I'm working on modernizing Rosetta Code's infrastructure. Starting with communications. Please accept this time-limited open invite to RC's Slack.. --Michael Mol (talk) 20:59, 30 May 2020 (UTC)

You are encouraged to solve this task according to the task description, using any language you may know.

Yet another shortest path problem. Given two words of equal length the task is to transpose the first into the second.

Only one letter may be changed at a time and the change must result in a word in unixdict, the minimum number of intermediate words should be used.

Demonstrate the following:

A boy can be made into a man: boy -> bay -> ban -> man

With a little more difficulty a girl can be made into a lady: girl -> gill -> gall -> gale -> gaze -> laze -> lazy -> lady

A john can be made into a jane: john -> cohn -> conn -> cone -> cane -> jane

A child can not be turned into an adult.

## 11l

Translation of: Nim
`F isOneAway(word1, word2)   V result = 0B   L(i) 0 .< word1.len      I word1[i] != word2[i]         I result            R 0B         E            result = 1B   R result DefaultDict[Int, [String]] words L(word) File(‘unixdict.txt’).read().split("\n")   words[word.len] [+]= word F find_path(start, target)   V lg = start.len   assert(target.len == lg, ‘Source and destination must have same length.’)   assert(start C :words[lg], ‘Source must exist in the dictionary.’)   assert(target C :words[lg], ‘Destination must exist in the dictionary.’)    V currPaths = [[start]]   V pool = copy(:words[lg])    L      [[String]] newPaths      [String] added      L(candidate) pool         L(path) currPaths            I isOneAway(candidate, path.last)               V newPath = path [+] [candidate]               I candidate == target                  R newPath               E                  newPaths.append(newPath)                  added.append(candidate)                  L.break       I newPaths.empty         L.break      currPaths = move(newPaths)      L(w) added         pool.remove(w)    R [String]() L(start, target) [(‘boy’, ‘man’), (‘girl’, ‘lady’), (‘john’, ‘jane’), (‘child’, ‘adult’), (‘cat’, ‘dog’), (‘lead’, ‘gold’), (‘white’, ‘black’), (‘bubble’, ‘tickle’)]   V path = find_path(start, target)   I path.empty      print(‘No path from "’start‘" to "’target‘".’)   E      print(path.join(‘ -> ’))`
Output:
```boy -> bay -> ban -> man
girl -> gill -> gall -> gale -> gaze -> laze -> lazy -> lady
john -> cohn -> conn -> cone -> cane -> jane
No path from "child" to "adult".
cat -> cot -> cog -> dog
white -> whine -> chine -> chink -> clink -> blink -> blank -> black
bubble -> babble -> gabble -> garble -> gargle -> gaggle -> giggle -> jiggle -> jingle -> tingle -> tinkle -> tickle
```

## ALGOL 68

With a68g use option `--storage 2`, otherwise it runs out of memory.

