes two-column object(x,y-values), or creates such an object from x and y values
      if(!is.null(y))  x <- cbind(x, y)
      
      distances <- dist(x)
       min.dist <- min(distances)
         point.pair <- combn(1:nrow(x), 2)[, which.min(distances)]
      
    cat("The closest pair is:\n\t", 
     sprintf("Point 1: %.3f, %.3f \n\tPoint 2: %.3f, %.3f \n\tDistance: %.3f.\n", 
       x[point.pair[1],1], x[point.pair[1],2], 
         x[point.pair[2],1], x[point.pair[2],2],  
           min.dist), 
           sep=""   )
    c( x1=x[point.pair[1],1],y1=x[point.pair[1],2],
       x2=x[point.pair[2],1],y2=x[point.pair[2],2],
       distance=min.dist)
    }</lang>

Example<lang R>x = (sample(-1000.00:1000.00,100)) y = (sample(-1000.00:1000.00,length(x))) cp = closest.pairs(x,y)

  1. cp = closestPair(x,y)

plot(x,y,pch=19,col='black',main="Closest Pair", asp=1) points(cp["x1.x"],cp["y1.y"],pch=19,col='red') points(cp["x2.x"],cp["y2.y"],pch=19,col='red')

  1. closest_pair_brute(x,y,T)

Performance system.time(closest_pair_brute(x,y), gcFirst = TRUE) Shortest path found =

From:          (32,-987)
To:            (25,-993)
Distance:      9.219544
  user  system elapsed
  0.35    0.02    0.37

system.time(closest.pairs(x,y), gcFirst = TRUE) The closest pair is:

       Point 1: 32.000, -987.000
       Point 2: 25.000, -993.000
       Distance: 9.220.
  user  system elapsed
  0.08    0.00    0.10

system.time(closestPair(x,y), gcFirst = TRUE) The closest pair is:

       Point 1: 32, -987
       Point 2: 25, -993
       Distance: 9.219544
  user  system elapsed
  0.17    0.00    0.19

</lang>

Using dist function for brute force, but divide and conquer (as per pseudocode) for speed: <lang R>closest.pairs.bruteforce <- function(x, y=NULL) { if (!is.null(y)) { x <- cbind(x,y) } d <- dist(x) cp <- x[combn(1:nrow(x), 2)[, which.min(d)],] list(p1=cp[1,], p2=cp[2,], d=min(d)) }

closest.pairs.dandc <- function(x, y=NULL) { if (!is.null(y)) { x <- cbind(x,y) } if (sd(x[,"x"]) < sd(x[,"y"])) { x <- cbind(x=x[,"y"],y=x[,"x"]) swap <- TRUE } else { swap <- FALSE } xp <- x[order(x[,"x"]),] .cpdandc.rec <- function(xp,yp) { n <- dim(xp)[1] if (n <= 4) { closest.pairs.bruteforce(xp) } else { xl <- xp[1:floor(n/2),] xr <- xp[(floor(n/2)+1):n,] cpl <- .cpdandc.rec(xl) cpr <- .cpdandc.rec(xr) if (cpl$d<cpr$d) cp <- cpl else cp <- cpr cp } } cp <- .cpdandc.rec(xp)

yp <- x[order(x[,"y"]),] xm <- xp[floor(dim(xp)[1]/2),"x"] ys <- yp[which(abs(xm - yp[,"x"]) <= cp$d),] nys <- dim(ys)[1] if (!is.null(nys) && nys > 1) { for (i in 1:(nys-1)) { k <- i + 1 while (k <= nys && ys[i,"y"] - ys[k,"y"] < cp$d) { d <- sqrt((ys[k,"x"]-ys[i,"x"])^2 + (ys[k,"y"]-ys[i,"y"])^2) if (d < cp$d) cp <- list(p1=ys[i,],p2=ys[k,],d=d) k <- k + 1 } } } if (swap) { list(p1=cbind(x=cp$p1["y"],y=cp$p1["x"]),p2=cbind(x=cp$p2["y"],y=cp$p2["x"]),d=cp$d) } else { cp } }

  1. Test functions

cat("How many points?\n") n <- scan(what=integer(),n=1) x <- rnorm(n) y <- rnorm(n) tstart <- proc.time()[3] cat("Closest pairs divide and conquer:\n") print(cp <- closest.pairs.dandc(x,y)) cat(sprintf("That took %.2f seconds.\n",proc.time()[3] - tstart)) plot(x,y) points(c(cp$p1["x"],cp$p2["x"]),c(cp$p1["y"],cp$p2["y"]),col="red") tstart <- proc.time()[3] cat("\nClosest pairs brute force:\n") print(closest.pairs.bruteforce(x,y)) cat(sprintf("That took %.2f seconds.\n",proc.time()[3] - tstart)) </lang>

Output:
How many points?
1: 500
Read 1 item
Closest pairs divide and conquer:
$p1
         x          y 
1.68807938 0.05876328 

$p2
         x          y 
1.68904694 0.05878173 

$d
[1] 0.0009677302

That took 0.43 seconds.

Closest pairs brute force:
$p1
         x          y 
1.68807938 0.05876328 

$p2
         x          y 
1.68904694 0.05878173 

$d
[1] 0.0009677302

That took 6.38 seconds.

Racket

The brute force solution using complex numbers to represent pairs. <lang racket>

  1. lang racket

(define (dist z0 z1) (magnitude (- z1 z0))) (define (dist* zs) (apply dist zs))

(define (closest-pair zs)

 (if (< (length zs) 2)
     -inf.0
     (first
      (sort (for/list ([z0 zs])
              (list z0 (argmin (λ(z) (if (= z z0) +inf.0 (dist z z0))) zs)))
            < #:key dist*))))

(define result (closest-pair '(0+1i 1+2i 3+4i))) (displayln (~a "Closest points: " result)) (displayln (~a "Distance: " (dist* result))) </lang>

The divide and conquer algorithm using a struct to represent points <lang racket>

  1. lang racket

(struct point (x y) #:transparent)

(define (closest-pair ps)

 (check-type ps)
 (cond [(vector? ps) (if (> (vector-length ps) 1)
                         (closest-pair/sorted (vector-sort ps left?)
                                              (vector-sort ps below?))
                         (error 'closest-pair "2 or more points are needed" ps))]
       [(sequence? ps) (closest-pair (for/vector ([x (in-sequences ps)]) x))]
       [else (error 'closest-pair "closest pair only supports sequence types (excluding hash)")]))
accept any sequence type except hash
any other exclusions needed?

