Largest int from concatenated ints: Difference between revisions

From Rosetta Code
Content added Content deleted
m (update for 1.0+)
(Add Quackery)
Line 1,903: Line 1,903:


;Output as above.
;Output as above.

=={{header|Quackery}}==
<lang quackery>[ sortwith
[ 2dup swap join
dip join $< ]
[] swap witheach join ] is largest-int ( [ --> $ )

$ '1 34 3 98 9 76 45 4' nest$ largest-int echo$ cr
$ '54 546 548 60' nest$ largest-int echo$</lang>
{{out}}
<pre>
998764543431
6054854654
</pre>


=={{header|Racket}}==
=={{header|Racket}}==

Revision as of 19:30, 13 March 2021

Task
Largest int from concatenated ints
You are encouraged to solve this task according to the task description, using any language you may know.
Task

Given a set of positive integers, write a function to order the integers in such a way that the concatenation of the numbers forms the largest possible integer and return this integer.

Use the following two sets of integers as tests   and   show your program output here.

  •   {1, 34, 3, 98, 9, 76, 45, 4}
  •   {54, 546, 548, 60}


Possible algorithms
  1. A solution could be found by trying all combinations and return the best.
  2. Another way to solve this is to note that in the best arrangement, for any two adjacent original integers X and Y, the concatenation X followed by Y will be numerically greater than or equal to the concatenation Y followed by X.
  3. Yet another way to solve this is to pad the integers to the same size by repeating the digits then sort using these repeated integers as a sort key.


See also



11l

Translation of: Python

<lang 11l>F maxnum(x)

  V maxlen = String(max(x)).len
  R sorted((x.map(v -> String(v))), key' i -> i * (@maxlen * 2 I/ i.len), reverse' 1B).join(‘’)

L(numbers) [[212, 21221], [1, 34, 3, 98, 9, 76, 45, 4], [54, 546, 548, 60]]

  print("Numbers: #.\n  Largest integer: #15".format(numbers, maxnum(numbers)))</lang>
Output:
Numbers: [212, 21221]
  Largest integer:        21221221
Numbers: [1, 34, 3, 98, 9, 76, 45, 4]
  Largest integer:    998764543431
Numbers: [54, 546, 548, 60]
  Largest integer:      6054854654

Ada

The algorithmic idea is to apply a twisted comparison function:

<lang Ada>function Order(Left, Right: Natural) return Boolean is

     ( (Img(Left) & Img(Right)) > (Img(Right) & Img(Left)) );</lang>

This function converts the parameters Left and Right to strings and returns True if (Left before Right) exceeds (Right before Left). It needs Ada 2012 -- the code for older versions of Ada would be more verbose.

The rest is straightforward: Run your favourite sorting subprogram that allows to use the function "Order" instead of standard comparison operators ("<" or ">" or so) and print the results:

<lang Ada>with Ada.Text_IO, Ada.Containers.Generic_Array_Sort;

procedure Largest_Int_From_List is

  function Img(N: Natural) return String is
     S: String := Integer'Image(N);
  begin
     return S(S'First+1 .. S'Last); -- First character is ' '
  end Img;
  
  function Order(Left, Right: Natural) return Boolean is
     ( (Img(Left) & Img(Right)) > (Img(Right) & Img(Left)) );
  
  type Arr_T is array(Positive range <>) of Natural;
  
  procedure Sort is new Ada.Containers.Generic_Array_Sort
    (Positive, Natural, Arr_T, Order);
  
  procedure Print_Sorted(A: Arr_T) is
     B: Arr_T := A;
  begin
     Sort(B);
     for Number of B loop

Ada.Text_IO.Put(Img(Number));

     end loop;
     Ada.Text_IO.New_Line;
  end Print_Sorted;
  

begin

  Print_Sorted((1, 34, 3, 98, 9, 76, 45, 4));
  Print_Sorted((54, 546, 548, 60));

end Largest_Int_From_List;</lang>

Aime

<lang aime>largest(...) {

   index x;
   for (, integer e in xcall(list).__list) {
       x[999999999 - 9.times(b_, data(), e).b_size(9).atoi] = e;
   }
   x.ucall(o_, 0);
   o_newline();

}

main(void) {

   largest(1, 34, 3, 98, 9, 76, 45, 4);
   largest(54, 546, 548, 60);
   0;

}</lang> works for input up to 999999999.

