Roots of unity

From Rosetta Code
Revision as of 14:52, 24 September 2010 by Rdm (talk | contribs) (J: fix typo, and i like i.%])
Task
Roots of unity
You are encouraged to solve this task according to the task description, using any language you may know.

The purpose of this task is to explore working with complex numbers. Given n, find the n-th roots of unity.

Ada

<lang ada>with Ada.Text_IO; use Ada.Text_IO; with Ada.Float_Text_IO; use Ada.Float_Text_IO; with Ada.Numerics.Complex_Types; use Ada.Numerics.Complex_Types;

procedure Roots_Of_Unity is

  Root : Complex;

begin

  for N in 2..10 loop
     Put_Line ("N =" & Integer'Image (N));
     for K in 0..N - 1 loop
        Root :=
            Compose_From_Polar
            (  Modulus  => 1.0,
               Argument => Float (K),
               Cycle    => Float (N)
            );
           -- Output
        Put ("   k =" & Integer'Image (K) & ", ");
        if Re (Root) < 0.0 then
           Put ("-");
        else
           Put ("+");
        end if;
        Put (abs Re (Root), Fore => 1, Exp => 0);
        if Im (Root) < 0.0 then
           Put ("-");
        else
           Put ("+");
        end if;
        Put (abs Im (Root), Fore => 1, Exp => 0);
        Put_Line ("i");
     end loop;
  end loop;

end Roots_Of_Unity;</lang> Ada provides a direct implementation of polar composition of complex numbers x ei y. The function Compose_From_Polar is used to compose roots. The third argument of the function is the cycle. Instead of the standard cycle 2π, N is used. Sample output:

N = 2
   k = 0, +1.00000+0.00000i
   k = 1, -1.00000+0.00000i
N = 3
   k = 0, +1.00000+0.00000i
   k = 1, -0.50000+0.86603i
   k = 2, -0.50000-0.86603i
N = 4
   k = 0, +1.00000+0.00000i
   k = 1, +0.00000+1.00000i
   k = 2, -1.00000+0.00000i
   k = 3, +0.00000-1.00000i
N = 5
   k = 0, +1.00000+0.00000i
   k = 1, +0.30902+0.95106i
   k = 2, -0.80902+0.58779i
   k = 3, -0.80902-0.58779i
   k = 4, +0.30902-0.95106i
N = 6
   k = 0, +1.00000+0.00000i
   k = 1, +0.50000+0.86603i
   k = 2, -0.50000+0.86603i
   k = 3, -1.00000+0.00000i
   k = 4, -0.50000-0.86603i
   k = 5, +0.50000-0.86603i
N = 7
   k = 0, +1.00000+0.00000i
   k = 1, +0.62349+0.78183i
   k = 2, -0.22252+0.97493i
   k = 3, -0.90097+0.43388i
   k = 4, -0.90097-0.43388i
   k = 5, -0.22252-0.97493i
   k = 6, +0.62349-0.78183i
N = 8
   k = 0, +1.00000+0.00000i
   k = 1, +0.70711+0.70711i
   k = 2, +0.00000+1.00000i
   k = 3, -0.70711+0.70711i
   k = 4, -1.00000+0.00000i
   k = 5, -0.70711-0.70711i
   k = 6, +0.00000-1.00000i
   k = 7, +0.70711-0.70711i
N = 9
   k = 0, +1.00000+0.00000i
   k = 1, +0.76604+0.64279i
   k = 2, +0.17365+0.98481i
   k = 3, -0.50000+0.86603i
   k = 4, -0.93969+0.34202i
   k = 5, -0.93969-0.34202i
   k = 6, -0.50000-0.86603i
   k = 7, +0.17365-0.98481i
   k = 8, +0.76604-0.64279i
N = 10
   k = 0, +1.00000+0.00000i
   k = 1, +0.80902+0.58779i
   k = 2, +0.30902+0.95106i
   k = 3, -0.30902+0.95106i
   k = 4, -0.80902+0.58779i
   k = 5, -1.00000+0.00000i
   k = 6, -0.80902-0.58779i
   k = 7, -0.30902-0.95106i
   k = 8, +0.30902-0.95106i
   k = 9, +0.80902-0.58779i

ALGOL 68

Works with: ALGOL 68 version Revision 1 - no extensions to language used
Works with: ALGOL 68G version Any - tested with release 1.18.0-9h.tiny

<lang algol68>FORMAT complex fmt=$g(-6,4)"⊥"g(-6,4)$; FOR root FROM 2 TO 10 DO

 printf(($g(4)$,root));
 FOR n FROM 0 TO root-1 DO
   printf(($xf(complex fmt)$,complex exp( 0 I 2*pi*n/root)))
 OD;
 printf($l$)

