Bitmap: Difference between revisions

From Rosetta Code
Content added Content deleted
Line 4,121: Line 4,121:
<pre>cmd:> main.exe
<pre>cmd:> main.exe
(B:51,G:51,R:255)</pre>
(B:51,G:51,R:255)</pre>

=={{header|Smalltalk}}==
<lang Smalltalk>
</lang>


=={{header|Tcl}}==
=={{header|Tcl}}==

Revision as of 15:34, 29 May 2021

Task
Bitmap
You are encouraged to solve this task according to the task description, using any language you may know.

Show a basic storage type to handle a simple RGB raster graphics image, and some primitive associated functions.

If possible provide a function to allocate an uninitialised image, given its width and height, and provide 3 additional functions:

  •   one to fill an image with a plain RGB color,
  •   one to set a given pixel with a color,
  •   one to get the color of a pixel.


(If there are specificities about the storage or the allocation, explain those.)

These functions are used as a base for the articles in the category raster graphics operations, and a basic output function to check the results is available in the article write ppm file.

ActionScript

ActionScript 3 has a BitmapData class (in the flash.display package) which can be used for storage and handling of bitmap images. To display these images, the Bitmap class can be used.

<lang ActionScript3> // To import the BitmapData class: import flash.display.BitmapData;

// Creates a new BitmapData object with a width of 500 pixels and a height of 300 pixels. var bitmap:BitmapData = new BitmapData(500, 300);

// Create a BitmapData with transparency disallowed var opaqueBitmap:BitmapData = new BitmapData(500, 300, false);

// Bitmap with initial fill colour, as 0xAARRGGBB (default is white) var redFilledBitmap:BitmapData = new BitmapData(400, 300, true, 0xFFFF0000);

// Get the colour value of the pixel at point (200, 200) bitmap.getPixel(200, 200) // As 0xRRGGBB bitmap.getPixel32(200, 200) // As 0xAARRGGBB

// Set the colour value of the pixel at point (300, 200) to blue bitmap.setPixel(300, 200, 0x0000FF); // As 0xRRGGBB bitmap.setPixel32(300, 200, 0xFF0000FF); // As 0xAARRGGBB

// Fill the bitmap with a given colour (as 0xAARRGGBB) after construction bitmap.fillRect(bitmap.rect, 0xFF44FF44); </lang>

Ada

The package interface: <lang ada>package Bitmap_Store is

  type Luminance is mod 2**8;
  type Pixel is record
     R, G, B : Luminance := Luminance'First;
  end record;
  Black : constant Pixel := (others => Luminance'First);
  White : constant Pixel := (others => Luminance'Last);
  type Image is array (Positive range <>, Positive range <>) of Pixel;

  procedure Fill (Picture : in out Image; Color : Pixel);

  procedure Print (Picture : Image);

  type Point is record
     X, Y : Positive;
  end record;

end Bitmap_Store;</lang> The implementation of: <lang ada>with Ada.Text_IO; use Ada.Text_IO;

package body Bitmap_Store is

  procedure Fill (Picture : in out Image; Color : Pixel) is
  begin
     for p of Picture loop x:= Color;end loop;
  end Fill;

  procedure Print (Picture : Image) is
  begin
     for I in Picture'Range (1) loop
        for J in Picture'Range (2) loop
              Put (if Picture (I, J) = White then ' ' else 'H');
        end loop;
        New_Line;
     end loop; 
  end Print;

end Bitmap_Store;</lang> This can be used like: <lang ada>use Bitmap_Store; with Bitmap_Store;

  ...
  X : Image (1..64, 1..64);

begin

  Fill (X, (255, 255, 255));
  X (1, 2) := (R => 255, others => 0);
  X (3, 4) := X (1, 2);</lang>

ALGOL 68

Translation of: ada

Note: short and shorten need to be tuned (added or removed) to match the underlying graphic hardware colour depth.

Works with: ALGOL 68 version Revision 1 - one minor extension to language used - PRAGMA READ, similar to C's #include directive.
Works with: ALGOL 68G version Any - tested with release algol68g-2.6.

File: prelude/Bitmap.a68<lang algol68># -*- coding: utf-8 -*- #

MODE PIXEL = STRUCT(#SHORT# BITS red,green,blue); MODE POINT = STRUCT(INT x,y);

MODE IMAGE = [0,0]PIXEL; # instance attributes #

MODE CLASSIMAGE = STRUCT ( # class attributes #

 PIXEL black, red, green, blue, white,
 PROC (REF IMAGE)REF IMAGE init,
 PROC (REF IMAGE, PIXEL)VOID fill,
 PROC (REF IMAGE)VOID print,
  1. virtual: #
 REF PROC (REF IMAGE, POINT, POINT, PIXEL)VOID line,
 REF PROC (REF IMAGE, POINT, INT, PIXEL)VOID circle,
 REF PROC (REF IMAGE, POINT, POINT, POINT, POINT, PIXEL, UNION(INT, VOID))VOID cubic bezier

);

CLASSIMAGE class image = (

 # black = # (#SHORTEN# 16r00, #SHORTEN# 16r00, #SHORTEN# 16r00),
 # red   = # (#SHORTEN# 16rff, #SHORTEN# 16r00, #SHORTEN# 16r00),
 # green = # (#SHORTEN# 16r00, #SHORTEN# 16rff, #SHORTEN# 16r00),
 # blue  = # (#SHORTEN# 16r00, #SHORTEN# 16r00, #SHORTEN# 16rff),
 # white = # (#SHORTEN# 16rff, #SHORTEN# 16rff, #SHORTEN# 16rff),
 # PROC init = # (REF IMAGE self)REF IMAGE:
   BEGIN
     (fill OF class image)(self, black OF class image);
     self
   END,
 # PROC fill = # (REF IMAGE self, PIXEL color)VOID:
     FOR x FROM 1 LWB self TO 1 UPB self DO
       FOR y FROM 2 LWB self TO 2 UPB self DO
         self[x,y] := color
       OD
     OD,
 # PROC print = # (REF IMAGE self)VOID:
     printf(($n(UPB self)(3(16r2d))l$, self)),
  1. virtual: #
 # REF PROC line = # LOC PROC (REF IMAGE, POINT, POINT, PIXEL)VOID,
 # REF PROC circle = # LOC PROC (REF IMAGE, POINT, INT, PIXEL)VOID,
 # REF PROC cubic bezier = # LOC PROC (REF IMAGE, POINT, POINT, POINT, POINT, PIXEL, UNION(INT, VOID))VOID

);

OP CLASSOF = (IMAGE image)CLASSIMAGE: class image; OP INIT = (REF IMAGE image)REF IMAGE: (init OF (CLASSOF image))(image);

SKIP</lang>File: test/Bitmap.a68<lang algol68>#!/usr/bin/a68g --script #

  1. -*- coding: utf-8 -*- #
      1. The test program ###

PR READ "prelude/Bitmap.a68" PR;

test:(

  REF IMAGE x := INIT LOC[1:16, 1:16]PIXEL;
  (fill OF class image) (x, white OF class image);
  (print OF class image) (x)

)</lang>

Output:

(A 16x16 white block)

ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

AutoHotkey

Works with: AutoHotkey_L

<lang AutoHotkey>test: blue := color(0,0,255)  ; rgb cyan := color(0,255,255) blue_square := Bitmap(10, 10, blue) cyanppm := Bitmap(10, 10, cyan) x := blue_square[4,4] ; get pixel(4,4) msgbox % "blue: 4,4,R,G,B, RGB: " x.R ", " x.G ", " x.B ", " x.rgb() blue_square[4,4] := cyan ; set pixel(4,4) x := blue_square[4,4] ; get pixel(4,4) blue_square.write("blue.ppm") return

Bitmap(width = 1, height = 1, background = 0) { global black black := color(0,0,0) if !background background := black

   static BitmapType
   if !BitmapType
       BitmapType
       := Object("fill", "Bitmap_Fill"

,"write", "Bitmap_write_ppm3")

img := Object("width", width

               ,"height", height
               , "base"    , BitmapType)

img._SetCapacity(height) ; an array of rows

 img.fill(background)

Return img }


Bitmap_Fill(bitmap, color) { r := color.r g := color.g b := color.b

 loop % bitmap.height
 {
   height := A_Index
   loop % bitmap.width
   {
     width := A_Index
     bitmap[height, width] := color(r, g, b)
   }
 }
return bitmap

}

Bitmap_write_ppm3(bitmap, filename) { file := FileOpen(filename, 0x11) ; utf-8, write file.seek(0,0) file.write("P3`n" . bitmap.width . " " . bitmap.height . "`n" . "255`n")

 loop % bitmap.height
 {
   height := A_Index
   loop % bitmap.width
   {
     width := A_Index
     color := bitmap[height, width] 
     file.Write(color.R . " ")
     file.Write(color.G . " ")
     file.Write(color.B . " ")
   }
   file.write("`n")
 }
 file.close()
return 0

}

Color(r, g, b) {

   static ColorType
   if !ColorType
       ColorType
       := Object("rgb"   , "Color_rgb")

   return Object("r" , r, "g", g, "b", b
               , "base"    , ColorType)

; return Object("r" , r, "g", g, "b", b, "rgb", "Color_rgb")

}

Color_rgb(clr) { return clr.R << 16 | clr.G << 8 | clr.B }</lang>

Axe

All of the functions specified in the task are built in to Axe. Note that bitmaps are always 96x64 black and white. Thus, since each pixel takes 1 bit, a complete bitmap is 768 bytes.

Two bitmaps can be masked together to create 3- and 4-color grayscale.

<lang axe>Buff(768)→Pic1 Fill(Pic1,768,255) Pxl-Off(45,30,Pic1)

.Display the bitmap to demonstrate Copy(Pic1) DispGraph Pause 4500

Disp pxl-Test(50,50,Pic1)▶Dec,i</lang>

BASIC256

<lang BASIC256>graphsize 30,30 call fill(rgb(255,0,0)) call setpixel(10,10,rgb(0,255,255)) print "pixel 10,10 is " + pixel(10,10) print "pixel 20,20 is " + pixel(20,10)

imgsave "BASIC256_bitmap.png" end

subroutine fill(c) color c rect 0,0,graphwidth, graphheight end subroutine

subroutine setpixel(x,y,c) color c plot x,y end subroutine</lang>

Output:
pixel 10,10 is 4278255615
pixel 20,20 is 4294901760

BBC BASIC

BBC BASIC expects a bitmap always to be associated with a window; for simplicity this code uses the main output window. <lang bbcbasic> Width% = 200

     Height% = 200
     
     REM Set window size:
     VDU 23,22,Width%;Height%;8,16,16,128
     
     REM Fill with an RGB colour:
     PROCfill(100,150,200)
     
     REM Set a pixel:
     PROCsetpixel(100,100,255,255,0)
     
     REM Get a pixel:
     rgb% = FNgetpixel(100,100)
     PRINT RIGHT$("00000" + STR$~rgb%, 6)
     END
     
     DEF PROCfill(r%,g%,b%)
     COLOUR 1,r%,g%,b%
     GCOL 1+128
     CLG
     ENDPROC
     
     DEF PROCsetpixel(x%,y%,r%,g%,b%)
     COLOUR 1,r%,g%,b%
     GCOL 1
     LINE x%*2,y%*2,x%*2,y%*2
     ENDPROC
     
     DEF FNgetpixel(x%,y%)
     LOCAL col%
     col% = TINT(x%*2,y%*2)
     SWAP ?^col%,?(^col%+2)
     = col%</lang>

C

Working excerpt from imglib.h usable as "interface" (some includes are needed for other functions of the same category). This code uses functions from category Raster graphics operations. One must create files imglib.h and imglib.c using code from these pages. Start from bitmap page

<lang c>#ifndef _IMGLIB_0

  1. define _IMGLIB_0
  1. include <stdio.h>
  2. include <stdlib.h>
  3. include <sys/types.h>
  4. include <string.h>
  5. include <math.h>
  6. include <sys/queue.h>

typedef unsigned char color_component; typedef color_component pixel[3]; typedef struct {

   unsigned int width;
   unsigned int height;
   pixel * buf;

} image_t; typedef image_t * image;

image alloc_img(unsigned int width, unsigned int height); void free_img(image); void fill_img(image img,

       color_component r,
       color_component g,
       color_component b );

void put_pixel_unsafe(

      	image img,
       unsigned int x,
       unsigned int y,
       color_component r,
       color_component g,
       color_component b );

void put_pixel_clip(

      	image img,
       unsigned int x,
       unsigned int y,
       color_component r,
       color_component g,
       color_component b );
  1. define GET_PIXEL(IMG, X, Y) (IMG->buf[ ((Y) * IMG->width + (X)) ])
  2. endif</lang>

<lang c>image alloc_img(unsigned int width, unsigned int height) {

   image img;
   img = malloc(sizeof(image_t));
   img->buf = malloc(width * height * sizeof(pixel));
   img->width = width;
   img->height = height;
   return img;

}

void free_img(image img) {

   free(img->buf);
   free(img);

}

void fill_img(

       image img,
       color_component r,
       color_component g,
       color_component b )

{

   unsigned int i, n;
   n = img->width * img->height;
   for (i=0; i < n; ++i)
   {
       img->buf[i][0] = r;
       img->buf[i][1] = g;
       img->buf[i][2] = b;
   }

}

void put_pixel_unsafe(

      	image img,
       unsigned int x,
       unsigned int y,
       color_component r,
       color_component g,
       color_component b )

{

   unsigned int ofs;
   ofs = (y * img->width) + x;
   img->buf[ofs][0] = r;
   img->buf[ofs][1] = g;
   img->buf[ofs][2] = b;

}

void put_pixel_clip(

      	image img,
       unsigned int x,
       unsigned int y,
       color_component r,
       color_component g,
       color_component b )

{

   if (x < img->width && y < img->height)
     put_pixel_unsafe(img, x, y, r, g, b);

}</lang>

C#

This implementation uses a multidemensional array to store the Color structure (which stores the RGB values). No exception catching for out-of-bounds errors if they occur, but provides Height and Width properties so a program using it can avoid them. <lang csharp>public class Bitmap {

   public struct Color
   {
       public byte Red { get; set; }
       public byte Blue { get; set; }
       public byte Green { get; set; }
   }
   Color[,] _imagemap;
   public int Width { get { return _imagemap.GetLength(0); } }
   public int Height { get { return _imagemap.GetLength(1); } }
   public Bitmap(int width, int height)
   {
       _imagemap = new Color[width, height];
   }
   public void Fill(Color color)
   {
       for (int y = 0; y < Height; y++)
           for (int x = 0; x < Width; x++)
           {
               _imagemap[x, y] = color;
           }
   }
   public Color GetPixel(int x, int y)
   {
       return _imagemap[x, y];
   }
   public void SetPixel(int x, int y, Color color)
   {
       _imagemap[x, y] = color;
   }

}</lang>

C++

Works with: C++98
Library: boost

<lang cpp>#include <iostream>

  1. include <boost/gil/gil_all.hpp>

int main() {

   using namespace boost::gil;
   // create 30x40 image
   rgb8_image_t img(30, 40);
   // fill with red
   rgb8_pixel_t red(255, 0, 0);
   fill_pixels(view(img), red);
   // set pixel at 10x20 to blue
   rgb8_pixel_t blue(0, 0, 255);
   view(img)(10, 20) = blue;
   // read the value of pixel at 11x20
   rgb8_pixel_t px = const_view(img)(11, 20);
   std::cout << "the pixel at 11, 20 is " << (unsigned)px[0] << ':' << (unsigned)px[1] << ':' << (unsigned)px[2]  << '\n';

}</lang>

See also Basic bitmap storage/C++

Clojure

<lang Clojure>(import '[java.awt Color Graphics Image] '[java.awt.image BufferedImage])

(defn blank-bitmap [width height]

 (BufferedImage. width height BufferedImage/TYPE_3BYTE_BGR))

(defn fill [image color]

 (doto (.getGraphics image)
   (.setColor color)
   (.fillRect 0 0 (.getWidth image) (.getHeight image))))

(defn set-pixel [image x y color]

 (.setRGB image x y (.getRGB color)))

(defn get-pixel [image x y]

 (Color. (.getRGB image x y)))</lang>

Common Lisp

<lang lisp>(defpackage #:rgb-pixel-buffer

 (:use #:common-lisp)
 (:export #:rgb-pixel-component #:rgb-pixel #:rgb-pixel-buffer
          #:+red+ #:+green+ #:+blue+ #:+black+ #:+white+
          #:make-rgb-pixel #:make-rgb-pixel-buffer #:rgb-pixel-buffer-width
          #:rgb-pixel-buffer-height #:rgb-pixel-red #:rgb-pixel-green
          #:rgb-pixel-blue #:fill-rgb-pixel-buffer))</lang>

<lang lisp>(in-package #:rgb-pixel-buffer)

(deftype rgb-pixel-component ()

 '(unsigned-byte 8))

(deftype rgb-pixel ()

 '(unsigned-byte 24))

(deftype rgb-pixel-buffer (&optional (width '*) (height '*))

 `(array rgb-pixel (,width ,height)))

(defconstant +black+ 0) (defconstant +white+ #xFFFFFF) (defconstant +red+ #xFF0000) (defconstant +green+ #x00FF00) (defconstant +blue+ #x0000FF)

(defun make-rgb-pixel (r g b)

 (declare (type rgb-pixel-component r g b))
 (logior (ash r 16) (ash g 8) b))

(defun rgb-pixel-red (rgb)

 (declare (type rgb-pixel rgb))
 (logand (ash rgb -16) #xFF))

(defun rgb-pixel-green (rgb)

 (declare (type rgb-pixel rgb))
 (logand (ash rgb -8) #xFF))

(defun rgb-pixel-blue (rgb)

 (declare (type rgb-pixel rgb))
 (logand rgb #xFF))

(defun make-rgb-pixel-buffer (width height &optional (initial-element +black+))

 (declare (type (integer 1) width height))
 (declare (type rgb-pixel initial-element))
 (make-array (list width height) 
   :element-type 'rgb-pixel 
   :initial-element initial-element))

(defun rgb-pixel-buffer-width (buffer)

 (first (array-dimensions buffer)))

(defun rgb-pixel-buffer-height (buffer)

 (second (array-dimensions buffer)))

(defun rgb-pixel (buffer x y)