`# quick implementation of a stack of INT.  real program starts after it.#MODE STACK = STRUCT (INT top, FLEX[1:0]INT data, INT increment); PROC makestack = (INT increment)STACK: (1, (), increment); PROC pop = (REF STACK s)INT: ( top OF s -:= 1; (data OF s)[top OF s] ); PROC push = (REF STACK s, INT n)VOID:  BEGIN    IF top OF s > UPB data OF s THEN      [ UPB data OF s + increment OF s ]INT tmp;      tmp[1 : UPB data OF s] := data OF s;      data OF s := tmp    FI;    (data OF s)[top OF s] := n;    top OF s +:= 1  END; PROC empty = (REF STACK s)BOOL: top OF s <= 1; PROC contents = (REF STACK s)[]INT: (data OF s)[:top OF s - 1]; # start solution # []STRING words = BEGIN     # load dictionary file into array #                   FILE f;                   BOOL eof := FALSE;                   open(f, "unixdict.txt", stand in channel);                   on logical file end(f, (REF FILE f)BOOL: eof := TRUE);                   INT idx := 1;                   FLEX [1:0] STRING words;                   STRING word;                   WHILE NOT eof DO                     get(f, (word, newline));                     IF idx > UPB words THEN                       HEAP [1 : UPB words + 10000]STRING tmp;                       tmp[1 : UPB words] := words;                       words := tmp                     FI;                     words[idx] := word;                     idx +:= 1                   OD;                   words[1:idx-1]                 END; INT nwords = UPB words; INT max word length = (INT mwl := 0;                       FOR i TO UPB words DO                         IF mwl < UPB words[i] THEN mwl := UPB words[i] FI                       OD;                       mwl); [nwords]FLEX[0]INT neighbors; [max word length]BOOL precalculated by length; FOR i TO UPB precalculated by length DO precalculated by length[i] := FALSE OD; # precalculating neighbours takes time, but not doing it is even slower... #PROC precalculate neighbors = (INT word length)VOID:  BEGIN    [nwords]REF STACK stacks;    FOR i TO UPB stacks DO stacks[i] := NIL OD;    FOR i TO UPB words DO      IF UPB words[i] = word length THEN        IF REF STACK(stacks[i]) :=: NIL THEN stacks[i] := HEAP STACK := makestack(10) FI;        FOR j FROM i + 1 TO UPB words DO          IF UPB words[j] = word length THEN            IF neighboring(words[i], words[j]) THEN              push(stacks[i], j);              IF REF STACK(stacks[j]) :=: NIL THEN stacks[j] := HEAP STACK := makestack(10) FI;              push(stacks[j], i)            FI          FI        OD      FI    OD;    FOR i TO UPB neighbors DO      IF REF STACK(stacks[i]) :/=: NIL THEN        neighbors[i] := contents(stacks[i])      FI    OD;    precalculated by length [word length] := TRUE  END; PROC neighboring = (STRING a, b)BOOL:      # do a & b differ in just 1 char? #  BEGIN    INT diff := 0;    FOR i TO UPB a DO IF a[i] /= b[i] THEN diff +:= 1 FI OD;    diff = 1  END; PROC word ladder = (STRING from, STRING to)[]STRING:  BEGIN    IF UPB from /= UPB to THEN fail FI;    INT word length = UPB from;    IF word length < 1 OR word length > max word length THEN fail FI;    IF from = to THEN fail FI;    INT start := 0;    INT destination := 0;    FOR i TO UPB words DO      IF UPB words[i] = word length THEN        IF words[i] = from THEN start := i        ELIF words[i] = to THEN destination := i        FI      FI    OD;    IF destination = 0 OR start = 0 THEN fail FI;    IF NOT precalculated by length [word length] THEN      precalculate neighbors(word length)    FI;    STACK stack := makestack(1000);    [nwords]INT distance;    [nwords]INT previous;    FOR i TO nwords DO distance[i] := nwords+1; previous[i] := 0 OD;    INT shortest := nwords+1;    distance[start] := 0;    push(stack, start);    WHILE NOT empty(stack)    DO      INT curr := pop(stack);      INT dist := distance[curr];      IF dist < shortest - 1 THEN        # find neighbors and add them to the stack #        FOR i FROM UPB neighbors[curr] BY -1 TO 1 DO          INT n = neighbors[curr][i];          IF distance[n] > dist + 1 THEN            distance[n] := dist + 1;            previous[n] := curr;            IF n = destination THEN              shortest := dist + 1            ELSE              push(stack, n)            FI          FI        OD;        IF curr = destination THEN shortest := dist FI      FI    OD;    INT length = distance[destination] + 1;    IF length > nwords THEN fail FI;    [length]STRING result;    INT curr := destination;    FOR i FROM length BY -1 TO 1    DO      result[i] := words[curr];      curr := previous[curr]    OD;    result EXIT    fail: LOC [0] STRING  END; [][]STRING pairs = (("boy", "man"), ("bed", "cot"),                    ("old", "new"), ("dry", "wet"),                     ("girl", "lady"), ("john", "jane"),                    ("lead", "gold"), ("poor", "rich"),                    ("lamb", "stew"), ("kick", "goal"),                    ("cold", "warm"), ("nude", "clad"),                     ("child", "adult"), ("white", "black"),                    ("bread", "toast"), ("lager", "stout"),                    ("bride", "groom"), ("table", "chair"),                     ("bubble", "tickle")); FOR i TO UPB pairsDO  STRING from = pairs[i][1], to = pairs[i][2];  []STRING ladder = word ladder(from, to);  IF UPB ladder = 0  THEN print(("No solution for """ + from + """ -> """ + to + """", newline))  ELSE FOR j TO UPB ladder DO print(((j > 1 | "->" | ""), ladder[j])) OD;       print(newline)  FIOD`
Output:
```boy->bay->ban->man
old->odd->ode->one->nne->nee->new
dry->dey->bey->bet->wet
john->cohn->conn->cone->cane->jane
poor->boor->book->bock->rock->rick->rich
lamb->lame->laue->laud->saud->spud->sped->spew->stew
kick->dick->dock->cock->cook->cool->coal->goal
cold->cord->card->ward->warm
No solution for "child" -> "adult"
lager->hager->hagen->haven->raven->ravel->navel->novel->hovel->hotel->motel->monel->money->honey->haney->handy->dandy->danny->denny->penny->peony->phony->phone->shone->shore->short->shout->stout
bride->brice->brick->brock->brook->broom->groom
No solution for "table" -> "chair"
bubble->babble->gabble->garble->gargle->gaggle->giggle->jiggle->jingle->tingle->tinkle->tickle```

## C++

This borrows heavily from Wren and a bit from Raku.

`#include <algorithm>#include <fstream>#include <iostream>#include <map>#include <string>#include <vector> using word_map = std::map<size_t, std::vector<std::string>>; // Returns true if strings s1 and s2 differ by one character.bool one_away(const std::string& s1, const std::string& s2) {    if (s1.size() != s2.size())        return false;    bool result = false;    for (size_t i = 0, n = s1.size(); i != n; ++i) {        if (s1[i] != s2[i]) {            if (result)                return false;            result = true;        }    }    return result;} // Join a sequence of strings into a single string using the given separator.template <typename iterator_type, typename separator_type>std::string join(iterator_type begin, iterator_type end,                 separator_type separator) {    std::string result;    if (begin != end) {        result += *begin++;        for (; begin != end; ++begin) {            result += separator;            result += *begin;        }    }    return result;} // If possible, print the shortest chain of single-character modifications that// leads from "from" to "to", with each intermediate step being a valid word.// This is an application of breadth-first search.bool word_ladder(const word_map& words, const std::string& from,                 const std::string& to) {    auto w = words.find(from.size());    if (w != words.end()) {        auto poss = w->second;        std::vector<std::vector<std::string>> queue{{from}};        while (!queue.empty()) {            auto curr = queue.front();            queue.erase(queue.begin());            for (auto i = poss.begin(); i != poss.end();) {                if (!one_away(*i, curr.back())) {                    ++i;                    continue;                }                if (to == *i) {                    curr.push_back(to);                    std::cout << join(curr.begin(), curr.end(), " -> ") << '\n';                    return true;                }                std::vector<std::string> temp(curr);                temp.push_back(*i);                queue.push_back(std::move(temp));                i = poss.erase(i);            }        }    }    std::cout << from << " into " << to << " cannot be done.\n";    return false;} int main() {    word_map words;    std::ifstream in("unixdict.txt");    if (!in) {        std::cerr << "Cannot open file unixdict.txt.\n";        return EXIT_FAILURE;    }    std::string word;    while (getline(in, word))        words[word.size()].push_back(word);    word_ladder(words, "boy", "man");    word_ladder(words, "girl", "lady");    word_ladder(words, "john", "jane");    word_ladder(words, "child", "adult");    word_ladder(words, "cat", "dog");    word_ladder(words, "lead", "gold");    word_ladder(words, "white", "black");    word_ladder(words, "bubble", "tickle");    return EXIT_SUCCESS;}`
Output:
```boy -> bay -> ban -> man
girl -> gill -> gall -> gale -> gaze -> laze -> lazy -> lady
john -> cohn -> conn -> cone -> cane -> jane
child into adult cannot be done.
cat -> cot -> cog -> dog
white -> whine -> chine -> chink -> clink -> blink -> blank -> black
bubble -> babble -> gabble -> garble -> gargle -> gaggle -> giggle -> jiggle -> jingle -> tingle -> tinkle -> tickle
```

## F#

` // Word ladder: Nigel Galloway. June 5th., 2021let fG n g=n|>List.partition(fun n->2>Seq.fold2(fun z n g->z+if n=g then 0 else 1) 0 n g)let wL n g=let dict=seq{use n=System.IO.File.OpenText("unixdict.txt") in while not n.EndOfStream do yield n.ReadLine()}|>Seq.filter(Seq.length>>(=)(Seq.length n))|>List.ofSeq|>List.except [n]           let (|Done|_|) n=n|>List.tryFind((=)g)           let rec wL n g l=match n with h::t->let i,e=fG l (List.head h) in match i with Done i->Some((i::h)|>List.rev) |_->wL t ((i|>List.map(fun i->i::h))@g) e                                        |_->match g with []->None |_->wL g [] l           let i,e=fG dict n in match i with Done i->Some([n;g]) |_->wL(i|>List.map(fun g->[g;n])) [] e[("boy","man");("girl","lady");("john","jane");("child","adult")]|>List.iter(fun(n,g)->printfn "%s" (match wL n g with Some n->n|>String.concat " -> " |_->n+" into "+g+" can't be done")) `
Output:
```boy -> bay -> ban -> man
girl -> gill -> gall -> gale -> gaze -> laze -> lazy -> lady
john -> cohn -> conn -> cone -> cane -> jane
child into adult can't be done
```

### Optional transpositions

The bad news is evil can not be turned into good, but the good news is god can become man.

` [("evil","good");("god","man")]|>List.iter(fun(n,g)->printfn "%s" (match wL n g with Some n->n|>String.concat " -> " |_->n+" into "+g+" can't be done")) `
Output:
```evil into good can't be done done
```

## Go

Translation of: Wren
`package main import (    "bytes"    "fmt"    "io/ioutil"    "log"    "strings") func contains(a []string, s string) bool {    for _, e := range a {        if e == s {            return true        }    }    return false} func oneAway(a, b string) bool {    sum := 0    for i := 0; i < len(a); i++ {        if a[i] != b[i] {            sum++        }    }    return sum == 1} func wordLadder(words []string, a, b string) {    l := len(a)    var poss []string    for _, word := range words {        if len(word) == l {            poss = append(poss, word)        }    }    todo := [][]string{{a}}    for len(todo) > 0 {        curr := todo[0]        todo = todo[1:]        var next []string        for _, word := range poss {            if oneAway(word, curr[len(curr)-1]) {                next = append(next, word)            }        }        if contains(next, b) {            curr = append(curr, b)            fmt.Println(strings.Join(curr, " -> "))            return        }        for i := len(poss) - 1; i >= 0; i-- {            if contains(next, poss[i]) {                copy(poss[i:], poss[i+1:])                poss[len(poss)-1] = ""                poss = poss[:len(poss)-1]            }        }        for _, s := range next {            temp := make([]string, len(curr))            copy(temp, curr)            temp = append(temp, s)            todo = append(todo, temp)        }    }    fmt.Println(a, "into", b, "cannot be done.")} func main() {    b, err := ioutil.ReadFile("unixdict.txt")    if err != nil {        log.Fatal("Error reading file")    }    bwords := bytes.Fields(b)    words := make([]string, len(bwords))    for i, bword := range bwords {        words[i] = string(bword)    }    pairs := [][]string{        {"boy", "man"},        {"girl", "lady"},        {"john", "jane"},        {"child", "adult"},    }    for _, pair := range pairs {        wordLadder(words, pair[0], pair[1])    }}`
Output:
```boy -> bay -> ban -> man
girl -> gill -> gall -> gale -> gaze -> laze -> lazy -> lady
john -> cohn -> conn -> cone -> cane -> jane
child into adult cannot be done.
```

The function first expands a ball around the starting word in the space of possible words, until the ball surface touches the goal (if ever). After that it performs depth-first path-finding from the goal back to the center.

`import System.IO (readFile)import Control.Monad (foldM)import Data.List (intercalate)import qualified Data.Set as S distance :: String -> String -> Intdistance s1 s2 = length \$ filter not \$ zipWith (==) s1 s2 wordLadders :: [String] -> String -> String -> [[String]]wordLadders dict start end  | length start /= length end = []  | otherwise = [wordSpace] >>= expandFrom start >>= shrinkFrom end  where     wordSpace = S.fromList \$ filter ((length start ==) . length) dict     expandFrom s = go [[s]]      where        go (h:t) d          | S.null d || S.null f = []          | end `S.member` f = [h:t]          | otherwise = go (S.elems f:h:t) (d S.\\ f)          where            f = foldr (\w -> S.union (S.filter (oneStepAway w) d)) mempty h     shrinkFrom = scanM (filter . oneStepAway)     oneStepAway x = (1 ==) . distance x     scanM f x = fmap snd . foldM g (x,[x])      where g (b, r) a = (\x -> (x, x:r)) <\$> f b a wordLadder :: [String] -> String -> String -> [String]wordLadder d s e = case wordLadders d s e of                     [] -> []                     h:_ -> h showChain [] = putStrLn "No chain"showChain ch = putStrLn \$ intercalate " -> " ch main = do  dict <- lines <\$> readFile "unixdict.txt"  showChain \$ wordLadder dict "boy" "man"  showChain \$ wordLadder dict "girl" "lady"  showChain \$ wordLadder dict "john" "jane"  showChain \$ wordLadder dict "alien" "drool"  showChain \$ wordLadder dict "child" "adult"`
```λ> lines <\$> readFile "unixdict.txt" >>= print . wordLadders "boy" "man"
[["boy","bay","ban","man"],["boy","bon","ban","man"],["boy","bay","may","man"]]