OD</lang> Output:

  +2 1.0000⊥0.0000 -1.000⊥0.0000
  +3 1.0000⊥0.0000 -.5000⊥0.8660 -.5000⊥-.8660
  +4 1.0000⊥0.0000 0.0000⊥1.0000 -1.000⊥0.0000 -.0000⊥-1.000
  +5 1.0000⊥0.0000 0.3090⊥0.9511 -.8090⊥0.5878 -.8090⊥-.5878 0.3090⊥-.9511
  +6 1.0000⊥0.0000 0.5000⊥0.8660 -.5000⊥0.8660 -1.000⊥0.0000 -.5000⊥-.8660 0.5000⊥-.8660
  +7 1.0000⊥0.0000 0.6235⊥0.7818 -.2225⊥0.9749 -.9010⊥0.4339 -.9010⊥-.4339 -.2225⊥-.9749 0.6235⊥-.7818
  +8 1.0000⊥0.0000 0.7071⊥0.7071 0.0000⊥1.0000 -.7071⊥0.7071 -1.000⊥0.0000 -.7071⊥-.7071 -.0000⊥-1.000 0.7071⊥-.7071
  +9 1.0000⊥0.0000 0.7660⊥0.6428 0.1736⊥0.9848 -.5000⊥0.8660 -.9397⊥0.3420 -.9397⊥-.3420 -.5000⊥-.8660 0.1736⊥-.9848 0.7660⊥-.6428
 +10 1.0000⊥0.0000 0.8090⊥0.5878 0.3090⊥0.9511 -.3090⊥0.9511 -.8090⊥0.5878 -1.000⊥0.0000 -.8090⊥-.5878 -.3090⊥-.9511 0.3090⊥-.9511 0.8090⊥-.5878

AutoHotkey

ahk forum: discussion <lang AutoHotkey>n := 8, a := 8*atan(1)/n Loop %n%

  i := A_Index-1, t .= cos(a*i) ((s:=sin(a*i))<0 ? " - i*" . -s : " + i*" . s) "`n"

Msgbox % t</lang>

BASIC

Works with: QuickBasic version 4.5
Translation of: Java

For high n's, this may repeat the root of 1 + 0*i.

CLS
PI = 3.1415926#
n = 5 'this can be changed for any desired n
angle = 0 'start at angle 0
DO
	real = COS(angle) 'real axis is the x axis
	IF (ABS(real) < 10 ^ -5) THEN real = 0 'get rid of annoying sci notation
	imag = SIN(angle) 'imaginary axis is the y axis
	IF (ABS(imag) < 10 ^ -5) THEN imag = 0 'get rid of annoying sci notation
	PRINT real; "+"; imag; "i" 'answer on every line
	angle = angle + (2 * PI) / n
'all the way around the circle at even intervals
LOOP WHILE angle < 2 * PI

C

<lang c>#include <stdio.h>

  1. include <math.h>
  1. define PI 3.1415926

int main (int argc, char *argv[]) {

 char sign;
 int i, n;
 float rpart, ipart, angle;
 for (n = 2; n <= 10; n++)
 {
   angle = 0.0;
   printf("%d: ", n); 
   for (i = 1; i <= n; i++)
   {
     rpart = cos(angle);
     ipart = sin(angle);
     if (ipart < 0)
       sign = '-';
     else
       sign = '+';
     printf("%5.4f%cj%5.4f  ", rpart, sign, fabs(ipart));
     angle = angle + 2.0*PI/(float)n;
   }
   printf("\n");
 }

}</lang>

C++

<lang cpp>#include <complex>

  1. include <cmath>
  2. include <iostream>

double const pi = 4 * std::atan(1);

int main() {

 for (int n = 2; n <= 10; ++n)
 {
   std::cout << n << ": ";
   for (int k = 0; k < n; ++k)
     std::cout << std::polar(1, 2*pi*k/n) << " ";
   std::cout << std::endl;
 }

}</lang>

Common Lisp

<lang lisp>(defun roots-of-unity (n)

(loop for i below n
      collect (cis (* pi (/ (* 2 i) n)))))</lang>

The expression is slightly more complicated than necessary in order to preserve exact rational arithmetic until multiplying by pi. The author of this example is not a floating point expert and not sure whether this is actually useful; if not, the simpler expression is (cis (/ (* 2 pi i) n)).