 (declare (type rgb-pixel-buffer buffer))
 (declare (type (integer 0) x y))
 (aref buffer x y))

(defun (setf rgb-pixel) (value buffer x y)

 (declare (type rgb-pixel-buffer buffer))
 (declare (type rgb-pixel value))
 (declare (type (integer 0) x y))
 (setf (aref buffer x y) value))

(defun fill-rgb-pixel-buffer (buffer pixel)

 (declare (type rgb-pixel-buffer buffer))
 (declare (type rgb-pixel pixel))
 (let* ((dimensions (array-dimensions buffer))

(width (first dimensions)) (height (second dimensions)))

   (loop 
      :for y :of-type fixnum :upfrom 0 :below height
      :do (loop 

:for x :of-type fixnum :upfrom 0 :below width :do (setf (rgb-pixel buffer x y) pixel)))

   buffer))</lang>

Example:

<lang lisp>(defvar *buffer* (make-rgb-pixel-buffer 10 10)) (fill-rgb-pixel-buffer *buffer* +white+) (setf (rgb-pixel *buffer* 0 0) +red+) (setf (rgb-pixel *buffer* 0 9) +red+) (setf (rgb-pixel *buffer* 9 0) +red+) (setf (rgb-pixel *buffer* 9 9) +red+)</lang>

Crystal

<lang ruby> class RGBColor

 getter red, green, blue
 def initialize(@red = 0_u8, @green = 0_u8, @blue = 0_u8)
 end

 RED   = new(red: 255_u8)
 GREEN = new(green: 255_u8)
 BLUE  = new(blue: 255_u8)
 BLACK = new
 WHITE = new(255_u8, 255_u8, 255_u8)

end

class Pixmap

 getter width, height
 @data : Array(Array(RGBColor))
 def initialize(@width : Int32, @height : Int32)
   @data = Array.new(@width) { Array.new(@height, RGBColor::WHITE) }
 end
 def fill(color)
   @data.each &.fill(color)
 end
 def [](x, y)
   @data[x][y]
 end
 def []=(x, y, color)
   @data[x][y] = color
 end

end

bmap = Pixmap.new(5, 5) pp bmap </lang>

D

This code is a little complex because many Tasks use this module for various purposes. <lang d>module bitmap;

import std.stdio, std.array, std.exception, std.string, std.conv,

      std.algorithm, std.ascii;

final class Image(T) {

   static if (is(typeof({ auto x = T.black; })))
       const static T black = T.black;
   else
       const static T black = T.init;
   static if (is(typeof({ auto x = T.white; })))
       const static T white = T.white;
   T[] image;
   private size_t nx_, ny_;
   this(in int nxx=0, in int nyy=0, in bool inizialize=true)
   pure nothrow {
       allocate(nxx, nyy, inizialize);
   }
   void allocate(in int nxx=0, in int nyy=0, in bool inizialize=true)
   pure nothrow @safe in {
       assert(nxx >= 0 && nyy >= 0);
   } body {
       this.nx_ = nxx;
       this.ny_ = nyy;
       if (nxx * nyy > 0) {
           if (inizialize)
               image.length = nxx * nyy;
           else // Optimization.
               image = minimallyInitializedArray!(typeof(image))
                                                 (nxx * nyy);
       }
   }
   @property Image dup() const pure nothrow @safe {
       auto result = new Image();
       result.image = this.image.dup;
       result.nx_ = this.nx;
       result.ny_ = this.ny;
       return result;
   }
   static Image fromData(T[] data, in size_t nxx=0, in size_t nyy=0)
   pure nothrow @safe in {
       assert(nxx >= 0 && nyy >= 0 && data.length == nxx * nyy);
   } body {
       auto result = new Image();
       result.image = data;
       result.nx_ = nxx;
       result.ny_ = nyy;
       return result;
   }
   @property size_t nx() const pure nothrow @safe @nogc { return nx_; }
   @property size_t ny() const pure nothrow @safe @nogc { return ny_; }
   ref T opIndex(in size_t x, in size_t y) pure nothrow @safe @nogc
   in {
       assert(x < nx_ && y < ny_);
       //assert(x < nx_, format("opIndex, x=%d, nx=%d", x, nx));
       //assert(y < ny_, format("opIndex, y=%d, ny=%d", y, ny));
   } body {
       return image[x + y * nx_];
   }
   T opIndex(in size_t x, in size_t y) const pure nothrow @safe @nogc
   in {
       assert(x < nx_ && y < ny_);
       //assert(x < nx_, format("opIndex, x=%d, nx=%d", x, nx));
       //assert(y < ny_, format("opIndex, y=%d, ny=%d", y, ny));
   } body {
       return image[x + y * nx_];
   }
   T opIndexAssign(in T color, in size_t x, in size_t y)
   pure nothrow @safe @nogc
   in {
       assert(x < nx_ && y < ny_);
       //assert(x < nx_, format("opIndex, x=%d, nx=%d", x, nx));
       //assert(y < ny_, format("opIndex, y=%d, ny=%d", y, ny));
   } body {
       return image[x + y * nx_] = color;
   }
   void opIndexUnary(string op)(in size_t x, in size_t y)
   pure nothrow @safe @nogc
   if (op == "++" || op == "--") in {
       assert(x < nx_ && y < ny_);
   } body {
       mixin("image[x + y * nx_] " ~ op ~ ";");
   }
   void clear(in T color=this.black) pure nothrow @safe @nogc {
       image[] = color;
   }
   /// Convert a 2D array of chars to a binary Image.
   static Image fromText(in string txt,
                         in char one='#', in char zero='.') pure {
       auto M = txt
                .strip
                .split
                .map!(row => row
                             .filter!(c => c == one || c == zero)
                             .map!(c => T(c == one))
                             .array)
                .array;
       assert(M.join.length > 0); // Not empty.
       foreach (row; M)
           assert(row.length == M[0].length); // Rectangular
       return Image.fromData(M.join, M[0].length, M.length);
   }
   /// The axis origin is at the top left.
   void textualShow(in char bl='#', in char wh='.') const nothrow {
       size_t i = 0;
       foreach (immutable y; 0 .. ny_) {
           foreach (immutable x; 0 .. nx_)
               putchar(image[i++] == black ? bl : wh);
           putchar('\n');
       }
   }

}


struct RGB {

   ubyte r, g, b;
   static immutable black = typeof(this)();
   static immutable white = typeof(this)(255, 255, 255);

}


Image!RGB loadPPM6(ref Image!RGB img, in string fileName) {

   if (img is null)
       img = new Image!RGB;
   auto f = File(fileName, "rb");
   enforce(f.readln.strip == "P6");
   string line;
   do {
       line = f.readln();
   } while (line.length && line[0] == '#'); // Skip comments.
   const size = line.split;
   enforce(size.length == 2);
   img.allocate(size[0].to!uint, size[1].to!uint);
   enforce(f.readln().strip() == "255");
   auto l = new ubyte[img.nx * 3];
   size_t i = 0;
   foreach (immutable y; 0 .. img.ny) {
       f.rawRead!ubyte(l);
       foreach (immutable x; 0 .. img.nx)
           img.image[i++] = RGB(l[x * 3], l[x * 3 + 1], l[x * 3 + 2]);
   }
   return img;

}


void savePPM6(in Image!RGB img, in string fileName) in {

   assert(img !is null);
   assert(img.nx > 0 && img.nx > 0);

} body {

   auto f = File(fileName, "wb");
   f.writefln("P6\n%d %d\n255", img.nx, img.ny);
   size_t i = 0;
   foreach (immutable y; 0 .. img.ny)
       foreach (immutable x; 0 .. img.nx) {
           immutable p = img.image[i++];
           f.write(cast(char)p.r, cast(char)p.g, cast(char)p.b);
       }

}

version (bitmap_main) {

   void main() {
       auto img = new Image!RGB(30, 10);
       img[4, 5] = RGB.white;
       img.textualShow;
   }

}</lang> Compiling it with version=bitmap_main prints:

Output:
##############################
##############################
##############################
##############################
##############################
####.#########################
##############################
##############################
##############################
##############################

Delphi

<lang Delphi> program BitmapTest;

{$APPTYPE CONSOLE}

type

 TColor = record
 private
   function GetColor: Cardinal;
   procedure SetColor(const Value: Cardinal);
 public
   Red, Green, Blue, Alpha: Byte;
   property Color: Cardinal read GetColor write SetColor;
 end;
 TBitmap = class
 private
   FPixels: array of array of TColor;
   FHeight: Integer;
   FWidth: Integer;
   function GetPixel(X, Y: integer): TColor;
 public
   procedure Fill(aColor: TColor); overload;
   procedure Fill(aColor: Cardinal); overload;
   procedure SetSize(w, h: Integer);
   constructor Create(); overload;
   constructor Create(w, h: Integer); overload;
   property Height: Integer read FHeight;
   property Width: Integer read FWidth;
   property Pixel[X, Y: integer]: TColor read GetPixel;
 end;

{ TColor }

function TColor.GetColor: Cardinal; begin

 Result := (alpha shl 24) + (red shl 16) + (green shl 8) + blue;

end;

procedure TColor.SetColor(const Value: Cardinal); begin

 blue := (Value and $FF);
 green := ((Value shr 8) and $FF);
 red := ((Value shr 16) and $FF);
 alpha := ((Value shr 24) and $FF);

end;

{ TBitmap }

constructor TBitmap.Create; begin

 inherited;
 FHeight := 0;
 FWidth := 0;

end;

constructor TBitmap.Create(w, h: Integer); begin

 Create;
 SetSize(w, h);

end;

procedure TBitmap.Fill(aColor: Cardinal); var

 x, y: Integer;

begin

 if (Width > 0) and (Height > 0) then
   for x := 0 to width - 1 do
     for y := 0 to height - 1 do
       FPixels[x, y].Color := aColor;

end;

procedure TBitmap.Fill(aColor: TColor); begin

 Fill(aColor.Color);

end;

function TBitmap.GetPixel(X, Y: integer): TColor; begin

 Result := FPixels[X, Y];

end;

procedure TBitmap.SetSize(w, h: Integer); var

 i: Integer;

begin

 if (h = 0) or (w = 0) then
 begin
   h := 0;
   w := 0;
 end;
 FHeight := h;
 FWidth := w;
 SetLength(FPixels, w);
 if w > 0 then
   for i := 0 to w - 1 do
     SetLength(FPixels[i], h);

end;

var

 bmp: TBitmap;
 x, y: Integer;

begin

 bmp := TBitmap.Create(200, 200);
 bmp.Fill($00FF0000);
 for y := 0 to bmp.Height - 1 do
   for x := 0 to bmp.Width - 1 do
   begin
     if x mod 2 = 1 then
       bmp.Pixel[x, y].Color := $0000FF;
   end;
 bmp.Free;

end.</lang>

E

This example includes the write ppm file code, because it is most naturally written as a method on the image object.

<lang e>def makeFlexList := <elib:tables.makeFlexList> def format := <import:java.lang.makeString>.format

def CHANNELS := 3 def UByte := 0..255

def makeColor {

 to fromFloat(r, g, b) {
   return makeColor.fromByte((r * 255).round(),
                             (g * 255).round(),
                             (b * 255).round())
 }
 to fromByte(r :UByte, g :UByte, b :UByte) {
   def color {
     to __printOn(out) {
       out.print(format("%02x%02x%02x", [color.rb(), color.gb(), color.bb()]))
     }
     to rf() { return r / 255 }
     to gf() { return g / 255 }
     to bf() { return b / 255 }
     to rb() { return r }
     to gb() { return g }
     to bb() { return b }
   }
   return color
 }

}

/** Convert 0..255 into 0..127 -128..-1 */ def sign(v) {

 return v %% 256 - 2*(v & 128)

}

def makeImage(width, height) {

 # NOTE: The primary E implementation is in Java and Java's fixed-size integers only 
 # come in signed varieties. Therefore, there is a little bit of extra arithmetic.
 #
 # In an ideal E implementation we would specify the type 0..255, but this is not
 # currently possible everywhere, or efficient.
 
 def storage := makeFlexList.fromType(<type:java.lang.Byte>, width * height * CHANNELS)
 storage.setSize(width * height * CHANNELS)
 def X := 0..!width
 def Y := 0..!height
 def flexImage {
   to __printOn(out) {
     for y in Y {
       out.print("[")
       for x in X {
         out.print(flexImage[x, y], " ")
       }
       out.println("]")
     }
   }
   to width() { return width }
   to height() { return height }
   to fill(color) {
     for x in X {
       for y in Y {
         flexImage[x, y] := color
       }
     }
   }
   to get(x :X, y :Y) {
     def base := (y * width + x) * CHANNELS
     return makeColor.fromByte(storage[base + 0] %% 256,
                               storage[base + 1] %% 256,
                               storage[base + 2] %% 256)
   }
   /** Provided to make Flood fill slightly less insanely slow. */
   to test(x :X, y :Y, c) {
     def base := (y * width + x) * CHANNELS
     return storage[base + 0] <=> sign(c.rb()) &&
            storage[base + 1] <=> sign(c.gb()) &&
            storage[base + 2] <=> sign(c.bb())
   }
   to put(x :X, y :Y, c) { 
     def base := (y * width + x) * CHANNELS
     storage[base + 0] := sign(c.rb())
     storage[base + 1] := sign(c.gb())
     storage[base + 2] := sign(c.bb())
   }
   to writePPM(outputStream) {
     outputStream.write(`P6$\n$width $height$\n255$\n`.getBytes("US-ASCII"))
     outputStream.write(storage.getArray())
   }
   /** Used for Read ppm file */
   to replace(list :List) {
     require(list.size() == width * height * CHANNELS)
     storage(0) := list
   }
 }
 
 return flexImage

}</lang>

Examples/tests:

<lang e>? def i := makeImage(3, 3)

  1. value: [000000 000000 000000 ]
  2. [000000 000000 000000 ]
  3. [000000 000000 000000 ]

? i.fill(makeColor.fromFloat(1, 0, 0)) ? i

  1. value: [ff0000 ff0000 ff0000 ]
  2. [ff0000 ff0000 ff0000 ]
  3. [ff0000 ff0000 ff0000 ]

? i[1, 1] := makeColor.fromFloat(0.5, 0.5, 0.5)

  1. value: 808080

? i

  1. value: [ff0000 ff0000 ff0000 ]
  2. [ff0000 808080 ff0000 ]
  3. [ff0000 ff0000 ff0000 ]

? i[0, 1]

  1. value: ff0000

? i[1, 1]

  1. value: 808080

? i.writePPM(<import:java.io.makeFileOutputStream>(<file:~/Desktop/Rosetta.ppm>))</lang>

EchoLisp

<lang scheme> (lib 'plot) (define width 600) (define height 400)

(plot-size width height) ;; set image size

(define (blue x y) (rgb 0.0 0.0 1.0)) ;; a constant function (plot-rgb blue 1 1) ;; blue everywhere

(lib 'types) ;; uint32 and uint8 vector types

bit-map pixel access

(define bitmap (pixels->uint32-vector)) ;; screen to vector of int32

   → 240000

(define (pix-at x y) (vector-ref bitmap (+ x (* y width)))) (rgb->list (pix-at 100 200)) → (0 0 255 255)  ;; rgb blue

writing to bitmap

(define (set-color-xy x y col) (vector-set! bitmap (+ x (* y width)) col))

(for* ((x 100)(y 200)) (set-color-xy x y (rgb 1 1 0))) ;; to bitmap (vector->pixels bitmap) ;; bitmap to screen


bit-map color components (r g b a) = index (0 1 2 3) access

(define bitmap (pixels->uint8-clamped-vector)) ;; screen to vector of uint8 (vector-length bitmap)

   → 960000

(define (blue-at-xy x y) (vector-ref bitmap (+ x 3 (* y width)))) ;; 3 = blue component (blue-at-xy 100 200)

   → 255

</lang>

Elixir

Translation of the erlang version of the code.

<lang elixir> defmodule RosBitmap do

 defrecord Bitmap, pixels: nil, shape: {0, 0}
 defp new(width, height, {:rgb, r, g, b}) do
   Bitmap[
     pixels: :array.new(width * height,
       {:default, <<r::size(8), g::size(8), b::size(8)>>}),
     shape: {width, height}]
 end
 def new(width, height), do: new(width, height, {:rgb, 0, 0, 0})
 def fill(Bitmap[shape: {width, height}], {:rgb, _r, _g, _b}=color) do
   new(width, height, color)
 end
 def set_pixel(Bitmap[pixels: pixels, shape: {width, _height}]=bitmap,
     {:at, x, y}, {:rgb, r, g, b}) do
   index = x + y * width
   bitmap.pixels(:array.set(index, <<r::size(8), g::size(8), b::size(8)>>, pixels))
 end
 def get_pixel(Bitmap[pixels: pixels, shape: {width, _height}], {:at, x, y}) do
   index = x + y * width
   <<r::size(8), g::size(8), b::size(8)>> = :array.get(index, pixels)
   {:rgb, r, g, b}
 end

end </lang>

Erlang

Stores pixels as a 1d array and colors as binaries.

<lang erlang> -module(ros_bitmap).

-export([new/2, fill/2, set_pixel/3, get_pixel/2]).

-record(bitmap, {

   pixels = nil,
   shape = {0, 0}
 }).

new(Width, Height) ->

 #bitmap{pixels=array:new(Width * Height, {default, <<0:8, 0:8, 0:8>>}), shape={Width, Height}}.

fill(#bitmap{shape={Width, Height}}, {rgb, R, G, B}) ->

 #bitmap{
   pixels=array:new(Width * Height, {default, <<R:8, G:8, B:8>>}),
   shape={Width, Height}}.

set_pixel(#bitmap{pixels=Pixels, shape={Width, _Height}}=Bitmap, {at, X, Y}, {rgb, R, G, B}) ->

 Index = X + Y * Width,
 Bitmap#bitmap{pixels=array:set(Index, <<R:8, G:8, B:8>>, Pixels)}.

get_pixel(#bitmap{pixels=Pixels, shape={Width, _Height}}, {at, X, Y}) ->

 Index = X + Y * Width,
 <<R:8, G:8, B:8>> = array:get(Index, Pixels),
 {rgb, R, G, B}.