[]

λ> main
boy -> bay -> ban -> man
girl -> gill -> gall -> gale -> gaze -> laze -> lazy -> lady
john -> cohn -> conn -> cone -> cane -> jane
alien -> alden -> alder -> alter -> aster -> ester -> eater -> bater -> bator -> baton -> baron -> boron -> moron -> moran -> moral -> morel -> monel -> money -> monty -> month -> mouth -> south -> sooth -> sloth -> slosh -> slash -> flash -> flask -> flank -> blank -> bland -> blend -> bleed -> breed -> bread -> tread -> triad -> trial -> trill -> drill -> droll -> drool
No chain```

Performs searching from both ends. This solution is much faster for cases with no chains, and for for short chains. In case of long chains looses its' efficiency.

`wordLadders2 :: String -> String -> [String] -> [[String]]wordLadders2 start end dict  | length start /= length end = []  | otherwise = pure wordSpace >>= expand start end >>= shrink end  where     wordSpace = S.fromList \$ filter ((length start ==) . length) dict     expand s e d = tail . map S.elems <\$> go [S.singleton s] [S.singleton e] d      where        go (hs:ts) (he:te) d          | S.null d || S.null fs || S.null fe = []          | not \$ S.null f1 = [reverse (f1:te) ++ hs:ts]          | not \$ S.null f2 = [reverse (he:te) ++ f2:ts]          | not \$ S.null f3 = [reverse (he:te) ++ f3:hs:ts]          | otherwise = go (fs:hs:ts) (fe:he:te) (d S.\\ hs S.\\ he)          where            fs = front hs            fe = front he            f1 = fs `S.intersection` he            f2 = fe `S.intersection` hs            f3 = fs `S.intersection` fe            front = S.foldr (\w -> S.union (S.filter (oneStepAway w) d)) mempty     shrink = scanM (findM . oneStepAway)     oneStepAway x = (1 ==) . distance x     scanM f x = fmap snd . foldM g (x,[x])      where g (b, r) a = (\x -> (x, x:r)) <\$> f b a     findM p = msum . map (\x -> if p x then pure x else mzero)`