D

Works with: D version 2.012
Works with: D version 1.028

<lang d>module nthroots ; import std.stdio, std.math ;

creal[] nthroots(int n) {

 creal[] res ;
 for(int k = 1 ; k <= n ; k++)
   res ~= expi(PI*2*k/n) ;
 return res ;

} void main() {

 for(int i = 1; i <= 8 ; i++)
   writefln("%2dth : %5.2f", i, nthroots(i)) ;

}</lang>

Forth

Complex numbers are not a native type in Forth, so we calculate the roots by hand. <lang forth>: f0. ( f -- )

 fdup 0e 0.001e f~ if fdrop 0e then f. ;
.roots ( n -- )
 dup 1 do
   pi i 2* 0 d>f f* dup 0 d>f f/          ( F: radians )
   fsincos cr ." real " f0. ." imag " f0.
 loop drop ;

3 set-precision 5 .roots</lang>

Fortran

Sin/Cos + Scalar Loop

Works with: Fortran version ISO Fortran 90 and later

<lang fortran>PROGRAM Roots

 COMPLEX :: root 
 INTEGER :: i, n
 REAL :: angle, pi
 pi = 4.0 * ATAN(1.0)
 DO n = 2, 7
   angle = 0.0
   WRITE(*,"(I1,A)", ADVANCE="NO") n,": "
   DO i = 1, n
     root = CMPLX(COS(angle), SIN(angle))
     WRITE(*,"(SP,2F7.4,A)", ADVANCE="NO") root, "j  "
     angle = angle + (2.0*pi / REAL(n))
   END DO
   WRITE(*,*)
 END DO

END PROGRAM Roots</lang> Output

2: +1.0000+0.0000j  -1.0000+0.0000j   
3: +1.0000+0.0000j  -0.5000+0.8660j  -0.5000-0.8660j   
4: +1.0000+0.0000j  +0.0000+1.0000j  -1.0000+0.0000j  +0.0000-1.0000j   
5: +1.0000+0.0000j  +0.3090+0.9511j  -0.8090+0.5878j  -0.8090-0.5878j  +0.3090-0.9511j   
6: +1.0000+0.0000j  +0.5000+0.8660j  -0.5000+0.8660j  -1.0000+0.0000j  -0.5000-0.8660j  +0.5000-0.8660j 
7: +1.0000+0.0000j  +0.6235+0.7818j  -0.2225+0.9749j  -0.9010+0.4339j  -0.9010-0.4339j  -0.2225-0.9749j  +0.6235-0.7818j

Exp + Array-valued Statement

Works with: Fortran version ISO Fortran 90 and later

<lang fortran>program unity

    real, parameter :: pi = 3.141592653589793
    complex, parameter :: i = (0, 1)
    complex, dimension(0:7-1) :: unit_circle
    integer :: n, j
    
    do n = 2, 7
         !!!! KEY STEP, does all the calculations in one statement !!!!
       unit_circle(0:n-1) = exp(2*i*pi/n * (/ (j, j=0, n-1) /) )
       write(*,"(i1,a)", advance="no") n, ": "
       write(*,"(sp,2f7.4,a)", advance="no") (unit_circle(j), "j  ", j = 0, n-1)
       write(*,*)
    end do
end program unity</lang>

Groovy

Because the Groovy language does not provide a built-in facility for complex arithmetic, this example relies on the Complex class defined in the Complex numbers example. <lang groovy>/** The following closure creates a list of n evenly-spaced points around the unit circle,

 * useful in FFT calculations, among other things */

def rootsOfUnity = { n ->

   (0..<n).collect {
       Complex.exp(Complex.I * 2 * Math.PI * it / n)
   }

}</lang>

Test program: <lang groovy>def tol = 0.000000001 // tolerance: acceptable "wrongness" to account for rounding error

((1..6) + [16]). each { n ->

   println "rootsOfUnity(${n}):"
   def rou = rootsOfUnity(n)
   rou.each { println it }
   assert rou[0] == 1
   def actual = n > 1 ? rou[Math.floor(n/2) as int] : rou[0]
   def expected = n > 1 ? (n%2 == 0) ? -1 : ~rou[Math.ceil(n/2) as int] : rou[0]
   def message = n > 1 ? (n%2 == 0) ? 'middle-most root should be -1' : 'two middle-most roots should be conjugates' : 
   assert (actual - expected).abs() < tol : message
   assert rou.every { (it.rho - 1) < tol } : 'all roots should have magnitude 1'
   println()