</lang>

Euphoria

<lang euphoria>-- Some color constants: constant

   black = #000000,
   white = #FFFFFF,
   red =   #FF0000,
   green = #00FF00,
   blue =  #0000FF

-- Create new image filled with some color function new_image(integer width, integer height, atom fill_color)

   return repeat(repeat(fill_color,height),width)

end function

-- Usage example: sequence image image = new_image(800,600,black)

-- Set pixel color: image[400][300] = red

-- Get pixel color atom color color = image[400][300] -- Now color is #FF0000</lang> ?color -- Should print out 16711680

F#

FSharp can accomplish this task in several ways. This version is purely functional. The bitmap data structure does not mutate. Set pixel, for example, simply transforms the input bitmap into a new bitmap with that pixel set to the input color. If you have Framework 4.5, you can use ImmutableArray to force this immutability.

Solution: <lang fsharp> //pure functional version ... changing a pixel color provides a new Bitmap type Color = {red: byte; green: byte; blue: byte} type Point = {x:uint32; y:uint32} type Bitmap = {color: Color array; maxX: uint32; maxY: uint32}

let colorBlack = {red = (byte) 0; green = (byte) 0; blue = (byte) 0} let emptyBitmap = {color = Array.empty; maxX = (uint32) 0; maxY = (uint32) 0} let bitmap (width: uint32) (height: uint32) =

   match width, height with
   | 0u,0u | 0u,_ | _, 0u -> emptyBitmap
   | _,_ -> {color = Array.create ((int) (width * height)) colorBlack; 
           maxX = width; 
           maxY = height}

let getPixel point bitmap =

   match bitmap.color with
   | c when c |> Array.isEmpty -> None 
   | c when (uint32) c.Length <= (point.y * bitmap.maxY + point.x) -> None
   | c -> Some c.[(int) (point.y * bitmap.maxY + point.x)]

let setPixel point color bitmap =

   {bitmap with color = bitmap.color |> Array.mapi (function 
               | i when i = (int) (point.y * bitmap.maxY + point.x) -> 
                   (fun _ -> color) 
               | _ -> id)}    

let fill color bitmap = {bitmap with color = bitmap.color |> Array.map (fun _ ->color)} </lang>

Tests: <lang fsharp> //setups //==check pixel for color function let check bitmap color (x,y) =

   match (getPixel {x=x;y=y} bitmap) with 
   | Some(v) -> v = color 
   | _ -> false

let allPixels i j = [for x in [0u..(i-1u)] do for y in [0u..(j-1u)] -> (x,y)]

//create new empty bitmap let myBitmap = bitmap 0u 0u printfn "Is empty: %b" (myBitmap = emptyBitmap) let myBitmap2 = bitmap 1u 0u printfn "Is empty: %b" (myBitmap2 = emptyBitmap) let myBitmap3 = bitmap 0u 1u printfn "Is empty: %b" (myBitmap3 = emptyBitmap) //create normal bitmap let myBitmap4 = bitmap 14u 14u printfn "Is not empty: %b" (not (myBitmap4 = emptyBitmap)) //just check one color printfn "Is 1,1 black: %b" (check myBitmap4 colorBlack (1u,1u)) //check out of range color printfn "Is 100,100 nothing: %b" (not(check myBitmap4 colorBlack (100u,100u))) //make sure all pixels are black printfn "Is all black: %b" ((allPixels 14u 14u) |> List.forall (check myBitmap4 colorBlack)) //fill bitmap color let colorWhite = {red = (byte) 255; green = (byte) 255; blue = (byte) 255} let myBitmap5 = myBitmap4 |> fill colorWhite printfn "Is all white: %b" ((allPixels 14u 14u) |> List.forall (check myBitmap5 colorWhite)) //change just one pixel let myBitmap6 = myBitmap5 |> setPixel {x=5u;y=10u} colorBlack printfn "Is 5,10 black: %b" (check myBitmap4 colorBlack (5u,10u)) </lang>

Output:

Is empty

true

Is empty: true

Is empty: true

Is not empty: true

Is 1,1 black: true

Is 100,100 nothing: true

Is all black: true

Is all white: true

Is 5,10 black: true Usage: <lang fsharp> bitmap 14u 14u |> fill {red = (byte) 200; green = (byte) 0; blue = (byte) 10} |> setPixel {x=5u;y=10u} {red = (byte) 0; green = (byte) 0; blue = (byte) 0} |> getPixel {x=5u;y=10u} |> printfn "%A" </lang>

Output:

Some {red = 0uy;

     green = 0uy;
     blue = 0uy;}

Factor

The image is a matrix of triples {R,G,B}. The various utilities could be defined in another file, most of them are not used right now, but we need them for drawing so I put every thing here.. <lang factor>USING: arrays fry kernel math.matrices sequences ; IN: rosettacode.raster.storage

! Various utilities

meach ( matrix quot -- ) [ each ] curry each ; inline
meach-index ( matrix quot -- )
   [ swap 2array ] prepose
   [ curry each-index ] curry each-index ; inline
mmap ( matrix quot -- matrix' ) [ map ] curry map ; inline
mmap! ( matrix quot -- matrix' ) [ map! ] curry map! ; inline
mmap-index ( matrix quot -- matrix' )
   [ swap 2array ] prepose
   [ curry map-index ] curry map-index ; inline
matrix-dim ( matrix -- i j ) [ length ] [ first length ] bi ;
set-Mi,j ( elt {i,j} matrix -- ) [ first2 swap ] dip nth set-nth ;
Mi,j ( {i,j} matrix -- elt ) [ first2 swap ] dip nth nth ;

! The storage functions

<raster-image> ( width height -- image )
   zero-matrix [ drop { 0 0 0 } ] mmap ;
fill-image ( {R,G,B} image -- image )
   swap '[ drop _ ] mmap! ;
set-pixel ( {R,G,B} {i,j} image -- ) set-Mi,j ; inline
get-pixel ( {i,j} image -- pixel ) Mi,j ; inline

</lang>

FBSL

Volatility in FBSL is a feature uncommon to most other languages. It is the ability of its intrinsic functions as well as its user-defined functions, DynAsm and DynC blocks, and functions imported from 3rd-party DLL's to preserve their return values between function calls in FBSL Variants that have the same names as their respective functions but use neither the parentheses nor the arguments. These Variants belong to the global namespace and can be used throughout the entire script until another fully qualified function call to their respective functions is made, whereby they change their values accordingly. The feature minimizes the need for temporary variables and assignments.

This feature is a logical extension of VisualBasic way to formalize its function return value by assigning it to a Variant of the same name as that of the respective function. However, the VB Variant is only effective within the scope of its own function.

Using pure FBSL's built-in graphics functions: <lang qbasic>#DEFINE WM_LBUTTONDOWN 513

  1. DEFINE WM_RBUTTONDOWN 516
  2. DEFINE WM_CLOSE 16

FBSLSETFORMCOLOR(ME, RGB(0, 255, 255)) ' Cyan: set persistent background color DRAWWIDTH(5) ' Adjust point size FBSL.GETDC(ME) ' Use volatile FBSL.GETDC below to avoid extra assignments

RESIZE(ME, 0, 0, 300, 200) CENTER(ME) SHOW(ME)

BEGIN EVENTS SELECT CASE CBMSG CASE WM_LBUTTONDOWN ' Set color at current coords as hex literal PSET(FBSL.GETDC, LOWORD(CBLPARAM), HIWORD(CBLPARAM), &H0000FF) ' Red: Windows stores colors in BGR order CASE WM_RBUTTONDOWN ' Get color at current coords as hex literal FBSLSETTEXT(ME, "&H" & HEX(POINT(FBSL.GETDC, LOWORD(CBLPARAM), HIWORD(CBLPARAM)))) CASE WM_CLOSE ' Clean up FBSL.RELEASEDC(ME, FBSL.GETDC) END SELECT END EVENTS</lang>

Output:

Forth

This creates bitmaps on the heap (they may be deallocated with "FREE"). 32-bit or greater cells are assumed, one pixel per cell. This automatically word-aligns rows, so a separate stride field is not required. <lang forth>hex 0000ff constant red 00ff00 constant green ff0000 constant blue decimal

1 cells constant pixel

pixels cells ;
bdim ( bmp -- w h ) 2@ ;
bheight ( bmp -- h ) @ ;
bwidth ( bmp -- w ) bdim drop ;
bdata ( bmp -- addr ) 2 cells + ;
bitmap ( w h -- bmp )
 2dup * pixels bdata allocate throw
 dup >r 2! r> ;
bfill ( pixel bmp -- )
 dup bdata swap bdim * pixels
 bounds do
   dup i !
 pixel +loop
 drop ;
bxy ( x y bmp -- addr )
 dup >r bwidth * + pixels r> bdata + ;
b@ ( x y bmp -- pixel ) bxy @ ;
b! ( pixel x y bmp -- ) bxy ! ;
bshow ( bmp -- )
 hex
 dup bdim
 0 do cr
   dup 0 do
     over i j rot b@ if [char] * else bl then emit  \ 7 u.r
   loop
 loop
 2drop decimal ;

4 3 bitmap value test red test bfill test bshow cr</lang>

Fortran

See Basic bitmap storage/Fortran

Go

Standard library

Go's standard library include image, color, and drawing packages and the source for them is easy to read. There is also a Go Blog article on the image package The image.NRGBA type supports everything this task requires (the 'A' is for alpha channel, each are 8 bits, if 16 bits each of RGBA is desired there is also the image.NRGBA64 type). The 'N' of NRGBA stands for Non-alpha-premultiplied, color values can trivially be converted to/from alpha-premultiplied RGBA values via a color.Model.

Here's how to use the standard packages to do what this task requires: <lang go>package main

import ( "bytes" "fmt" "image" "image/color" "image/draw" "image/png" )

func main() { // A rectangle from 0,0 to 300,240. r := image.Rect(0, 0, 300, 240)

// Create an image im := image.NewNRGBA(r)

// set some color variables for convience var ( red = color.RGBA{0xff, 0x00, 0x00, 0xff} blue = color.RGBA{0x00, 0x00, 0xff, 0xff} )

// Fill with a uniform color draw.Draw(im, r, &image.Uniform{red}, image.ZP, draw.Src)

// Set individual pixels im.Set(10, 20, blue) im.Set(20, 30, color.Black) im.Set(30, 40, color.RGBA{0x10, 0x20, 0x30, 0xff})

// Get the values of specific pixels as color.Color types. // The color will be in the color.Model of the image (in this // case color.NRGBA) but color models can convert their values // to other models. c1 := im.At(0, 0) c2 := im.At(10, 20)

// or directly as RGB components (scaled values) redc, greenc, bluec, _ := c1.RGBA() redc, greenc, bluec, _ = im.At(30, 40).RGBA()

// Images can be read and writen in various formats var buf bytes.Buffer err := png.Encode(&buf, im) if err != nil { fmt.Println(err) }

fmt.Println("Image size:", im.Bounds().Dx(), "×", im.Bounds().Dy()) fmt.Println(buf.Len(), "bytes when encoded as PNG.") fmt.Printf("Pixel at %7v is %v\n", image.Pt(0, 0), c1) fmt.Printf("Pixel at %7v is %#v\n", image.Pt(10, 20), c2) // %#v shows type details fmt.Printf("Pixel at %7v has R=%d, G=%d, B=%d\n", image.Pt(30, 40), redc, greenc, bluec) }</lang>

Output:
Image size: 300 × 240
786 bytes when encoded as PNG.
Pixel at   (0,0) is {255 0 0 255}
Pixel at (10,20) is color.NRGBA{R:0x0, G:0x0, B:0xff, A:0xff}
Pixel at (30,40) has R=4112, G=8224, B=12336

DIY

Not a complete working program. Presented here are just types and functions requested by the task. <lang go>// Raster package used with a number of RC tasks. // // For each task, documentation in package main source will list this // file and others that are necessary to build a raster package with // sufficient functionality for the task. To build a working program, // build a raster package from the files listed, install the package, // and then compile and link the package main that completes the task. // // Alternatively, files in the raster package can be combined as desired // to build a package that meets the needs of multiple tasks. package raster

// Rgb is a 24 bit color value represented with a 32 bit int // in the conventional way. This is expected to be convenient // for the programmer in many cases. type Rgb int32

// Pixel has r, g, and b as separate fields. This is used as // the in-memory representation of a bitmap. type Pixel struct {

   R, G, B byte

}

// Pixel returns a new Pixel from a Rgb value func (c Rgb) Pixel() Pixel {

   return Pixel{R: byte(c >> 16), G: byte(c >> 8), B: byte(c)}

}

// Rgb returns a single Rgb value computed from rgb fields of a Pixel // of a Pixel. func (p Pixel) Rgb() Rgb {

   return Rgb(p.R)<<16 | Rgb(p.G)<<8 | Rgb(p.B)

}

// Bitmap is the in-memory representation, or image storage type of a bitmap. // Zero value for type is a valid zero-size bitmap. // The only exported field is Comments. Remaining fields have interdepencies // that are managed by package code and so should not be directly accessed // from outside the package. type Bitmap struct {

   Comments   []string
   rows, cols int
   px         []Pixel   // all pixels as a single slice, row major order
   pxRow      [][]Pixel // rows of pixels as slices of px

}

const creator = "# Creator: Rosetta Code http://rosettacode.org/"

// New is a Bitmap "constructor." Parameters x and y are extents. // That is, the new bitmap will have x columns and y rows. func NewBitmap(x, y int) (b *Bitmap) {

   b = &Bitmap{
       Comments: []string{creator},
       rows:     y, // named fields here to prevent possible mix-ups.
       cols:     x,
       px:       make([]Pixel, x*y),
       pxRow:    make([][]Pixel, y),
   }
   // Note rows of pixels are not allocated separately.
   // Rather the whole bitmap is allocted in one chunk as px.
   // This simplifies allocation and maintains locality.
   x0, x1 := 0, x
   for i := range b.pxRow {
       b.pxRow[i] = b.px[x0:x1] // slice operation. does no allocation.
       x0, x1 = x1, x1+x
   }
   return b

}

// Extent returns bitmap dimensions. func (b *Bitmap) Extent() (cols, rows int) {

   return b.cols, b.rows

}

// Fill entire bitmap with solid color. func (b *Bitmap) Fill(p Pixel) {

   for i := range b.px {
       b.px[i] = p
   }

}

func (b *Bitmap) FillRgb(c Rgb) {

   b.Fill(c.Pixel())

}

// Set a single pixel color value. // Clips to bitmap boundaries. // Returns true if pixel was set, false if clipped. func (b *Bitmap) SetPx(x, y int, p Pixel) bool {

   defer func() { recover() }()
   b.pxRow[y][x] = p
   return true

}

func (b *Bitmap) SetPxRgb(x, y int, c Rgb) bool {

   return b.SetPx(x, y, c.Pixel())

}

// Note: Clipping to bitmap boundaries is needed for program correctness // but is otherwise not required by the task. It is implemented with the // combination of pxRow and the deferred recover. SetPx, GetPx return the // clipping result as a way for higher level graphics functions to track // plotting and clipping status. As this is not required by tasks though, // it is generally not implemented.

// Get a single pixel color value. // Returns pixel and ok=true if coordinates are within bitmap boundaries. // Returns ok=false if coordinates are outside bitmap boundaries. func (b *Bitmap) GetPx(x, y int) (p Pixel, ok bool) {

   defer func() { recover() }()
   return b.pxRow[y][x], true

}

func (b *Bitmap) GetPxRgb(x, y int) (Rgb, bool) {

   p, ok := b.GetPx(x, y)
   if !ok {
       return 0, false
   }
   return p.Rgb(), true

}</lang>

Haskell

We implement the Image type as an STArray so that we can use it in an imperative fashion in the ST monad.

<lang haskell>module Bitmap(module Bitmap) where

import Control.Monad import Control.Monad.ST import Data.Array.ST

newtype Pixel = Pixel (Int, Int) deriving Eq

instance Ord Pixel where

   compare (Pixel (x1, y1)) (Pixel (x2, y2)) =
       case compare y1 y2 of
           EQ -> compare x1 x2
           v  -> v

instance Ix Pixel where {- This instance differs from the one for (Int, Int) in that the ordering of indices is

 (0,0), (1,0), (2,0), (0,1), (1,1), (2,1)

instead of

 (0,0), (0,1), (1,0), (1,1), (2,0), (2,1). -}
   range (Pixel (xa, ya), Pixel (xz, yz)) =
       [Pixel (x, y) | y <- [ya .. yz], x <- [xa .. xz]]
   index (Pixel (xa, ya), Pixel (xz, _)) (Pixel (xi, yi)) =
       (yi - ya)*(xz - xa + 1) + (xi - xa)
   inRange (Pixel (xa, ya), Pixel (xz, yz)) (Pixel (xi, yi)) =
       not $ xi < xa || xi > xz || yi < ya || yi > yz
   rangeSize (Pixel (xa, ya), Pixel (xz, yz)) =
       (xz - xa + 1) * (yz - ya + 1)

instance Show Pixel where

   show (Pixel p) = show p

class Ord c => Color c where

   luminance :: c -> Int
    -- The Int should be in the range [0 .. 255].
   black, white :: c
   toNetpbm :: [c] -> String
   fromNetpbm :: [Int] -> [c]
   netpbmMagicNumber, netpbmMaxval :: c -> String
     {- The argument to these two functions is ignored; the
     parameter is only for typechecking. -}

newtype Color c => Image s c = Image (STArray s Pixel c)

image :: Color c => Int -> Int -> c -> ST s (Image s c) {- Creates a new image with the given width and height, filled with the given color. -} image w h = liftM Image .

   newArray (Pixel (0, 0), Pixel (w - 1, h - 1))

listImage :: Color c => Int -> Int -> [c] -> ST s (Image s c) {- Creates a new image with the given width and height, with each pixel set to the corresponding element of the given list. -} listImage w h = liftM Image .

   newListArray (Pixel (0, 0), Pixel (w - 1, h - 1))

dimensions :: Color c => Image s c -> ST s (Int, Int) dimensions (Image i) = do

   (_, Pixel (x, y)) <- getBounds i
   return (x + 1, y + 1)

getPix :: Color c => Image s c -> Pixel -> ST s c getPix (Image i) = readArray i

getPixels :: Color c => Image s c -> ST s [c] getPixels (Image i) = getElems i

setPix :: Color c => Image s c -> Pixel -> c -> ST s () setPix (Image i) = writeArray i

fill :: Color c => Image s c -> c -> ST s () fill (Image i) c = getBounds i >>= mapM_ f . range

 where f p = writeArray i p c

mapImage :: (Color c, Color c') =>

   (c -> c') -> Image s c -> ST s (Image s c')

mapImage f (Image i) = liftM Image $ mapArray f i</lang>

This module provides an instance of Color. <lang haskell>module Bitmap.RGB(module Bitmap.RGB) where

import Bitmap import Control.Monad.ST

newtype RGB = RGB (Int, Int, Int) deriving (Eq, Ord)

instance Color RGB where

   luminance (RGB (r, g, b)) = round x
     where x = 0.2126*r' + 0.7152*g' + 0.0722*b'
           (r', g', b') = (toEnum r, toEnum g, toEnum b)
   black = RGB (0,   0,   0)
   white = RGB (255, 255, 255)
   toNetpbm = concatMap f
     where f (RGB (r, g, b)) = [toEnum r, toEnum g, toEnum b]
   fromNetpbm [] = []
   fromNetpbm (r : g : b : rest) = RGB (r, g, b) : fromNetpbm rest
   netpbmMagicNumber _ = "P6"
   netpbmMaxval _ = "255"

toRGBImage :: Color c => Image s c -> ST s (Image s RGB) toRGBImage = mapImage $ f . luminance

 where f x = RGB (x, x, x)</lang>

Icon and Unicon

The language has a built-in window data type with associated graphics primitives. A bitmap is just a window that isn't visible on-screen at the moment. <lang Icon>procedure makebitmap(width,height)

  return open("bitmap", "g", "canvas=hidden",
            "size="||width||","||height)

end procedure fillimage(w,color)

  Fg(w,color)
  FillRectangle(w)

end procedure setpixel(w,x,y,color)

  Fg(w,color)
  DrawPixel(x,y)

end procedure getpixel(w,x,y)

  return Pixel(w,x,y)

end</lang>

J

A number of addon packages are available for J that work with common image formats (including PPM), but here we will show a basic bitmap storage type as per the task description.