(define (check-type ps)

 (cond [(hash? ps) (error 'closest-pair "Hash tables are not supported")]
       [(sequence? ps) #t]
       [else (error 'closest-pair "Only sequence types are supported")]))
vector -> vector -> list

(define (closest-pair/sorted Px Py)

 (define L (vector-length Px))
 (cond [(= L 2) (vector->list Px)]
       [(= L 3) (apply min-pair (combinations (vector->list Px) 2))]
       [else (let*-values ([(Qx Rx) (vector-split-at Px (floor (/ L 2)))]
                           ; Rx-min is the left most point in Rx 
                           [(Rx-min) (vector-ref Rx 0)]
                           ; instead of sorting Qx, Rx by y 
                           ; - Qy are members of Py to left of Rx-min
                           ; - Ry are the remaining members of Py
                           [(Qy Ry) (vector-partition Py (curryr left? Rx-min))]
                           [(pair1) (closest-pair/sorted Qx Qy)]
                           [(pair2) (closest-pair/sorted Rx Ry)]
                           [(delta) (min (distance^2 pair1) (distance^2 pair2))]
                           [(pair3) (closest-split-pair Px Py delta)])
               ; pair3 is null when there are no split pairs closer than delta 
               (min-pair pair1 pair2 pair3))]))

(define (closest-split-pair Px Py delta)

 (define Lp (vector-length Px))
 (define x-mid (point-x (vector-ref Px (floor (/ Lp 2)))))
 (define Sy (for/vector ([p (in-vector Py)]
                         #:when (< (abs (- (point-x p) x-mid)) delta))
              p))
 (define Ls (vector-length Sy))
 (define-values (_ best-pair)
   (for*/fold ([new-best delta]
               [new-best-pair null])
              ([i (in-range (sub1 Ls))]
               [j (in-range (+ i 1) (min (+ i 7) Ls))]
               [Sij (in-value (list (vector-ref Sy i)
                                    (vector-ref Sy j)))]
               [dij (in-value (distance^2 Sij))]
               #:when (< dij new-best))
     (values dij Sij)))
 best-pair)
helper procedures
same as partition except for vectors
it's critical to maintain the relative order of elements

(define (vector-partition Py pred)

 (define-values (left right)
   (for/fold ([Qy null]
              [Ry null])
             ([p (in-vector Py)])
     (if (pred p)
         (values (cons p Qy) Ry)
         (values Qy (cons p Ry)))))
 (values (list->vector (reverse left))
         (list->vector (reverse right))))
is p1 (strictly) left of p2

(define (left? p1 p2) (< (point-x p1) (point-x p2)))

is p1 (strictly) below of p2

(define (below? p1 p2) (< (point-y p1) (point-y p2)))

return the pair with minimum distance

(define (min-pair . pairs)

 (argmin distance^2 pairs))
pairs are passed around as a list of 2 points
distance is only for comparison so no need to use sqrt

(define (distance^2 pair)

 (cond [(null? pair) +inf.0]
       [else (define a (first pair))
             (define b (second pair))
             (+ (sqr (- (point-x b) (point-x a)))
                (sqr (- (point-y b) (point-y a))))]))
points on a quadratic curve, shuffled

(define points

      (shuffle
       (for/list ([ i (in-range 1000)]) (point i (* i i)))))

(match-define (list (point p1x p1y) (point p2x p2y)) (closest-pair points)) (printf "Closest points on a quadratic curve (~a,~a) (~a,~a)\n" p1x p1y p2x p2y) </lang>

Output:

<lang racket> Closest points: (0+1i 1+2i) Distance: 1.4142135623730951

Closest points on a quadratic curve (0,0) (1,1) </lang>

Raku

(formerly Perl 6)

Translation of: Perl 5

We avoid taking square roots in the slow method because the squares are just as comparable. (This doesn't always work in the fast method because of distance assumptions in the algorithm.) <lang perl6>sub MAIN ($N = 5000) {

   my @points = (^$N).map: { [rand * 20 - 10, rand * 20 - 10] }
   my ($af, $bf, $df) = closest_pair(@points);
   say "fast $df at [$af], [$bf]";
   my ($as, $bs, $ds) = closest_pair_simple(@points);
   say "slow $ds at [$as], [$bs]";

}

sub dist-squared($a,$b) {

   ($a[0] - $b[0]) ** 2 +
   ($a[1] - $b[1]) ** 2;

}

sub closest_pair_simple(@arr is copy) {

   return Inf if @arr < 2;
   my ($a, $b, $d) = flat @arr[0,1], dist-squared(|@arr[0,1]);
   while  @arr {
       my $p = pop @arr;
       for @arr -> $l {
           my $t = dist-squared($p, $l);
           ($a, $b, $d) = $p, $l, $t if $t < $d;         
       }
   }
   return $a, $b, sqrt $d;

}

sub closest_pair(@r) {

   my @ax = @r.sort: { .[0] }
   my @ay = @r.sort: { .[1] }
   return closest_pair_real(@ax, @ay);

}

sub closest_pair_real(@rx, @ry) {

   return closest_pair_simple(@rx) if @rx <= 3;
   my @xP = @rx;
   my @yP = @ry;
   my $N = @xP;

   my $midx = ceiling($N/2)-1;

   my @PL = @xP[0 .. $midx];
   my @PR = @xP[$midx+1 ..^ $N];

   my $xm = @xP[$midx][0];

   my @yR;
   my @yL;
   push ($_[0] <= $xm ?? @yR !! @yL), $_ for @yP;

   my ($al, $bl, $dL) = closest_pair_real(@PL, @yR);
   my ($ar, $br, $dR) = closest_pair_real(@PR, @yL);

   my ($m1, $m2, $dmin) = $dR < $dL
                              ?? ($ar, $br, $dR)
                              !! ($al, $bl, $dL);

   my @yS = @yP.grep: { abs($xm - .[0]) < $dmin }

   if @yS {
       my ($w1, $w2, $closest) = $m1, $m2, $dmin;
       for 0 ..^ @yS.end -> $i {
           for $i+1 ..^ @yS -> $k {
               last unless @yS[$k][1] - @yS[$i][1] < $dmin;
               my $d = sqrt dist-squared(@yS[$k], @yS[$i]);
               ($w1, $w2, $closest) = @yS[$k], @yS[$i], $d if $d < $closest;
           }

       }
       return $w1, $w2, $closest;

   } else {
       return $m1, $m2, $dmin;
   } 

}</lang>

REXX

Programming note:   this REXX version allows two (or more) points to be identical, and will
manifest itself as a minimum distance of zero   (the variable   dd   on line 17). <lang rexx>/*REXX program solves the closest pair of points problem (in two dimensions). */ parse arg N LO HI seed . /*obtain optional arguments from the CL*/ if N== | N=="," then N= 100 /*Not specified? Then use the default.*/ if LO== | LO=="," then LO= 0 /* " " " " " " */ if HI== | HI=="," then HI= 20000 /* " " " " " " */ if datatype(seed, 'W') then call random ,,seed /*seed for RANDOM (BIF) repeatability.*/ w= length(HI); w= w + (w//2==0) /*W: for aligning the output columns.*/