}</lang>

Output:

rootsOfUnity(1):
1.0

rootsOfUnity(2):
1.0
-1.0 + 1.2246467991473532E-16i

rootsOfUnity(3):
1.0
-0.4999999998186198 + 0.8660254038891585i
-0.5000000003627604 - 0.8660254035749988i

rootsOfUnity(4):
1.0
6.123233995736766E-17 + i
-1.0 + 1.2246467991473532E-16i
-1.8369701987210297E-16 - i

rootsOfUnity(5):
1.0
0.30901699437494745 + 0.9510565162951535i
-0.8090169943749473 + 0.5877852522924732i
-0.8090169943749475 - 0.587785252292473i
0.30901699437494723 - 0.9510565162951536i

rootsOfUnity(6):
1.0
0.4999999998186201 + 0.8660254038891584i
-0.5000000003627598 + 0.8660254035749991i
-1.0 - 6.283181638240517E-10i
-0.4999999992744804 - 0.8660254042033175i
0.5000000009068993 - 0.8660254032608401i

rootsOfUnity(16):
1.0
0.9238795325112867 + 0.3826834323650898i
0.7071067811865476 + 0.7071067811865475i
0.38268343236508984 + 0.9238795325112867i
6.123233995736766E-17 + i
-0.3826834323650897 + 0.9238795325112867i
-0.7071067811865475 + 0.7071067811865476i
-0.9238795325112867 + 0.3826834323650899i
-1.0 + 1.2246467991473532E-16i
-0.9238795325112868 - 0.38268343236508967i
-0.7071067811865477 - 0.7071067811865475i
-0.38268343236509034 - 0.9238795325112865i
-1.8369701987210297E-16 - i
0.38268343236509 - 0.9238795325112866i
0.7071067811865474 - 0.7071067811865477i
0.9238795325112865 - 0.3826834323650904i

Haskell

<lang haskell>import Data.Complex

rootsOfUnity n = [mkPolar 1.0 (2*pi*k/n) | k <- [1..n]]</lang>

Output:

<lang haskell>*Main> rootsOfUnity 3 [(-0.4999999999999998) :+ 0.8660254037844387,

(-0.5000000000000004) :+ (-0.8660254037844384),
1.0 :+ (-2.4492127076447545e-16)]</lang>

Icon and Unicon

Icon

<lang icon>procedure main()

  roots(10)

end

procedure roots(n)

  every n := 2 to 10 do
      every writes(n | (str_rep((0 to (n-1)) * 2 * &pi / n)) | "\n")

end

procedure str_rep(k)

 return " " || cos(k) || "+" || sin(k) || "i"

end</lang> Notes:

Unicon

This Icon solution works in Unicon.

IDL

For some example n:

<lang idl>n = 5 print, exp( dcomplex( 0, 2*!dpi/n) ) ^ ( 1 + indgen(n) )</lang>

Outputs: <lang idl>( 0.30901699, 0.95105652)( -0.80901699, 0.58778525)( -0.80901699, -0.58778525)( 0.30901699, -0.95105652)( 1.0000000, -1.1102230e-16)</lang>

J

<lang j> rou=: [: ^ 0j2p1 * i. % ]

  rou 4

1 0j1 _1 0j_1

  rou 5

1 0.309017j0.951057 _0.809017j0.587785 _0.809017j_0.587785 0.309017j_0.951057</lang>

The computation can also be written as a loop, shown here for comparison only.

<lang j>rou1=: 3 : 0

z=. 0 $ r=. ^ o. 0j2 % y [ e=. 1
for. i.y do.
 z=. z,e
 e=. e*r
end.
z

)</lang>

Java

Java doesn't have a nice way of dealing with complex numbers, so the real and imaginary parts are calculated separately based on the angle and printed together. There are also checks in this implementation to get rid of extremely small values (< 1.0E-3 where scientific notation sets in for Doubles). Instead, they are simply represented as 0. To remove those checks (for very high n's), remove both if statements. <lang java>public static void unity(int n){ //all the way around the circle at even intervals for(double angle = 0;angle < 2 * Math.PI;angle += (2 * Math.PI) / n){ double real = Math.cos(angle); //real axis is the x axis if(Math.abs(real) < 1.0E-3) real = 0.0; //get rid of annoying sci notation double imag = Math.sin(angle); //imaginary axis is the y axis if(Math.abs(imag) < 1.0E-3) imag = 0.0; //get rid of annoying sci notation System.out.print(real + " + " + imag + "i\t"); //tab-separated answers } }</lang>


Lua

Complex numbers from the Lua implementation on the complex numbers page.