The structure is a 3-dimensional array of numbers. The shape of the array is height by width by 3. Each 1-dimensional cell of size 3 contains R, G and B numbers, in that order. Indexing is zero based. (We could instead have encoded RGB in a single integer...)

No parameter validity checks are currently implemented.

In J, allocating an uninitialized image would not normally be separated from creating the colored image, so makeRGB allows the specification of color during allocation. As a monad, makeRGB creates a black image with the specified height and width. It can also take a left argument (dyadic form) specifying the color(s) of the image. fillRGB requires a left argument specifying the color(s), but takes a bitmap (RGB) structure as the right argument.

Solution: <lang j>makeRGB=: 0&$: : (($,)~ ,&3) fillRGB=: makeRGB }:@$ setPixels=: (1&{::@[)`(<"1@(0&{::@[))`]} getPixels=: <"1@[ { ]</lang>

Examples:

<lang j> myimg=: makeRGB 5 8 NB. create a bitmap with height 5 and width 8 (black)

  myimg=: 255 makeRGB 5 8           NB. create a white bitmap with height 5 and width 8
  myimg=: 127 makeRGB 5 8           NB. create a gray bitmap with height 5 and width 8
  myimg=: 0 255 0 makeRGB 5 8       NB. create a green bitmap with height 5 and width 8
  myimg=: 0 0 255 fillRGB myimg     NB. fill myimg with blue
  colors=: 0 255 {~ #: i.8          NB. black,blue,green,cyan,red,magenta,yellow,white
  myimg=: colors fillRGB myimg      NB. fill myimg with vertical stripes of colors
  2 4 getPixels myimg               NB. get the pixel color from point (2, 4)

255 0 0

  myimg=: (2 4 ; 255 255 255) setPixels myimg   NB. set pixel at point (2, 4) to white
  2 4 getPixels myimg               NB. get the pixel color from point (2, 4)

255 255 255

  }:$ myimg                         NB. get height and width of the image

5 8</lang>

getPixels and setPixels are generalized to set and get lists/arrays of pixels.

<lang j>pixellist=: ,"0/~ i. 10 NB. row and column indices for 10 by 10 block of pixels

NB. create 10 by 10 block of magenta pixels in the middle of a 300 by 300 green image myimg=: ((145 + pixellist) ; 255 0 255) setPixels 0 255 0 makeRGB 300 300

NB. get pixel color for 10x10 block offset from magenta block subimg=: (140 + pixellist) getPixels myimg</lang>

To display the image in a window at any point for verification:

<lang j>require 'viewmat' viewRGB=: [: viewrgb 256&#.

viewRGB myimg</lang>

Note that height comes before width here. This is inconsistent with marketing of display resolutions, but matches J's treatment of dimensions.

Java

Solution

Library: AWT

<lang java>import java.awt.Color; import java.awt.Graphics; import java.awt.Image; import java.awt.image.BufferedImage;

public class BasicBitmapStorage {

   private final BufferedImage image;
   public BasicBitmapStorage(int width, int height) {
       image = new BufferedImage(width, height, BufferedImage.TYPE_INT_RGB);
   }
   public void fill(Color c) {
       Graphics g = image.getGraphics();
       g.setColor(c);
       g.fillRect(0, 0, image.getWidth(), image.getHeight());
   }
   public void setPixel(int x, int y, Color c) {
       image.setRGB(x, y, c.getRGB());
   }
   public Color getPixel(int x, int y) {
       return new Color(image.getRGB(x, y));
   }
   public Image getImage() {
       return image;
   }

}</lang>

Test Program

Library: JUnit

<lang java>import static org.junit.Assert.assertEquals;

import java.awt.Color; import org.junit.Test;

public class BasicBitmapStorageTest {

   @Test
   public void testHappy() {
       int width = 640;
       int height = 480;
       BasicBitmapStorage bbs = new BasicBitmapStorage(width, height);
       bbs.fill(Color.CYAN);
       bbs.setPixel(width / 2, height / 2, Color.BLACK);
       Color c1 = bbs.getPixel(width / 2, height / 2);
       Color c2 = bbs.getPixel(20, 20);
       assertEquals(Color.BLACK, c1);
       assertEquals(Color.CYAN, c2);
   }

}</lang>

JavaScript

JavaScript can interact with a drawing context using the HTML5 Canvas API.

<lang javascript> // Set up the canvas var canvas = document.createElement("canvas"),

   ctx = canvas.getContext("2d"),
   width = 400, height = 400;

ctx.canvas.width = width; ctx.canvas.height = height;

// Optionaly add it to the current page document.body.appendChild(canvas);

// Draw an image var img = document.createElement("img"); img.onload = function(){

   // Draw the element into the top-left of the canvas
   ctx.drawImage(img, 0, 0);

}; img.src = "//placehold.it/400x400";

// Fill the canvas with a solid blue color ctx.fillStyle = "blue"; ctx.fillRect(0, 0, width, height);

// Place a black pixel in the middle // Note that a pixel is a 1 by 1 rectangle // This is the fastest method as of 2012 benchmarks ctx.fillStyle = "black"; ctx.fillRect(width / 2, height / 2, 1, 1); </lang>

Julia

Works with: Julia version 0.6

Using packages (Images.jl, Colors.jl): <lang julia>using Images, Colors

Base.hex(p::RGB{T}) where T = join(hex(c(p), 2) for c in (red, green, blue)) function showhex(m::Matrix{RGB{T}}, pad::Integer=4) where T

   for r in 1:size(m, 1)
       println(" " ^ pad, join(hex.(m[r, :]), " "))
   end

end

w, h = 5, 7 cback = RGB(1, 0, 1) cfore = RGB(0, 1, 0)

img = Array{RGB{N0f8}}(h, w); println("Uninitialized image:") showhex(img)

fill!(img, cback) println("\nImage filled with background color:") showhex(img)

img[2, 3] = cfore println("\nImage with a pixel set for foreground color:") showhex(img)</lang>

Output:
Uninitialized image:
    10DFF8 7F0000 F84A00 0030DA 007F00
    4A007F B0DDF8 7F0000 F84A00 00D0DB
    0000F0 4A007F D0D9F8 7F0000 F84A00
    DFF84A 000050 4A007F 50DAF8 7F0000
    007F00 D9F84A 000010 4A007F 30DCF8
    0050E0 007F00 DAF84A 000050 4A007F
    F84A00 00B0D9 007F00 DBF84A 000050

Image filled with background color:
    FF00FF FF00FF FF00FF FF00FF FF00FF
    FF00FF FF00FF FF00FF FF00FF FF00FF
    FF00FF FF00FF FF00FF FF00FF FF00FF
    FF00FF FF00FF FF00FF FF00FF FF00FF
    FF00FF FF00FF FF00FF FF00FF FF00FF
    FF00FF FF00FF FF00FF FF00FF FF00FF
    FF00FF FF00FF FF00FF FF00FF FF00FF

Image with a pixel set for foreground color:
    FF00FF FF00FF FF00FF FF00FF FF00FF
    FF00FF FF00FF 00FF00 FF00FF FF00FF
    FF00FF FF00FF FF00FF FF00FF FF00FF
    FF00FF FF00FF FF00FF FF00FF FF00FF
    FF00FF FF00FF FF00FF FF00FF FF00FF
    FF00FF FF00FF FF00FF FF00FF FF00FF
    FF00FF FF00FF FF00FF FF00FF FF00FF

KonsolScript

<lang KonsolScript>function main() {

 Var:Number shape;
 
 Image:New(50, 50, shape)
 Draw:RectFill(0, 0, 50, 50, 0xFF0000, shape)  //one to fill an image with a plain RED color
 
 Draw:Pixel(30, 30, 0x0000FF, shape)           //set a given pixel at (30,30) with a BLUE color
 
 while (B1 == false) {
   Image:Blit(10, 10, shape, screen)
   Screen:Render()
 }

}</lang>

Kotlin

Translation of: Java

<lang scala>// version 1.1.4-3

import java.awt.Color import java.awt.Graphics import java.awt.image.BufferedImage

class BasicBitmapStorage(width: Int, height: Int) {

   val image = BufferedImage(width, height, BufferedImage.TYPE_3BYTE_BGR)
   fun fill(c: Color) {
       val g = image.graphics
       g.color = c
       g.fillRect(0, 0, image.width, image.height)
   }
   fun setPixel(x: Int, y: Int, c: Color) = image.setRGB(x, y, c.getRGB())
   fun getPixel(x: Int, y: Int) = Color(image.getRGB(x, y))

}

fun main(args: Array<String>) {

   val width = 640
   val height = 480
   val bbs = BasicBitmapStorage(width, height)
   with (bbs) {
       fill(Color.cyan)
       setPixel(width / 2, height / 2, Color.black)
       val c1 = getPixel(width / 2, height / 2)
       val c2 = getPixel(20, 20)
       print("The color of the pixel at (${width / 2}, ${height / 2}) is ")
       println(if (c1 == Color.black) "black" else "unknown")
       print("The color of the pixel at (120, 120) is ")
       println(if (c2 == Color.cyan) "cyan" else "unknown")
   }

}</lang>

Output:
The color of the pixel at (320, 240) is black
The color of the pixel at (120, 120) is cyan

Lingo

<lang lingo>-- Creates a new image object of size 640x480 pixel and 32-bit color depth img = image(640, 480, 32)

-- Fills image with plain red img.fill(img.rect, rgb(255,0,0))

-- Gets the color value of the pixel at point (320, 240) col = img.getPixel(320, 240)

-- Changes the color of the pixel at point (320, 240) to black img.setPixel(320, 240, rgb(0,0,0))</lang>

LiveCode

LiveCode has built in support for importing and exporting PBM, JPEG, GIF, BMP or PNG graphics formats

<lang LiveCode>

  -- create an image container box at the center of the current stack window with default properties
  create image "test"
  -- programtically choose the paint bucket tool
  choose bucket tool
  -- LiveCode engine has built-in color keywords:
  set the brushColor to "dark green"
  -- programtically mouse click at the center of image container box to fill
  click at the loc of image "test"
  -- get the RGBA values of the first pixel in the image box
  put byteToNum(byte 1 of the imageData of image "test") into tRed
  put byteToNum(byte 2 of the imageData of image "test") into tGreen
  put byteToNum(byte 3 of the imageData of image "test") into tBlue
  put byteToNum(byte 4 of the imageData of image "test") into tAlpha
  -- log message the info in the message box
  put "First Pixel Color is Red:"& tRed &" Green:"& tGreen &" Blue:"& tBlue &" Transparency:"& tAlpha
  -- just for fun replace the contents with RosettaCode logo
  wait 2 seconds
  set the filename of image "test" to "http://rosettacode.org/mw/title.png"
   -- the next line is copy of the Write a PPM task:
  export image "test" to file "~/Test.PPM" as paint -- paint format is one of PBM, PGM, or PPM

</lang>

Lua

Original

<lang lua>function Allocate_Bitmap( width, height )

   local bitmap = {}
   for i = 1, width do
       bitmap[i] = {}
       for j = 1, height do
           bitmap[i][j] = {}
       end
   end
   return bitmap

end

function Fill_Bitmap( bitmap, color )

   for i = 1, #bitmap do
       for j = 1, #bitmap[1] do
           bitmap[i][j] = color
       end
   end

end

function Get_Pixel( bitmap, x, y )

   return bitmap[x][y]

end</lang> This can be used like: <lang lua>bitmap = Allocate_Bitmap( 100, 50 ) Fill_Bitmap( bitmap, { 15, 200, 80 } ) pixel = Get_Pixel( bitmap, 20, 25 ) print( pixel[1], pixel[2], pixel[3] )</lang>

Alternate

A more object-oriented and extensible approach for easier re-use elsewhere. <lang lua>local Bitmap = {

 new = function(self, width, height)
   local instance = setmetatable({ width=width, height=height }, self)
   instance:alloc()
   return instance
 end,
 alloc = function(self)
  self.pixels = {}
   for y = 1, self.height do
     self.pixels[y] = {}
     for x = 1, self.width do
       self.pixels[y][x] = 0x00000000
     end
   end
 end,
 clear = function(self, c)
   for y = 1, self.height do
     for x = 1, self.width do
       self.pixels[y][x] = c or 0x00000000
     end
   end
 end,
 get = function(self, x, y)
   x, y = math.floor(x+1), math.floor(y+1) -- given 0-based indices, use 1-based indices
   if ((x>=1) and (x<=self.width) and (y>=1) and (y<=self.height)) then
     return self.pixels[y][x]
   else
     return nil
   end
 end,
 set = function(self, x, y, c)
   x, y = math.floor(x+1), math.floor(y+1) -- given 0-based indices, use 1-based indices
   if ((x>=1) and (x<=self.width) and (y>=1) and (y<=self.height)) then
     self.pixels[y][x] = c or 0x00000000
   end
 end,

} Bitmap.__index = Bitmap setmetatable(Bitmap, { __call = function (t, ...) return t:new(...) end })</lang> Usage: <lang lua>local bitmap = Bitmap(32,32)

-- default pixel representation is 32-bit packed ARGB on [0,255] bitmap:clear(0xFFFF0000) -- fill with red bitmap:set(1, 1, 0xFF00FF00) -- one green pixel bitmap:set(2, 2, 0xFF0000FF) -- one blue pixel print(string.format("pixel at 0,0 = %x", bitmap:get(0,0))) print(string.format("pixel at 1,1 = %x", bitmap:get(1,1))) print(string.format("pixel at 2,2 = %x", bitmap:get(2,2)))

-- but note that pixel representation is agnostic.. -- (it's just a wrapper around a 2d-array of any valid type)

-- want to switch to RGB-tuple on [0,1]?? bitmap:clear({1,0,0}) -- fill with red bitmap:set(1, 1, {0,1,0}) -- one green pixel bitmap:set(2, 2, {0,0,1}) -- one blue pixel print(string.format("pixel at 0,0 = %s", table.concat(bitmap:get(0,0),", "))) print(string.format("pixel at 1,1 = %s", table.concat(bitmap:get(1,1),", "))) print(string.format("pixel at 2,2 = %s", table.concat(bitmap:get(2,2),", ")))

-- or strings?? bitmap:clear("red") -- fill with red bitmap:set(1, 1, "green") -- one green pixel bitmap:set(2, 2, "blue") -- one blue pixel print(string.format("pixel at 0,0 = %s", bitmap:get(0,0))) print(string.format("pixel at 1,1 = %s", bitmap:get(1,1))) print(string.format("pixel at 2,2 = %s", bitmap:get(2,2)))</lang> Caveat: Just be aware that as currently written the storage of complex types are referenced rather than copied. So, for example, using the clear() method with a table representing an RGB-tuple, will store the same identical reference throughout the bitmap - so direct modification of any one pixel's internal components would affect all other pixels as well. You should override the clear() method as appropriate to better support your desired pixel representation if this is not the behavior you desire.

Output:
pixel at 0,0 = ffff0000
pixel at 1,1 = ff00ff00
pixel at 2,2 = ff0000ff
pixel at 0,0 = 1, 0, 0
pixel at 1,1 = 0, 1, 0
pixel at 2,2 = 0, 0, 1
pixel at 0,0 = red
pixel at 1,1 = green
pixel at 2,2 = blue

M2000 Interpreter

The easy way is to make a function to return an object with all functions on it, for specific image. We have to make the image in a way to render it to screen. The render statement get data in a string using a header of 12 characters (24 bytes). Raster lines are in down-top order. So last raster line is the top one. Also RGB is BGR in this data structure. Raster lines has to be aligned proper, so we may have add some bytes.

There are four functions (lambda functions) in the returned group, each of them has closures, an one of that closure is a pointer to a buffer object. We use this object to set and get pixels.

