# Longest increasing subsequence

Longest increasing subsequence
You are encouraged to solve this task according to the task description, using any language you may know.

Calculate and show here a longest increasing subsequence of the list:

${\displaystyle \{3,2,6,4,5,1\}}$

And of the list:

${\displaystyle \{0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15\}}$

Note that a list may have more than one subsequence that is of the maximum length.

Ref
1. Dynamic Programming #1: Longest Increasing Subsequence on Youtube
2. An efficient solution can be based on Patience sorting.

## 360 Assembly

Translation of: VBScript
`*        Longest increasing subsequence    04/03/2017LNGINSQ  CSECT         USING  LNGINSQ,R13        base register         B      72(R15)            skip savearea         DC     17F'0'             savearea         STM    R14,R12,12(R13)    save previous context         ST     R13,4(R15)         link backward         ST     R15,8(R13)         link forward         LR     R13,R15            set addressability         LA     R6,1             i=1       DO WHILE=(CH,R6,LE,=H'2') do i=1 to 2       IF CH,R6,EQ,=H'1' THEN      if i=1 then         MVC    N,=AL2((A2-A1)/2)    n=hbound(a1)         MVC    AA(64),A1            a=a1       ELSE     ,                  else         MVC    N,=AL2((AA-A2)/2)    n=hbound(a2)         MVC    AA(64),A2            a=a2       ENDIF    ,                  endif         MVC    PG,=CL80': '       init buffer         LA     R2,AA-2            @a         LH     R3,N               n         BAL    R14,PRINT          print a         MVC    LL,=H'0'           l=0         SR     R7,R7              j=0       DO WHILE=(CH,R7,LE,N)       do j=0 to n         MVC    LO,=H'1'             lo=1         MVC    HI,LL                hi=l         LH     R4,LO                lo       DO WHILE=(CH,R4,LE,HI)        do while lo<=hi          LH     R1,LO                  lo         AH     R1,HI                  lo+hi         SRA    R1,1                   /2         STH    R1,MIDDLE              middle=(lo+hi)/2         SLA    R1,1                   *2         LH     R1,MM(R1)              m(middle+1)         SLA    R1,1                   *2         LH     R3,AA(R1)              r3=a(m(middle+1)+1)         LR     R1,R7                  j         SLA    R1,1                   *2         LH     R4,AA(R1)              r4=a(j+1)         LH     R2,MIDDLE              middle       IF CR,R3,LT,R4 THEN             if a(m(middle+1)+1)<a(j+1) then         LA     R2,1(R2)                 middle+1         STH    R2,LO                    lo=middle+1       ELSE     ,                      else         BCTR   R2,0                     middle-1         STH    R2,HI                    hi=middle-1       ENDIF    ,                      endif         LH     R4,LO                  lo       ENDDO    ,                    end /*while*/         LH     R10,LO               newl=lo         LR     R1,R10               newl         SLA    R1,1                 *2         LH     R3,MM-2(R1)          m(newl)         LR     R1,R7                j         SLA    R1,1                 *2         STH    R3,PP(R1)            p(j+1)=m(newl)         LR     R1,R10               newl         SLA    R1,1                 *2         STH    R7,MM(R1)            m(newl+1)=j       IF CH,R10,GT,LL               if newl>l then          STH    R10,LL                 l=newl       ENDIF    ,                    endif         LA     R7,1(R7)             j++       ENDDO    ,                  enddo j         LH     R1,LL              l         SLA    R1,1               *2         LH     R10,MM(R1)         k=m(l+1)         LH     R7,LL              j=l       DO WHILE=(CH,R7,GE,=H'1')   do j=l to 1 by -1         LR     R1,R10               k         SLA    R1,1                 *2         LH     R2,AA(R1)            a(k+1)         LR     R1,R7                j         SLA    R1,1                 *2         STH    R2,SS-2(R1)          s(j)=a(k+1)         LR     R1,R10               k         SLA    R1,1                 *2         LH     R10,PP(R1)           k=p(k+1)         BCTR   R7,0                 j--       ENDDO    ,                  enddo j         MVC    PG,=CL80'> '       init buffer         LA     R2,SS-2            @s         LH     R3,LL              l         BAL    R14,PRINT          print a         LA     R6,1(R6)           i++       ENDDO    ,                enddo i         L      R13,4(0,R13)       restore previous savearea pointer         LM     R14,R12,12(R13)    restore previous context         XR     R15,R15            rc=0         BR     R14                exitPRINT    LA     R10,PG        ---- print subroutine         LA     R10,2(R10)         pgi=2         LA     R7,1               j=1       DO WHILE=(CR,R7,LE,R3)      do j=1 to nx         LR     R1,R7                j         SLA    R1,1                 *2         LH     R1,0(R2,R1)          x(j)         XDECO  R1,XDEC              edit x(j)         MVC    0(3,R10),XDEC+9      output x(j)         LA     R10,3(R10)           pgi+=3         LA     R7,1(R7)             j++       ENDDO    ,                  enddo j         XPRNT  PG,L'PG            print buffer         BR     R14           ---- returnA1       DC     H'3',H'2',H'6',H'4',H'5',H'1'A2       DC     H'0',H'8',H'4',H'12',H'2',H'10',H'6',H'14'         DC     H'1',H'9',H'5',H'13',H'3',H'11',H'7',H'15'AA       DS     32H                a(32)PP       DS     32H                p(32)MM       DS     32H                m(32)SS       DS     32H                s(32)N        DS     H                  nLL       DS     H                  lLO       DS     H                  loHI       DS     H                  hiMIDDLE   DS     H                  middlePG       DS     CL80               bufferXDEC     DS     CL12               temp for xdeco         YREGS         END    LNGINSQ`
Output:
```:   3  2  6  4  5  1
>   2  4  5
:   0  8  4 12  2 10  6 14  1  9  5 13  3 11  7 15
>   0  2  6  9 11 15
```

## AutoHotkey

`Lists := [[3,2,6,4,5,1], [0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15]] for k, v in Lists {	D := LIS(v)	MsgBox, % D[D.I].seq} LIS(L) {	D := []	for i, v in L {		D[i, "Length"] := 1, D[i, "Seq"] := v, D[i, "Val"] := v		Loop, % i - 1 {			if(D[A_Index].Val < v && D[A_Index].Length + 1 > D[i].Length) {				D[i].Length := D[A_Index].Length + 1				D[i].Seq := D[A_Index].Seq ", " v				if (D[i].Length > MaxLength)					MaxLength := D[i].Length, D.I := i			}		}	}	return, D}`

Output:

```3, 4, 5
0, 4, 6, 9, 13, 15```

## C

Using an array that doubles as linked list (more like reversed trees really). O(n) memory and O(n2) runtime.

`#include <stdio.h>#include <stdlib.h> struct node {	int val, len;	struct node *next;}; void lis(int *v, int len){	int i;	struct node *p, *n = calloc(len, sizeof *n);	for (i = 0; i < len; i++)		n[i].val = v[i]; 	for (i = len; i--; ) {		// find longest chain that can follow n[i]		for (p = n + i; p++ < n + len; ) {			if (p->val > n[i].val && p->len >= n[i].len) {				n[i].next = p;				n[i].len = p->len + 1;			}		}	} 	// find longest chain	for (i = 0, p = n; i < len; i++)		if (n[i].len > p->len) p = n + i; 	do printf(" %d", p->val); while ((p = p->next));	putchar('\n'); 	free(n);} int main(void){	int x[] = { 3, 2, 6, 4, 5, 1 };	int y[] = { 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15 }; 	lis(x, sizeof(x) / sizeof(int));	lis(y, sizeof(y) / sizeof(int));	return 0;}`
Output:
``` 3 4 5
0 4 6 9 13 15
```

## C++

Patience sorting

`#include <iostream>#include <vector>#include <tr1/memory>#include <algorithm>#include <iterator> template <typename E>struct Node {  E value;  std::tr1::shared_ptr<Node<E> > pointer;}; template <class E>struct node_ptr_less {  bool operator()(const std::tr1::shared_ptr<Node<E> > &node1,		  const std::tr1::shared_ptr<Node<E> > &node2) const {    return node1->value < node2->value;  }};  template <typename E>std::vector<E> lis(const std::vector<E> &n) {  typedef std::tr1::shared_ptr<Node<E> > NodePtr;   std::vector<NodePtr> pileTops;  // sort into piles  for (typename std::vector<E>::const_iterator it = n.begin(); it != n.end(); it++) {    NodePtr node(new Node<E>());    node->value = *it;    typename std::vector<NodePtr>::iterator j =      std::lower_bound(pileTops.begin(), pileTops.end(), node, node_ptr_less<E>());    if (j != pileTops.begin())      node->pointer = *(j-1);    if (j != pileTops.end())      *j = node;    else      pileTops.push_back(node);  }  // extract LIS from piles  std::vector<E> result;  for (NodePtr node = pileTops.back(); node != NULL; node = node->pointer)    result.push_back(node->value);  std::reverse(result.begin(), result.end());  return result;} int main() {  int arr1[] = {3,2,6,4,5,1};  std::vector<int> vec1(arr1, arr1 + sizeof(arr1)/sizeof(*arr1));  std::vector<int> result1 = lis(vec1);  std::copy(result1.begin(), result1.end(), std::ostream_iterator<int>(std::cout, ", "));  std::cout << std::endl;   int arr2[] = {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15};  std::vector<int> vec2(arr2, arr2 + sizeof(arr2)/sizeof(*arr2));  std::vector<int> result2 = lis(vec2);  std::copy(result2.begin(), result2.end(), std::ostream_iterator<int>(std::cout, ", "));  std::cout << std::endl;  return 0;}`
Output:
```2, 4, 5,
0, 2, 6, 9, 11, 15, ```