### Using A*-search

`import AStar (findPath, Graph(..))import qualified Data.Map as M distance :: String -> String -> Intdistance s1 s2 = length \$ filter not \$ zipWith (==) s1 s2 wordLadder :: [String] -> String -> String -> [String]wordLadder dict start end = findPath g distance start end  where    short_dict = filter ((length start ==) . length) dict    g = Graph \$ \w -> M.fromList [ (x, 1)                                 | x <- short_dict                                 , distance w x == 1 ]`
```λ> main
boy -> bay -> ban -> man
girl -> gird -> bird -> bard -> lard -> lark -> lack -> lacy -> lady
john -> cohn -> conn -> cone -> cane -> jane
alien -> alden -> alder -> alter -> aster -> ester -> eater -> bater -> bator -> baton -> baron -> boron -> moron -> moran -> moral -> morel -> monel -> money -> monty -> month -> mouth -> south -> sooth -> sloth -> slosh -> slash -> flash -> flask -> flank -> blank -> bland -> blend -> bleed -> breed -> bread -> tread -> triad -> trial -> trill -> drill -> droll -> drool
No chain```

Works much faster when compiled.

## Java

`import java.io.IOException;import java.nio.file.Files;import java.nio.file.Path;import java.util.ArrayList;import java.util.HashMap;import java.util.HashSet;import java.util.List;import java.util.Map;import java.util.PriorityQueue;import java.util.Set;import java.util.stream.IntStream; public class WordLadder {    private static int distance(String s1, String s2) {        assert s1.length() == s2.length();        return (int) IntStream.range(0, s1.length())            .filter(i -> s1.charAt(i) != s2.charAt(i))            .count();    }     private static void wordLadder(Map<Integer, Set<String>> words, String fw, String tw) {        wordLadder(words, fw, tw, 8);    }     private static void wordLadder(Map<Integer, Set<String>> words, String fw, String tw, int limit) {        if (fw.length() != tw.length()) {            throw new IllegalArgumentException("From word and to word must have the same length");        }         Set<String> ws = words.get(fw.length());        if (ws.contains(fw)) {            List<String> primeList = new ArrayList<>();            primeList.add(fw);             PriorityQueue<List<String>> queue = new PriorityQueue<>((chain1, chain2) -> {                int cmp1 = Integer.compare(chain1.size(), chain2.size());                if (cmp1 == 0) {                    String last1 = chain1.get(chain1.size() - 1);                    int d1 = distance(last1, tw);                     String last2 = chain2.get(chain2.size() - 1);                    int d2 = distance(last2, tw);                     return Integer.compare(d1, d2);                }                return cmp1;            });            queue.add(primeList);             while (queue.size() > 0) {                List<String> curr = queue.remove();                if (curr.size() > limit) {                    continue;                }                 String last = curr.get(curr.size() - 1);                for (String word : ws) {                    if (distance(last, word) == 1) {                        if (word.equals(tw)) {                            curr.add(word);                            System.out.println(String.join(" -> ", curr));                            return;                        }                         if (!curr.contains(word)) {                            List<String> cp = new ArrayList<>(curr);                            cp.add(word);                            queue.add(cp);                        }                    }                }            }        }         System.err.printf("Cannot turn `%s` into `%s`%n", fw, tw);    }     public static void main(String[] args) throws IOException {        Map<Integer, Set<String>> words = new HashMap<>();        for (String line : Files.readAllLines(Path.of("unixdict.txt"))) {            Set<String> wl = words.computeIfAbsent(line.length(), HashSet::new);            wl.add(line);        }         wordLadder(words, "boy", "man");        wordLadder(words, "girl", "lady");        wordLadder(words, "john", "jane");        wordLadder(words, "child", "adult");        wordLadder(words, "cat", "dog");        wordLadder(words, "lead", "gold");        wordLadder(words, "white", "black");        wordLadder(words, "bubble", "tickle", 12);    }}`
Output:
```boy -> bay -> may -> man
girl -> gill -> gall -> gale -> gaze -> laze -> lazy -> lady
john -> cohn -> conn -> cone -> cane -> jane
cat -> cot -> dot -> dog
white -> whine -> chine -> chink -> clink -> blink -> blank -> black
bubble -> babble -> gabble -> garble -> gargle -> gaggle -> waggle -> wangle -> tangle -> tingle -> tinkle -> tickle```

### Faster alternative

Translation of: C++
`import java.io.*;import java.util.*; public class WordLadder {    public static void main(String[] args) {        try {            Map<Integer, List<String>> words = new HashMap<>();            try (BufferedReader reader = new BufferedReader(new FileReader("unixdict.txt"))) {                String line;                while ((line = reader.readLine()) != null)                    words.computeIfAbsent(line.length(), k -> new ArrayList<String>()).add(line);            }            wordLadder(words, "boy", "man");            wordLadder(words, "girl", "lady");            wordLadder(words, "john", "jane");            wordLadder(words, "child", "adult");            wordLadder(words, "cat", "dog");            wordLadder(words, "lead", "gold");            wordLadder(words, "white", "black");            wordLadder(words, "bubble", "tickle");        } catch (Exception e)  {            e.printStackTrace();        }       }     // Returns true if strings s1 and s2 differ by one character.    private static boolean oneAway(String s1, String s2) {        if (s1.length() != s2.length())            return false;        boolean result = false;        for (int i = 0, n = s1.length(); i != n; ++i) {            if (s1.charAt(i) != s2.charAt(i)) {                if (result)                    return false;                result = true;            }        }        return result;    }     // If possible, print the shortest chain of single-character modifications that    // leads from "from" to "to", with each intermediate step being a valid word.    // This is an application of breadth-first search.    private static void wordLadder(Map<Integer, List<String>> words, String from, String to) {        List<String> w = words.get(from.length());        if (w != null) {            Deque<String> poss = new ArrayDeque<>(w);            Deque<String> f = new ArrayDeque<String>();            f.add(from);            Deque<Deque<String>> queue = new ArrayDeque<>();            queue.add(f);            while (!queue.isEmpty()) {                Deque<String> curr = queue.poll();                for (Iterator<String> i = poss.iterator(); i.hasNext(); ) {                    String str = i.next();                    if (!oneAway(str, curr.getLast()))                        continue;                    if (to.equals(str)) {                        curr.add(to);                        System.out.println(String.join(" -> ", curr));                        return;                    }                    Deque<String> temp = new ArrayDeque<>(curr);                    temp.add(str);                    queue.add(temp);                    i.remove();                }            }        }        System.out.printf("%s into %s cannot be done.\n", from, to);    }}`
Output:
```boy -> bay -> ban -> man
girl -> gill -> gall -> gale -> gaze -> laze -> lazy -> lady
john -> cohn -> conn -> cone -> cane -> jane
child into adult cannot be done.
cat -> cot -> cog -> dog
white -> whine -> chine -> chink -> clink -> blink -> blank -> black
bubble -> babble -> gabble -> garble -> gargle -> gaggle -> giggle -> jiggle -> jingle -> tingle -> tinkle -> tickle
```