  /*╔══════════════════════╗*/      do j=1  for N            /*generate N random points*/
  /*║ generate  N  points. ║*/      @x.j= random(LO, HI)     /*    "    a    "     X   */
  /*╚══════════════════════╝*/      @y.j= random(LO, HI)     /*    "    a    "     Y   */
                                    end   /*j*/              /*X  &  Y  make the point.*/
         A= 1;  B= 2                            /* [↓]  MIND  is actually the squared  */

minD= (@x.A - @x.B)**2 + (@y.A - @y.B)**2 /* distance between the 1st two points.*/

                                                /* [↓]  use of XJ & YJ speed things up.*/
   do   j=1    for N-1;  xj= @x.j;   yj= @y.j   /*find minimum distance between a ···  */
     do k=j+1  for N-j-1                        /*  ··· point and all the other points.*/
     sd= (xj - @x.k)**2   +   (yj - @y.k)**2    /*compute squared distance from points.*/
     if sd<minD  then parse  value     sd  j  k      with      minD  A  B
     end   /*k*/                                /* [↑]  needn't take SQRT of SD  (yet).*/
   end     /*j*/                                /* [↑]  when done, A & B are the points*/
                $= 'For '   N   " points, the minimum distance between the two points:  "

say $ center("x", w, '═')" " center('y', w, "═") ' is: ' sqrt( abs(minD)) / 1 say left(, length($) - 1) "["right(@x.A, w)',' right(@y.A, w)"]" say left(, length($) - 1) "["right(@x.B, w)',' right(@y.B, w)"]" exit 0 /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ sqrt: procedure; parse arg x; if x=0 then return 0; d=digits(); m.=9; numeric form; h=d+6

     numeric digits;  parse value format(x,2,1,,0) 'E0' with g 'E' _ .;  g= g *.5'e'_ % 2
       do j=0  while h>9;      m.j= h;              h= h % 2  +  1;  end  /*j*/
       do k=j+5  to 0  by -1;  numeric digits m.k;  g= (g+x/g)*.5;   end  /*k*/; return g</lang>
output   when using the default input of:     100
For  100  points, the minimum distance between the two points:   ══x══  ══y══   is:  219.228192
                                                                [ 7277,  1625]
                                                                [ 7483,  1700]
output   when using the input of:     200
For  200  points, the minimum distance between the two points:   ══x══  ══y══   is:  39.408121
                                                                [17604, 19166]
                                                                [17627, 19198]
output   when using the input of:     1000
For  1000  points, the minimum distance between the two points:   ══x══  ══y══   is:  5.09901951
                                                                 [ 6264, 19103]
                                                                 [ 6263, 19108]

Ring

<lang ring> decimals(10) x = list(10) y = list(10) x[1] = 0.654682 y[1] = 0.925557 x[2] = 0.409382 y[2] = 0.619391 x[3] = 0.891663 y[3] = 0.888594 x[4] = 0.716629 y[4] = 0.996200 x[5] = 0.477721 y[5] = 0.946355 x[6] = 0.925092 y[6] = 0.818220 x[7] = 0.624291 y[7] = 0.142924 x[8] = 0.211332 y[8] = 0.221507 x[9] = 0.293786 y[9] = 0.691701 x[10] = 0.839186 y[10] = 0.728260

min = 10000 for i = 1 to 9

   for j = i+1 to 10
       dsq = pow((x[i] - x[j]),2) + pow((y[i] - y[j]),2)
       if dsq < min min = dsq  mini = i minj = j ok
   next

next see "closest pair is : " + mini + " and " + minj + " at distance " + sqrt(min) </lang> Output:

closest pair is : 3 and 6 at distance 0.0779101914

Ruby

<lang ruby>Point = Struct.new(:x, :y)

def distance(p1, p2)

 Math.hypot(p1.x - p2.x, p1.y - p2.y)

end

def closest_bruteforce(points)

 mindist, minpts = Float::MAX, []
 points.combination(2) do |pi,pj|
   dist = distance(pi, pj)
   if dist < mindist
     mindist = dist
     minpts = [pi, pj]
   end
 end
 [mindist, minpts]

end

def closest_recursive(points)

 return closest_bruteforce(points) if points.length <= 3
 xP = points.sort_by(&:x)
 mid = points.length / 2
 xm = xP[mid].x
 dL, pairL = closest_recursive(xP[0,mid])
 dR, pairR = closest_recursive(xP[mid..-1])
 dmin, dpair = dL<dR ? [dL, pairL] : [dR, pairR]
 yP = xP.find_all {|p| (xm - p.x).abs < dmin}.sort_by(&:y)
 closest, closestPair = dmin, dpair
 0.upto(yP.length - 2) do |i|
   (i+1).upto(yP.length - 1) do |k|
     break if (yP[k].y - yP[i].y) >= dmin
     dist = distance(yP[i], yP[k])
     if dist < closest
       closest = dist
       closestPair = [yP[i], yP[k]]
     end
   end
 end
 [closest, closestPair]

end

points = Array.new(100) {Point.new(rand, rand)} p ans1 = closest_bruteforce(points) p ans2 = closest_recursive(points) fail "bogus!" if ans1[0] != ans2[0]

require 'benchmark'

points = Array.new(10000) {Point.new(rand, rand)} Benchmark.bm(12) do |x|

 x.report("bruteforce") {ans1 = closest_bruteforce(points)}
 x.report("recursive")  {ans2 = closest_recursive(points)}

end</lang> Sample output

[0.005299616045889868, [#<struct Point x=0.24805908871087445, y=0.8413503128160198>, #<struct Point x=0.24355227214243136, y=0.8385620275629906>]]
[0.005299616045889868, [#<struct Point x=0.24355227214243136, y=0.8385620275629906>, #<struct Point x=0.24805908871087445, y=0.8413503128160198>]]
                   user     system      total        real
bruteforce    43.446000   0.000000  43.446000 ( 43.530062)
recursive      0.187000   0.000000   0.187000 (  0.190000)

Run BASIC

Courtesy http://dkokenge.com/rbp <lang runbasic>n =10 ' 10 data points input dim x(n) dim y(n)

pt1 = 0 ' 1st point pt2 = 0 ' 2nd point

for i =1 to n ' read in data

   read x(i)						
   read y(i)

next i

minDist = 1000000

for i =1 to n -1

   for j =i +1 to n
     distXsq =(x(i) -x(j))^2
     disYsq  =(y(i) -y(j))^2
     d       =abs((dxSq +disYsq)^0.5)
     if d <minDist then
       minDist =d
       pt1     =i
       pt2     =j
     end if
   next j

next i

print "Distance ="; minDist; " between ("; x(pt1); ", "; y(pt1); ") and ("; x(pt2); ", "; y(pt2); ")"

end

data 0.654682, 0.925557 data 0.409382, 0.619391 data 0.891663, 0.888594 data 0.716629, 0.996200 data 0.477721, 0.946355 data 0.925092, 0.818220 data 0.624291, 0.142924 data 0.211332, 0.221507 data 0.293786, 0.691701 data 0.839186, 0.72826</lang>