## C#

### Recursive

Works with: C sharp version 6
`using System;using System.Collections;using System.Collections.Generic;using System.Linq; public static class LIS{    public static IEnumerable<T> FindRec<T>(IList<T> values, IComparer<T> comparer = null) =>        values == null ? throw new ArgumentNullException() :            FindRecImpl(values, Sequence<T>.Empty, 0, comparer ?? Comparer<T>.Default).Reverse();     private static Sequence<T> FindRecImpl<T>(IList<T> values, Sequence<T> current, int index, IComparer<T> comparer) {        if (index == values.Count) return current;        if (current.Length > 0 && comparer.Compare(values[index], current.Value) <= 0)            return FindRecImpl(values, current, index + 1, comparer);        return Max(            FindRecImpl(values, current, index + 1, comparer),            FindRecImpl(values, current + values[index], index + 1, comparer)        );    }     private static Sequence<T> Max<T>(Sequence<T> a, Sequence<T> b) => a.Length < b.Length ? b : a;     class Sequence<T> : IEnumerable<T>    {        public static readonly Sequence<T> Empty = new Sequence<T>(default(T), null);         public Sequence(T value, Sequence<T> tail)        {            Value = value;            Tail = tail;            Length = tail == null ? 0 : tail.Length + 1;        }         public T Value { get; }        public Sequence<T> Tail { get; }        public int Length { get; }         public static Sequence<T> operator +(Sequence<T> s, T value) => new Sequence<T>(value, s);         public IEnumerator<T> GetEnumerator()        {            for (var s = this; s.Length > 0; s = s.Tail) yield return s.Value;        }         IEnumerator IEnumerable.GetEnumerator() => GetEnumerator();    }}`

### Patience sorting

Works with: C sharp version 7
`public static class LIS{    public static T[] Find<T>(IList<T> values, IComparer<T> comparer = null) {        if (values == null) throw new ArgumentNullException();        if (comparer == null) comparer = Comparer<T>.Default;        var pileTops = new List<T>();        var pileAssignments = new int[values.Count];        for (int i = 0; i < values.Count; i++) {            T element = values[i];            int pile = pileTops.BinarySearch(element, comparer);            if (pile < 0) pile = ~pile;            if (pile == pileTops.Count) pileTops.Add(element);            else pileTops[pile] = element;            pileAssignments[i] = pile;        }        T[] result = new T[pileTops.Count];        for (int i = pileAssignments.Length - 1, p = pileTops.Count - 1; p >= 0; i--) {            if (pileAssignments[i] == p) result[p--] = values[i];        }        return result;    }}`

## Clojure

Implementation using the Patience Sort approach. The elements (newelem) put on a pile combine the "card" with a reference to the top of the previous stack, as per the algorithm. The combination is done using cons, so what gets put on a pile is a list -- a descending subsequence.

`(defn place [piles card]  (let [[les gts] (->> piles (split-with #(<= (ffirst %) card)))        newelem (cons card (->> les last first))        modpile (cons newelem (first gts))]    (concat les (cons modpile (rest gts))))) (defn a-longest [cards]  (let [piles (reduce place '() cards)]    (->> piles last first reverse))) (println (a-longest [3 2 6 4 5 1]))(println (a-longest [0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15]))`
Output:
`(2 4 5)(0 2 6 9 11 15)`

## Common Lisp

### Common Lisp: Using the method in the video

Slower and more memory usage compared to the patience sort method.

`(defun longest-increasing-subseq (list)  (let ((subseqs nil))    (dolist (item list)      (let ((longest-so-far (longest-list-in-lists (remove-if-not #'(lambda (l) (> item (car l))) subseqs))))	(push (cons item longest-so-far) subseqs)))    (reverse (longest-list-in-lists subseqs)))) (defun longest-list-in-lists (lists)  (let ((longest nil)	(longest-len 0))    (dolist (list lists)      (let ((len (length list)))	(when (> len longest-len)	  (setf longest list		longest-len len))))    longest)) (dolist (l (list (list 3 2 6 4 5 1)		 (list 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15)))  (format t "~A~%" (longest-increasing-subseq l))))`
Output:
```(2 4 5)
(0 2 6 9 11 15)```

### Common Lisp: Using the Patience Sort approach

This is 5 times faster and and uses a third of the memory compared to the approach in the video.

`(defun lis-patience-sort (input-list)  (let ((piles nil))    (dolist (item input-list)      (setf piles (insert-item item piles)))    (reverse (caar (last piles))))) (defun insert-item (item piles)  (let ((not-found t))    (loop        while not-found       for pile in piles       and prev = nil then pile       and i from 0       do (when (<= item (caar pile))	    (setf (elt piles i) (push (cons item (car prev)) (elt piles i))		  not-found nil)))    (if not-found	(append piles (list (list (cons item (caar (last piles)))))) 	piles))) (dolist (l (list (list 3 2 6 4 5 1)		   (list 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15)))    (format t "~A~%" (lis-patience-sort l)))`
Output:
```(2 4 5)
(0 2 6 9 11 15)```

### Common Lisp: Using the Patience Sort approach (alternative)

This is a different version of the code above.

`(defun insert-item (item piles)  (multiple-value-bind	(i prev)      (do* ((prev nil (car x))	    (x piles (cdr x))	    (i 0 (1+ i)))	   ((or (null x) (<= item (caaar x))) (values i prev)))    (if (= i (length piles))	(append piles (list (list (cons item (caar (last piles))))))	(progn (push (cons item (car prev)) (elt piles i))	       piles)))) (defun longest-inc-seq (input)  (do* ((piles nil (insert-item (car x) piles))	(x input (cdr x)))       ((null x) (reverse (caar (last piles)))))) (dolist (l (list (list 3 2 6 4 5 1)		   (list 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15)))    (format t "~A~%" (longest-inc-seq l)))`
Output:
```(2 4 5)
(0 2 6 9 11 15)```

## D

### Simple Version

Translation of: Haskell

Uses the second powerSet function from the Power Set Task.

`import std.stdio, std.algorithm, power_set2; T[] lis(T)(T[] items) pure nothrow {    //return items.powerSet.filter!isSorted.max!q{ a.length };    return items           .powerSet           .filter!isSorted           .minPos!q{ a.length > b.length }           .front;} void main() {    [3, 2, 6, 4, 5, 1].lis.writeln;    [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15].lis.writeln;}`
Output:
```[2, 4, 5]
[0, 2, 6, 9, 11, 15]```

### Patience sorting

Translation of: Python

From the second Python entry, using the Patience sorting method.