## jq

Translation of: Wren
Works with: jq

Works with gojq, the Go implementation of jq

`def count(stream): reduce stream as \$i (0; .+1); def words: [inputs];  # one way to read the word list def oneAway(\$a; \$b):  (\$a|explode) as \$ax  | (\$b|explode) as \$bx  | 1 == count(range(0; \$a|length) | select(\$ax[.] != \$bx[.])); # input: the word listdef wordLadder(\$a; \$b):    (\$a|length) as \$len    | { poss: map(select(length == \$len)),      # the relevant words        todo:  [[\$a]]                           # possible chains      }    | until ( ((.todo|length) == 0) or .solution;        .curr = .todo[0]        | .todo |= .[1:]	| .curr[-1] as \$c        | (.poss | map(select( oneAway(.; \$c) ))) as \$next        | if (\$b | IN(\$next[]))          then .curr += [\$b]          | .solution = (.curr|join(" -> "))           else .poss = (.poss - \$next)	  | .curr as \$curr          | .todo = (reduce range(0; \$next|length) as \$i (.todo;                       . + [\$curr + [\$next[\$i] ]] ))          end )    | if .solution then .solution      else "There is no ladder from \(\$a) to \(\$b)."      end ; def pairs:     ["boy", "man"],    ["girl", "lady"],    ["john", "jane"],    ["child", "adult"],    ["word", "play"]; words| pairs as \$p| wordLadder(\$p[0]; \$p[1])`
Output:

Invocation: jq -nr -R -f word-ladder.jq unixdict.txt

```boy -> bay -> ban -> man
girl -> gill -> gall -> gale -> gaze -> laze -> lazy -> lady
john -> cohn -> conn -> cone -> cane -> jane
word -> ford -> form -> foam -> flam -> clam -> clay -> play
```

## Julia

`const dict = Set(split(read("unixdict.txt", String), r"\s+")) function targeted_mutations(str::AbstractString, target::AbstractString)    working, tried = [[str]], Set{String}()    while all(a -> a[end] != target, working)        newworking = Vector{Vector{String}}()        for arr in working            s = arr[end]            push!(tried, s)            for j in 1:length(s), c in 'a':'z'                w = s[1:j-1] * c * s[j+1:end]                if w in dict && !(w in tried)                    push!(newworking, [arr; w])                end            end        end        isempty(newworking) && return [["This cannot be done."]]        working = newworking    end    return filter(a -> a[end] == target, working)end println("boy to man: ", targeted_mutations("boy", "man"))println("girl to lady: ", targeted_mutations("girl", "lady"))println("john to jane: ", targeted_mutations("john", "jane"))println("child to adult: ", targeted_mutations("child", "adult")) `
Output:
```boy to man: [["boy", "bay", "may", "man"], ["boy", "bay", "ban", "man"], ["boy", "bon", "ban", "man"]]
john to jane: [["john", "cohn", "conn", "cone", "cane", "jane"]]
child to adult: [["This cannot be done."]]
```

## Mathematica / Wolfram Language

 This example is incorrect. Please fix the code and remove this message.Details: The requirement is to find the shortest path other examples do John to Jane with 4 intermediate words. Also an impossible example is required: child to adult.
`db=DeleteDuplicates[RemoveDiacritics[ToLowerCase[Select[DictionaryLookup[],StringLength/*EqualTo[3]]]]];sel=Select[Subsets[db,{2}],HammingDistance[#[[1]],#[[2]]]==1&];g=Graph[db,[email protected]@@sel];FindShortestPath[g,"boy","man"] db=DeleteDuplicates[RemoveDiacritics[ToLowerCase[Select[DictionaryLookup[],StringLength/*EqualTo[4]]]]];sel=Select[Subsets[db,{2}],HammingDistance[#[[1]],#[[2]]]==1&];g=Graph[db,[email protected]@@sel];FindShortestPath[g,"girl","lady"]FindShortestPath[g,"john","jane"] db=DeleteDuplicates[RemoveDiacritics[ToLowerCase[Select[DictionaryLookup[],StringLength/*EqualTo[5]]]]];sel=Select[Subsets[db,{2}],HammingDistance[#[[1]],#[[2]]]==1&];g=Graph[db,[email protected]@@sel];FindShortestPath[g,"child","adult"]`
Output:
```{"boy", "bay", "ban", "man"}
{"john", "join", "jain", "main", "mann", "mane", "jane"}
{}```

## Nim

`import sets, strformat, strutils  func isOneAway(word1, word2: string): bool =  ## Return true if "word1" and "word2" has only one letter of difference.  for i in 0..word1.high:    if word1[i] != word2[i]:      if result: return false   # More than one letter of difference.      else: result = true       # One letter of difference, for now. var words: array[1..22, HashSet[string]]  # Set of words sorted by length. for word in "unixdict.txt".lines:  words[word.len].incl word  proc path(start, target: string): seq[string] =  ## Return a path from "start" to "target" or an empty list  ## if there is no possible path.  let lg = start.len  doAssert target.len == lg, "Source and destination must have same length."  doAssert start in words[lg], "Source must exist in the dictionary."  doAssert target in words[lg], "Destination must exist in the dictionary."   var currPaths = @[@[start]]         # Current list of paths found.  var pool = words[lg]                # List of possible words to use.   while true:    var newPaths: seq[seq[string]]    # Next list of paths.    var added: HashSet[string]        # Set of words added during the round.    for candidate in pool:      for path in currPaths:        if candidate.isOneAway(path[^1]):          let newPath = path & candidate          if candidate == target:            # Found a path.            return newPath          else:            # Not the target. Add a new path.            newPaths.add newPath            added.incl candidate            break    if newPaths.len == 0: break       # No path.    currPaths = move(newPaths)        # Update list of paths.    pool.excl added                   # Remove added words from pool.  when isMainModule:  for (start, target) in [("boy", "man"), ("girl", "lady"), ("john", "jane"),                          ("child", "adult"), ("cat", "dog"), ("lead", "gold"),                          ("white", "black"), ("bubble", "tickle")]:    let path = path(start, target)    if path.len == 0:      echo &"No path from “{start}” to “{target}”."    else:      echo path.join(" → ")`
Output:
```boy → bon → ban → man
girl → gill → gall → gale → gaze → laze → lazy → lady
john → cohn → conn → cone → cane → jane
No path from “child” to “adult”.
cat → cot → cog → dog
white → whine → chine → chink → clink → clank → blank → black
bubble → babble → gabble → garble → gargle → gaggle → waggle → wangle → tangle → tingle → tinkle → tickle```