Rust

<lang rust> //! We interpret complex numbers as points in the Cartesian plane, here. We also use the //! [sweepline/plane sweep closest pairs algorithm][algorithm] instead of the divide-and-conquer //! algorithm, since it's (arguably) easier to implement, and an efficient implementation does not //! require use of unsafe. //! //! [algorithm]: http://www.cs.mcgill.ca/~cs251/ClosestPair/ClosestPairPS.html extern crate num;

use num::complex::Complex; use std::cmp::{Ordering, PartialOrd}; use std::collections::BTreeSet; type Point = Complex<f32>;

/// Wrapper around `Point` (i.e. `Complex<f32>`) so that we can use a `TreeSet`

  1. [derive(PartialEq)]

struct YSortedPoint {

   point: Point,

}

impl PartialOrd for YSortedPoint {

   fn partial_cmp(&self, other: &YSortedPoint) -> Option<Ordering> {
       (self.point.im, self.point.re).partial_cmp(&(other.point.im, other.point.re))
   }

}

impl Ord for YSortedPoint {

   fn cmp(&self, other: &YSortedPoint) -> Ordering {
       self.partial_cmp(other).unwrap()
   }

}

impl Eq for YSortedPoint {}

fn closest_pair(points: &mut [Point]) -> Option<(Point, Point)> {

   if points.len() < 2 {
       return None;
   }
   points.sort_by(|a, b| (a.re, a.im).partial_cmp(&(b.re, b.im)).unwrap());
   let mut closest_pair = (points[0], points[1]);
   let mut closest_distance_sqr = (points[0] - points[1]).norm_sqr();
   let mut closest_distance = closest_distance_sqr.sqrt();
   // the strip that we inspect for closest pairs as we sweep right
   let mut strip: BTreeSet<YSortedPoint> = BTreeSet::new();
   strip.insert(YSortedPoint { point: points[0] });
   strip.insert(YSortedPoint { point: points[1] });
   // index of the leftmost point on the strip (on points)
   let mut leftmost_idx = 0;
   // Start the sweep!
   for (idx, point) in points.iter().enumerate().skip(2) {
       // Remove all points farther than `closest_distance` away from `point`
       // along the x-axis
       while leftmost_idx < idx {
           let leftmost_point = &points[leftmost_idx];
           if (leftmost_point.re - point.re).powi(2) < closest_distance_sqr {
               break;
           }
           strip.remove(&YSortedPoint {
               point: *leftmost_point,
           });
           leftmost_idx += 1;
       }
       // Compare to points in bounding box
       {
           let low_bound = YSortedPoint {
               point: Point {
                   re: ::std::f32::INFINITY,
                   im: point.im - closest_distance,
               },
           };
           let mut strip_iter = strip.iter().skip_while(|&p| p < &low_bound);
           loop {
               let point2 = match strip_iter.next() {
                   None => break,
                   Some(p) => p.point,
               };
               if point2.im - point.im >= closest_distance {
                   // we've reached the end of the box
                   break;
               }
               let dist_sqr = (*point - point2).norm_sqr();
               if dist_sqr < closest_distance_sqr {
                   closest_pair = (point2, *point);
                   closest_distance_sqr = dist_sqr;
                   closest_distance = dist_sqr.sqrt();
               }
           }
       }
       // Insert point into strip
       strip.insert(YSortedPoint { point: *point });
   }
   Some(closest_pair)

}

pub fn main() {

   let mut test_data = [
       Complex::new(0.654682, 0.925557),
       Complex::new(0.409382, 0.619391),
       Complex::new(0.891663, 0.888594),
       Complex::new(0.716629, 0.996200),
       Complex::new(0.477721, 0.946355),
       Complex::new(0.925092, 0.818220),
       Complex::new(0.624291, 0.142924),
       Complex::new(0.211332, 0.221507),
       Complex::new(0.293786, 0.691701),
       Complex::new(0.839186, 0.728260),
   ];
   let (p1, p2) = closest_pair(&mut test_data[..]).unwrap();
   println!("Closest pair: {} and {}", p1, p2);
   println!("Distance: {}", (p1 - p2).norm_sqr().sqrt());

} </lang>

Output:
Closest pair: 0.891663+0.888594i and 0.925092+0.81822i
Distance: 0.07791013

Scala

<lang Scala>import scala.collection.mutable.ListBuffer import scala.util.Random

object ClosestPair {

 case class Point(x: Double, y: Double){
   def distance(p: Point) = math.hypot(x-p.x, y-p.y)
   override def toString = "(" + x + ", " + y + ")"
 }
 case class Pair(point1: Point, point2: Point) {
   val distance: Double = point1 distance point2
   override def toString = {
     point1 + "-" + point2 + " : " + distance
   }
 }
 def sortByX(points: List[Point]) = {
   points.sortBy(point => point.x)
 }
 def sortByY(points: List[Point]) = {
   points.sortBy(point => point.y)
 }
 def divideAndConquer(points: List[Point]): Pair = {
   val pointsSortedByX = sortByX(points)
   val pointsSortedByY = sortByY(points)
   divideAndConquer(pointsSortedByX, pointsSortedByY)
 }
 def bruteForce(points: List[Point]): Pair = {
   val numPoints = points.size
   if (numPoints < 2)
     return null
   var pair = Pair(points(0), points(1))
   if (numPoints > 2) {
     for (i <- 0 until numPoints - 1) {
       val point1 = points(i)
       for (j <- i + 1 until numPoints) {
         val point2 = points(j)
         val distance = point1 distance point2
         if (distance < pair.distance)
           pair = Pair(point1, point2)
       }
     }
   }
   return pair
 }