`import std.stdio, std.algorithm, std.array; /// Return one of the Longest Increasing Subsequence of/// items using patience sorting.T[] lis(T)(in T[] items) pure nothrowif (__traits(compiles, T.init < T.init))out(result) {    assert(result.length <= items.length);    assert(result.isSorted);    assert(result.all!(x => items.canFind(x)));} body {    if (items.empty)        return null;     static struct Node { T val; Node* back; }    auto pile = [[new Node(items[0])]];     OUTER: foreach (immutable di; items[1 .. \$]) {        foreach (immutable j, ref pj; pile)            if (pj[\$ - 1].val > di) {                pj ~= new Node(di, j ? pile[j - 1][\$ - 1] : null);                continue OUTER;            }        pile ~= [new Node(di, pile[\$ - 1][\$ - 1])];    }     T[] result;    for (auto ptr = pile[\$ - 1][\$ - 1]; ptr != null; ptr = ptr.back)        result ~= ptr.val;    result.reverse();    return result;} void main() {    foreach (d; [[3,2,6,4,5,1],                 [0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15]])        d.lis.writeln;}`

The output is the same.

### Faster Version

Translation of: Java

With some more optimizations.

`import std.stdio, std.algorithm, std.range, std.array; T[] lis(T)(in T[] items) pure nothrowif (__traits(compiles, T.init < T.init))out(result) {    assert(result.length <= items.length);    assert(result.isSorted);    assert(result.all!(x => items.canFind(x)));} body {    if (items.empty)        return null;     static struct Node {        T value;        Node* pointer;    }    Node*[] pileTops;    auto nodes = minimallyInitializedArray!(Node[])(items.length);     // Sort into piles.    foreach (idx, x; items) {        auto node = &nodes[idx];        node.value = x;        immutable i = pileTops.length -                      pileTops.assumeSorted!q{a.value < b.value}                      .upperBound(node)                      .length;        if (i != 0)            node.pointer = pileTops[i - 1];        if (i != pileTops.length)            pileTops[i] = node;        else            pileTops ~= node;    }     // Extract LIS from nodes.    size_t count = 0;    for (auto n = pileTops[\$ - 1]; n != null; n = n.pointer)        count++;    auto result = minimallyInitializedArray!(T[])(count);    for (auto n = pileTops[\$ - 1]; n != null; n = n.pointer)        result[--count] = n.value;    return result;} void main() {    foreach (d; [[3,2,6,4,5,1],                 [0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15]])        d.writeln;}`

The output is the same.

## Déjà Vu

Translation of: Python
`in-pair:	if = :nil dup:		false drop	else:		@in-pair &> swap &< dup get-last lst:	get-from lst -- len lst lis-sub pile i di:	for j range 0 -- len pile:		local :pj get-from pile j		if > &< get-last pj di:			push-to pj & di if j get-last get-from pile -- j :nil			return	push-to pile [ & di get-last get-last pile ] lis d:	local :pile [ [ & get-from d 0 :nil ] ]	for i range 1 -- len d:		lis-sub pile i get-from d i	[ for in-pair get-last get-last pile ] !. lis [ 3 2 6 4 5 1 ]!. lis [ 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15 ] `
Output:
```[ 2 4 5 ]
[ 0 2 6 9 11 15 ]```

## Elixir

Translation of: Erlang

### Naive version

very slow

`defmodule Longest_increasing_subsequence do  # Naive implementation  def lis(l) do    (for ss <- combos(l), ss == Enum.sort(ss), do: ss)    |> Enum.max_by(fn ss -> length(ss) end)  end   defp combos(l) do    Enum.reduce(1..length(l), [[]], fn k, acc -> acc ++ (combos(k, l)) end)  end  defp combos(1, l), do: (for x <- l, do: [x])  defp combos(k, l) when k == length(l), do: [l]   defp combos(k, [h|t]) do    (for subcombos <- combos(k-1, t), do: [h | subcombos]) ++ combos(k, t)  endend IO.inspect Longest_increasing_subsequence.lis([3,2,6,4,5,1])IO.inspect Longest_increasing_subsequence.lis([0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15])`
Output:
```[3, 4, 5]
[0, 4, 6, 9, 13, 15]
```

### Patience sort version

`defmodule Longest_increasing_subsequence do  # Patience sort implementation  def patience_lis(l), do: patience_lis(l, [])   defp patience_lis([h | t], []), do: patience_lis(t, [[{h,[]}]])  defp patience_lis([h | t], stacks), do: patience_lis(t, place_in_stack(h, stacks, []))  defp patience_lis([], []), do: []  defp patience_lis([], stacks), do: get_previous(stacks) |> recover_lis |> Enum.reverse   defp place_in_stack(e, [stack = [{h,_} | _] | tstacks], prevstacks) when h > e do     prevstacks ++ [[{e, get_previous(prevstacks)} | stack] | tstacks]  end  defp place_in_stack(e, [stack | tstacks], prevstacks) do     place_in_stack(e, tstacks, prevstacks ++ [stack])  end  defp place_in_stack(e, [], prevstacks) do     prevstacks ++ [[{e, get_previous(prevstacks)}]]  end   defp get_previous(stack = [_|_]), do: hd(List.last(stack))  defp get_previous([]), do: []   defp recover_lis({e, prev}), do: [e | recover_lis(prev)]  defp recover_lis([]), do: []end IO.inspect Longest_increasing_subsequence.patience_lis([3,2,6,4,5,1])IO.inspect Longest_increasing_subsequence.patience_lis([0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15])`
Output:
```[2, 4, 5]
[0, 2, 6, 9, 11, 15]
```

## Erlang

Both implementations:

- Naive version
Translation of: Haskell

- Patience sort version.

Function combos is copied from panduwana blog.

Function maxBy is copied from Hynek -Pichi- Vychodil's answer.

` -module(longest_increasing_subsequence). -export([test_naive/0, test_patience/0]). % **************************************************% Interface to test the implementation% ************************************************** test_naive() ->    test_gen(fun lis/1). test_patience() ->    test_gen(fun patience_lis/1). test_gen(F) ->    show_result(F([3,2,6,4,5,1])),    show_result(F([0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15])). show_result(Res) ->    io:format("~w\n", [Res]). % ************************************************** % **************************************************% Naive implementation% ************************************************** lis(L) ->    maxBy(        fun(SS) -> length(SS) end,        [ lists:usort(SS)             ||  SS <- combos(L),                 SS == lists:sort(SS)]    ). % ************************************************** % **************************************************% Patience sort implementation% ************************************************** patience_lis(L) ->    patience_lis(L, []). patience_lis([H | T], Stacks) ->    NStacks =         case Stacks of             [] ->                 [[{H,[]}]];            _ ->                place_in_stack(H, Stacks, [])        end,    patience_lis(T, NStacks);patience_lis([], Stacks) ->    case Stacks of         [] ->             [];        [_|_] ->            lists:reverse( recover_lis( get_previous(Stacks) ) )    end. place_in_stack(E, [Stack = [{H,_} | _] | TStacks], PrevStacks) when H > E ->     PrevStacks ++ [[{E, get_previous(PrevStacks)} | Stack] | TStacks];place_in_stack(E, [Stack = [{H,_} | _] | TStacks], PrevStacks) when H =< E ->     place_in_stack(E, TStacks, PrevStacks ++ [Stack]);place_in_stack(E, [], PrevStacks)->     PrevStacks ++ [[{E, get_previous(PrevStacks)}]]. get_previous(Stack = [_|_]) ->    hd(lists:last(Stack));get_previous([]) ->    []. recover_lis({E,Prev}) ->     [E|recover_lis(Prev)];recover_lis([]) ->     []. % ************************************************** % **************************************************% Copied from http://stackoverflow.com/a/4762387/4162959% ************************************************** maxBy(F, L) ->     element(        2,         lists:max([ {F(X), X} || X <- L])    ). % ************************************************** % **************************************************% Copied from https://panduwana.wordpress.com/2010/04/21/combination-in-erlang/% ************************************************** combos(L) ->    lists:foldl(        fun(K, Acc) -> Acc++(combos(K, L)) end,        [[]],        lists:seq(1, length(L))    ). combos(1, L) ->     [[X] || X <- L];combos(K, L) when K == length(L) ->     [L];combos(K, [H|T]) ->    [[H | Subcombos]         || Subcombos <- combos(K-1, T)]    ++ (combos(K, T)). % ************************************************** `

Output naive:

```[3,4,5]
[0,4,6,9,13,15]
```

Output patience:

```[2,4,5]
[0,2,6,9,11,15]
```

## Go

Patience sorting

`package main import (  "fmt"  "sort") type Node struct {    val int    back *Node} func lis (n []int) (result []int) {  var pileTops []*Node  // sort into piles  for _, x := range n {    j := sort.Search(len(pileTops), func (i int) bool { return pileTops[i].val >= x })    node := &Node{ x, nil }    if j != 0 { node.back = pileTops[j-1] }    if j != len(pileTops) {      pileTops[j] = node    } else {      pileTops = append(pileTops, node)    }  }   if len(pileTops) == 0 { return []int{} }  for node := pileTops[len(pileTops)-1]; node != nil; node = node.back {    result = append(result, node.val)  }  // reverse  for i := 0; i < len(result)/2; i++ {    result[i], result[len(result)-i-1] = result[len(result)-i-1], result[i]  }  return} func main() {    for _, d := range [][]int{{3, 2, 6, 4, 5, 1},            {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15}} {        fmt.Printf("an L.I.S. of %v is %v\n", d, lis(d))    }}`
Output:
```an L.I.S. of [3 2 6 4 5 1] is [2 4 5]
an L.I.S. of [0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15] is [0 2 6 9 11 15]```

## Haskell

### Naive implementation

`import Data.Ord          ( comparing )import Data.List         ( maximumBy, subsequences )import Data.List.Ordered ( isSorted, nub ) lis :: Ord a => [a] -> [a]lis = maximumBy (comparing length) . map nub  . filter isSorted . subsequences                 --    longest                    <-- unique <-- increasing    <-- all       main = do  print \$ lis [3,2,6,4,5,1]  print \$ lis [0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15]  print \$ lis [1,1,1,1]`
Output:
```[2,4,5]
[0,2,6,9,11,15]
[1]```

### Patience sorting

`{-# LANGUAGE FlexibleContexts, UnicodeSyntax #-} module Main (main, lis) where import Control.Monad.ST  ( ST, runST )import Control.Monad     ( (>>=), (=<<), foldM )import Data.Array.ST     ( Ix,  STArray, readArray, writeArray, newArray )import Data.Array.MArray ( MArray ) infix 4 ≡ (≡) :: Eq α ⇒ α → α → Bool(≡) = (==) (∘) = (.)  lis ∷ Ord α ⇒ [α] → [α]lis xs = runST \$ do  let lxs = length xs  pileTops ← newSTArray (min 1 lxs , lxs) []  i        ← foldM (stack pileTops) 0 xs  readArray pileTops i >>= return ∘ reverse stack ∷ (Integral ι, Ord ε, Ix ι, MArray α [ε] μ)      ⇒ α ι [ε] → ι → ε → μ ιstack piles i x = do  j ← bsearch piles x i  writeArray piles j ∘ (x:) =<< if j ≡ 1 then return []                                         else readArray piles (j-1)  return \$ if j ≡ i+1 then i+1 else i bsearch ∷ (Integral ι, Ord ε, Ix ι, MArray α [ε] μ)        ⇒ α ι [ε] → ε → ι → μ ιbsearch piles x = go 1  where go lo hi | lo > hi   = return lo                 | otherwise =                    do (y:_) ← readArray piles mid                       if y < x then go (succ mid) hi                                else go lo (pred mid)                          where mid = (lo + hi) `div` 2 newSTArray ∷ Ix ι ⇒ (ι,ι) → ε → ST σ (STArray σ ι ε)newSTArray = newArray  main ∷ IO ()main = do  print \$ lis [3, 2, 6, 4, 5, 1]  print \$ lis [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]  print \$ lis [1, 1, 1, 1]`
Output:
```[2,4,5]
[0,2,6,9,11,15]
[1]```

## Icon and Unicon

The following works in both languages:

`procedure main(A)    every writes((!lis(A)||" ") | "\n")end procedure lis(A)    r := [A[1]] | fail    every (put(pt := [], [v := !A]), p := !pt) do        if put(p, p[-1] < v) then r := (*p > *r, p)        else p[-1] := (p[-2] < v)    return rend`

Sample runs:

```->lis 3 2 6 4 5 1
3 4 5
->lis 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15
0 4 6 9 11 15
->
```

## J

These examples are simple enough for brute force to be reasonable:

`increasing=: (-: /:~)@#~"1 #:@[email protected]^~&2@#longestinc=: ] #~ [: (#~ ([: (= >./) +/"1)) #:@[email protected]`

In other words: consider all 2^n bitmasks of length n, and select those which strictly select increasing sequences. Find the length of the longest of these and use the masks of that length to select from the original sequence.

Example use:

`    longestinc 3,2,6,4,5,12 4 53 4 5   longestinc 0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,150 2 6 9 11 150 2 6 9 13 150 4 6 9 11 150 4 6 9 13 15`

## Java

A solution based on patience sorting, except that it is not necessary to keep the whole pile, only the top (in solitaire, bottom) of the pile, along with pointers from each "card" to the top of its "previous" pile.

`import java.util.*; public class LIS {    public static <E extends Comparable<? super E>> List<E> lis(List<E> n) {        List<Node<E>> pileTops = new ArrayList<Node<E>>();        // sort into piles        for (E x : n) {	    Node<E> node = new Node<E>();	    node.value = x;            int i = Collections.binarySearch(pileTops, node);            if (i < 0) i = ~i;	    if (i != 0)		node.pointer = pileTops.get(i-1);            if (i != pileTops.size())                pileTops.set(i, node);            else                pileTops.add(node);        }	// extract LIS from nodes	List<E> result = new ArrayList<E>();	for (Node<E> node = pileTops.size() == 0 ? null : pileTops.get(pileTops.size()-1);                node != null; node = node.pointer)	    result.add(node.value);	Collections.reverse(result);	return result;    }     private static class Node<E extends Comparable<? super E>> implements Comparable<Node<E>> {	public E value;	public Node<E> pointer;        public int compareTo(Node<E> y) { return value.compareTo(y.value); }    }     public static void main(String[] args) {	List<Integer> d = Arrays.asList(3,2,6,4,5,1);	System.out.printf("an L.I.S. of %s is %s\n", d, lis(d));        d = Arrays.asList(0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15);	System.out.printf("an L.I.S. of %s is %s\n", d, lis(d));    }}`
Output:
```an L.I.S. of [3, 2, 6, 4, 5, 1] is [2, 4, 5]
an L.I.S. of [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15] is [0, 2, 6, 9, 11, 15]```

## JavaScript

`  var _ = require('underscore');function findIndex(input){	var len = input.length;	var maxSeqEndingHere = _.range(len).map(function(){return 1;});	for(var i=0; i<len; i++)		for(var j=i-1;j>=0;j--)			if(input[i] > input[j] && maxSeqEndingHere[j] >= maxSeqEndingHere[i])				maxSeqEndingHere[i] = maxSeqEndingHere[j]+1;	return maxSeqEndingHere;} function findSequence(input, result){	var maxValue = Math.max.apply(null, result);	var maxIndex = result.indexOf(Math.max.apply(Math, result));	var output = [];	output.push(input[maxIndex]);	for(var i = maxIndex ; i >= 0; i--){		if(maxValue==0)break;		if(input[maxIndex] > input[i]  && result[i] == maxValue-1){			output.push(input[i]);			maxValue--;		}	}	output.reverse();	return output;}  var x = [0, 7, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15];var y = [3, 2, 6, 4, 5, 1]; var result = findIndex(x);var final = findSequence(x, result);console.log(final); var result1 = findIndex(y);var final1 = findSequence(y, result1);console.log(final1); `
Output:
```[ 0, 2, 6, 9, 11, 15 ]
[ 2, 4, 5 ]
```

## jq

Works with: jq version 1.4

Use the patience sorting method to find a longest (strictly) increasing subsequence.

Generic functions:

Recent versions of jq have functions that obviate the need for the two generic functions defined in this subsection.

`def until(cond; update):  def _until:    if cond then . else (update | _until) end;   try _until catch if .== "break" then empty else . end; # binary search for insertion pointdef bsearch(target):  . as \$in  | [0, length-1] # [low, high]  | until(.[0] > .[1];          .[0] as \$low | .[1] as \$high          | (\$low + (\$high - \$low) / 2 | floor) as \$mid          | if \$in[\$mid] >= target            then .[1] = \$mid - 1            else .[0] = \$mid + 1            end )  | .[0];`

lis:

`def lis:   # Helper function:  # given a stream, produce an array of the items in reverse order:  def reverse(stream): reduce stream as \$i ([]; [\$i] + .);   # put the items into increasing piles using the structure:  # NODE = {"val": value, "back": NODE}  reduce .[] as \$x    ( []; # array of NODE      # binary search for the appropriate pile      (map(.val) | bsearch(\$x)) as \$i      | setpath([\$i];                {"val": \$x,                 "back": (if \$i > 0 then .[\$i-1] else null end) })    )  | .[length - 1]   | reverse( recurse(.back) | .val ) ; `

Examples:

`( [3,2,6,4,5,1],  [0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15]) | lis`
Output:
`\$ jq -c -n -f lis.jq[2,4,5][0,2,6,9,11,15] `

## Julia

Works with: Julia version 0.6
` function lis(arr::Vector)    if length(arr) == 0 return copy(arr) end    L = Vector{typeof(arr)}(length(arr))    L[1] = [arr[1]]     for i in 2:length(arr)        nextL = []        for j in 1:i            if arr[j] < arr[i] && length(L[j]) ≥ length(nextL)                nextL = L[j]            end        end        L[i] = vcat(nextL, arr[i])    end     return L[indmax(length.(L))]end @show lis([3, 2, 6, 4, 5, 1])@show lis([0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15])`
Output:
```lis([3, 2, 6, 4, 5, 1]) = [2, 4, 5]
lis([0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]) = [0, 2, 6, 9, 11, 15]```