## Perl

### Direct translation

Translation of: C++
`use strict;use warnings; my %dict; open my \$handle, '<', 'unixdict.txt';while (my \$word = <\$handle>) {    chomp(\$word);    my \$len = length \$word;    if (exists \$dict{\$len}) {        push @{ \$dict{ \$len } }, \$word;    } else {        my @words = ( \$word );        \$dict{\$len} = \@words;    }}close \$handle; sub distance {    my \$w1 = shift;    my \$w2 = shift;     my \$dist = 0;    for my \$i (0 .. length(\$w1) - 1) {        my \$c1 = substr(\$w1, \$i, 1);        my \$c2 = substr(\$w2, \$i, 1);        if (not (\$c1 eq \$c2)) {            \$dist++;        }    }    return \$dist;} sub contains {    my \$aref = shift;    my \$needle = shift;     for my \$v (@\$aref) {        if (\$v eq \$needle) {            return 1;        }    }     return 0;} sub word_ladder {    my \$fw = shift;    my \$tw = shift;     if (exists \$dict{length \$fw}) {        my @poss = @{ \$dict{length \$fw} };        my @queue = ([\$fw]);        while (scalar @queue > 0) {            my \$curr_ref = shift @queue;            my \$last = \$curr_ref->[-1];             my @next;            for my \$word (@poss) {                if (distance(\$last, \$word) == 1) {                    push @next, \$word;                }            }             if (contains(\@next, \$tw)) {                push @\$curr_ref, \$tw;                print join (' -> ', @\$curr_ref), "\n";                return;            }             for my \$word (@next) {                for my \$i (0 .. scalar @poss - 1) {                    if (\$word eq \$poss[\$i]) {                        splice @poss, \$i, 1;                        last;                    }                }            }             for my \$word (@next) {                my @temp = @\$curr_ref;                push @temp, \$word;                 push @queue, \@temp;            }        }    }     print STDERR "Cannot change \$fw into \$tw\n";} word_ladder('boy', 'man');word_ladder('girl', 'lady');word_ladder('john', 'jane');word_ladder('child', 'adult');word_ladder('cat', 'dog');word_ladder('lead', 'gold');word_ladder('white', 'black');word_ladder('bubble', 'tickle');`
Output:
```boy -> bay -> ban -> man
girl -> gill -> gall -> gale -> gaze -> laze -> lazy -> lady
john -> cohn -> conn -> cone -> cane -> jane
cat -> cot -> cog -> dog
white -> whine -> chine -> chink -> clink -> blink -> blank -> black
bubble -> babble -> gabble -> garble -> gargle -> gaggle -> giggle -> jiggle -> jingle -> tingle -> tinkle -> tickle```

### Idiomatic version

Exactly the same algorithm, written in a more Perl-ish style. Is this better, or worse? Maybe both. Interestingly, runs 1/3-rd faster.

`use strict;use warnings;use feature 'say'; my %dict;open my \$handle, '<', 'ref/unixdict.txt';while (my \$word = <\$handle>) {    chomp \$word;    my \$l = length \$word;    if (\$dict{\$l}) { push @{ \$dict{\$l} },    \$word   }    else           {         \$dict{\$l} = \@{[\$word]} }}close \$handle; sub distance {    my(\$w1,\$w2) = @_;    my \$d;    substr(\$w1, \$_, 1) eq substr(\$w2, \$_, 1) or \$d++ for 0 .. length(\$w1) - 1;    return \$d // 0;} sub contains {    my(\$aref,\$needle) = @_;    \$needle eq \$_ and return 1 for @\$aref;    return 0;} sub word_ladder {    my(\$fw,\$tw) = @_;    say 'Nothing like that in dictionary.' and return unless \$dict{length \$fw};     my @poss  = @{ \$dict{length \$fw} };    my @queue = [\$fw];    while (@queue) {        my \$curr_ref = shift @queue;        my \$last     = \$curr_ref->[-1];         my @next;        distance(\$last, \$_) == 1 and push @next, \$_ for @poss;        push(@\$curr_ref, \$tw) and say join ' -> ', @\$curr_ref and return if contains \@next, \$tw;         for my \$word (@next) {            \$word eq \$poss[\$_] and splice(@poss, \$_, 1) and last for 0 .. @poss - 1;        }        push @queue, \@{[@{\$curr_ref}, \$_]} for @next;    }     say "Cannot change \$fw into \$tw";} word_ladder(split) for 'boy man', 'girl lady', 'john jane', 'child adult';`

Same style output.

## Phix

```with javascript_semantics
sequence words = unix_dict()

function right_length(string word, integer l) return length(word)=l end function

function one_away(string a, b) return sum(sq_ne(a,b))=1 end function

function dca(sequence s, n) return append(deep_copy(s),n) end function

sequence poss = filter(words,right_length,length(a)),
todo = {{a}},
curr -- aka todo[1], word chain starting from a
while length(todo) do
{curr,todo} = {todo[1],todo[2..\$]}
sequence next = filter(poss,one_away,curr[\$])
if find(b,next) then
printf(1,"%s\n",{join(append(deep_copy(curr),b),"->")})
return
end if
poss = filter(poss,"out",next)
todo &= apply(true,dca,{{curr},next})
end while
printf(1,"%s into %s cannot be done\n",{a,b})
end procedure
```

Aside: an initial poss = filter(poss,"out",{a}) might be prudent, but would only prevent a single next:={} step, at about the same cost as the initial filter anyway.

Output:
```boy->bay->ban->man
john->cohn->conn->cone->cane->jane
child into adult cannot be done
```

## Python

The function cache is not part of the algorithm but avoid re-download and map re-computing at each re-run.

`import os,sys,zlib,urllib.request def h ( str,x=9 ):    for c in str :        x = ( x*33 + ord( c )) & 0xffffffffff    return x   def cache ( func,*param ):    n = 'cache_%x.bin'%abs( h( repr( param )))    try    : return eval( zlib.decompress( open( n,'rb' ).read()))    except : pass    s = func( *param )    open( n,'wb' ).write( zlib.compress( bytes( repr( s ),'ascii' )))    return s dico_url  = 'https://raw.githubusercontent.com/quinnj/Rosetta-Julia/master/unixdict.txt'read_url  = lambda url   : urllib.request.urlopen( url ).read()load_dico = lambda url   : tuple( cache( read_url,url ).split( b'\n'))isnext    = lambda w1,w2 : len( w1 ) == len( w2 ) and len( list( filter( lambda l : l[0]!=l[1] , zip( w1,w2 )))) == 1 def build_map ( words ):    map = [(w.decode('ascii'),[]) for w in words]    for i1,(w1,n1) in enumerate( map ):        for i2,(w2,n2) in enumerate( map[i1+1:],i1+1 ):            if isnext( w1,w2 ):                n1.append( i2 )                n2.append( i1 )    return map def find_path ( words,w1,w2 ):    i = [w[0] for w in words].index( w1 )    front,done,res  = [i],{i:-1},[]    while front :        i = front.pop(0)        word,next = words[i]        for n in next :            if n in done : continue            done[n] = i            if words[n][0] == w2 :                while n >= 0 :                    res = [words[n][0]] + res                    n = done[n]                return ' '.join( res )            front.append( n )    return '%s can not be turned into %s'%( w1,w2 ) for w in ('boy man','girl lady','john jane','alien drool','child adult'):    print( find_path( cache( build_map,load_dico( dico_url )),*w.split()))`
Output:
```boy bay ban man
girl gill gall gale gaze laze lazy lady
john cohn conn cone cane jane
alien alden alder alter aster ester eater bater bator baton baron boron moron moran moral morel monel money monty month mouth south sooth sloth slosh slash flash flask flank blank bland blend bleed breed bread tread triad trial trill drill droll drool
child can not be turned into adult
```

## Racket

`#lang racket (define *unixdict* (delay (with-input-from-file "../../data/unixdict.txt"                            (compose list->set port->lines)))) (define letters-as-strings (map string (string->list "abcdefghijklmnopqrstuvwxyz"))) (define ((replace-for-c-at-i w i) c)  (string-append (substring w 0 i) c (substring w (add1 i)))) (define (candidates w)  (for*/list (((i w_i) (in-parallel (string-length w) w))              (r (in-value (replace-for-c-at-i w i)))              (c letters-as-strings)              #:unless (char=? w_i (string-ref c 0)))    (r c))) (define (generate-candidates word.path-hash)  (for*/hash (((w p) word.path-hash)              (w′ (candidates w)))    (values w′ (cons w p)))) (define (hash-filter-keys keep-key? h)  (for/hash (((k v) h) #:when (keep-key? k)) (values k v))) (define (Word-ladder src dest (words (force *unixdict*)))  (let loop ((edge (hash src null)) (unused (set-remove words src)))    (let ((cands (generate-candidates edge)))      (if (hash-has-key? cands dest)          (reverse (cons dest (hash-ref cands dest)))          (let ((new-edge (hash-filter-keys (curry set-member? unused) cands)))            (if (hash-empty? new-edge)                `(no-path-between ,src ,dest)                (loop new-edge (set-subtract unused (list->set (hash-keys new-edge)))))))))) (module+ main  (Word-ladder "boy" "man")  (Word-ladder "girl" "lady")  (Word-ladder "john" "jane")  (Word-ladder "alien" "drool")  (Word-ladder "child" "adult"))`
Output:
```'("boy" "bay" "may" "man")
'("girl" "gill" "gall" "gale" "gaze" "laze" "lazy" "lady")
'("john" "cohn" "conn" "cone" "cane" "jane")
'("alien"
"alden"
"alder"
"alter"
"aster"
"ester"
"eater"
"bater"
"bator"
"baton"
"baron"
"boron"
"moron"
"moran"
"moral"
"morel"
"monel"
"money"
"monty"
"month"
"mouth"
"south"
"sooth"
"sloth"
"slosh"
"slash"
"flash"
"flank"
"blank"
"bland"
"blend"
"bleed"
"breed"
"trial"
"trill"
"drill"
"droll"
"drool")