 private def divideAndConquer(pointsSortedByX: List[Point], pointsSortedByY: List[Point]): Pair = {
   val numPoints = pointsSortedByX.size
   if(numPoints <= 3) {
     return bruteForce(pointsSortedByX)
   }
   val dividingIndex = numPoints >>> 1
   val leftOfCenter = pointsSortedByX.slice(0, dividingIndex)
   val rightOfCenter = pointsSortedByX.slice(dividingIndex, numPoints)
   var tempList = leftOfCenter.map(x => x)
   //println(tempList)
   tempList = sortByY(tempList)
   var closestPair = divideAndConquer(leftOfCenter, tempList)
   tempList = rightOfCenter.map(x => x)
   tempList = sortByY(tempList)
   val closestPairRight = divideAndConquer(rightOfCenter, tempList)
   if (closestPairRight.distance < closestPair.distance)
     closestPair = closestPairRight
   tempList = List[Point]()
   val shortestDistance = closestPair.distance
   val centerX = rightOfCenter(0).x
   for (point <- pointsSortedByY) {
     if (Math.abs(centerX - point.x) < shortestDistance)
       tempList = tempList :+ point
   }
   closestPair = shortestDistanceF(tempList, shortestDistance, closestPair)
   closestPair
 }
 private def shortestDistanceF(tempList: List[Point], shortestDistance: Double, closestPair: Pair ): Pair = {
   var shortest = shortestDistance
   var bestResult = closestPair
   for (i <- 0 until tempList.size) {
     val point1 = tempList(i)
     for (j <- i + 1 until tempList.size) {
       val point2 = tempList(j)
       if ((point2.y - point1.y) >= shortestDistance)
         return closestPair
       val distance = point1 distance point2
       if (distance < closestPair.distance)
       {
         bestResult = Pair(point1, point2)
         shortest = distance
       }
     }
   }
   closestPair
 }
 def main(args: Array[String]) {
   val numPoints = if(args.length == 0) 1000 else args(0).toInt
   val points = ListBuffer[Point]()
   val r = new Random()
   for (i <- 0 until numPoints) {
     points.+=:(new Point(r.nextDouble(), r.nextDouble()))
   }
   println("Generated " + numPoints + " random points")
   var startTime = System.currentTimeMillis()
   val bruteForceClosestPair = bruteForce(points.toList)
   var elapsedTime = System.currentTimeMillis() - startTime
   println("Brute force (" + elapsedTime + " ms): " + bruteForceClosestPair)
   startTime = System.currentTimeMillis()
   val dqClosestPair = divideAndConquer(points.toList)
   elapsedTime = System.currentTimeMillis() - startTime
   println("Divide and conquer (" + elapsedTime + " ms): " + dqClosestPair)
   if (bruteForceClosestPair.distance != dqClosestPair.distance)
     println("MISMATCH")
 }

} </lang>

Output:
scala ClosestPair 1000
Generated 1000 random points
Brute force (981 ms): (0.41984960343173994, 0.4499078600557793)-(0.4198255166110827, 0.45044969701435) : 5.423720721077961E-4
Divide and conquer (52 ms): (0.4198255166110827, 0.45044969701435)-(0.41984960343173994, 0.4499078600557793) : 5.423720721077961E-4

Seed7

This is the brute force algorithm:

<lang seed7>const type: point is new struct

   var float: x is 0.0;
   var float: y is 0.0;
 end struct;

const func float: distance (in point: p1, in point: p2) is

 return sqrt((p1.x-p2.x)**2+(p1.y-p2.y)**2);

const func array point: closest_pair (in array point: points) is func

 result
   var array point: result is 0 times point.value;
 local
   var float: dist is 0.0;
   var float: minDistance is Infinity;
   var integer: i is 0;
   var integer: j is 0;
   var integer: savei is 0;
   var integer: savej is 0;
 begin
   for i range 1 to pred(length(points)) do
     for j range succ(i) to length(points) do
       dist := distance(points[i], points[j]);
       if dist < minDistance then
         minDistance := dist;
         savei := i;
         savej := j;
       end if;
     end for;
   end for;
   if minDistance <> Infinity then
     result := [] (points[savei], points[savej]);
   end if;
 end func;</lang>

Sidef

Translation of: Raku

<lang ruby>func dist_squared(a, b) {

   sqr(a[0] - b[0]) + sqr(a[1] - b[1])

}

func closest_pair_simple(arr) {

   arr.len < 2 && return Inf
   var (a, b, d) = (arr[0, 1], dist_squared(arr[0,1]))
   arr.clone!
   while (arr) {
       var p = arr.pop
       for l in arr {
           var t = dist_squared(p, l)
           if (t < d) {
               (a, b, d) = (p, l, t)
           }
       }
   }
   return(a, b, d.sqrt)

}

func closest_pair_real(rx, ry) {

   rx.len <= 3 && return closest_pair_simple(rx)
   var N = rx.len
   var midx = (ceil(N/2)-1)
   var (PL, PR) = rx.part(midx)
   var xm = rx[midx][0]
   var yR = []
   var yL = []
   for item in ry {
       (item[0] <= xm ? yR : yL) << item
   }
   var (al, bl, dL) = closest_pair_real(PL, yR)
   var (ar, br, dR) = closest_pair_real(PR, yL)
   al == Inf && return (ar, br, dR)
   ar == Inf && return (al, bl, dL)
   var (m1, m2, dmin) = (dR < dL ? [ar, br, dR]...
                                 : [al, bl, dL]...)
   var yS = ry.grep { |a| abs(xm - a[0]) < dmin }
   var (w1, w2, closest) = (m1, m2, dmin)
   for i in (0 ..^ yS.end) {
       for k in (i+1 .. yS.end) {
           yS[k][1] - yS[i][1] < dmin || break
           var d = dist_squared(yS[k], yS[i]).sqrt
           if (d < closest) {
               (w1, w2, closest) = (yS[k], yS[i], d)
           }
       }
   }
   return (w1, w2, closest)

}

func closest_pair(r) {

   var ax = r.sort_by { |a| a[0] }
   var ay = r.sort_by { |a| a[1] }
   return closest_pair_real(ax, ay);

}

var N = 5000 var points = N.of { [1.rand*20 - 10, 1.rand*20 - 10] } var (af, bf, df) = closest_pair(points) say "#{df} at (#{af.join(' ')}), (#{bf.join(' ')})"</lang>

Smalltalk

See Closest-pair problem/Smalltalk

Swift

<lang swift>import Foundation

struct Point {

 var x: Double
 var y: Double
 func distance(to p: Point) -> Double {
   let x = pow(p.x - self.x, 2)
   let y = pow(p.y - self.y, 2)
   
   return (x + y).squareRoot()
 }

}

extension Collection where Element == Point {

 func closestPair() -> (Point, Point)? {
   let (xP, xY) = (sorted(by: { $0.x < $1.x }), sorted(by: { $0.y < $1.y }))
   
   return Self.closestPair(xP, xY)?.1
 }
 
 static func closestPair(_ xP: [Element], _ yP: [Element]) -> (Double, (Point, Point))? {
   guard xP.count > 3 else { return xP.closestPairBruteForce() }
   
   let half = xP.count / 2
   let xl = Array(xP[..<half])
   let xr = Array(xP[half...])
   let xm = xl.last!.x
   let (yl, yr) = yP.reduce(into: ([Element](), [Element]()), {cur, el in
     if el.x > xm {
       cur.1.append(el)
     } else {
       cur.0.append(el)
     }
   })
   
   guard let (distanceL, pairL) = closestPair(xl, yl) else { return nil }
   guard let (distanceR, pairR) = closestPair(xr, yr) else { return nil }
   
   let (dMin, pairMin) = distanceL > distanceR ? (distanceR, pairR) : (distanceL, pairL)
   
   let ys = yP.filter({ abs(xm - $0.x) < dMin })
   