## Kotlin

Uses the algorithm in the Wikipedia L.I.S. article:

`// version 1.1.0 fun longestIncreasingSubsequence(x: IntArray): IntArray =     when (x.size) {        0    -> IntArray(0)        1    -> x        else -> {            val n = x.size            val p = IntArray(n)             val m = IntArray(n + 1)            var len = 0            for (i in 0 until n) {                 var lo = 1                var hi = len                while (lo <= hi) {                    val mid = Math.ceil((lo + hi) / 2.0).toInt()                    if (x[m[mid]] < x[i]) lo = mid + 1                    else hi = mid - 1                }                val newLen = lo                 p[i] = m[newLen - 1]                m[newLen] = i                if (newLen > len) len = newLen            }             val s = IntArray(len)            var k = m[len]            for (i in len - 1 downTo 0) {                s[i] = x[k]                k = p[k]            }            s           }     } fun main(args: Array<String>) {    val lists = listOf(        intArrayOf(3, 2, 6, 4, 5, 1),        intArrayOf(0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)    )    lists.forEach { println(longestIncreasingSubsequence(it).asList()) }}`
Output:
```[2, 4, 5]
[0, 2, 6, 9, 11, 15]
```

## Lua

`function buildLIS(seq)    local piles = { { {table.remove(seq, 1), nil} } }    while #seq>0 do        local x=table.remove(seq, 1)        for j=1,#piles do            if piles[j][#piles[j]][1]>x then                table.insert(piles[j], {x, (piles[j-1] and #piles[j-1])})                break            elseif j==#piles then                table.insert(piles, {{x, #piles[j]}})            end        end    end    local t={}    table.insert(t, piles[#piles][1][1])    local p=piles[#piles][1][2]    for i=#piles-1,1,-1 do        table.insert(t, piles[i][p][1])        p=piles[i][p][2]    end    table.sort(t)    print(unpack(t))end buildLIS({3,2,6,4,5,1})buildLIS({0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15}) `
Output:
```2   4   5
0   2   6   9   11  15
```

## Mathematica

Although undocumented, Mathematica has the function LongestAscendingSequence which exactly does what the Task asks for:

`LongestAscendingSequence/@{{3,2,6,4,5,1},{0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15}}`
Output:
`{{2,4,5},{0,2,6,9,11,15}}`

## Nirod

Translation of: Python
`proc longestIncreasingSubsequence[T](d: seq[T]): seq[T] =  var l = newSeq[seq[T]]()  for i in 0 .. <d.len:    var x = newSeq[T]()    for j in 0 .. <i:      if l[j][l[j].high] < d[i] and l[j].len > x.len:        x = l[j]    l.add x & @[d[i]]  result = @[]  for x in l:    if x.len > result.len:      result = x for d in [@[3,2,6,4,5,1], @[0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]]:  echo "a L.I.S. of ", d, " is ", longestIncreasingSubsequence(d)`
Output:
```a L.I.S. of @[3, 2, 6, 4, 5, 1] is @[3, 4, 5]
a L.I.S. of @[0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15] is @[0, 4, 6, 9, 13, 15]```

## Objective-C

Patience sorting

`#import <Foundation/Foundation.h> @interface Node : NSObject {@public  id val;  Node *back;}@end @implementation Node@end @interface NSArray (LIS)- (NSArray *)longestIncreasingSubsequenceWithComparator:(NSComparator)comparator;@end @implementation NSArray (LIS)- (NSArray *)longestIncreasingSubsequenceWithComparator:(NSComparator)comparator {  NSMutableArray *pileTops = [[NSMutableArray alloc] init];  // sort into piles  for (id x in self) {    Node *node = [[Node alloc] init];    node->val = x;    int i = [pileTops indexOfObject:node                      inSortedRange:NSMakeRange(0, [pileTops count])                            options:NSBinarySearchingInsertionIndex|NSBinarySearchingFirstEqual                    usingComparator:^NSComparisonResult(Node *node1, Node *node2) {                      return comparator(node1->val, node2->val);                    }];    if (i != 0)      node->back = pileTops[i-1];    pileTops[i] = node;  }   // follow pointers from last node  NSMutableArray *result = [[NSMutableArray alloc] init];  for (Node *node = [pileTops lastObject]; node; node = node->back)    [result addObject:node->val];  return [[result reverseObjectEnumerator] allObjects];}@end int main(int argc, const char *argv[]) {  @autoreleasepool {    for (NSArray *d in @[@[@3, @2, @6, @4, @5, @1],         @[@0, @8, @4, @12, @2, @10, @6, @14, @1, @9, @5, @13, @3, @11, @7, @15]])      NSLog(@"an L.I.S. of %@ is %@", d,            [d longestIncreasingSubsequenceWithComparator:^NSComparisonResult(id obj1, id obj2) {        return [obj1 compare:obj2];      }]);  }  return 0;}`
Output:
```an L.I.S. of (
3,
2,
6,
4,
5,
1
) is (
2,
4,
5
)
an L.I.S. of (
0,
8,
4,
12,
2,
10,
6,
14,
1,
9,
5,
13,
3,
11,
7,
15
) is (
0,
2,
6,
9,
11,
15
)```

## OCaml

### Naïve implementation

`let longest l = List.fold_left (fun acc x -> if List.length acc < List.length x                                  then x                                  else acc) [] l let subsequences d l =  let rec check_subsequences acc = function    | x::s -> check_subsequences (if (List.hd (List.rev x)) < d                                  then x::acc                                  else acc) s    | [] -> acc  in check_subsequences [] l let lis d =  let rec lis' l = function    | x::s -> lis' ((longest (subsequences x l)@[x])::l) s    | [] -> longest l  in lis' [] d let _ =  let sequences = [[3; 2; 6; 4; 5; 1]; [0; 8; 4; 12; 2; 10; 6; 14; 1; 9; 5; 13; 3; 11; 7; 15]]  in  List.map (fun x -> print_endline (String.concat " " (List.map string_of_int                                                         (lis x)))) sequences`
Output:
```3 4 5
0 4 6 9 13 15
```

### Patience sorting

`let lis cmp list =  let pile_tops = Array.make (List.length list) [] in  let bsearch_piles x len =    let rec aux lo hi =      if lo > hi then        lo      else        let mid = (lo + hi) / 2 in        if cmp (List.hd pile_tops.(mid)) x < 0 then          aux (mid+1) hi        else          aux lo (mid-1)    in      aux 0 (len-1)  in  let f len x =    let i = bsearch_piles x len in    pile_tops.(i) <- x :: if i = 0 then [] else pile_tops.(i-1);    if i = len then len+1 else len  in  let len = List.fold_left f 0 list in  List.rev pile_tops.(len-1)`