## Raku

`constant %dict = 'unixdict.txt'.IO.lines                               .classify(*.chars)                               .map({ .key => .value.Set }); sub word_ladder ( Str \$from, Str \$to ) {    die if \$from.chars != \$to.chars;     my \$sized_dict = %dict{\$from.chars};     my @workqueue = ((\$from,),);    my \$used = (\$from => True).SetHash;    while @workqueue {        my @new_q;        for @workqueue -> @words {            my \$last_word = @words.tail;            my @new_tails = gather for 'a' .. 'z' -> \$replacement_letter {                for ^\$last_word.chars -> \$i {                    my \$new_word = \$last_word;                    \$new_word.substr-rw(\$i, 1) = \$replacement_letter;                     next unless \$new_word ∈ \$sized_dict                        and not \$new_word ∈ \$used;                    take \$new_word;                    \$used{\$new_word} = True;                     return |@words, \$new_word if \$new_word eq \$to;                }            }            push @new_q, ( |@words, \$_ ) for @new_tails;        }        @workqueue = @new_q;    }}for <boy man>, <girl lady>, <john jane>, <child adult> -> (\$from, \$to) {    say word_ladder(\$from, \$to)        // "\$from into \$to cannot be done";}`
Output:
```(boy bay may man)
(girl gill gall gale gaze laze lazy lady)
(john cohn conn cone cane jane)
child into adult cannot be done```

## REXX

This REXX entry does a little more error checking.

It also assumes that the dictionary file is in mixed case as well as the words entered on the CL.

To treat the dictionary and input words as caseless,   all words are translated to lowercase.

Programming note:     this REXX program uses the   lower   BIF   which Regina has).
If your REXX doesn't support that BIF,   here is an equivalent function:

`lower: procedure;  parse arg a;   @= 'abcdefghijklmnopqrstuvwxyz';    @u= @;    upper @u                   return translate(a, @, @u)`
`/*REXX program finds words  (within an identified dict.)  to solve a word ladder puzzle.*/parse arg base targ iFID .                       /*obtain optional arguments from the CL*/if base=='' | base=="," then base= 'boy'         /*Not specified?  Then use the default.*/if targ=='' | targ=="," then targ= 'man'         /* "      "         "   "   "     "    */if iFID=='' | iFID=="," then iFID='unixdict.txt' /* "      "         "   "   "     "    */abc=  'abcdefghijklmnopqrstuvwxyz'               /*the lowercase (Latin) alphabet.      */abcU= abc;    upper abcU                         /* "  uppercase    "        "          */base= lower(base);           targ= lower(targ)   /*lowercase the BASE and also the TARG.*/   L= length(base)                               /*length of the BASE  (in characters). */if L<2  then call err 'base word is too small or missing'              /*oops, too small*/if length(targ)\==L  then call msg , "target word isn't the same length as the base word"call letters                                     /*assign letters,  faster than SUBSTR. */#= 0                                             /*# of words whose length matches BASE.*/@.=                                              /*default value of any dictionary word.*/         do recs=0  while lines(iFID)\==0        /*read each word in the file  (word=X).*/         x= lower(strip( linein( iFID) ) )       /*pick off a word from the input line. */         if length(x)\==L  then iterate          /*Word not correct length?  Then skip. */         #= # + 1;         @.x= 1                /*bump # words with length L; semaphore*/         end   /*recs*/                          /* [↑]   semaphore name is uppercased. */!.= 0say copies('─', 30)     recs       "words in the dictionary file: "       iFIDsay copies('─', 30)       #        "words in the dictionary file of length: "  Lsay copies('─', 30)   ' base  word is: '  basesay copies('─', 30)   'target word is: '  targrung= targ\$= base           do f=1  for m;    call look;  if result\==''  then leave      /*Found?  Quit.*/           end   /*f*/sayif f>m  then call msg  'no word ladder solution possible for '   base   " ──► "   targ                do f-2;       \$= base;    !.= 0   /*process all the rungs that were found*/                 do forever; call look;  if result\==''  then leave      /*Found?  Quit.*/                 end   /*forever*/               end     /*f-2*/call show words(rung)exit 0                                           /*stick a fork in it,  we're all done. *//*──────────────────────────────────────────────────────────────────────────────────────*/msg:  say;   if arg()==2  then say '***error*** ' arg(2);  else say arg(1);  say;  exit 13show: say 'a solution: ' base; do j=1 to arg(1); say left('',12) word(rung,j); end; returnletters:     do m=1  for length(abc);         a.m= substr(abc, m, 1);         end;  return/*──────────────────────────────────────────────────────────────────────────────────────*/look: procedure expose @. !. a. \$ abc base L rung targ search;        rungs= word(rung, 1)      \$\$=;                                                            rung#= words(rungs)              do i=1  for words(\$);                  y= word(\$, i);     !.y= 1                 do k=1  for L                    do n=1  for 26;  z= overlay(a.n, y, k)             /*change a letter*/                    if @.z==''  then iterate       /*Is this not a word?  Then skip it. */                    if !.z      then iterate       /* "   "   a  repeat?    "    "   "  */                    if z==rungs then rung= y rung  /*prepend a word to the rung list.   */                    if z==rungs & rung#>1  then return z               /*short─circuit. */                    if z==targ  then return z                    \$\$= \$\$ z                       /*append a possible ladder word to \$\$*/                    end   /*n*/                 end      /*k*/              end         /*i*/      \$= \$\$;                         return ''`
output   when using the default inputs:
```────────────────────────────── 25104 words in the dictionary file:  unixdict.txt
────────────────────────────── 796 words in the dictionary file of length:  3
──────────────────────────────  base  word is:  boy
────────────────────────────── target word is:  man