<lang lua> --defines addition, subtraction, negation, multiplication, division, conjugation, norms, and a conversion to strgs. complex = setmetatable({ __add = function(u, v) return complex(u.real + v.real, u.imag + v.imag) end, __sub = function(u, v) return complex(u.real - v.real, u.imag - v.imag) end, __mul = function(u, v) return complex(u.real * v.real - u.imag * v.imag, u.real * v.imag + u.imag * v.real) end, __div = function(u, v) return u * complex(v.real / v.norm, -v.imag / v.norm) end, __unm = function(u) return complex(-u.real, -u.imag) end, __concat = function(u, v)

   if type(u) == "table" then return u.real .. " + " .. u.imag .. "i" .. v

elseif type(u) == "string" or type(u) == "number" then return u .. v.real .. " + " .. v.imag .. "i" end end, __index = function(u, index)

 local operations = {
   norm = function(u) return u.real ^ 2 + u.imag ^ 2 end,
   conj = function(u) return complex(u.real, -u.imag) end,
 }
 return operations[index] and operations[index](u)

end, __newindex = function() error() end }, { __call = function(z, realpart, imagpart) return setmetatable({real = realpart, imag = imagpart}, complex) end } ) n = io.read() + 0 val = complex(math.cos(2*math.pi / n), math.sin(2*math.pi / n)) root = complex(1, 0) for i = 1, n do

 root = root * val
 print(root .. "")

end </lang>

Mathematica

Setting this up in Mathematica is easy, because it already handles complex numbers: <lang Mathematica>RootsUnity[nthroot_Integer?Positive] := Table[Exp[2 Pi I i/nthroot], {i, 0, nthroot - 1}]</lang> Note that Mathematica will keep the expression as exact as possible. Simplifications can be made to more known (trigonometric) functions by using the function ExpToTrig. If only a numerical approximation is necessary the function N will transform the exact result to a numerical approximation. Examples (exact not simplified, exact simplified, approximated): <lang Mathematica>RootsUnity[2] RootsUnity[3] RootsUnity[4] RootsUnity[5]

RootsUnity[2]//ExpToTrig RootsUnity[3]//ExpToTrig RootsUnity[4]//ExpToTrig RootsUnity[5]//ExpToTrig

RootsUnity[2]//N RootsUnity[3]//N RootsUnity[4]//N RootsUnity[5]//N</lang> gives back:



Maxima

<lang maxima>solve(1 = x^n, x)</lang>


<lang maxima>for n:1 thru 5 do display(solve(1 = x^n, x));</lang>

Output: <lang maxima>solve(1 = x, x) = [x = 1] solve(1 = x^2, x) = [x = -1, x = 1] solve(1 = x^3, x) = [x = (sqrt(3)*%i-1)/2, x = -(sqrt(3)*%i+1)/2, x = 1] solve(1 = x^4, x) = [x = %i, x = -1, x = -%i, x = 1] solve(1 = x^5, x) = [x = %e^((2*%i*%pi)/5), x = %e^((4*%i*%pi)/5), x = %e^(-(4*%i*%pi)/5), x = %e^(-(2*%i*%pi)/5), x = 1] </lang>

OCaml

<lang ocaml>open Complex

let pi = 4. *. atan 1.

let () =

 for n = 1 to 10 do
   Printf.printf "%2d " n;
   for k = 1 to n do
     let ret = polar 1. (2. *. pi *. float_of_int k /. float_of_int n) in
       Printf.printf "(%f + %f i)" ret.re ret.im
   done;
   print_newline ()
 done</lang>

Octave

<lang octave>for j = 2 : 10

 printf("*** %d\n", j);
 for n = 1 : j
   disp(exp(2i*pi*n/j));
 endfor
 disp("");

endfor</lang>


Perl

Works with: Perl version 5.8.8

<lang perl>use Math::Complex;

foreach $n (2 .. 10) {

 printf "%2d", $n;
 foreach $k (0 .. $n-1) {
   $ret = cplxe(1, 2 * pi * $k / $n);
   $ret->display_format(style => 'cartesian', format => '%.3f');
   print " $ret";
 }
 print "\n";

}</lang> Output:

 2 1.000 -1.000+0.000i
 3 1.000 -0.500+0.866i -0.500-0.866i
 4 1.000 0.000+1.000i -1.000+0.000i -0.000-1.000i
 5 1.000 0.309+0.951i -0.809+0.588i -0.809-0.588i 0.309-0.951i
 6 1.000 0.500+0.866i -0.500+0.866i -1.000+0.000i -0.500-0.866i 0.500-0.866i
 7 1.000 0.623+0.782i -0.223+0.975i -0.901+0.434i -0.901-0.434i -0.223-0.975i 0.623-0.782i
 8 1.000 0.707+0.707i 0.000+1.000i -0.707+0.707i -1.000+0.000i -0.707-0.707i -0.000-1.000i 0.707-0.707i
 9 1.000 0.766+0.643i 0.174+0.985i -0.500+0.866i -0.940+0.342i -0.940-0.342i -0.500-0.866i 0.174-0.985i 0.766-0.643i
10 1.000 0.809+0.588i 0.309+0.951i -0.309+0.951i -0.809+0.588i -1.000+0.000i -0.809-0.588i -0.309-0.951i 0.309-0.951i 0.809-0.588i