Usage:

```# lis compare [3; 2; 6; 4; 5; 1];;
- : int list = [2; 4; 5]
# lis compare [0; 8; 4; 12; 2; 10; 6; 14; 1; 9; 5; 13; 3; 11; 7; 15];;
- : int list = [0; 2; 6; 9; 11; 15]```

## Perl

### Dynamic programming

Translation of: Perl 6
`sub lis {    my @l = map [], 1 .. @_;    push @{\$l[0]}, +\$_[0];    for my \$i (1 .. @_-1) {        for my \$j (0 .. \$i - 1) {            if (\$_[\$j] < \$_[\$i] and @{\$l[\$i]} < @{\$l[\$j]} + 1) {                \$l[\$i] = [ @{\$l[\$j]} ];            }        }        push @{\$l[\$i]}, \$_[\$i];    }    my (\$max, \$l) = 0, [];    for (@l) {        (\$max, \$l) = (scalar(@\$_), \$_) if @\$_ > \$max;    }    return @\$l;} print join ' ', lis 3, 2, 6, 4, 5, 1;print join ' ', lis 0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15; `
Output:
```2 4 5
0 2 6 9 11 15```

### Patience sorting

`sub lis {    my @pileTops;    # sort into piles    foreach my \$x (@_) {	# binary search	my \$low = 0, \$high = \$#pileTops;	while (\$low <= \$high) {	    my \$mid = int((\$low + \$high) / 2);	    if (\$pileTops[\$mid]{val} >= \$x) {	        \$high = \$mid - 1;	    } else {	        \$low = \$mid + 1;	    }	}	my \$i = \$low;	my \$node = {val => \$x};        \$node->{back} = \$pileTops[\$i-1] if \$i != 0;	\$pileTops[\$i] = \$node;    }    my @result;    for (my \$node = \$pileTops[-1]; \$node; \$node = \$node->{back}) {        push @result, \$node->{val};    }     return reverse @result;} foreach my \$r ([3, 2, 6, 4, 5, 1],	       [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]) {    my @d = @\$r;    my @lis = lis(@d);    print "an L.I.S. of [@d] is [@lis]\n"; }`
Output:
```an L.I.S. of [3 2 6 4 5 1] is [2 4 5]
an L.I.S. of [0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15] is [0 2 6 9 11 15]```

## Perl 6

Works with: rakudo version 2018.03

### Dynamic programming

Straight-forward implementation of the algorithm described in the video.

`sub lis(@d) {    my @l = [].item xx @d;    @l[0].push: @d[0];    for 1 ..^ @d -> \$i {        for ^\$i -> \$j {            if @d[\$j] < @d[\$i] && @l[\$i] < @l[\$j] + 1 {                @l[\$i] = [ @l[\$j][] ]            }        }        @l[\$i].push: @d[\$i];    }    return max :by(*.elems), @l;} say lis([3,2,6,4,5,1]);say lis([0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15]);`
Output:
```[2 4 5]
[0 2 6 9 11 15]```

### Patience sorting

`sub lis(@deck is copy) {    my @S = [@deck.shift() => Nil].item;    for @deck -> \$card {        with first { @S[\$_][*-1].key > \$card }, ^@S -> \$i {            @S[\$i].push: \$card => @S[\$i-1][*-1] // Nil        } else {            @S.push: [ \$card => @S[*-1][*-1] // Nil ].item        }    }    reverse map *.key, (        @S[*-1][*-1], *.value ...^ !*.defined    )} say lis <3 2 6 4 5 1>;say lis <0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15>;`
Output:
```[2 4 5]
[0 2 6 9 11 15]```

## Phix

Using the Wikipedia algorithm (converted to 1-based indexing)

`function lis(sequence X, integer N = length(X))    sequence P = repeat(0,N)    sequence M = repeat(0,N)    integer len = 0    for i=1 to N do        integer lo = 1        integer hi = len        while lo<=hi do            integer mid = ceil((lo+hi)/2)            if X[M[mid]]<X[i] then                lo = mid + 1            else                hi = mid - 1            end if        end while        if lo>1 then            P[i] = M[lo-1]        end if        M[lo] = i        if lo>len then len = lo end if    end for    sequence res = repeat(0,len)    if len>0 then        integer k = M[len]        for i=len to 1 by -1 do            res[i] = X[k]            k = P[k]        end for    end if    return resend function constant tests = {{3, 2, 6, 4, 5, 1},                  {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15}}for i=1 to length(tests) do    ?lis(tests[i])end for`
Output:
```{2,4,5}
{0,2,6,9,11,15}
```

## PHP

Patience sorting

`<?phpclass Node {    public \$val;    public \$back = NULL;} function lis(\$n) {    \$pileTops = array();    // sort into piles    foreach (\$n as \$x) {        // binary search        \$low = 0; \$high = count(\$pileTops)-1;        while (\$low <= \$high) {            \$mid = (int)((\$low + \$high) / 2);            if (\$pileTops[\$mid]->val >= \$x)                \$high = \$mid - 1;            else                \$low = \$mid + 1;        }        \$i = \$low;        \$node = new Node();        \$node->val = \$x;        if (\$i != 0)            \$node->back = \$pileTops[\$i-1];        \$pileTops[\$i] = \$node;    }    \$result = array();    for (\$node = count(\$pileTops) ? \$pileTops[count(\$pileTops)-1] : NULL;         \$node != NULL; \$node = \$node->back)        \$result[] = \$node->val;     return array_reverse(\$result);} print_r(lis(array(3, 2, 6, 4, 5, 1)));print_r(lis(array(0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)));?>`
Output:
```Array
(
[0] => 2
[1] => 4
[2] => 5
)
Array
(
[0] => 0
[1] => 2
[2] => 6
[3] => 9
[4] => 11
[5] => 15
)```

## PicoLisp

Adapted patience sorting approach:

`(de longinc (Lst)   (let (D NIL  R NIL)      (for I Lst         (cond            ((< I (last D))               (for (Y . X) D                  (T (> X I) (set (nth D Y) I)) ) )            ((< I (car R))               (set R I)               (when D (set (cdr R) (last D))) )            (T (when R (queue 'D (car R)))               (push 'R I) ) ) )      (flip R) ) )`

Original recursive glutton:

`(de glutton (L)   (let N (pop 'L)      (maxi length         (recur (N L)            (ifn L               (list (list N))               (mapcan                  '((R)                     (if (> (car R) N)                        (list (cons N R) R)                        (list (list N) R) ) )                  (recurse (car L) (cdr L)) ) ) ) ) ) ) (test (2 4 5)   (glutton (3 2 6 4 5 1))) (test (2 6 9 11 15)   (glutton (8 4 12 2 10 6 14 1 9 5 13 3 11 7 15))) (test (-31 0 83 782)   (glutton (4 65 2 -31 0 99 83 782 1)) )`

## PowerShell

Works with: PowerShell version 2
`function Get-LongestSubsequence ( [int[]]\$A )    {    If ( \$A.Count -lt 2 ) { return \$A }     #  Start with an "empty" pile    #  (We will only store the top value in each "pile".)    \$Pile = @( [int]::MaxValue )    \$Last = 0     #  Hashtable to hold the back pointers    \$BP = @{}     #  For each number in the orginal sequence...    ForEach ( \$N in \$A )        {        #  Find the first pile with a value greater than N        \$i = 0..\$Last | Where { \$N -lt \$Pile[\$_] } | Select -First 1         #  Place N on the pile        \$Pile[\$i] = \$N         #  Set the back pointer for this value to the value of the previous pile        \$BP["\$N"] = \$Pile[\$i-1]         #  If this is the previously empty pile, add a new empty pile        If ( \$i -eq \$Last )            {            \$Pile += @( [int]::MaxValue )            \$Last++            }        }     #  Ignore the empty pile    \$Last--     #  Start with the value of the last pile    \$N = \$Pile[\$Last]    \$S = @( \$N )     #  Add the remainder of the values by walking through the back pointers    ForEach ( \$i in \$Last..1 )        {        \$S += ( \$N = \$BP["\$N"] )        }     #  Return the series (reversed into the correct order)    return \$S[\$Last..0]    }`
`( Get-LongestSubsequence 3, 2, 6, 4, 5, 1 ) -join ', '( Get-LongestSubsequence 0, 8, 4, 12, 2, 10, 6, 16, 14, 1, 9, 5, 13, 3, 11, 7, 15 ) -join ', '`
Output:
```2, 4, 5
0, 2, 6, 9, 11, 15```

## Prolog

Works with SWI-Prolog version 6.4.1
Naïve implementation.

`lis(In, Out) :-	% we ask Prolog to find the longest sequence	aggregate(max(N,Is), (one_is(In, [], Is), length(Is, N)), max(_, Res)),	reverse(Res, Out).  % we describe the way to find increasing subsequenceone_is([], Current, Current).  one_is([H | T], Current, Final) :-	(   Current = [], one_is(T, [H], Final));	(   Current = [H1 | _], H1 < H,   one_is(T, [H | Current], Final));	one_is(T, Current, Final). `

Prolog finds the first longest subsequence

``` ?- lis([0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15], Out).
Out = [0,4,6,9,13,15].