   var (closest, pairClosest) = (dMin, pairMin)
   
   for i in 0..<ys.count {
     let p1 = ys[i]
     
     for k in i+1..<ys.count {
       let p2 = ys[k]
       
       guard abs(p2.y - p1.y) < dMin else { break }
       
       let distance = abs(p1.distance(to: p2))
       
       if distance < closest {
         (closest, pairClosest) = (distance, (p1, p2))
       }
     }
   }
   
   return (closest, pairClosest)
 }
 
 func closestPairBruteForce() -> (Double, (Point, Point))? {
   guard count >= 2 else { return nil }
   
   var closestPoints = (self.first!, self[index(after: startIndex)])
   var minDistance = abs(closestPoints.0.distance(to: closestPoints.1))
   
   guard count != 2 else { return (minDistance, closestPoints) }
   
   for i in 0..<count {
     for j in i+1..<count {
       let (iIndex, jIndex) = (index(startIndex, offsetBy: i), index(startIndex, offsetBy: j))
       let (p1, p2) = (self[iIndex], self[jIndex])
       
       let distance = abs(p1.distance(to: p2))
       
       if distance < minDistance {
         minDistance = distance
         closestPoints = (p1, p2)
       }
     }
   }
   
   return (minDistance, closestPoints)
 }

}

var points = [Point]()

for _ in 0..<10_000 {

 points.append(Point(
   x: .random(in: -10.0...10.0),
   y: .random(in: -10.0...10.0)
 ))

}

print(points.closestPair()!)</lang>

Output:
(Point(x: 5.279430517795172, y: 8.85108182685002), Point(x: 5.278427575530877, y: 8.851990433099456))

Tcl

Each point is represented as a list of two floating-point numbers, the first being the x coordinate, and the second being the y. <lang Tcl>package require Tcl 8.5

  1. retrieve the x-coordinate

proc x p {lindex $p 0}

  1. retrieve the y-coordinate

proc y p {lindex $p 1}

proc distance {p1 p2} {

   expr {hypot(([x $p1]-[x $p2]), ([y $p1]-[y $p2]))}

}

proc closest_bruteforce {points} {

   set n [llength $points]
   set mindist Inf
   set minpts {}
   for {set i 0} {$i < $n - 1} {incr i} {
       for {set j [expr {$i + 1}]} {$j < $n} {incr j} {
           set p1 [lindex $points $i]
           set p2 [lindex $points $j]
           set dist [distance $p1 $p2]
           if {$dist < $mindist} {
               set mindist $dist
               set minpts [list $p1 $p2]
           }
       }
   }
   return [list $mindist $minpts]

}

proc closest_recursive {points} {

   set n [llength $points]
   if {$n <= 3} {
       return [closest_bruteforce $points]
   }
   set xP [lsort -real -increasing -index 0 $points]
   set mid [expr {int(ceil($n/2.0))}]
   set PL [lrange $xP 0 [expr {$mid-1}]]
   set PR [lrange $xP $mid end]
   set procname [lindex [info level 0] 0]
   lassign [$procname $PL] dL pairL
   lassign [$procname $PR] dR pairR
   if {$dL < $dR} {
       set dmin $dL
       set dpair $pairL
   } else {
       set dmin $dR
       set dpair $pairR
   }
   
   set xM [x [lindex $PL end]]
   foreach p $xP {
       if {abs($xM - [x $p]) < $dmin} {
           lappend S $p
       }
   }
   set yP [lsort -real -increasing -index 1 $S]
   set closest Inf
   set nP [llength $yP]
   for {set i 0} {$i <= $nP-2} {incr i} {
       set yPi [lindex $yP $i]
       for {set k [expr {$i+1}]; set yPk [lindex $yP $k]} {
           $k < $nP-1 && ([y $yPk]-[y $yPi]) < $dmin
       } {incr k; set yPk [lindex $yP $k]} {
           set dist [distance $yPk $yPi]
           if {$dist < $closest} {
               set closest $dist
               set closestPair [list $yPi $yPk]
           }
       }
   }
   expr {$closest < $dmin ? [list $closest $closestPair] : [list $dmin $dpair]}

}

  1. testing

set N 10000 for {set i 1} {$i <= $N} {incr i} {

   lappend points [list [expr {rand()*100}] [expr {rand()*100}]]

}

  1. instrument the number of calls to [distance] to examine the
  2. efficiency of the recursive solution

trace add execution distance enter comparisons proc comparisons args {incr ::comparisons}

puts [format "%-10s %9s %9s %s" method compares time closest] foreach method {bruteforce recursive} {

   set ::comparisons 0
   set time [time {set ::dist($method) [closest_$method $points]} 1]
   puts [format "%-10s  %9d  %9d  %s" $method $::comparisons [lindex $time 0] [lindex $::dist($method) 0]]

}</lang>

Output:
method      compares      time closest
bruteforce  49995000 512967207 0.0015652738546658382
recursive      14613    488094 0.0015652738546658382

Note that the lindex and llength commands are both O(1).

Ursala

The brute force algorithm is easy. Reading from left to right, clop is defined as a function that forms the Cartesian product of its argument, and then extracts the member whose left side is a minimum with respect to the floating point comparison relation after deleting equal pairs and attaching to the left of each remaining pair the sum of the squares of the differences between corresponding coordinates. <lang Ursala>#import flo

clop = @iiK0 fleq$-&l+ *EZF ^\~& plus+ sqr~~+ minus~~bbI</lang> The divide and conquer algorithm following the specification given above is a little more hairy but not much longer. The eudist library function is used to compute the distance between points. <lang Ursala>#import std

  1. import flo

clop =

^(fleq-<&l,fleq-<&r); @blrNCCS ~&lrbhthPX2X+ ~&a^& fleq$-&l+ leql/8?al\^(eudist,~&)*altK33htDSL -+

  ^C/~&rr ^(eudist,~&)*tK33htDSL+ @rlrlPXPlX ~| fleq^\~&lr abs+ minus@llPrhPX,
  ^/~&ar @farlK30K31XPGbrlrjX3J ^/~&arlhh @W lesser fleq@bl+-</lang>

test program: <lang Ursala>test_data =

<

  (1.547290e+00,3.313053e+00),
  (5.250805e-01,-7.300260e+00),
  (7.062114e-02,1.220251e-02),
  (-4.473024e+00,-5.393712e+00),
  (-2.563714e+00,-3.595341e+00),
  (-2.132372e+00,2.358850e+00),
  (2.366238e+00,-9.678425e+00),
  (-1.745694e+00,3.276434e+00),
  (8.066843e+00,-9.101268e+00),
  (-8.256901e+00,-8.717900e+00),
  (7.397744e+00,-5.366434e+00),
  (2.060291e-01,2.840891e+00),
  (-6.935319e+00,-5.192438e+00),
  (9.690418e+00,-9.175753e+00),
  (3.448993e+00,2.119052e+00),
  (-7.769218e+00,4.647406e-01)>
  1. cast %eeWWA

example = clop test_data</lang>

Output:

The output shows the minimum distance and the two points separated by that distance. (If the brute force algorithm were used, it would have displayed the square of the distance.)