Perl 6

Works with: Rakudo version #22 "Thousand Oaks"

<lang perl6>sub roots_of_unity (Int $n where { $n > 0 }) {

   map { exp 2i * pi/$n * $_ }, ^$n

}

printf "% .5f + % .5fi\n", .re, .im for roots_of_unity 10;</lang>

Output:

  1.00000 +  0.00000i
  0.80902 +  0.58779i
  0.30902 +  0.95106i
 -0.30902 +  0.95106i
 -0.80902 +  0.58779i
 -1.00000 +  0.00000i
 -0.80902 + -0.58779i
 -0.30902 + -0.95106i
  0.30902 + -0.95106i
  0.80902 + -0.58779i

PL/I

<lang PL/I> complex_roots:

  procedure (N);
  declare N fixed binary nonassignable;
  declare x float, c fixed decimal (10,8) complex;
  declare twopi float initial ((4*asin(1.0)));
  do x = 0 to twopi by twopi/N;
     c = complex(cos(x), sin(x));
     put skip list (c);
  end;

end complex_roots;

  1.00000000+0.00000000I   
  0.80901700+0.58778524I   
  0.30901697+0.95105654I   
 -0.30901703+0.95105648I   
 -0.80901706+0.58778518I   
 -1.00000000-0.00000008I   
 -0.80901694-0.58778536I   
 -0.30901709-0.95105648I   
  0.30901712-0.95105648I   
  0.80901724-0.58778494I   

</lang>

PicoLisp

Translation of: C

<lang PicoLisp>(load "@lib/math.l")

(for N (range 2 10)

  (let Angle 0.0
     (prin N ": ")
     (for I N
        (let Ipart (sin Angle)
           (prin
              (round (cos Angle) 4)
              (if (lt0 Ipart) "-" "+")
              "j"
              (round (abs Ipart) 4)
              "  " ) )
        (inc 'Angle (*/ 2 pi N)) )
     (prinl) ) )</lang>

Python

Works with: Python version 2.5.1

<lang python>import cmath class Complex(complex):

  def __repr__(self):
     rp = '%7.5f'%self.real if not self.pureImag() else 
     ip = '%7.5fj'%self.imag if not self.pureReal() else 
     conj =  if (self.pureImag() or self.pureReal() or self.imag<0.0) else '+'
     return '0.0' if (self.pureImag() and self.pureReal()) else rp+conj+ip
  def pureImag(self):
     return abs( self.real) < 0.000005
  def pureReal(self):
     return abs( self.imag) < 0.000005


def croots(n):

  if n<=0:
     return None
  return (Complex(cmath.exp(2j*k*cmath.pi/n)) for k in range(n))
  # in Python 2.6+: return (Complex(cmath.rect(1, 2*k*cmath.pi/n)) for k in range(n))

for nr in range(2,11):

  print nr, list(croots(nr))</lang>

Output:

2 [1.00000, -1.00000]
3 [1.00000, -0.50000+0.86603j, -0.50000-0.86603j]
4 [1.00000, 1.00000j, -1.00000, -1.00000j]
5 [1.00000, 0.30902+0.95106j, -0.80902+0.58779j, -0.80902-0.58779j, 0.30902-0.95106j]
6 [1.00000, 0.50000+0.86603j, -0.50000+0.86603j, -1.00000, -0.50000-0.86603j, 0.50000-0.86603j]
7 [1.00000, 0.62349+0.78183j, -0.22252+0.97493j, -0.90097+0.43388j, -0.90097-0.43388j, -0.22252-0.97493j, 0.62349-0.78183j]
8 [1.00000, 0.70711+0.70711j, 1.00000j, -0.70711+0.70711j, -1.00000, -0.70711-0.70711j, -1.00000j, 0.70711-0.70711j]
9 [1.00000, 0.76604+0.64279j, 0.17365+0.98481j, -0.50000+0.86603j, -0.93969+0.34202j, -0.93969-0.34202j, -0.50000-0.86603j, 0.17365-0.98481j, 0.76604-0.64279j]
10 [1.00000, 0.80902+0.58779j, 0.30902+0.95106j, -0.30902+0.95106j, -0.80902+0.58779j, -1.00000, -0.80902-0.58779j, -0.30902-0.95106j, 0.30902-0.95106j, 0.80902-0.58779j]

R

<lang R>for(j in 2:10) {

 r <- sprintf("%d: ", j)
 for(n in 1:j) {
   r <- paste(r, format(exp(2i*pi*n/j), digits=4), ifelse(n<j, ",", ""))
 }
 print(r)