?- lis([3,2,6,4,5,1], Out).
Out = [3,4,5].
```

## Python

### Python: O(nlogn) Method from Wikipedia's LIS Article[1]

`def longest_increasing_subsequence(X):    """Returns the Longest Increasing Subsequence in the Given List/Array"""    N = len(X)    P = [0] * N    M = [0] * (N+1)    L = 0    for i in range(N):       lo = 1       hi = L       while lo <= hi:           mid = (lo+hi)//2           if (X[M[mid]] < X[i]):               lo = mid+1           else:               hi = mid-1        newL = lo       P[i] = M[newL-1]       M[newL] = i        if (newL > L):           L = newL     S = []    k = M[L]    for i in range(L-1, -1, -1):        S.append(X[k])        k = P[k]    return S[::-1] if __name__ == '__main__':    for d in [[3,2,6,4,5,1], [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]]:        print('a L.I.S. of %s is %s' % (d, longest_increasing_subsequence(d)))`
Output:
```a L.I.S. of [3, 2, 6, 4, 5, 1] is [2, 4, 5]
a L.I.S. of [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15] is [0, 2, 6, 9, 11, 15]```

### Python: Method from video

`def longest_increasing_subsequence(d):    'Return one of the L.I.S. of list d'    l = []    for i in range(len(d)):        l.append(max([l[j] for j in range(i) if l[j][-1] < d[i]] or [[]], key=len)                   + [d[i]])    return max(l, key=len) if __name__ == '__main__':    for d in [[3,2,6,4,5,1], [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]]:        print('a L.I.S. of %s is %s' % (d, longest_increasing_subsequence(d)))`
Output:
```a L.I.S. of [3, 2, 6, 4, 5, 1] is [3, 4, 5]
a L.I.S. of [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15] is [0, 4, 6, 9, 13, 15]```

### Python: Patience sorting method

`from collections import namedtuplefrom functools import total_orderingfrom bisect import bisect_left @total_orderingclass Node(namedtuple('Node_', 'val back')):    def __iter__(self):        while self is not None:            yield self.val            self = self.back    def __lt__(self, other):        return self.val < other.val    def __eq__(self, other):        return self.val == other.val def lis(d):    """Return one of the L.I.S. of list d using patience sorting."""    if not d:        return []    pileTops = []    for di in d:        j = bisect_left(pileTops, Node(di, None))        new_node = Node(di, pileTops[j-1] if j > 0 else None)        if j == len(pileTops):            pileTops.append(new_node)        else:            pileTops[j] = new_node     return list(pileTops[-1])[::-1] if __name__ == '__main__':    for d in [[3,2,6,4,5,1],              [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]]:        print('a L.I.S. of %s is %s' % (d, lis(d)))`
Output:
```a L.I.S. of [3, 2, 6, 4, 5, 1] is [2, 4, 5]
a L.I.S. of [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15] is [0, 2, 6, 9, 11, 15]```

## Racket

Patience sorting. The program saves only the top card of each pile, with a link (cons) to the top of the previous pile at the time it was inserted. It uses binary search to find the correct pile.

`#lang racket/base(require data/gvector) (define (gvector-last gv)  (gvector-ref gv (sub1 (gvector-count gv)))) (define (lis-patience-sort input-list)  (let ([piles (gvector)])    (for ([item (in-list input-list)])      (insert-item! piles item))    (reverse (gvector-last piles)))) (define (insert-item! piles item)  (if (zero? (gvector-count piles))      (gvector-add! piles (cons item '()))      (cond        [(not (<= item (car (gvector-last piles))))         (gvector-add! piles (cons item (gvector-last piles)))]        [(<= item (car (gvector-ref piles 0)))         (gvector-set! piles 0 (cons item '()))]        [else (let loop ([first 1] [last (sub1 (gvector-count piles))])                (if (= first last)                    (gvector-set! piles first (cons item (gvector-ref piles (sub1 first))))                    (let ([middle (quotient (+ first last) 2)])                      (if (<= item (car (gvector-ref piles middle)))                          (loop first middle)                          (loop (add1 middle) last)))))])))`
Output:
```'(2 4 5)
'(0 2 6 9 11 15)```

## Ring

` # Project : Longest increasing subsequence# Date    : 2017/11/23# Author : Gal Zsolt (~ CalmoSoft ~)# Email   : <[email protected]> tests = [[3, 2, 6, 4, 5, 1], [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]]res = []for x=1 to len(tests)    lis(tests[x])    showarray(res)end  func lis(X)     N = len(X)     P = list(N)     M = list(N)     for nr = 1 to len(P)         P[nr] = 0     next     for nr = 1 to len(M)         P[nr] = 0     next     len = 0     for i=1 to N          lo = 1         hi = len         while lo <= hi                mid = floor((lo+hi)/2)               if X[M[mid]]<X[i]                  lo = mid + 1               else                  hi = mid - 1               ok         end         if lo>1            P[i] = M[lo-1]         ok         M[lo] = i         if lo>len             len = lo         ok     next     res = list(len)     if len>0         k = M[len]        for i=len to 1 step -1             res[i] = X[k]            k = P[k]        next     ok     return res func showarray(vect)     see "{"     svect = ""     for n = 1 to len(vect)         svect = svect + vect[n] + ", "     next     svect = left(svect, len(svect) - 2)     see svect     see "}" + nl `

Output:

```{2, 4, 5}
{0, 2, 6, 9, 11, 15}
```

## Ruby

Patience sorting

`Node = Struct.new(:val, :back) def lis(n)  pileTops = []  # sort into piles  for x in n    # binary search    low, high = 0, pileTops.size-1    while low <= high      mid = low + (high - low) / 2      if pileTops[mid].val >= x        high = mid - 1      else        low = mid + 1      end    end    i = low    node = Node.new(x)    node.back = pileTops[i-1]  if i > 0    pileTops[i] = node  end   result = []  node = pileTops.last  while node    result.unshift(node.val)    node = node.back  end  resultend p lis([3, 2, 6, 4, 5, 1])p lis([0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15])`
Output:
```[2, 4, 5]
[0, 2, 6, 9, 11, 15]```

## Rust

`fn lower_bound<T: PartialOrd>(list: &Vec<T>, value: &T) -> usize {    if list.is_empty() {        return 0;    }    let mut lower = 0usize;    let mut upper = list.len();    while lower != upper {        let middle = lower + upper >> 1;        if list[middle] < *value {            lower = middle + 1;        } else {            upper = middle;        }    }    return lower;} fn lis<T: PartialOrd + Copy>(list: &Vec<T>) -> Vec<T> {    if list.is_empty() {        return Vec::new();    }    let mut subseq: Vec<T> = Vec::new();    subseq.push(*list.first().unwrap());    for i in list[1..].iter() {        if *i <= *subseq.last().unwrap() {            let index = lower_bound(&subseq, i);            subseq[index] = *i;        } else {            subseq.push(*i);        }    }    return subseq;} fn main() {    let list = vec![3, 2, 6, 4, 5, 1];    println!("{:?}", lis(&list));    let list = vec![0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15];    println!("{:?}", lis(&list));}`
Output:
```[1, 4, 5]
[0, 1, 3, 7, 11, 15]```

## Scala

### Patience sorting

Output:
See it in running in your browser by ScalaFiddle (JavaScript) or by Scastie (JVM).
`object LongestIncreasingSubsequence extends App {  val tests = Map(    "3,2,6,4,5,1" -> Seq("2,4,5", "3,4,5"),    "0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15" -> Seq("0,2,6,9,11,15", "0,2,6,9,13,15", "0,4,6,9,13,15", "0,4,6,9,11,15")  )   def lis(l: Array[Int]): Seq[Array[Int]] =    if (l.length < 2) Seq(l)    else {      def increasing(done: Array[Int], remaining: Array[Int]): Seq[Array[Int]] =        if (remaining.isEmpty) Seq(done)        else          (if (remaining.head > done.last)            increasing(done :+ remaining.head, remaining.tail)          else Nil) ++ increasing(done, remaining.tail) // all increasing combinations       val all = (1 to l.length)        .flatMap(i => increasing(l take i takeRight 1, l.drop(i + 1)))        .sortBy(-_.length)      all.takeWhile(_.length == all.head.length) // longest of all increasing combinations    }   def asInts(s: String): Array[Int] = s split "," map (_.toInt)   assert(tests forall {    case (given, expect) =>      val allLongests: Seq[Array[Int]] = lis(asInts(given))      println(        s"\$given has \${allLongests.length} longest increasing subsequences, e.g. \${          allLongests.last.mkString(",")}")      allLongests.forall(lis => expect.contains(lis.mkString(",")))  })}`
Output:
```3,2,6,4,5,1 has 2 longest increasing subsequences, e.g. 2,4,5
0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15 has 4 longest increasing subsequences, e.g. 0,2,6,9,11,15```