9.957310e-01: (
   (-2.132372e+00,2.358850e+00),
   (-1.745694e+00,3.276434e+00))

VBA

<lang vb>Option Explicit

Private Type MyPoint

   X As Single
   Y As Single

End Type

Private Type MyPair

   p1 As MyPoint
   p2 As MyPoint

End Type

Sub Main() Dim points() As MyPoint, i As Long, BF As MyPair, d As Single, Nb As Long Dim T# Randomize Timer

   Nb = 10
   Do
       ReDim points(1 To Nb)
       For i = 1 To Nb
           points(i).X = Rnd * Nb
           points(i).Y = Rnd * Nb
       Next
       d = 1000000000000#

T = Timer

       BF = BruteForce(points, d)
       Debug.Print "For " & Nb & " points, runtime : " & Timer - T & " sec."
       Debug.Print "point 1 : X:" & BF.p1.X & " Y:" & BF.p1.Y
       Debug.Print "point 2 : X:" & BF.p2.X & " Y:" & BF.p2.Y
       Debug.Print "dist : " & d
       Debug.Print "--------------------------------------------------"
       Nb = Nb * 10
   Loop While Nb <= 10000

End Sub

Private Function BruteForce(p() As MyPoint, mindist As Single) As MyPair Dim i As Long, j As Long, d As Single, ClosestPair As MyPair

   For i = 1 To UBound(p) - 1
       For j = i + 1 To UBound(p)
           d = Dist(p(i), p(j))
           If d < mindist Then
               mindist = d
               ClosestPair.p1 = p(i)
               ClosestPair.p2 = p(j)
           End If
       Next
   Next
   BruteForce = ClosestPair

End Function

Private Function Dist(p1 As MyPoint, p2 As MyPoint) As Single

   Dist = Sqr((p1.X - p2.X) ^ 2 + (p1.Y - p2.Y) ^ 2)

End Function </lang>

Output:
For 10 points, runtime : 0 sec.
point 1 : X:7,199265 Y:7,690955
point 2 : X:7,16863 Y:7,681544
dist : 3,204883E-02
--------------------------------------------------
For 100 points, runtime : 0 sec.
point 1 : X:48,97898 Y:96,54872
point 2 : X:48,78981 Y:96,95755
dist : 0,4504737
--------------------------------------------------
For 1000 points, runtime : 0,44921875 sec.
point 1 : X:576,9511 Y:398,5834
point 2 : X:577,364 Y:398,3212
dist : 0,4891393
--------------------------------------------------
For 10000 points, runtime : 47,46875 sec.
point 1 : X:8982,698 Y:1154,133
point 2 : X:8984,763 Y:1152,822
dist : 2,445694
--------------------------------------------------

Visual FoxPro

<lang vfp> CLOSE DATABASES ALL CREATE CURSOR pairs(id I, xcoord B(6), ycoord B(6)) INSERT INTO pairs VALUES (1, 0.654682, 0.925557) INSERT INTO pairs VALUES (2, 0.409382, 0.619391) INSERT INTO pairs VALUES (3, 0.891663, 0.888594) INSERT INTO pairs VALUES (4, 0.716629, 0.996200) INSERT INTO pairs VALUES (5, 0.477721, 0.946355) INSERT INTO pairs VALUES (6, 0.925092, 0.818220) INSERT INTO pairs VALUES (7, 0.624291, 0.142924) INSERT INTO pairs VALUES (8, 0.211332, 0.221507) INSERT INTO pairs VALUES (9, 0.293786, 0.691701) INSERT INTO pairs VALUES (10, 0.839186, 0.728260)

SELECT p1.id As id1, p2.id As id2, ; (p1.xcoord-p2.xcoord)^2 + (p1.ycoord-p2.ycoord)^2 As dist2 ; FROM pairs p1 JOIN pairs p2 ON p1.id < p2.id ORDER BY 3 INTO CURSOR tmp

GO TOP ? "Closest pair is " + TRANSFORM(id1) + " and " + TRANSFORM(id2) + "." ? "Distance is " + TRANSFORM(SQRT(dist2)) </lang>

Output:
Visual FoxPro uses 1 based indexing,

Closest pair is 3 and 6.
Distance is 0.077910.

Wren

Translation of: Kotlin
Library: Wren-math
Library: Wren-sort

<lang ecmascript>import "/math" for Math import "/sort" for Sort

var distance = Fn.new { |p1, p2| Math.hypot(p1[0] - p2[0], p1[1] - p2[1]) }

var bruteForceClosestPair = Fn.new { |p|

   var n = p.count
   if (n < 2) Fiber.abort("There must be at least two points.")
   var minPoints = [p[0], p[1]]
   var minDistance = distance.call(p[0], p[1])
   for (i in 0...n-1) {
       for (j in i+1...n) {
           var dist = distance.call(p[i], p[j])
           if (dist < minDistance) {
               minDistance = dist
               minPoints = [p[i], p[j]]
           }
       }
   }
   return [minDistance, minPoints]

}

var optimizedClosestPair // recursive so pre-declare optimizedClosestPair = Fn.new { |xP, yP|

   var n = xP.count
   if (n <= 3) return bruteForceClosestPair.call(xP)
   var hn = (n/2).floor
   var xL = xP.take(hn).toList
   var xR = xP.skip(hn).toList
   var xm = xP[hn-1][0]
   var yL = yP.where { |p| p[0] <= xm }.toList
   var yR = yP.where { |p| p[0] >  xm }.toList
   var ll = optimizedClosestPair.call(xL, yL)
   var dL = ll[0]
   var pairL = ll[1]
   var rr = optimizedClosestPair.call(xR, yR)
   var dR = rr[0]
   var pairR = rr[1]
   var dmin = dR
   var pairMin = pairR
   if (dL < dR) {
       dmin = dL
       pairMin = pairL
   }
   var yS = yP.where { |p| (xm - p[0]).abs < dmin }.toList
   var nS = yS.count
   var closest = dmin
   var closestPair = pairMin
   for (i in 0...nS-1) {
       var k = i + 1
       while (k < nS && (yS[k][1] - yS[i][1] < dmin)) {
           var dist = distance.call(yS[k], yS[i])
           if (dist < closest) {
               closest = dist
               closestPair = [yS[k], yS[i]]
           }
           k = k + 1
       }
   }
   return [closest, closestPair]

}

var points = [

   [ [5, 9], [9, 3], [2, 0], [8, 4], [7, 4], [9, 10], [1, 9], [8, 2], [0, 10], [9, 6] ],
   [
       [0.654682, 0.925557], [0.409382, 0.619391], [0.891663, 0.888594],
       [0.716629, 0.996200], [0.477721, 0.946355], [0.925092, 0.818220],
       [0.624291, 0.142924], [0.211332, 0.221507], [0.293786, 0.691701],
       [0.839186, 0.728260]
   ]