First two functions are for set and get pixel. Third return image as a string. Forth function copy an image as string to buffer, if they have the same width and height (else we get error)

P3 ppm

<lang M2000 Interpreter> \ Bitmap width in pixels, height in pixels \ Return a group object with some lambda as members: SetPixel, GetPixel, Image$ \ copyimage \ using Copy x, y Use Image$ we can display image$ to x, y as twips \ we can use x*twipsx, y*twipsy for x,y as pixels Function Bitmap (x as long, y as long) {

     if x<1 or y<1 then  Error "Wrong dimensions"
     structure rgb {
           red as byte
           green as byte
           blue as byte
     }
     m=len(rgb)*x mod 4
     if m>0 then m=4-m  ' add some bytes to raster line
     m+=len(rgb) *x
     Structure rasterline {
           { 
                 pad as byte*m
           }   
           \\ union pad+hline
           hline as rgb*x
     }
     Structure Raster {
           magic as integer*4
           w as integer*4
           h as integer*4
           lines as rasterline*y
     }
     Buffer Clear Image1 as Raster
     \\ 24 chars as header to be used from bitmap render build in functions
     Return Image1, 0!magic:="cDIB", 0!w:=Hex$(x,2), 0!h:=Hex$(y, 2)
     \\ fill white (all 255)
     \\ Str$(string) convert to ascii, so we get all characters from words  width to byte width
     Return Image1, 0!lines:=Str$(String$(chrcode$(255), Len(rasterline)*y))
     Buffer Clear Pad as Byte*4
     SetPixel=Lambda Image1, Pad,aLines=Len(Raster)-Len(Rasterline), blines=-Len(Rasterline) (x, y, c) ->{
           where=alines+3*x+blines*y
           if c>0 then c=color(c)
           c-!
           Return Pad, 0:=c as long
           Return Image1, 0!where:=Eval(Pad, 2) as byte, 0!where+1:=Eval(Pad, 1) as byte, 0!where+2:=Eval(Pad, 0) as byte
     
     }
     GetPixel=Lambda Image1,aLines=Len(Raster)-Len(Rasterline), blines=-Len(Rasterline) (x,y) ->{
           where=alines+3*x+blines*y
           =color(Eval(image1, where+2 as byte), Eval(image1, where+1 as byte), Eval(image1, where as byte))
     }
     StrDib$=Lambda$ Image1, Raster -> {
           =Eval$(Image1, 0, Len(Raster))
     }
     CopyImage=Lambda Image1 (image$) -> {
           if left$(image$,12)=Eval$(Image1, 0, 24 ) Then  {
                  Return Image1, 0:=Image$
           } Else Error "Can't Copy Image"
     }
     Group Bitmap {
           SetPixel=SetPixel
           GetPixel=GetPixel
           Image$=StrDib$
           Copy=CopyImage
     }
     =Bitmap

} A=Bitmap(100,100) Call A.SetPixel(50,50, color(128,0,255)) Print A.GetPixel(50,50)=color(128,0,255) \\ display image to screen at 100, 50 pixel copy 100*twipsx,50*twipsy use A.Image$() A1=Bitmap(100,100) Call A1.copy(A.Image$()) copy 500*twipsx,50*twipsy use A1.Image$()

</lang>

P6 ppm

Need Version 9.4, Rev >=19 <lang M2000 Interpreter> Module P6 {

     Function Bitmap  {
           def x as long, y as long, Import as boolean
           
           If match("NN") then {
                Read x, y
           } else.if Match("N") Then  {
                 \\ is a file?
                 Read f as long
                 buffer whitespace as byte
                 if not Eof(f) then {
                       get #f, whitespace :P6$=eval$(whitespace)
                       get #f, whitespace : P6$+=eval$(whitespace)
                       def boolean getW=true, getH=true, getV=true
                       def long v
                       \\ str$("P6") has 2 bytes. "P6" has 4 bytes
                       If p6$=str$("P6") Then {
                             do {
                                   get #f, whitespace
                                   if Eval$(whitespace)=str$("#") then {
                                         do {get #f, whitespace} until eval(whitespace)=10
                                   } else  {
                                        select case eval(whitespace)
                                         case 32, 9, 13, 10
                                         { if getW and x<>0 then {
                                                     getW=false
                                               } else.if getH  and y<>0 then {
                                                     getH=false
                                               } else.if getV and v<>0 then {
                                                     getV=false
                                               }
                                         }
                                         case 48 to 57
                                         {if getW then {
                                                    x*=10
                                                    x+=eval(whitespace, 0)-48
                                               } else.if getH then {
                                                    y*=10
                                                    y+=eval(whitespace, 0)-48
                                               } else.if getV then {
                                                    v*=10
                                                    v+=eval(whitespace, 0)-48
                                               }
                                         }
                                         End Select
                                   }
                                   iF eof(f) then Error "Not a ppm file"
                             } until getV=false
                       }  else Error "Not a P6 ppm" 
                       Import=True
                 }
           } else Error "No proper arguments" 
           if x<1 or y<1 then  Error "Wrong dimensions"
           structure rgb {
                 red as byte
                 green as byte
                 blue as byte
           }
           m=len(rgb)*x mod 4
           if m>0 then m=4-m  ' add some bytes to raster line
           m+=len(rgb) *x
           Structure rasterline {
                 { 
                       pad as byte*m
                 }   
                 hline as rgb*x
           }
           Structure Raster {
                 magic as integer*4
                 w as integer*4
                 h as integer*4
                 {
                       linesB as byte*len(rasterline)*y
                 }
                 lines as rasterline*y
           }
           Buffer Clear Image1 as Raster
           Return Image1, 0!magic:="cDIB", 0!w:=Hex$(x,2), 0!h:=Hex$(y, 2)
           if not Import then  Return Image1, 0!lines:=Str$(String$(chrcode$(255), Len(rasterline)*y))
           Buffer Clear Pad as Byte*4
           SetPixel=Lambda Image1, Pad,aLines=Len(Raster)-Len(Rasterline), blines=-Len(Rasterline) (x, y, c) ->{
                 where=alines+3*x+blines*y
                 if c>0 then c=color(c)
                 c-!
                 Return Pad, 0:=c as long
                 Return Image1, 0!where:=Eval(Pad, 2) as byte, 0!where+1:=Eval(Pad, 1) as byte, 0!where+2:=Eval(Pad, 0) as byte
           }
           GetPixel=Lambda Image1,aLines=Len(Raster)-Len(Rasterline), blines=-Len(Rasterline) (x,y) ->{
                 where=alines+3*x+blines*y
                 =color(Eval(image1, where+2 as byte), Eval(image1, where+1 as byte), Eval(image1, where as byte))
           }
           StrDib$=Lambda$ Image1, Raster -> {
                 =Eval$(Image1, 0, Len(Raster))
           }
           CopyImage=Lambda Image1 (image$) -> {
                 if left$(image$,12)=Eval$(Image1, 0, 24 ) Then  {
                        Return Image1, 0:=Image$
                 } Else Error "Can't Copy Image"
           }
           Export2File=Lambda Image1, x, y (f) -> {
                 Print #f, "P6";chr$(10);"# Created using M2000 Interpreter";chr$(10);
                 Print #f, x;" ";y;" 255";chr$(10);
                 x2=x-1 :  where=0
                 Buffer pad as byte*3
                 For y1= 0 to y-1 {
                       For x1=0 to x2 {
                            Return pad, 0:=eval$(image1, 0!linesB!where, 3)
                            Push Eval(pad, 2) : Return pad, 2:=Eval(pad, 0), 0:=Number
                            Put #f, pad : where+=3
                       }
                       m=where mod 4 : if m<>0 then where+=4-m
                 } 
           }
           if Import then {
                 x0=x-1 : where=0
                 Buffer Pad1 as byte*3
                 For y1=y-1 to 0 {
                       For x1=0 to x0 {Get #f, Pad1 : Push Eval(pad1, 2) : Return pad1, 2:=Eval(pad1, 0), 0:=Number                                    
                             Return Image1, 0!linesB!where:=Eval$(Pad1) : where+=3}
                       m=where mod 4 : if m<>0 then where+=4-m}
           }
           Group Bitmap {
                 SetPixel=SetPixel
                 GetPixel=GetPixel
                 Image$=StrDib$
                 Copy=CopyImage
                 ToFile=Export2File
           }
           =Bitmap
     }
     A=Bitmap(150,100)
     For i=0  to 98  {
           Call A.SetPixel(i, i, 0)
           Call A.SetPixel(99, i, 0)
     }
     Call A.SetPixel(i,i,0)
     Copy 200*twipsx, 100*twipsy use A.Image$()
     Profiler
     Open "a.ppm" for output as #F
     Call A.tofile(f)
     Close #f
     Print Filelen("a.ppm")
     Print Timecount/1000;"sec"
     Profiler
     Image A.Image$() Export "a.jpg", 100  ' per cent quality
     Print Filelen("a.jpg")
     Image A.Image$() Export "a1.jpg", 10  ' per cent quality
     Print Filelen("a1.jpg")
     Image A.Image$() Export "a.bmp"
     Print Filelen("a.bmp")  ' no compression
     Print Timecount/1000;"sec"
     Move 5000,5000   ' twips
     Image "a.jpg"
     Move 5000,8000
     Image "a1.jpg"
     Move 8000, 5000
     Image "a.bmp"     

} P6 </lang> Export using M2000 code for ppm is slower than using internal jpg and bmp encoders. Jpg encoder has a 100% quality, and because this image is black and white we get the best compression. Time 0.304sec is for three exports, two jpg and one bmp.

Output:
     45049
47.3661341sec
      1018
       691
     45254
0.3040944sec

Maple

<lang Maple>allocateImg := proc(width, height) return Array(1..width, 1..height, 1..3); end proc: fillColor := proc(img, rgb::list) local i; for i from 1 to 3 do img[..,..,i] := map(x->rgb[i], img[..,..,i]): end do: end proc: setColor := proc(x, y, img, rgb::list) local i: for i from 1 to 3 do img[x,y,i] := rgb[i]: end do: end proc: getColor := proc(x,y,img) local rgb,i: rgb := Array(1..3): for i from 1 to 3 do rgb(i) := img[x,y,i]: end do: return rgb: end proc:</lang>

Use:
a := allocateImg(200,200);
fillColor(a,[255,223,0]);
setColor(150,150, a, [0,0,0]);
getColor(150,150,a);
#Output the image
ImageTools:-Embed(ImageTools:-Create(a))

Mathematica / Wolfram Language

In Mathematica 7/8: <lang Mathematica>img = Image[ConstantArray[{1, 0, 0}, {1000, 1000}]]; img = ReplacePart[img, {1, 1, 1} -> {0, 0, 1}]; ImageValue[img, {1, 1}]</lang> In Mathematica 9: <lang Mathematica>img = Image[ConstantArray[{1, 0, 0}, {1000, 1000}]]; img = ReplacePixelValue[img, {1, 1} -> {0, 0, 1}]; ImageValue[img, {1, 1}]</lang>

MATLAB

Save this in a file named Bitmap.mat in a folder named @Bitmap in your MATLAB root directory. <lang MATLAB> %Bitmap class % %Implements a class to manage bitmap images without the need for the %various conversion and display functions % %Available functions: % %fill(obj,color) %setPixel(obj,pixel,color) %getPixel(obj,pixel,[optional: color channel]) %display(obj) %disp(obj) %plot(obj) %image(obj) %save(obj) %open(obj)

classdef Bitmap

   %% Public Properties
   properties
       %Channel arrays
       red;
       green;
       blue;
   end
   %% Public Methods
   methods
       %Creates image and defaults it to black
       function obj = Bitmap(width,height)
           obj.red   = zeros(height,width,'uint8');
           obj.green = zeros(height,width,'uint8');
           obj.blue  = zeros(height,width,'uint8');
       end % End Bitmap Constructor
       %Fill the image with a specified color
       %color = [red green blue] max for each is 255
       function fill(obj,color)
           obj.red(:,:)   = color(1);
           obj.green(:,:) = color(2);
           obj.blue(:,:)  = color(3);
           assignin('caller',inputname(1),obj); %saves the changes to the object
       end
       %Set a pixel to a specified color
       %pixel = [x y]
       %color = [red green blue]
       function setPixel(obj,pixel,color)
           obj.red(pixel(2),pixel(1))   = color(1);
           obj.green(pixel(2),pixel(1)) = color(2);
           obj.blue(pixel(2),pixel(1))  = color(3);
           assignin('caller',inputname(1),obj); %saves the changes to the object
       end
       %Get pixel color
       %pixel = [x y]
       %varargin can be:
       %  no input for all channels
       %  'r' or 'red' for red channel
       %  'g' or 'green' for green channel
       %  'b' or 'blue' for blue channel
       function color = getPixel(obj,pixel,varargin)
           if( ~isempty(varargin) )
               switch (varargin{1})
                   case {'r','red'}
                       color = obj.red(pixel(2),pixel(1));
                   case {'g','green'}
                       color = obj.red(pixel(2),pixel(1));
                   case {'b','blue'}
                       color = obj.red(pixel(2),pixel(1));
               end
           else
               color = [obj.red(pixel(2),pixel(1)) obj.green(pixel(2),pixel(1)) obj.blue(pixel(2),pixel(1))];
           end
       end
       %Display the image
       %varargin can be:
       %  no input for all channels
       %  'r' or 'red' for red channel
       %  'g' or 'green' for green channel
       %  'b' or 'blue' for blue channel
       function display(obj,varargin)
           
           if( ~isempty(varargin) )
               switch (varargin{1})
                   case {'r','red'}
                       image(obj.red)
                   case {'g','green'}
                       image(obj.green)
                   case {'b','blue'}
                       image(obj.blue)
               end
               
               colormap bone;
           else
               bitmap = cat(3,obj.red,obj.green,obj.blue);
               image(bitmap);
           end
       end
       %Overload several commonly used display functions
       function disp(obj,varargin)
           display(obj,varargin{:});
       end
       function plot(obj,varargin)
           display(obj,varargin{:});
       end
       function image(obj,varargin)
           display(obj,varargin{:});
       end
       %Saves the image
       function save(obj)
           %Open file dialogue
           [fileName,pathName,success] = uiputfile({'*.bmp','Bitmap Image (*.bmp)'},'Save Bitmap As');
           if( not(success == 0) )
               imwrite(cat(3,obj.red,obj.green,obj.blue),[pathName fileName],'bmp'); %Write image file to disk
               disp('Save Complete');
           end
       end
       %Opens an image and overwrites what is currently stored
       function success = open(obj)
           %Open file dialogue
           [fileName,pathName,success] = uigetfile({'*.bmp','Bitmap Image (*.bmp)'},'Open Bitmap ');
           if( not(success == 0) )
               channels = imread([pathName fileName], 'bmp'); %returns color indexed data
               %Store each channel
               obj.red   = channels(:,:,1);
               obj.green = channels(:,:,2);
               obj.blue  = channels(:,:,3);
               assignin('caller',inputname(1),obj); %saves the changes to the object
               success = true;
               return
           else
               success = false;
               return
           end
       end


   end %methods

end %classdef </lang>

Sample Usage: <lang MATLAB> >> img = Bitmap(20,30); >> img.fill([30 30 150]); >> img.setPixel([10 15],[20 130 66]); >> disp(img) >> img.getPixel([10 15])

ans =

  20  130   66

>> img.getPixel([10 15],'red')

ans =

  20

>> img.save() Save Complete </lang>

MAXScript

MAXScript provides a built-in Bitmap class. <lang maxscript>local myBitmap = bitmap 512 512</lang>

Filling the image with a single colour can be accomplished at creation time by setting the color property. <lang maxscript>local myBitmap = bitmap 512 512 color:(color 128 128 128)</lang>

Use setPixels to set the colour of a pixel. This function takes an array of colours and is optimised to set the colours of a whole row of pixels. <lang maxscript>setPixels myBitmap [256, 256] #((color 255 255 255))</lang>

Use getPixels to retrieve the colour of a pixel. As with setPixels, this function is optimised to retrieve one row at a time as an array of colour values. <lang maxscript>local myPixel = getPixels myBitmap [256, 256] 1</lang>

Modula-3

Since this code is for use with other tasks, it uses an interface as well as the implementation module. <lang modula3>INTERFACE Bitmap;

TYPE UByte = BITS 8 FOR [0 .. 16_FF];

    Pixel = RECORD R, G, B: UByte; END;
    Point = RECORD x, y: UByte; END;
    T = REF ARRAY OF ARRAY OF Pixel;

CONST

 Black = Pixel{0, 0, 0};
 White = Pixel{255, 255, 255};
 Red = Pixel{255, 0, 0};
 Green = Pixel{0, 255, 0};
 Blue = Pixel{0, 0, 255};
 Yellow = Pixel{255, 255, 0};

EXCEPTION BadImage;

         BadColor;

PROCEDURE NewImage(height, width: UByte): T RAISES {BadImage}; PROCEDURE Fill(VAR pic: T; color: Pixel); PROCEDURE GetPixel(VAR pic: T; point: Point): Pixel RAISES {BadColor}; PROCEDURE SetPixel(VAR pic: T; point: Point; color: Pixel);

END Bitmap.</lang> <lang modula3>MODULE Bitmap;

PROCEDURE NewImage(height, width: UByte): T RAISES {BadImage} =

 (* To make things easier, limit image size to also 
    be UByte (0 to 255), and to have equal dimensions. *)
 BEGIN
   IF height # width THEN
     RAISE BadImage;
   END;
   RETURN NEW(T, height, width);
 END NewImage;

PROCEDURE Fill(VAR pic: T; color: Pixel) =

 BEGIN
   FOR i := FIRST(pic^) TO LAST(pic^) DO
     FOR j := FIRST(pic[0]) TO LAST(pic[0]) DO
       pic[i,j] := color;
     END;
   END;
 END Fill;

PROCEDURE GetPixel(VAR pic: T; point: Point): Pixel RAISES {BadColor} =

 VAR pixel := pic[point.x, point.y];
 BEGIN
   IF pixel = White THEN
     RETURN White;
   ELSIF pixel = Black THEN
     RETURN Black;
   ELSIF pixel = Red THEN
     RETURN Red;
   ELSIF pixel = Green THEN
     RETURN Green;
   ELSIF pixel = Blue THEN
     RETURN Blue;
   ELSIF pixel = Yellow THEN
     RETURN Yellow;
   ELSE
     RAISE BadColor;
   END;
 END GetPixel;

PROCEDURE SetPixel(VAR pic: T; point: Point; color: Pixel) =

 BEGIN
   pic[point.x, point.y] := color;
 END SetPixel;
 

BEGIN END Bitmap.</lang>

Nim

<lang nim>type

 Luminance* = uint8
 Index* = int
 Color* = tuple
   r, g, b: Luminance
 Image* = ref object
   w*, h*: Index
   pixels*: seq[Color]
 Point* = tuple
   x, y: Index

proc color*(r, g, b: SomeInteger): Color =

 ## Build a color value from R, G and B values.
 result.r = r.uint8
 result.g = g.uint8
 result.b = b.uint8

const

 Black* = color(  0,   0,   0)
 White* = color(255, 255, 255)

proc newImage*(width, height: int): Image =

 ## Create an image with given width and height.
 new(result)
 result.w = width
 result.h = height
 result.pixels.setLen(width * height)

iterator indices*(img: Image): Point =

 ## Yield the pixels coordinates as tuples.
 for y in 0 ..< img.h:
   for x in 0 ..< img.w:
     yield (x, y)

proc `[]`*(img: Image; x, y: int): Color =

 ## Get a pixel RGB value.
 img.pixels[y * img.w + x]

proc `[]=`*(img: Image; x, y: int; c: Color) =

 ## Set a pixel RGB value to given color.
 img.pixels[y * img.w + x] = c

proc fill*(img: Image; color: Color) =

 ## Fill the image with a color.
 for x, y in img.indices:
   img[x, y] = color

proc print*(img: Image) =

 ## Output an ASCII representation of the image.
 for x, y in img.indices:
   if x mod img.w == 0:
     stdout.write '\n'
   stdout.write if img[x, y] == White: '.' else: 'H'
 stdout.write '\n'

when isMainModule:

 var img = newImage(100, 20)
 img.fill color(255, 255, 255)
 img[1, 2] = color(255, 0, 0)
 img[3, 4] = img[1, 2]
 img.print</lang>

OCaml

<lang ocaml>let new_img ~width ~height =

 let all_channels =
   let kind = Bigarray.int8_unsigned
   and layout = Bigarray.c_layout
   in
   Bigarray.Array3.create kind layout 3 width height
 in
 let r_channel = Bigarray.Array3.slice_left_2 all_channels 0
 and g_channel = Bigarray.Array3.slice_left_2 all_channels 1
 and b_channel = Bigarray.Array3.slice_left_2 all_channels 2
 in
 (all_channels,
  r_channel,
  g_channel,
  b_channel)</lang>

and here is the type of the raster image this function returns:

type raster =
  (int, Bigarray.int8_unsigned_elt, Bigarray.c_layout) Bigarray.Array3.t *
  (int, Bigarray.int8_unsigned_elt, Bigarray.c_layout) Bigarray.Array2.t *
  (int, Bigarray.int8_unsigned_elt, Bigarray.c_layout) Bigarray.Array2.t *
  (int, Bigarray.int8_unsigned_elt, Bigarray.c_layout) Bigarray.Array2.t

What is particular with this allocation and its associated type is that there is not only one buffer for each RGB channel, but also an additionnal one that handles all the three channels, and what is important here is that it is not additionnal memory, the memory is shared, so there are 2 ways to access the raster buffer: through the separated RGB channels, or through the joint channel (all_channels).