### Brute force solution

`def powerset[A](s: List[A]) = (0 to s.size).map(s.combinations(_)).reduce(_++_)def isSorted(l:List[Int])(f: (Int, Int) => Boolean) = l.view.zip(l.tail).forall(x => f(x._1,x._2))def sequence(set: List[Int])(f: (Int, Int) => Boolean) = powerset(set).filter(_.nonEmpty).filter(x => isSorted(x)(f)).toList.maxBy(_.length) sequence(set)(_<_)sequence(set)(_>_)`

## Scheme

Patience sorting

`(define (lis less? lst)  (define pile-tops (make-vector (length lst)))  (define (bsearch-piles x len)    (let aux ((lo 0)	      (hi (- len 1)))      (if (> lo hi)	  lo	  (let ((mid (quotient (+ lo hi) 2)))	    (if (less? (car (vector-ref pile-tops mid)) x)		(aux (+ mid 1) hi)		(aux lo (- mid 1)))))))  (let aux ((len 0)	    (lst lst))    (if (null? lst)	(reverse (vector-ref pile-tops (- len 1)))	(let* ((x (car lst))	       (i (bsearch-piles x len)))	  (vector-set! pile-tops i (cons x (if (= i 0)					       '()					       (vector-ref pile-tops (- i 1)))))	  (aux (if (= i len) (+ len 1) len) (cdr lst)))))) (display (lis < '(3 2 6 4 5 1))) (newline)(display (lis < '(0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15))) (newline)`
Output:
```(2 4 5)
(0 2 6 9 11 15)```

## Sidef

Dynamic programming:

`func lis(a) {    var l = a.len.of { [] }    l[0] << a[0]    for i in (1..a.end) {        for j in ^i {            if ((a[j] < a[i]) && (l[i].len < l[j].len+1)) {                l[i] = [l[j]...]            }        }        l[i] << a[i]    }    l.max_by { .len }} say lis(%i<3 2 6 4 5 1>)say lis(%i<0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15>)`

Patience sorting:

`func lis(deck) {    var pileTops = []    deck.each { |x|        var low = 0;        var high = pileTops.end        while (low <= high) {            var mid = ((low + high) // 2)            if (pileTops[mid]{:val} >= x) {                high = mid-1            } else {                low = mid+1            }        }        var i = low        var node = Hash(val => x)        node{:back} = pileTops[i-1] if (i != 0)        pileTops[i] = node    }    var result = []    for (var node = pileTops[-1]; node; node = node{:back}) {        result << node{:val}    }    result.reverse} say lis(%i<3 2 6 4 5 1>)say lis(%i<0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15>)`
Output:
```[2, 4, 5]
[0, 2, 6, 9, 11, 15]
```

## Standard ML

Patience sorting

Works with: SML/NJ
`fun lis cmp n =  let    val pile_tops = DynamicArray.array (length n, [])    fun bsearch_piles x =      let        fun aux (lo, hi) =          if lo > hi then            lo          else            let              val mid = (lo + hi) div 2            in              if cmp (hd (DynamicArray.sub (pile_tops, mid)), x) = LESS then                aux (mid+1, hi)              else                aux (lo, mid-1)            end      in        aux (0, DynamicArray.bound pile_tops)      end    fun f x =      let        val i = bsearch_piles x       in        DynamicArray.update (pile_tops, i,	  x :: (if i = 0 then [] else DynamicArray.sub (pile_tops, i-1)))      end  in    app f n;    rev (DynamicArray.sub (pile_tops, DynamicArray.bound pile_tops))  end`

Usage:

```- lis Int.compare [3, 2, 6, 4, 5, 1];
val it = [2,4,5] : int list
- lis Int.compare [0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15];
val it = [0,2,6,9,11,15] : int list```

## Swym

Translation of: Python

Based on the Python video solution. Interpreter at [[2]]

`Array.'lis'{  'stems' = Number.Array.mutableArray[ [] ]   forEach(this) 'value'->  {    'bestStem' = stems.where{==[] || .last < value}.max{.length}     stems.push( bestStem + [value] )  }   return stems.max{.length}} [3,2,6,4,5,1].lis.trace[0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15].lis.trace`
Output:
```[3,4,5]
[0,4,6,9,13,15]
```

## Tcl

Works with: Tcl version 8.6
`package require Tcl 8.6 proc longestIncreasingSubsequence {sequence} {    # Get the increasing subsequences (and their lengths)    set subseq [list 1 [lindex \$sequence 0]]    foreach value \$sequence {	set max {}	foreach {len item} \$subseq {	    if {[lindex \$item end] < \$value} {		if {[llength [lappend item \$value]] > [llength \$max]} {		    set max \$item		}	    } elseif {![llength \$max]} {		set max [list \$value]	    }	}	lappend subseq [llength \$max] \$max    }    # Pick the longest subsequence; -stride requires Tcl 8.6    return [lindex [lsort -stride 2 -index 0 \$subseq] end]}`

Demonstrating:

`puts [longestIncreasingSubsequence {3 2 6 4 5 1}]puts [longestIncreasingSubsequence {0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15}]`
Output:
```3 4 5
0 4 6 9 13 15
```

## VBScript

` Function LIS(arr)	n = UBound(arr)	Dim p()	ReDim p(n)	Dim m()	ReDim m(n)	l = 0	For i = 0 To n		lo = 1		hi = l		Do While lo <= hi			middle = Int((lo+hi)/2)			If arr(m(middle)) < arr(i) Then				lo = middle + 1			Else				hi = middle - 1			End If		Loop		newl = lo		p(i) = m(newl-1)		m(newl) = i		If newL > l Then			l = newl		End If	Next	Dim s()	ReDim s(l)	k = m(l)	For i = l-1 To 0 Step - 1		s(i) = arr(k)		k = p(k)	Next	LIS = Join(s,",")End Function WScript.StdOut.WriteLine LIS(Array(3,2,6,4,5,1))WScript.StdOut.WriteLine LIS(Array(0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15)) `
Output:
```2,4,5,
0,2,6,9,11,15,
```

## zkl

`fcn longestSequence(ns){ // based on Patience sorting   piles:=L();   backPtr:='wrap(np){ return(np-1,if(np) piles[np-1].len()-1 else -1) }; // maybe (-1,-1)   foreach n in (ns){ newPile:=True;   // create list of sorted lists      foreach e,p in (piles.enumerate()){	 if(n<p[-1][0]){	    p.del(1,-1)  // only need the first and last elements	    .append(T(n,backPtr(e))); newPile=False; 	    break; 	 }      }      if(newPile) piles.append(L(T(n,backPtr(piles.len()))));   }   reg r=L(),p=-1,n=0;    do{ n,p=piles[p][n]; r.write(n); p,n=p; }while(p!=-1);   r.reverse()}`
`foreach ns in (T(T(1),T(3,2,6,4,5,1),T(4,65,2,-31,0,99,83,782,1),	       T(0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15),"foobar")){   s:=longestSequence(ns);   println(s.len(),": ",s," from ",ns);}`
Output:
```1: L(1) from L(1)
3: L(2,4,5) from L(3,2,6,4,5,1)
4: L(-31,0,83,782) from L(4,65,2,-31,0,99,83,782,1)
6: L(0,1,3,9,11,15) from L(0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15)
4: L("f","o","o","r") from foobar
```