]

for (p in points) {

   var dp = bruteForceClosestPair.call(p)
   var dist = dp[0]
   var pair = dp[1]
   System.print("Closest pair (brute force) is %(pair[0]) and %(pair[1]), distance %(dist)")
   var xP = Sort.merge(p) { |x, y| (x[0] - y[0]).sign }
   var yP = Sort.merge(p) { |x, y| (x[1] - y[1]).sign }
   dp = optimizedClosestPair.call(xP, yP)
   dist = dp[0]
   pair = dp[1]
   System.print("Closest pair (optimized)   is %(pair[0]) and %(pair[1]), distance %(dist)\n")

}</lang>

Output:
Closest pair (brute force) is [8, 4] and [7, 4], distance 1
Closest pair (optimized)   is [7, 4] and [8, 4], distance 1

Closest pair (brute force) is [0.891663, 0.888594] and [0.925092, 0.81822], distance 0.077910191355175
Closest pair (optimized)   is [0.891663, 0.888594] and [0.925092, 0.81822], distance 0.077910191355175

XPL0

The brute force method is simpler than the recursive solution and is perfectly adequate, even for a thousand points.

<lang XPL0>include c:\cxpl\codes; \intrinsic 'code' declarations

proc ClosestPair(P, N); \Show closest pair of points in array P real P; int N; real Dist2, MinDist2; int I, J, SI, SJ; [MinDist2:= 1e300; for I:= 0 to N-2 do

   [for J:= I+1 to N-1 do
       [Dist2:= sq(P(I,0)-P(J,0)) + sq(P(I,1)-P(J,1));
       if Dist2 < MinDist2 then \squared distances are sufficient for compares
           [MinDist2:= Dist2;
           SI:= I;  SJ:= J;
           ];
       ];
   ];

IntOut(0, SI); Text(0, " -- "); IntOut(0, SJ); CrLf(0); RlOut(0, P(SI,0)); Text(0, ","); RlOut(0, P(SI,1)); Text(0, " -- "); RlOut(0, P(SJ,0)); Text(0, ","); RlOut(0, P(SJ,1)); CrLf(0); ];

real Data; [Format(1, 6); Data:= [[0.654682, 0.925557], \0 test data from BASIC examples

       [0.409382, 0.619391],   \1
       [0.891663, 0.888594],   \2
       [0.716629, 0.996200],   \3
       [0.477721, 0.946355],   \4
       [0.925092, 0.818220],   \5
       [0.624291, 0.142924],   \6
       [0.211332, 0.221507],   \7
       [0.293786, 0.691701],   \8
       [0.839186, 0.728260]];  \9

ClosestPair(Data, 10); ]</lang>

Output:
2 -- 5
0.891663,0.888594 -- 0.925092,0.818220


Yabasic

Versión de fuerza bruta: <lang Yabasic> minDist = 1^30 dim x(9), y(9) x(0) = 0.654682 : y(0) = 0.925557 x(1) = 0.409382 : y(1) = 0.619391 x(2) = 0.891663 : y(2) = 0.888594 x(3) = 0.716629 : y(3) = 0.996200 x(4) = 0.477721 : y(4) = 0.946355 x(5) = 0.925092 : y(5) = 0.818220 x(6) = 0.624291 : y(6) = 0.142924 x(7) = 0.211332 : y(7) = 0.221507 x(8) = 0.293786 : y(8) = 0.691701 x(9) = 0.839186 : y(9) = 0.728260

for i = 0 to 8

   for j = i+1 to 9
       dist = (x(i) - x(j))^2 + (y(i) - y(j))^2
       if dist < minDist then 
           minDist = dist 
           mini = i 
           minj = j
       end if
   next j

next i print "El par mas cercano es ", mini, " y ", minj, " a una distancia de ", sqr(minDist) end </lang>

Output:
El par mas cercano es 2 y 5 a una distancia de 3.68449e-05


zkl

An ugly solution in both time and space. <lang zkl>class Point{

  fcn init(_x,_y){ var[const] x=_x, y=_y; }
  fcn distance(p){ (p.x-x).hypot(p.y-y) }
  fcn toString   { String("Point(",x,",",y,")") }

}

  // find closest two points using brute ugly force:
  // find all combinations of two points, measure distance, pick smallest

fcn closestPoints(points){

  pairs:=Utils.Helpers.pickNFrom(2,points);
  triples:=pairs.apply(fcn([(p1,p2)]){ T(p1,p2,p1.distance(p2)) });
  triples.reduce(fcn([(_,_,d1)]p1,[(_,_,d2)]p2){
     if(d1 < d2) p1 else p2
  });

}</lang> <lang zkl>points:=T( 5.0, 9.0, 9.0, 3.0, 2.0, 0.0, 8.0, 4.0, 7.0, 4.0, 9.0, 10.0, 1.0, 9.0, 8.0, 2.0, 0.0, 10.0, 9.0, 6.0 ).pump(List,Void.Read,Point);

closestPoints(points).println(); //-->L(Point(8,4),Point(7,4),1)

points:=T( 0.654682, 0.925557, 0.409382, 0.619391,

          0.891663, 0.888594, 0.716629, 0.9962,

0.477721, 0.946355, 0.925092, 0.81822, 0.624291, 0.142924, 0.211332, 0.221507, 0.293786, 0.691701, 0.839186, 0.72826) .pump(List,Void.Read,Point); closestPoints(points).println();</lang>

Output:
L(Point(8,4),Point(7,4),1)
L(Point(0.925092,0.81822),Point(0.891663,0.888594),0.0779102)

ZX Spectrum Basic

Translation of: BBC_BASIC

<lang zxbasic>10 DIM x(10): DIM y(10) 20 FOR i=1 TO 10 30 READ x(i),y(i) 40 NEXT i 50 LET min=1e30 60 FOR i=1 TO 9 70 FOR j=i+1 TO 10 80 LET p1=x(i)-x(j): LET p2=y(i)-y(j): LET dsq=p1*p1+p2*p2 90 IF dsq<min THEN LET min=dsq: LET mini=i: LET minj=j 100 NEXT j 110 NEXT i 120 PRINT "Closest pair is ";mini;" and ";minj;" at distance ";SQR min 130 STOP 140 DATA 0.654682,0.925557 150 DATA 0.409382,0.619391 160 DATA 0.891663,0.888594 170 DATA 0.716629,0.996200 180 DATA 0.477721,0.946355 190 DATA 0.925092,0.818220 200 DATA 0.624291,0.142924 210 DATA 0.211332,0.221507 220 DATA 0.293786,0.691701 230 DATA 0.839186,0.728260</lang>