This solution have a lot of advantages across a more naive one: this type is compatible to memory-map a file (a ppm file for instance, where the data is not compressed), the buffer can be shared/exchanged with C (for OpenGL textures for instance), etc.

A more naive form would be this one:

<lang ocaml>let new_img ~width ~height =

 let r_channel, g_channel, b_channel =
   let kind = Bigarray.int8_unsigned
   and layout = Bigarray.c_layout
   in
   (Bigarray.Array2.create kind layout width height,
    Bigarray.Array2.create kind layout width height,
    Bigarray.Array2.create kind layout width height)
 in
 (r_channel,
  g_channel,
  b_channel)</lang>

Here are the functions to fill with a color and to set one given pixel:

<lang ocaml>let fill_img ~img:(_, r_channel, g_channel, b_channel) ~color:(r,g,b) =

 Bigarray.Array2.fill r_channel r;
 Bigarray.Array2.fill g_channel g;
 Bigarray.Array2.fill b_channel b;
</lang>

<lang ocaml>let put_pixel_unsafe (_, r_channel, g_channel, b_channel) (r,g,b) =

 (fun x y ->
   r_channel.{x,y} <- r;
   g_channel.{x,y} <- g;
   b_channel.{x,y} <- b;
 )</lang>

<lang ocaml>let get_pixel_unsafe (_, r_channel, g_channel, b_channel) =

 (fun x y ->
   (r_channel.{x,y},
    g_channel.{x,y},
    b_channel.{x,y})
 )</lang>

we can overload these functions to make some bound checks:

<lang ocaml>let put_pixel img color x y =

 let _, r_channel,_,_ = img in
 let width = Bigarray.Array2.dim1 r_channel
 and height = Bigarray.Array2.dim2 r_channel in
 if (x < 0) || (x >= width) then invalid_arg "x out of bounds";
 if (y < 0) || (y >= height) then invalid_arg "y out of bounds";
 let r, g, b = color in
 if (r < 0) || (r > 255) then invalid_arg "red out of bounds";
 if (g < 0) || (g > 255) then invalid_arg "green out of bounds";
 if (b < 0) || (b > 255) then invalid_arg "blue out of bounds";
 put_pixel_unsafe img color x y;

let get_pixel ~img ~pt:(x, y) =

 let _, r_channel,_,_ = img in
 let width = Bigarray.Array2.dim1 r_channel
 and height = Bigarray.Array2.dim2 r_channel in
 if (x < 0) || (x >= width) then invalid_arg "x out of bounds";
 if (y < 0) || (y >= height) then invalid_arg "y out of bounds";
 get_pixel_unsafe img x y;
</lang>

and a function to get the dimensions:

<lang ocaml>let get_dims ~img:(_, r_channel, _, _) =

 let width = Bigarray.Array2.dim1 r_channel
 and height = Bigarray.Array2.dim2 r_channel in
 (width, height)</lang>

Octave

In Octave, images are matrix. A grayscale W×H image is stored as a W×H matrix, and RGB W×H image is stored as a W×H×3 image. Possible levels depend on the class of the storage: if it is double, the intensity is a floating point double number between 0 and 1; if it is uint8, the intensity is from 0 to 255; if it is uint16, the intensity is between 0 and 65535.

<lang octave>im = zeros(W, H, 3, "uint8"); % create an RGB image of width W and height H

                             % and intensity from 0 to 255; black (all zeros)

im(:,:,1) = 255;  % set R to 255 im(:,:,2) = 100;  % set G to 100 im(:,:,3) = 155;  % set B to 155 im(floor(W/2), floor(H/2), :) = 0;  % pixel in the center made black disp(im(floor(W/3), floor(H/3), :)) % display intensities of the pixel

                                   % at W/3, H/3

p = im(40,40,:); % or just store it in the vector p, so that

                % p(1) is R, p(2) G and p(3) is B</lang>

We can hide this in helper functions like:

<lang octave>function im = create_rgb_image(w, h)

 im = zeros(w, h, 3, "uint8");

endfunction

function set_background(im, colorvector)

 im(:,:,1) = colorvector(1);
 im(:,:,2) = colorvector(2);
 im(:,:,3) = colorvector(3);

endfunction

function set_pixel(im, coord, colorvector)

 im(coord(1), coord(2), 1) = colorvector(1);
 im(coord(1), coord(2), 2) = colorvector(2);
 im(coord(1), coord(2), 3) = colorvector(3);

endfunction

function [r, g, b] = get_pixel(im, coord)

 r = im(coord(1), coord(2), 1)
 g = im(coord(1), coord(2), 2)
 b = im(coord(1), coord(2), 3)

endfunction</lang>

The only thing to note is that indexing start from 1.

<lang octave>%example im = create_rgb_image(200,200); for x = 1:128

  im = set_pixel(im, [x, x], [200, 50, 220]);

endfor

% it seems like saveimage wants double class on [0,1] saveimage("image.ppm", double(im)./256, "ppm");</lang>

OxygenBasic

<lang oxygenbasic> 'GENERIC BITMAP

type pixel byte r,g,b

'=========== class BitMap '===========

% sp sizeof(pixel) sys wx,wy,px,py string buf sys pb method Constructor(sys x=640,y=480) { wx=x : wy=y : buf=nuls x*y*sp : pb=strptr buf} method Destructor() {buf="" : wx=0 : wy=0 : pb=0} method GetPixel(sys x,y,pixel*p) {copy @p,pb+(y*wx+x)*sp,sp} method SetPixel(sys x,y,pixel*p) {copy pb+(y*wx+x)*sp,@p,sp} ' method Fill(pixel*p)

 sys i, e=wx*wy*sp+pb-1
 for i=pb to e step sp {copy i,@p,sp}

end method

end class

pixel p,q

new BitMap m(400,400) 'width, height in pixels

p<=100,120,140 'red,green,blue

m.fill p

m.getPixel 200,100,q print "" q.r "," q.g "," q.b 'result 100,120,140 q<=10,20,40 m.setPixel 200,100,q m.getPixel 200,100,p print "" p.r "," p.g "," p.b 'result 10,20,40


del m </lang>

Oz

We first create a 2D array data type as a functor in a file "Array2D.oz": <lang oz>functor export

  New
  Get
  Set
  Transform

define

  fun {New Width Height Init}
     C = {Array.new 1 Height unit}
  in
     for Row in 1..Height do

C.Row := {Array.new 1 Width Init}

     end
     array2d(width:Width

height:Height contents:C)

  end
  fun {Get array2d(contents:C ...) X Y}
     C.Y.X
  end
  proc {Set array2d(contents:C ...) X Y Val}
     C.Y.X := Val
  end
  proc {Transform array2d(contents:C width:W height:H ...) Fun}
     for Y in 1..H do

for X in 1..W do C.Y.X := {Fun C.Y.X} end

     end
  end
  %% omitted: Clone, Map, Fold, ForAll

end</lang>

Based on this, we create a functor "Bitmap.oz": <lang oz>%% For real task prefer QTk's images: %% http://www.mozart-oz.org/home/doc/mozart-stdlib/wp/qtk/html/node38.html

functor import

  Array2D

export

  New
  Fill
  GetPixel
  SetPixel

define

  Black = color(0x00 0x00 0x00)
  
  fun {New Width Height}
     bitmap( {Array2D.new Width Height Black} )
  end
  proc {Fill bitmap(Arr) Color}
     {Array2D.transform Arr fun {$ _} Color end}
  end
  
  fun {GetPixel bitmap(Arr) X Y}
     {Array2D.get Arr X Y}
  end
  
  proc {SetPixel bitmap(Arr) X Y Color}
     {Array2D.set Arr X Y Color}
  end
  %% Omitted: MaxValue, ForAllPixels, Transform

end</lang>

Some functions that are used in other tasks were omitted. See here for the complete module definitions: Basic bitmap storage/Oz

Pascal

<lang Pascal>Interface uses crt, { GetDir }

     graph; { function GetPixel }

type { integer numbers }

 { from unit bitmaps XPERT software production Tamer Fakhoury }
 _bit     = $00000000..$00000001; {number 1 bit   without sign = (0..1) }
 _byte    = $00000000..$000000FF; {number 1 byte  without sign = (0..255)}
 _word    = $00000000..$0000FFFF; {number 2 bytes without sign = (0..65 535)}
 _dWord   = $00000000..$7FFFFFFF; {number 4 bytes without sign = (0..4 294 967 296)}
 _longInt = $80000000..$7FFFFFFF; {number 4 bytes with sign
                                   = (-2 147 483 648..2 147 483 648}
 TbmpFileHeader =
 record
   ID: _word;             { Must be 'BM' =19778=$424D for windows }
   FileSize: _dWord;      { Size of this file in bytes }
   Reserved: _dWord;      { ??? }
   bmpDataOffset: _dword; { = 54 = $36 from begining of file to begining of bmp data }
 end;
 TbmpInfoHeader =
 record
   InfoHeaderSize: _dword;      { Size of Info header
                                  = 28h = 40 (decimal)
                                  for windows }
   Width,
   Height: _longInt;    { Width and Height of image in pixels }
   Planes,              { number of planes of bitmap }
   BitsPerPixel: _word; { Bits can be 1, 4, 8, 24 or 32 }
   Compression,
   bmpDataSize: _dword;    { in bytes rounded to the next 4 byte boundary }
   XPixPerMeter,           { horizontal resolution in pixels }
   YPixPerMeter: _longInt; { vertical }
   NumbColorsUsed,
   NumbImportantColors: _dword;   {= NumbColorUsed}
 end; { TbmpHeader = Record ... }
 T32Color =
 record { 4 byte = 32 bit }
   Blue:  byte;
   Green: byte;
   Red:   byte;
   Alfa:  byte
 end;

var directory,

   bmpFileName:    string;
   bmpFile:        file; { untyped file }
   bmpFileHeader:  TbmpFileHeader;
   bmpInfoHeader:  TbmpInfoHeader;
   color32:        T32Color;
   RowSizeInBytes: integer;
   BytesPerPixel:  integer;

const defaultBmpFileName = 'test';

     DefaultDirectory   = 'c:\bp\';
     DefaultExtension   = '.bmp';
     bmpFileHeaderSize  = 14;
     { compression specyfication }
     bi_RGB             = 0;  { compression }
     bi_RLE8            = 1;
     bi_RLE4            = 2;
     bi_BITFIELDS       = 3;
     bmp_OK          = 0;
     bmp_NotBMP      = 1;
     bmp_OpenError   = 2;
     bmp_ReadError   = 3;

Procedure CreateBmpFile32(directory: string; FileName: string;

                          iWidth, iHeight: _LongInt);

{************************************************} Implementation {-----------------------------} {************************************************}

Procedure CreateBmpFile32(directory: string; FileName: string;

                          iWidth, iHeight: _LongInt);
 var
   x, y: integer;
 begin
   if directory =  then
     GetDir(0, directory);
   if FileName =  then
     FileName: = DefaultBmpFileName;
   { create a new file on a disk in a given directory with given name }
   Assign(bmpFile, directory + FileName + DefaultExtension);
   ReWrite(bmpFile, 1);
   { fill the headers }
   with bmpInfoHeader, bmpFileHeader do
   begin
     ID := 19778;
     InfoheaderSize := 40;
     width := iWidth;
     height := iHeight;
     BitsPerPixel := 32;
     BytesPerPixel := BitsPerPixel div 8;
     reserved := 0;
     bmpDataOffset := InfoHeaderSize + bmpFileHeaderSize;
     planes := 1;
     compression := bi_RGB;
     XPixPerMeter := 0;
     YPixPerMeter := 0;
     NumbColorsUsed := 0;
     NumbImportantColors := 0;
     RowSizeInBytes := (Width * BytesPerPixel); { only for >=8 bits per pixel }
     bmpDataSize := height * RowSizeinBytes;
     FileSize := InfoHeaderSize + bmpFileHeaderSize + bmpDataSize;
     { copy headers to disk file }
     BlockWrite(bmpFile, bmpFileHeader, bmpFileHeaderSize);
     BlockWrite(bmpFile, bmpInfoHeader, infoHeaderSize);
     { fill the pixel data area }
     for y := (height - 1) downto 0  do
     begin

for x := 0 to (width - 1) do begin { Pixel(x,y) } color32.Blue  := 255; color32.Green := 0; color32.Red  := 0; color32.Alfa  := 0; BlockWrite(bmpFile, color32, 4); end; { for x ... }

     end; { for y ... }
     Close(bmpFile);
   end; { with bmpInfoHeader, bmpFileHeader }
  end; { procedure }

</lang>

Perl

Library: Imlib2

<lang perl>#! /usr/bin/perl

use strict;

use Image::Imlib2;

  1. create the "canvas"

my $img = Image::Imlib2->new(200,200);

  1. fill with a plain RGB(A) color

$img->set_color(255, 0, 0, 255); $img->fill_rectangle(0,0, 200, 200);

  1. set a pixel to green (at 40,40)

$img->set_color(0, 255, 0, 255); $img->draw_point(40,40);

  1. "get" pixel rgb(a)

my ($red, $green, $blue, $alpha) = $img->query_pixel(40,40); undef $img;

  1. another way of creating a canvas with a bg colour (or from
  2. an existing "raw" data)

my $col = pack("CCCC", 255, 255, 0, 0); # a, r, g, b my $img = Image::Imlib2->new_using_data(200, 200, $col x (200 * 200));

exit 0;</lang>

Phix

Copy of Euphoria <lang Phix>-- Some colour constants: constant black = #000000, -- blue = #0000FF, -- green = #00FF00, -- red = #FF0000,

        white = #FFFFFF

-- Create new image filled with some colour function new_image(integer width, integer height, integer fill_colour=black)

   return repeat(repeat(fill_colour,height),width)

end function

-- Usage example: sequence image = new_image(800,600)

-- Set pixel color: image[400][300] = white

-- Get pixel color integer colour = image[400][300] -- Now colour is #FF0000</lang>

PHP

<lang PHP>class Bitmap {

 public $data;
 public $w;
 public $h;
 public function __construct($w = 16, $h = 16){
   $white = array_fill(0, $w, array(255,255,255));
   $this->data = array_fill(0, $h, $white);
   $this->w = $w;
   $this->h = $h;
 }
 //Fills a rectangle, or the whole image with black by default
 public function fill($x = 0, $y = 0, $w = null, $h = null, $color = array(0,0,0)){
   if (is_null($w)) $w = $this->w;
   if (is_null($h)) $h = $this->h;
   $w += $x;
   $h += $y;
   for ($i = $y; $i < $h; $i++){
     for ($j = $x; $j < $w; $j++){
       $this->setPixel($j, $i, $color);
     }
   }
 }
 public function setPixel($x, $y, $color = array(0,0,0)){
   if ($x >= $this->w) return false;
   if ($x < 0) return false;
   if ($y >= $this->h) return false;
   if ($y < 0) return false;
   $this->data[$y][$x] = $color;
 }
 public function getPixel($x, $y){
   return $this->data[$y][$x];
 }

}

$b = new Bitmap(16,16); $b->fill(); $b->fill(2, 2, 18, 18, array(240,240,240)); $b->setPixel(0, 15, array(255,0,0)); print_r($b->getPixel(3,3)); //(240,240,240)</lang>

PicoLisp

For time critical applications this would be done with inline-C in PicoLisp, but especially for small bitmaps the following makes sense. <lang PicoLisp># Create an empty image of 120 x 90 pixels (setq *Ppm (make (do 90 (link (need 120)))))

  1. Fill an image with a given color

(de ppmFill (Ppm R G B)

  (for Y Ppm
     (map
        '((X) (set X (list R G B)))
        Y ) ) )
  1. Set pixel with a color

(de ppmSetPixel (Ppm X Y R G B)

  (set (nth Ppm Y X) (list R G B)) )
  1. Get the color of a pixel

(de ppmGetPixel (Ppm X Y)

  (get Ppm Y X) )</lang>

PL/I

<lang PL/I> /* Declaration for an image, suitable for BMP files. */ declare image(0:500, 0:500) bit (24) aligned;

image = '000000000000000011111111'b;

  /* Sets the entire image to red. */

image(10,40) = '111111110000000000000000'b;

  /* Sets one pixel to blue. */

declare color bit (24) aligned; color = image(20,50); /* Obtain the color of a pixel */


/* To allocate an image of size (x,y) */ allocate_image: procedure (image, x, y);

  declare image (*, *) controlled bit (24) aligned;
  declare (x, y) fixed binary (31);
  allocate image (0:x, 0:y);

end allocate_image;

/* To use the above procedure, it's necessary to define */ /* the image in the calling program thus, for BMP images: */

declare image(*,*) controlled bit (24) aligned; </lang>

Processing

<lang java>PGraphics bitmap = createGraphics(100,100); // Create the bitmap bitmap.beginDraw(); bitmap.background(255, 0, 0); // Fill bitmap with red rgb color bitmap.endDraw(); image(bitmap, 0, 0); // Place bitmap on screen. color b = color(0, 0, 255); // Define a blue rgb color set(50, 50, b); // Set blue colored pixel in the middle of the screen color c = get(50, 50); // Get the color of same pixel if(b == c) print("Color changed correctly"); // Verify </lang>


Prolog

<lang prolog>

- module(bitmap, [

new_bitmap/3, fill_bitmap/3, get_pixel0/3, set_pixel0/4 ]).