}</lang>

Output:

[1] "2:  -1+0i , 1-0i "
[1] "3:  -0.5+0.866i , -0.5-0.866i , 1-0i "
[1] "4:  0+1i , -1+0i , 0-1i , 1-0i "
[1] "5:  0.309+0.9511i , -0.809+0.5878i , -0.809-0.5878i , 0.309-0.9511i , 1-0i "
[1] "6:  0.5+0.866i , -0.5+0.866i , -1+0i , -0.5-0.866i , 0.5-0.866i , 1-0i "
[1] "7:  0.6235+0.7818i , -0.2225+0.9749i , -0.901+0.4339i , -0.901-0.4339i , -0.2225-0.9749i , 0.6235-0.7818i , 1-0i "
[1] "8:  0.7071+0.7071i , 0+1i , -0.7071+0.7071i , -1+0i , -0.7071-0.7071i , 0-1i , 0.7071-0.7071i , 1-0i "
[1] "9:  0.766+0.6428i , 0.1736+0.9848i , -0.5+0.866i , -0.9397+0.342i , -0.9397-0.342i , -0.5-0.866i , 0.1736-0.9848i , 0.766-0.6428i , 1-0i "
[1] "10:  0.809+0.5878i , 0.309+0.9511i , -0.309+0.9511i , -0.809+0.5878i , -1+0i , -0.809-0.5878i , -0.309-0.9511i , 0.309-0.9511i , 0.809-0.5878i , 1-0i "

RLaB

RLaB can find the n-roots of unity by solving the polynomial equation

It uses the solver polyroots. Interested user is recommended to check the rlabplus manual for details on the solver and the parameters that tune the solver performance.

<lang RLaB> // specify polynomial >> n = 10; >> a = zeros(1,n+1); a[1] = 1; a[n+1] = -1; >> polyroots(a)

  radius               roots           success

>> polyroots(a).roots

  -0.309016994 + 0.951056516i
  -0.809016994 + 0.587785252i
         -1 + 5.95570041e-23i
  -0.809016994 - 0.587785252i
  -0.309016994 - 0.951056516i
   0.309016994 - 0.951056516i
   0.809016994 - 0.587785252i
                       1 + 0i
   0.809016994 + 0.587785252i
   0.309016994 + 0.951056516i

</lang>

Ruby

Hopefully someone will fix the formatting <lang ruby>require 'complex'

for n in 2..10

 printf "%2d ", n
 puts (0..n-1).map { |k| Complex.polar(1, 2 * Math::PI * k / n) }.join(" ")

end</lang> Output:

 2 1.0+0.0i -1.0+1.22460635382238e-16i
 3 1.0+0.0i -0.5+0.866025403784439i -0.5-0.866025403784438i
 4 1.0+0.0i 6.12303176911189e-17+1.0i -1.0+1.22460635382238e-16i -1.83690953073357e-16-1.0i
 5 1.0+0.0i 0.309016994374947+0.951056516295154i -0.809016994374947+0.587785252292473i -0.809016994374948-0.587785252292473i 0.309016994374947-0.951056516295154i
 6 1.0+0.0i 0.5+0.866025403784439i -0.5+0.866025403784439i -1.0+1.22460635382238e-16i -0.5-0.866025403784438i 0.5-0.866025403784439i
 7 1.0+0.0i 0.623489801858734+0.78183148246803i -0.222520933956314+0.974927912181824i -0.900968867902419+0.433883739117558i -0.900968867902419-0.433883739117558i -0.222520933956315-0.974927912181824i 0.623489801858733-0.78183148246803i
 8 1.0+0.0i 0.707106781186548+0.707106781186547i 6.12303176911189e-17+1.0i -0.707106781186547+0.707106781186548i -1.0+1.22460635382238e-16i -0.707106781186548-0.707106781186547i -1.83690953073357e-16-1.0i 0.707106781186547-0.707106781186548i
 9 1.0+0.0i 0.766044443118978+0.642787609686539i 0.17364817766693+0.984807753012208i -0.5+0.866025403784439i -0.939692620785908+0.342020143325669i -0.939692620785908-0.342020143325669i -0.5-0.866025403784438i 0.17364817766693-0.984807753012208i 0.766044443118978-0.64278760968654i
10 1.0+0.0i 0.809016994374947+0.587785252292473i 0.309016994374947+0.951056516295154i -0.309016994374947+0.951056516295154i -0.809016994374947+0.587785252292473i -1.0+1.22460635382238e-16i -0.809016994374948-0.587785252292473i -0.309016994374948-0.951056516295154i 0.309016994374947-0.951056516295154i 0.809016994374947-0.587785252292473i