a solution:  boy
bay
may
man
```
output   when using the inputs of:     girl   lady
```────────────────────────────── 25104 words in the dictionary file:  unixdict.txt
────────────────────────────── 2187 words in the dictionary file of length:  4
──────────────────────────────  base  word is:  girl

a solution:  girl
gill
gall
gale
gaze
laze
lazy
```
output   when using the inputs of:     john   jane
```────────────────────────────── 25104 words in the dictionary file:  unixdict.txt
────────────────────────────── 2187 words in the dictionary file of length:  4
──────────────────────────────  base  word is:  john
────────────────────────────── target word is:  jane

a solution:  john
cohn
conn
cone
cane
jane
```
output   when using the inputs of:     child   adult
```────────────────────────────── 25104 words in the dictionary file:  unixdict.txt
────────────────────────────── 3161 words in the dictionary file of length:  5
──────────────────────────────  base  word is:  child

```

## Ruby

Translation of: Raku
`require "set" Words = File.open("unixdict.txt").read.split("\n").  group_by { |w| w.length }.map { |k, v| [k, Set.new(v)] }.  to_h def word_ladder(from, to)  raise "Length mismatch" unless from.length == to.length  sized_words = Words[from.length]  work_queue = [[from]]  used = Set.new [from]  while work_queue.length > 0    new_q = []    work_queue.each do |words|      last_word = words[-1]      new_tails = Enumerator.new do |enum|        ("a".."z").each do |replacement_letter|          last_word.length.times do |i|            new_word = last_word.clone            new_word[i] = replacement_letter            next unless sized_words.include? new_word and                        not used.include? new_word            enum.yield new_word            used.add new_word            return words + [new_word] if new_word == to          end        end      end      new_tails.each do |t|        new_q.push(words + [t])      end    end    work_queue = new_q  endend [%w<boy man>, %w<girl lady>, %w<john jane>, %w<child adult>].each do |from, to|  if ladder = word_ladder(from, to)    puts ladder.join " → "  else    puts "#{from} into #{to} cannot be done"  endend`
Output:
```boy → bay → may → man
girl → gill → gall → gale → gaze → laze → lazy → lady
john → cohn → conn → cone → cane → jane
child into adult cannot be done```

## Swift

Translation of: Wren
`import Foundation func oneAway(string1: [Character], string2: [Character]) -> Bool {    if string1.count != string2.count {        return false    }    var result = false    var i = 0    while i < string1.count {        if string1[i] != string2[i] {            if result {                return false            }            result = true        }        i += 1    }    return result} func wordLadder(words: [[Character]], from: String, to: String) {    let fromCh = Array(from)    let toCh = Array(to)    var poss = words.filter{\$0.count == fromCh.count}    var queue: [[[Character]]] = [[fromCh]]    while !queue.isEmpty {        var curr = queue[0]        let last = curr[curr.count - 1]        queue.removeFirst()        let next = poss.filter{oneAway(string1: \$0, string2: last)}        if next.contains(toCh) {            curr.append(toCh)            print(curr.map{String(\$0)}.joined(separator: " -> "))            return        }        poss.removeAll(where: {next.contains(\$0)})        for str in next {            var temp = curr            temp.append(str)            queue.append(temp)        }    }    print("\(from) into \(to) cannot be done.")} do {    let words = try String(contentsOfFile: "unixdict.txt", encoding: String.Encoding.ascii)        .components(separatedBy: "\n")        .filter{!\$0.isEmpty}        .map{Array(\$0)}    wordLadder(words: words, from: "man", to: "boy")    wordLadder(words: words, from: "girl", to: "lady")    wordLadder(words: words, from: "john", to: "jane")    wordLadder(words: words, from: "child", to: "adult")    wordLadder(words: words, from: "cat", to: "dog")    wordLadder(words: words, from: "lead", to: "gold")    wordLadder(words: words, from: "white", to: "black")    wordLadder(words: words, from: "bubble", to: "tickle")} catch {    print(error.localizedDescription)}`
Output:
```man -> ban -> bay -> boy
girl -> gill -> gall -> gale -> gaze -> laze -> lazy -> lady
john -> cohn -> conn -> cone -> cane -> jane
child into adult cannot be done.
cat -> cot -> cog -> dog
white -> whine -> chine -> chink -> clink -> blink -> blank -> black
bubble -> babble -> gabble -> garble -> gargle -> gaggle -> giggle -> jiggle -> jingle -> tingle -> tinkle -> tickle
```

## Wren

Translation of: Phix
Library: Wren-sort
`import "io" for Fileimport "/sort" for Find var words = File.read("unixdict.txt").trim().split("\n") var oneAway = Fn.new { |a, b|    var sum = 0    for (i in 0...a.count) if (a[i] != b[i]) sum = sum + 1    return sum == 1} var wordLadder = Fn.new { |a, b|    var l = a.count    var poss = words.where { |w| w.count == l }.toList    var todo = [[a]]    while (todo.count > 0) {        var curr = todo[0]        todo = todo[1..-1]        var next = poss.where { |w| oneAway.call(w, curr[-1]) }.toList        if (Find.first(next, b) != -1) {            curr.add(b)            System.print(curr.join(" -> "))            return        }        poss = poss.where { |p| !next.contains(p) }.toList        for (i in 0...next.count) {            var temp = curr.toList            temp.add(next[i])            todo.add(temp)        }    }    System.print("%(a) into %(b) cannot be done.")} var pairs = [    ["boy", "man"],    ["girl", "lady"],    ["john", "jane"],    ["child", "adult"]]for (pair in pairs) wordLadder.call(pair[0], pair[1])`
Output:
```boy -> bay -> ban -> man
girl -> gill -> gall -> gale -> gaze -> laze -> lazy -> lady
john -> cohn -> conn -> cone -> cane -> jane
child into adult cannot be done.
```