- use_module(library(lists)).

%-----------------------------------------------------------------------------% % Convenience Predicates replicate(Term,Times,L):- length(L,Times), maplist(=(Term),L).

replace0(N,OL,E,NL):- nth0(N,OL,_,TL), nth0(N,NL,E,TL). %-----------------------------------------------------------------------------% % Bitmap Utilities % % The Bitmap structure is a list with pixels kept in row major order: % [dimensions-[X,Y],pixels-[[n11,n12...],[n21,n22...]]]

% In this code what exactly an RGB value is doesn't matter however % in other bitmap tasks it is assumed to be a list [R,G,B] where % each is an int between 0 and 255, in code: rgb_pixel(RGB):- length(RGB,3), maplist(integer,RGB), maplist(between(0,255),RGB).

%new_bitmap(Bitmap,Dimensions,RGB) new_bitmap([[X,Y],Pixels],[X,Y],RGB) :- replicate(RGB,X,Row), replicate(Row,Y,Pixels).

%fill_bitmap(New_Bitmap,Bitmap,RGB) fill_bitmap(New_Bitmap,[[X,Y],_],RGB) :- new_bitmap(New_Bitmap,[X,Y],RGB).

%here get and set use 0 based indexing %get_pixel0(Bitmap,Coordinates,RGB) get_pixel0([[_DimX,_DimY],Pixels],[X,Y],RGB) :- nth0(Y,Pixels,Row), nth0(X,Row,RGB).

%set_pixel0(New Bitmap, Bitmap, Coordinates, RGB) set_pixel0([[DimX,DimY],New_Pixels],[[DimX,DimY],Pixels],[X,Y],RGB) :- nth0(Y,Pixels,Row), replace0(X,Row,RGB,New_Row), replace0(Y,Pixels,New_Row,New_Pixels). </lang>

PureBasic

<lang PureBasic>w=800 : h=600 CreateImage(1,w,h)

1 is internal id of image

StartDrawing(ImageOutput(1))

fill with color red

Box(0,0,w,h,$ff)

or using another (but slower) way in green

FillArea(0,0,-1,$ff00)

a green Dot

Plot(10,10,$ff0000)

check if we set it right (should be 255)

Debug Blue(Point(10,10)) </lang>

Python

See Basic bitmap storage/Python

R

Library: pixmap

R can write to most bitmap image formats by default (mostly for the purpose of saving graphs), however there is no built-in way of manipulating images. The pixmap package reads, writes and manipulates portable bitmap file types: PBM, PGM, PPM. See also, the image function, and the rimage and ReadImage packages, which use libjpeg to read JPEG and PNG files. <lang r># See the class definitions and constructors with, e.g. getClass("pixmapIndexed", package=pixmap) pixmapIndexed

  1. Image with all one colour

plot(p1 <- pixmapIndexed(matrix(0, nrow=3, ncol=4), col="red"))

  1. Image with one pixel specified

cols <- rep("blue", 12); cols[7] <- "red" plot(p2 <- pixmapIndexed(matrix(1:12, nrow=3, ncol=4), col=cols))

  1. Retrieve colour of a pixel

getcol <- function(pm, i, j) {

  pmcol <- pm@col
  dim(pmcol) <- dim(pm@index)
  pmcol[i,j]   

} getcol(p2, 3, 4) #red</lang>

Racket

<lang racket>

  1. lang racket
The racket/draw libraries provide imperative drawing functions.
http://docs.racket-lang.org/draw/index.html

(require racket/draw)

To create an image with width and height, use the make-bitmap
function.
For example, let's make a small image here

(define bm (make-bitmap 640 480))

We use a drawing context handle, a "dc", to operate on the bitmap.

(define dc (send bm make-dc))

We can fill the bitmap with a color by using a combination of
setting the background, and clearing.

(send dc set-background (make-object color% 0 0 0)) ;; Color it black. (send dc clear)

Let's set a few pixels to a greenish color with set-pixel

(define aquamarine (send the-color-database find-color "aquamarine")) (for ([i 480])

 (send dc set-pixel i i aquamarine))
We can get at the color of a bitmap pixel by using the get-pixel
method. However, it may be faster to use get-argb-pixels if we
need a block of the pixels. Let's use get-argb-pixels and look
at a row starting at (0, 42)

(define buffer (make-bytes (* 480 4)))  ;; alpha, red, green, blue (send dc get-argb-pixels 0 42 480 1 buffer)

We can inspect the buffer

(bytes-ref buffer 0) ;; and see that the first pixel's alpha is 255, (bytes-ref buffer 1) ;; and the red, green, and blue components are 0. (bytes-ref buffer 2) (bytes-ref buffer 3)

If we are using DrRacket, we can just print the bm as a toplevel expression
to view the final image

bm </lang>

Raku

(formerly Perl 6) <lang perl6>class Pixel { has UInt ($.R, $.G, $.B) } class Bitmap {

   has UInt ($.width, $.height);
   has Pixel @!data;
   method fill(Pixel $p) {
       @!data = $p.clone xx ($!width*$!height)
   }
   method pixel(

$i where ^$!width, $j where ^$!height --> Pixel

   ) is rw { @!data[$i + $j * $!width] }
   method set-pixel ($i, $j, Pixel $p) {

self.pixel($i, $j) = $p.clone;

   }
   method get-pixel ($i, $j) returns Pixel {

self.pixel($i, $j);

   }

}

my Bitmap $b = Bitmap.new( width => 10, height => 10);

$b.fill( Pixel.new( R => 0, G => 0, B => 200) );

$b.set-pixel( 7, 5, Pixel.new( R => 100, G => 200, B => 0) );

say $b.perl;</lang>

Thanks to the rw trait on the pixel method, we don't actually need to define two separate methods, set-pixel and get-pixel, but that is an explicit requirement of the task. (Beware your presuppositions! In Raku, accessors only determine identity, not use. In particular, identity is considered orthogonal to lvalue/rvalue context.)

RapidQ

QCanvas is an empty image on which you can draw. QForm is the main window of the application. The commands to draw on the canvas are in the procedure PaintCanvas, which is executed each time the canvas need to be (re)painted.

<lang rapidq>DECLARE SUB PaintCanvas

CREATE form AS QForm

   Width  = 640
   Height = 480
   CREATE canvas AS QCanvas
       Height  = form.ClientHeight

Width = form.ClientWidth OnPaint = PaintCanvas

   END CREATE

END CREATE

SUB PaintCanvas

   ' Fill background
   canvas.FillRect(0, 0, canvas.Width, canvas.Height, &H301000)
   ' Draw a pixel
   canvas.Pset(300, 200, &H00ddff)
   ' Read pixel color
   PRINT canvas.Pixel(300, 200)

END SUB

form.ShowModal</lang>

REXX

version 1

The REXX language has no need to declare the size of (stemmed) arrays.

Indeed, there is no way to declare array sizes   (or any variable, for that matter).

The image (raster) created was also written to a file   (image.PPM)   to show verification of the image. <lang rexx>/*REXX program demonstrates how to process/display a simple RGB raster graphics image.*/ red = 'ff 00 00'x /*a method to define a red value. */ blue = '00 00 ff'x /*" " " " " blue " */ @. = /*define entire @. array to nulls. */ outFN = 'image' /*the filename of the output image PPM */ sWidth = 500; sHeight= 500 /*the screen width and height in pixels*/ call RGBfill red /*set the entire image to red. */

           x= 10;       y= 40                   /*set pixel's coördinates.             */

call RGBset x, y, blue /*set a pixel (at 10,40) to blue. */ color = RGBget(x, y) /*get the color of a pixel. */ hexV = c2x(color) /*get hex value of pixel's color. */ binV = x2b(hexV) /* " binary " " " " */ bin3V = left(binV, 8) substr(binV, 9, 8) right(binV, 8) hex3V = left(hexV, 2) substr(hexV, 3, 2) right(hexV, 2) xy= '(' || x","y')' /*create a handy─dandy literal for SAY.*/ say xy ' pixel in binary: ' binV /*show the binary value of 20,50 */ say xy ' pixel in binary: ' bin3V /*show again, but with spaces. */ say /*show a blank between binary and hex. */ say xy ' pixel in hex: ' hexV /*show again, but in hexadecimal. */ say xy ' pixel in hex: ' hex3V /*show again, but with spaces. */ call PPMwrite outFN, sWidth, sHeight /*create a PPM (output) file of image. */ /* ◄■■■■■■■■ not part of this task.*/ say /*show a blank. */ say 'The file ' outFN".PPM was created." /*inform user that a file was created. */ exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ RGBfill: @.=arg(1); return /*fill image with a color.*/ RGBget: parse arg px,py; return @.px.py /*get a pixel's color. */ RGBset: parse arg px,py,p$; @.px.py=p$; return /*set " " " */ /*──────────────────────────────────────────────────────────────────────────────────────*/ PPMwrite: parse arg oFN, width, height /*obtain output filename, width, height*/

         oFID= oFN'.PPM';   $='9'x;   #=255     /*fileID;  separator;  max color value.*/
         call charout oFID, ,  1                /*set the position of the file's output*/
         call charout oFID,'P6'width || $ || height || $ || # || $    /*write hdr info.*/
           do   j=1  for width
             do k=1  for height;     call charout oFID, @.j.k
             end   /*k*/                        /*  ↑          write the PPM file, ··· */
           end     /*j*/                        /*  └───────── ··· one pixel at a time.*/
         call charout oFID;      return         /*close the output file just to be safe*/</lang>
output:
(10,40)  pixel in binary:  000000000000000011111111
(10,40)  pixel in binary:  00000000 00000000 11111111

(10,40)  pixel in hex:     0000FF
(10,40)  pixel in hex:     00 00 FF

The file  image.PPM  was created.

version 2

This program actually creates a BMP file <lang rexx>/* REXX ***************************************************************

  • Draw a picture from pixels
  • 16.06.2014 Walter Pachl
                                                                                                                                            • /

oid='pic.bmp'; 'erase' oid

blue ='FF0000'x; green='00FF00'x; red ='0000FF'x; white='ffffff'x; black='000000'x;

w=600 /* width */ h=300 /* height */ w3=w*3

bfType ='BM' bfSize ='46000000'x bfReserved ='00000000'x bfOffBits ='36000000'x biSize ='28000000'x biWidth =lend(w) biHeight =lend(h) biPlanes ='0100'x biBitCount ='1800'x biCompression ='00000000'x biSizeImage ='10000000'x biXPelsPerMeter='00000000'x biYPelsPerMeter='00000000'x biClrUsed ='00000000'x biClrImportant ='00000000'x

s=bfType||,

 bfSize||,
 bfReserved||,
 bfOffBits||,
 biSize||,
 biWidth||,
 biHeight||,
 biPlanes||,
 biBitCount||,
 biCompression||,
 biSizeImage||,
 biXPelsPerMeter||,
 biYPelsPerMeter||,
 biClrUsed||,
 biClrImportant

pic=copies(red,w*h) /* fill the rectangle with color red */ Call rect 100,100,180,180,green /* draw a green rectangle */ Call rect 100,100,160,160,blue /* and a blue rectangle within that */ Call dot 120,120,white /* one pixel is hardly visible */ Do x=98 To 102 /* draw a square of 25 pixels */

 Do y=98 To 102
   Call dot x,y,white
   End
 End

Call charout oid,s||pic /* write the picture to file */ dmy=col(97,98) dmy=col(98,98) Exit

lend: Procedure /**********************************************************************

  • compute the representation of a number (little endian)
                                                                                                                                            • /

Parse Arg n res=reverse(d2c(n,4)) rev=reverse(res) say 'lend:' arg(1) '->' c2x(res) '=>' c2d(rev) Return res

rect: Procedure Expose pic w h w3 /**********************************************************************

  • Fill a rectangle with center at x,y and width/height = wr/hr
                                                                                                                                            • /

Parse Arg x,y,wr,hr,color Say x y wr hr c2x(color) i=w3*(y-1)+3*(x-1)+1 /* Pixel position of center */ ia=max(w3*(y-1)+1,i-3*(wr%2)) /* position of left border */ ib=min(i+3*wr%2,w3*y) /* position of right border */ lc=ib-ia /* length of horizontal line */ If lc>=0 Then Do

 os=copies(color,lc%3)            /* the horizontal line            */
 Do hi=-hr%2 to hr%2              /* loop from lower to upper border*/
   i=trunc(ia+w3*hi)              /* position of line's left border */
   If i>1 Then Do
     pic=overlay(os,pic,i)        /* put the line into the picture  */
     j=i%w3
     End
   End
 End

Return

dot: Procedure Expose pic w h w3 /**********************************************************************

  • Put a dot at position x/y into the picture
                                                                                                                                            • /

Parse Arg x,y,color i=w3*(y-1)+3*(x-1) pic=overlay(color,pic,i+1) Return

col: Procedure Expose pic w h w3 /**********************************************************************

  • get the color at position x/y
                                                                                                                                            • /

Parse Arg x,y,color i=w3*(y-1)+3*(x-1) say 'color at pixel' x'/'y'='c2x(substr(pic,i+1,3)) Return c2x(substr(pic,i+1,3))</lang>

Output:
lend: 600 -> 58020000 => 600
lend: 300 -> 2C010000 => 300
100 100 180 180 00FF00
100 100 160 160 FF0000
color at pixel 97/98=FF0000
color at pixel 98/98=FFFFFF

and have a look at the file pic.bmp created by this program

Ruby

I haven't been able to find any kind of package for manipulating bitmap images, so let's roll one <lang ruby>class RGBColour

 def initialize(red, green, blue)
   unless red.between?(0,255) and green.between?(0,255) and blue.between?(0,255)
     raise ArgumentError, "invalid RGB parameters: #{[red, green, blue].inspect}"
   end
   @red, @green, @blue = red, green, blue
 end
 attr_reader :red, :green, :blue
 alias_method :r, :red
 alias_method :g, :green
 alias_method :b, :blue
 RED   = RGBColour.new(255,0,0)
 GREEN = RGBColour.new(0,255,0)
 BLUE  = RGBColour.new(0,0,255)
 BLACK = RGBColour.new(0,0,0)
 WHITE = RGBColour.new(255,255,255)

end

class Pixmap

 def initialize(width, height)
   @width = width
   @height = height
   @data = fill(RGBColour::WHITE)
 end
 attr_reader :width, :height
 def fill(colour)
   @data = Array.new(@width) {Array.new(@height, colour)}
 end
 def validate_pixel(x,y)
   unless x.between?(0, @width-1) and y.between?(0, @height-1)
     raise ArgumentError, "requested pixel (#{x}, #{y}) is outside dimensions of this bitmap"
   end
 end
 def [](x,y)
   validate_pixel(x,y)
   @data[x][y]
 end
 alias_method :get_pixel, :[]
 def []=(x,y,colour)
   validate_pixel(x,y)
   @data[x][y] = colour
 end
 alias_method :set_pixel, :[]=

end</lang>

Rust

<lang Rust>#[derive(Copy, Clone, Debug, PartialEq, Eq)] pub struct Rgb {

   pub r: u8,
   pub g: u8,
   pub b: u8,

}

impl Rgb {

   pub fn new(r: u8, g: u8, b: u8) -> Self {
       Rgb { r, g, b }
   }
   pub const BLACK: Rgb = Rgb { r: 0, g: 0, b: 0 };
   pub const RED: Rgb = Rgb { r: 255, g: 0, b: 0 };
   pub const GREEN: Rgb = Rgb { r: 0, g: 255, b: 0 };
   pub const BLUE: Rgb = Rgb { r: 0, g: 0, b: 255 };

}

  1. [derive(Clone, Debug)]

pub struct Image {

   width: usize,
   height: usize,
   pixels: Vec<Rgb>,

}

impl Image {

   pub fn new(width: usize, height: usize) -> Self {
       Image {
           width,
           height,
           pixels: vec![Rgb::BLACK; width * height],
       }
   }
   
   pub fn width(&self) -> usize {
       self.width
   }
   
   pub fn height(&self) -> usize {
       self.height
   }
   pub fn fill(&mut self, color: Rgb) {
       for pixel in &mut self.pixels {
           *pixel = color;
       }
   }
   pub fn get(&self, row: usize, col: usize) -> Option<&Rgb> {
       if row >= self.width {
           return None;
       }
       self.pixels.get(row * self.width + col)
   }
   pub fn get_mut(&mut self, row: usize, col: usize) -> Option<&mut Rgb> {
       if row >= self.width {
           return None;
       }
       self.pixels.get_mut(row * self.width + col)
   }