Seed7

<lang seed7>$ include "seed7_05.s7i";

 include "float.s7i";
 include "complex.s7i";

const proc: main is func

 local
   var integer: n is 0;
   var integer: k is 0;
 begin
   for n range 2 to 10 do
     write(n lpad 2 <& ": ");
     for k range 0 to pred(n) do
       write(polar(1.0, 2.0 * PI * flt(k) / flt(n)) digits 4 lpad 15 <& " ");
     end for;
     writeln;
   end for;
 end func;</lang>

Output: <lang seed7>2: 1.0000+0.0000i -1.0000+0.0000i

3:  1.0000+0.0000i -0.5000+0.8660i -0.5000-0.8660i
4:  1.0000+0.0000i  0.0000+1.0000i -1.0000+0.0000i  0.0000-1.0000i
5:  1.0000+0.0000i  0.3090+0.9511i -0.8090+0.5878i -0.8090-0.5878i  0.3090-0.9511i
6:  1.0000+0.0000i  0.5000+0.8660i -0.5000+0.8660i -1.0000+0.0000i -0.5000-0.8660i  0.5000-0.8660i
7:  1.0000+0.0000i  0.6235+0.7818i -0.2225+0.9749i -0.9010+0.4339i -0.9010-0.4339i -0.2225-0.9749i  0.6235-0.7818i
8:  1.0000+0.0000i  0.7071+0.7071i  0.0000+1.0000i -0.7071+0.7071i -1.0000+0.0000i -0.7071-0.7071i  0.0000-1.0000i  0.7071-0.7071i
9:  1.0000+0.0000i  0.7660+0.6428i  0.1736+0.9848i -0.5000+0.8660i -0.9397+0.3420i -0.9397-0.3420i -0.5000-0.8660i  0.1736-0.9848i  0.7660-0.6428i

10: 1.0000+0.0000i 0.8090+0.5878i 0.3090+0.9511i -0.3090+0.9511i -0.8090+0.5878i -1.0000+0.0000i -0.8090-0.5878i -0.3090-0.9511i 0.3090-0.9511i 0.8090-0.5878i</lang>

Scheme

<lang scheme>(define pi (* 4 (atan 1)))

(do ((n 2 (+ n 1)))

   ((> n 10))
   (display n)
   (do ((k 0 (+ k 1)))
       ((>= k n))
       (display " ")
       (display (make-polar 1 (* 2 pi (/ k n)))))
   (newline))</lang>

Tcl

<lang Tcl>package require Tcl 8.5 namespace import tcl::mathfunc::*

set pi 3.14159265 for {set n 2} {$n <= 10} {incr n} {

   set angle 0.0
   set row $n:
   for {set i 1} {$i <= $n} {incr i} {
       lappend row [format %5.4f%+5.4fi [cos $angle] [sin $angle]]
       set angle [expr {$angle + 2*$pi/$n}]
   }
   puts $row

}</lang>

TI-89 BASIC

<lang ti89b>cZeros(x^n - 1, x)</lang>

For n=3 in exact mode, the results are

<lang ti89b>{-1/2+√(3)/2*i, -1/2-√(3)/2*i, 1}</lang>

Ursala

The roots function takes a number n to the nth root of -1, squares it, and iteratively makes a list of its first n powers (oblivious to roundoff error). Complex functions cpow and mul are used, which are called from the host system's standard C library.

<lang Ursala>#import std

  1. import nat
  2. import flo

roots = ~&htxPC+ c..mul:-0^*DlSiiDlStK9\iota c..mul@iiX+ c..cpow/-1.+ div/1.+ float

  1. cast %jLL

tests = roots* <1,2,3,4,5,6></lang> The output is a list of lists of complex numbers.

<
   <1.000e+00-2.449e-16j>,
   <
      1.000e+00-2.449e-16j,
      -1.000e+00+1.225e-16j>,
   <
      1.000e+00-8.327e-16j,
      -5.000e-01+8.660e-01j,
      -5.000e-01-8.660e-01j>,
   <
      1.000e+00-8.882e-16j,
      2.220e-16+1.000e+00j,
      -1.000e+00+4.441e-16j,
      -6.661e-16-1.000e+00j>,
   <
      1.000e+00-5.551e-17j,
      3.090e-01+9.511e-01j,
      -8.090e-01+5.878e-01j,
      -8.090e-01-5.878e-01j,
      3.090e-01-9.511e-01j>,
   <
      1.000e+00-1.221e-15j,
      5.000e-01+8.660e-01j,
      -5.000e-01+8.660e-01j,
      -1.000e+00+6.106e-16j,
      -5.000e-01-8.660e-01j,
      5.000e-01-8.660e-01j>>