}

fn main() {

   let mut image = Image::new(16, 9);
   assert_eq!(Some(&Rgb::BLACK), image.get(3, 4));
   assert!(image.get(22, 3).is_none());
   image.fill(Rgb::RED);
   assert_eq!(Some(&Rgb::RED), image.get(3, 4));
   if let Some(pixel) = image.get_mut(3, 4) {
       *pixel = Rgb::GREEN;
   }
   assert_eq!(Some(&Rgb::GREEN), image.get(3, 4));
   if let Some(pixel) = image.get_mut(3, 4) {
       pixel.g -= 100;
       pixel.b = 20;
   }
   assert_eq!(Some(&Rgb::new(0, 155, 20)), image.get(3, 4));

}</lang>

Scala

Java translation

Translation of: Java

<lang scala>import java.awt.image.BufferedImage import java.awt.Color

class RgbBitmap(val width:Int, val height:Int) {

  val image=new BufferedImage(width, height, BufferedImage.TYPE_3BYTE_BGR)
  def fill(c:Color)={
     val g=image.getGraphics()
     g.setColor(c)
     g.fillRect(0, 0, width, height)
  }
  def setPixel(x:Int, y:Int, c:Color)=image.setRGB(x, y, c.getRGB())
  def getPixel(x:Int, y:Int)=new Color(image.getRGB(x, y))

}</lang> Usage: <lang scala>val img=new RgbBitmap(50, 50); img.fill(Color.CYAN) img.setPixel(5, 5, Color.BLUE)

assert(img.getPixel(1,1)==Color.CYAN) assert(img.getPixel(5,5)==Color.BLUE) assert(img.width==50) assert(img.height==50)</lang>

Scala idiom

A more Scalesque version could be with the use of its idiom:

Output:

Best experienced in your browser with Scastie (remote JVM). <lang scala>import java.awt.image.BufferedImage import java.awt.Color

object RgbBitmap extends App {

 class RgbBitmap(val dim: (Int, Int)) {
   def width = dim._1
   def height = dim._2
   private val image = new BufferedImage(width, height, BufferedImage.TYPE_3BYTE_BGR)
   def apply(x: Int, y: Int) = new Color(image.getRGB(x, y))
   def update(x: Int, y: Int, c: Color) = image.setRGB(x, y, c.getRGB)
   def fill(c: Color) = {
     val g = image.getGraphics
     g.setColor(c)
     g.fillRect(0, 0, width, height)
   }
 }
 object RgbBitmap {
   def apply(width: Int, height: Int) = new RgbBitmap(width, height)
 }


 /** Even Javanese style testing is still possible.
   */
 private val img0 = new RgbBitmap(50, 60) { // Wrappers to enable adhoc Javanese style
   def getPixel(x: Int, y: Int) = this(x, y)
   def setPixel(x: Int, y: Int, c: Color) = this(x, y) = c
 }
 img0.fill(Color.CYAN)
 img0.setPixel(5, 6, Color.BLUE)
 // Testing in Java style
 assert(img0.getPixel(0, 1) == Color.CYAN)
 assert(img0.getPixel(5, 6) == Color.BLUE)
 assert(img0.width == 50)
 assert(img0.height == 60)
 println("Tests successfully completed with no errors found.")

}</lang>

Scheme

Works with: Scheme version RRS

Definitions of list procedures: <lang scheme>(define (make-list length object)

 (if (= length 0)
     (list)
     (cons object (make-list (- length 1) object))))

(define (list-fill! list object)

 (if (not (null? list))
     (begin (set-car! list object) (list-fill! (cdr list) object))))

(define (list-set! list element object)

 (if (= element 1)
     (set-car! list object)
     (list-set! (cdr list) (- element 1) object)))

(define (list-get list element)

 (if (= element 1)
     (car list)
     (list-get (cdr list) (- element 1))))</lang>

Definitions of image procedures: <lang scheme>(define (make-image columns rows)

 (if (= rows 0)
     (list)
     (cons (make-list columns (list)) (make-image columns (- rows 1)))))

(define (image-fill! image colour)

 (if (not (null? image))
     (begin (list-fill! (car image) colour) (image-fill! (cdr image) colour))))

(define (image-set! image column row colour)

 (list-set! (list-get image row) column colour))

(define (image-get image column row)

 (list-get (list-get image row) column))</lang>

Definitions of some colours: <lang scheme>(define *black* (list 0 0 0)) (define *white* (list 255 255 255)) (define *red* (list 255 0 0)) (define *green* (list 0 255 0)) (define *blue* (list 0 0 255))</lang> This creates a small image with a black background and a single blue pixel: <lang scheme>(define image (make-image 3 2)) (image-fill! image *black*) (image-set! image 2 1 *blue*) (display image) (newline)</lang>

Output:

<lang>(((0 0 0) (0 0 255) (0 0 0)) ((0 0 0) (0 0 0) (0 0 0)))</lang>

Seed7

The types and functions requested are predefined in the libraries graph.s7i and draw.s7i:

  • The type to handle an RGB raster graphics image is PRIMITIVE_WINDOW.
  • The function to create an image is newPixmap.
  • An imaged can be filled with a color with clear.
  • A given pixel can be set with point.
  • The color of a pixel can be retrieved with getPixelColor.

<lang seed7>$ include "seed7_05.s7i";

 include "draw.s7i";

const proc: main is func

 local
   var PRIMITIVE_WINDOW: myPixmap is PRIMITIVE_WINDOW.value;
   var color: myColor is black;
 begin
   myPixmap := newPixmap(300, 200);
   clear(myPixmap, light_green);
   point(myPixmap, 20, 30, color(256, 512, 768));
   myColor := getPixelColor(myPixmap, 20, 30);
   writeln(myColor.redLight <& " " <& myColor.greenLight <& " " <& myColor.blueLight);
 end func;</lang>

SequenceL

<lang seed7>RGB ::= (R: int(0), G: int(0), B: int(0));

newBitmap: int * int -> RGB(2); newBitmap(width, height)[y, x] := (R: 0, G: 0, B: 0) foreach y within 1 ... height, x within 1 ... width;

fill: RGB(2) * RGB -> RGB(2); fill(bitmap(2), color)[y, x] := color foreach y within 1 ... size(bitmap), x within 1 ... size(bitmap[y]);

setColorAt: RGB(2) * int * int * RGB -> RGB(2); setColorAt(bitmap(2), x, y, color)[Y, X] := color when Y = y and X = x else bitmap[Y, X];

getColorAt: RGB(2) * int * int -> RGB; getColorAt(bitmap(2), x, y) := bitmap[y, x];

lightGreen := (R: 51, G: 255, B: 51); lightRed := (R: 255, G: 51, B: 51);

main(args(2)) := let width := 1920; height := 1200;

cleanImage := newBitmap(width, height);

filledGreen := fill(cleanImage, lightGreen);

redCenter := setColorAt(filledGreen, width / 2, height / 2, lightRed); in getColorAt(redCenter, width / 2, height / 2);</lang>

Output:
cmd:> main.exe
(B:51,G:51,R:255)

Smalltalk

<lang Smalltalk> </lang>

Tcl

Library: Tk

<lang tcl>package require Tcl 8.5 package require Tk namespace path ::tcl::mathfunc ;# for [max] function

proc newImage {width height} {

   return [image create photo -width $width -height $height]

} proc fill {image colour} {

   $image put $colour -to 0 0 [$image cget -width] [$image cget -height]

} proc setPixel {image colour point} {

   lassign $point x y
   $image put $colour -to [max 0 $x] [max 0 $y]

} proc getPixel {image point} {

   lassign $point x y
   # [$img get] returns a list: {r g b}; this proc should return a colour value
   format {#%02x%02x%02x} {*}[$image get $x $y]

}

  1. create the image and display it

set img [newImage 150 150] label .l -image $img pack .l

fill $img red

setPixel $img green {40 40}

set rbg [getPixel $img {40 40}]</lang>

TI-89 BASIC

TI-89 BASIC does not have user-defined data structures. The Rosetta Code tasks which use this image type have instead been implemented using the TI-89's graph screen.

UNIX Shell

Works with: ksh93

<lang bash>typeset -T RGBColor_t=(

   integer r g b
   function to_s {
       printf "%d %d %d" ${_.r} ${_.g} ${_.b}
   }
   function white   { print "255 255 255"; }
   function black   { print "0 0 0"; }
   function red     { print "255 0 0"; }
   function green   { print "0 255 0"; }
   function blue    { print "0 0 255"; }
   function yellow  { print "255 255 0"; }
   function magenta { print "255 0 255"; }
   function cyan    { print "0 255 255"; }

)

typeset -T Bitmap_t=(

   integer height
   integer width
   typeset -a data
   function fill {
       typeset color=$1
       if [[ -z ${color:+set} ]]; then
           print -u2 "error: no fill color specified"
           return 1
       fi
       integer x y
       for ((y=0; y<_.height; y++)); do
           for ((x=0; x<_.width; x++)); do
               _.data[y][x]="$color"
           done
       done
   }
   function setpixel {
       integer x=$1 y=$2 
       typeset color=$3
       _.data[y][x]=$color
   }
   function getpixel {
       integer x=$1 y=$2 
       print "${_.data[y][x]}"
   }
   function to_s {
       typeset ppm=""
       ppm+="P3"$'\n'
       ppm+="${_.width} ${_.height}"$'\n'
       ppm+="255"$'\n'
       typeset sep
       for ((y=0; y<_.height; y++)); do
           sep=""
           for ((x=0; x<_.width; x++)); do
               ppm+="$sep${_.data[y][x]}"
               sep=" "
           done
           ppm+=$'\n'
       done
       print -- "$ppm"
   }

)

RGBColor_t color Bitmap_t b=( width=3 height=2 ) b.fill "$(color.white)" b.setpixel 0 0 "$(color.red)" b.setpixel 1 0 "$(color.green)" b.setpixel 2 0 "$(color.blue)" b.setpixel 0 1 "$(color.yellow)" b.setpixel 1 1 "$(color.white)" b.setpixel 2 1 "$(color.black)" echo "$(b.getpixel 0 0)" b.to_s</lang>

Output:
255 0 0
P3
3 2
255
255 0 0 0 255 0 0 0 255
255 255 0 255 255 255 0 0 0

Vedit macro language

An edit buffer is used to store pixel data. In order to allow unlimited image size, a temporary file (here pixel.data) can be assosicated to the buffer. You could directly open the image file you are creating (as in the task Dragon_curve, but here we first create just the plain pixel data so that the required image file format can be decided later. <lang vedit>#11 = 400 // Width of the image

  1. 12 = 300 // Height of the image

// Create an empty RGB image and fill it with black color // File_Open("|(VEDIT_TEMP)\pixel.data", OVERWRITE+NOEVENT) BOF Del_Char(ALL)

  1. 10 = Buf_Num

Repeat(#11 * #12) {

   Ins_Char(0, COUNT, 3)

}

// Fill the image with dark blue color //

  1. 5 = 0 // Red
  2. 6 = 0 // Green
  3. 7 = 64 // Blue

Call("FILL_IMAGE")

// Draw one pixel in orange color //

  1. 1 = 100 // x
  2. 2 = 50 // y
  3. 5 = 255 #6 = 128 #7 = 0 // Orange color

Call("DRAW_PIXEL")

// Get the color of a pixel //

  1. 1 = 10
  2. 2 = 3

Call("GET_COLOR")

Buf_Switch(#10) Buf_Quit(OK) Return

///////////////////////////////////////////////////////////////////// // // Fill image with given color: #5 = Red, #6 = Green, #7 = Blue //

FILL_IMAGE:

BOF Repeat (File_Size/3) {

   IC(#5,OVERWRITE) IC(#6,OVERWRITE) IC(#7,OVERWRITE)

} Return

///////////////////////////////////////////////////////////////////// // // Daw a pixel. #1 = x, #2 = y //

DRAW_PIXEL:

Goto_Pos((#1 + #2*#11)*3) IC(#5,OVERWRITE) IC(#6,OVERWRITE) IC(#7,OVERWRITE) Return

///////////////////////////////////////////////////////////////////// // // Get color of a pixel. #1 = x, #2 = y // Return: #5 = Red, #6 = Green, #7 = Blue //

GET_COLOR:

Goto_Pos((#1 + #2*#11)*3)

  1. 5 = Cur_Char
  2. 6 = Cur_Char(1)
  3. 7 = Cur_Char(2)

Return</lang>

Visual Basic .NET

<lang vbnet>' The StructLayout attribute allows fields to overlap in memory. <System.Runtime.InteropServices.StructLayout(LayoutKind.Explicit)> _ Public Structure Rgb

   <FieldOffset(0)> _
   Public Rgb As Integer
   <FieldOffset(0)> _
   Public B As Byte
   <FieldOffset(1)> _
   Public G As Byte
   <FieldOffset(2)> _
   Public R As Byte
   Public Sub New(ByVal r As Byte, ByVal g As Byte, ByVal b As Byte)
       Me.R = r
       Me.G = g
       Me.B = b
   End Sub

End Structure</lang>

<lang vbnet>Public Class RasterBitmap

   Private m_pixels() As Rgb
   Private m_width As Integer
   Public ReadOnly Property Width As Integer
       Get
           Return m_width
       End Get
   End Property
   Private m_height As Integer
   Public ReadOnly Property Height As Integer
       Get
           Return m_height
       End Get
   End Property
   Public Sub New(ByVal width As Integer, ByVal height As Integer)
       m_pixels = New Rgb(width * height - 1) {}
       m_width = width
       m_height = height
   End Sub
   Public Sub Clear(ByVal color As Rgb)
       For i As Integer = 0 To m_pixels.Length - 1
           m_pixels(i) = color
       Next
   End Sub
   Public Sub SetPixel(ByVal x As Integer, ByVal y As Integer, ByVal color As Rgb)
       m_pixels((y * m_width) + x) = color
   End Sub
   Public Function GetPixel(ByVal x As Integer, ByVal y As Integer) As Rgb
       Return m_pixels((y * m_width) + x)
   End Function

End Class</lang>

Wren

Library: DOME

The above library's ImageData class fits the bill here (version 1.3.0 or later). <lang ecmascript>import "graphics" for Canvas, ImageData, Color import "dome" for Window

class Game {

   static bmpCreate(name, w, h) { ImageData.create(name, w, h) }
   static bmpFill(name, col) {
       var image = ImageData[name]
       for (x in 0...image.width) {
           for (y in 0...image.height) image.pset(x, y, col)
       }
   }
   static bmpPset(name, x, y, col) { ImageData[name].pset(x, y, col) }
   static bmpPget(name, x, y) { ImageData[name].pget(x, y) }
   static init() {
       Window.title = "Bitmap"
       var size = 600
       Window.resize(size, size)
       Canvas.resize(size, size)
       var bmp = bmpCreate("rcbmp", size/2, size/2)
       bmpFill("rcbmp", Color.yellow)
       bmpPset("rcbmp", size/4, size/4, Color.blue) // 'blue' is #29ADFF on the default palette
       var col = bmpPget("rcbmp", size/4, size/4)
       System.print(col.toString) // check it's blue - alpha component (FF) will also be shown
       bmp.draw(150, 150) 
   }
   static update() {}
   static draw(alpha) {}

}</lang>

Output:
Color (#29ADFFFF)

Xojo

<lang vb>Function CreatePicture(width As Integer, height As Integer) As Picture

 Return New Picture(width, height)

End Function

Sub FillPicture(ByRef p As Picture, FillColor As Color)

 p.Graphics.ForeColor = FillColor
 p.Graphics.FillRect(0, 0, p.Width, p.Height)

End Sub

Function GetPixelColor(p As Picture, x As Integer, y As Integer) As Color

 Return p.RGBSurface.Pixel(x, y)

End Function

Sub SetPixelColor(p As Picture, x As Integer, y As Integer, pColor As Color)

 p.RGBSurface.Pixel(x, y) = pColor

End Sub </lang>

XPL0

<lang XPL0>include c:\cxpl\codes; \include 'code' declarations def Width=180, Height=135, Color=$123456; int X, Y; [SetVid($112); \set display for 640x480 graphics in 24-bit RGB color for Y:= 0 to Height-1 do \fill area with Color one pixel at a time

   for X:= 0 to Width-1 do \(this takes 4.12 ms on a Duron 850)
       Point(X, Y, Color);

Move(60, 60); HexOut(6, ReadPix(0,0)); \show color of pixel at 0,0 X:= ChIn(1); \wait for keystroke SetVid(3); \restore display to normal text mode ]</lang>

zkl

This solution creates a PPM image. No error checking or clipping. <lang zkl>class PPM{ // (0,0) is logically bottom left

  fcn init(width,height){
     sz:=width*height*3;
     var [const] 
        data=sz.pump(Data(sz),0),  // initialize to Black (RGB=000)

w=width, h=height;

  }
  fcn fill(rgb){
     sz:=data.len()/3;
     data.clear(); sz.pump(data,T(Void,rgb.toBigEndian(3)));
  }
  fcn __sGet(x,y)    { data.toBigEndian(3*y*w + 3*x,3);        } //ppm[x,y]
  fcn __sSet(rbg,x,y){	data[3*y*w + 3*x,3]=rbg.toBigEndian(3); } //ppm[x,y]=rgb
  fcn write(out){   // write bottom to top to move (0,0) from bottom left to bottom left
     out.write("P6\n#rosettacode PPM\n%d %d\n255\n".fmt(w,h));
     [h-1..0, -1].pump(out,'wrap(h){ data.seek(3*h*w); data.read(3*w) });
     out.close();
  }

}</lang> <lang zkl>ppm:=PPM(256,256); ppm.fill(0x00FF88); foreach x in ([50..200]){ ppm[x,50]=0xff|00|00; } // horizontal red line

ppm.write(File("foo.ppm","wb"));</lang>

Output:
$ zkl hexDump foo.ppm | less
   0: 50 36 0a 23 72 6f 73 65 | 74 74 61 63 6f 64 65 20   P6.#rosettacode 
  16: 50 50 4d 0a 32 35 36 20 | 32 35 36 0a 32 35 35 0a   PPM.256 256.255.
  32: 00 ff 88 00 ff 88 00 ff | 88 00 ff 88 00 ff 88 00   ................
  48: ff 88 00 ff 88 00 ff 88 | 00 ff 88 00 ff 88 00 ff   ................
  64: 88 00 ff 88 00 ff 88 00 | ff 88 00 ff 88 00 ff 88   ................
  80: 00 ff 88 00 ff 88 00 ff | 88 00 ff 88 00 ff 88 00   ................
...