Output:
998764543431
6054854654

ALGOL 68

Using method 2 - first sorting into first digit order and then comparing concatenated pairs. <lang algol68>BEGIN

   # returns the integer value of s #
   OP TOINT = ( STRING s)INT:
   BEGIN
       INT result := 0;
       FOR s pos FROM LWB s TO UPB s DO
           result *:= 10 +:= ( ABS s[ s pos ] - ABS "0" )
       OD;
       result
   END # TOINT # ;
   # returns the first digit of n #
   OP FIRSTDIGIT = ( INT n )INT:
   BEGIN
       INT result := ABS n;
       WHILE result > 9 DO result OVERAB 10 OD;
       result
   END # FIRSTDIGIT # ;
   # returns a string representaton of n #
   OP TOSTRING = ( INT n )STRING: whole( n, 0 );
   # returns an array containing the values of a sorted such that concatenating the values would result in the largest value #
   OP CONCATSORT = ( []INT a )[]INT:
      IF LWB a >= UPB a THEN
          # 0 or 1 element(s) #
          a
      ELSE
          # 2 or more elements #
          [ 1 : ( UPB a - LWB a ) + 1 ]INT result := a[ AT 1 ];
          # sort the numbers into reverse first digit order #
          FOR o pos FROM UPB result - 1 BY -1 TO 1
          WHILE BOOL swapped := FALSE;
                FOR i pos TO o pos DO
                    IF FIRSTDIGIT result[ i pos ] < FIRSTDIGIT result[ i pos + 1 ] THEN
                        INT t = result[ i pos + 1 ];
                        result[ i pos + 1 ] := result[ i pos ];
                        result[ i pos     ] := t;
                        swapped             := TRUE
                     FI
                OD;
                swapped
          DO SKIP OD;
          # now re-order adjacent numbers so they have the highest concatenated value #
          WHILE BOOL swapped := FALSE;
                FOR i pos TO UPB result - 1 DO
                    STRING l := TOSTRING result[ i pos     ];
                    STRING r := TOSTRING result[ i pos + 1 ];
                    IF TOINT ( l + r ) < TOINT ( r + l ) THEN
                        INT t = result[ i pos + 1 ];
                        result[ i pos + 1 ] := result[ i pos ];
                        result[ i pos     ] := t;
                        swapped             := TRUE
                    FI
                OD;
                swapped
          DO SKIP OD;
          result
      FI # CONCATSORT # ;
   # prints the array a #
   OP PRINT = ( []INT a )VOID:
      FOR a pos FROM LWB a TO UPB a DO
           print( ( TOSTRING a[ a pos ] ) )
      OD # PRINT # ;
   # task test cases #
   PRINT CONCATSORT []INT( 1, 34, 3, 98, 9, 76, 45, 4 );
   print( ( newline ) );
   PRINT CONCATSORT []INT( 54, 546, 548, 60 );
   print( ( newline ) )

END</lang>

Output:
998764543431
6054854654

Arturo

<lang rebol>largestConcInt: function [arr]->

   max map permutate arr 's [
       to :integer join map s => [to :string]
   ]

loop [[1 34 3 98 9 76 45 4] [54 546 548 60]] 'a ->

   print largestConcInt a</lang>

AutoHotkey

<lang AutoHotkey>LargestConcatenatedInts(var){ StringReplace, var, A_LoopField,%A_Space%,, all Sort, var, D`, fConcSort StringReplace, var, var, `,,, all return var }

ConcSort(a, b){ m := a . b , n := b . a

   return m < n ? 1 : m > n ? -1 : 0

}</lang> Examples:<lang AutoHotkey>d = ( 1, 34, 3, 98, 9, 76, 45, 4 54, 546, 548, 60 4 , 45, 54, 5 ) loop, parse, d, `n MsgBox % LargestConcatenatedInts(A_LoopField)</lang>

Output:
998764543431
6054854654
554454

AWK

Works with: gawk version 4.0

<lang awk> function cmp(i1, v1, i2, v2, u1, u2) { u1 = v1""v2; u2 = v2""v1;

       return (u2 - u1)

} function largest_int_from_concatenated_ints(X) {

	PROCINFO["sorted_in"]="cmp";

u=""; for (i in X) u=u""X[i]; return u }

BEGIN { split("1 34 3 98 9 76 45 4",X); print largest_int_from_concatenated_ints(X)

split("54 546 548 60",X); print largest_int_from_concatenated_ints(X) } </lang>

Output:
998764543431
6054854654

BBC BASIC

<lang bbcbasic> DIM Nums%(10)

     Nums%()=1,34,3,98,9,76,45,4
     PRINT FNlargestint(8)
     Nums%()=54,546,548,60
     PRINT FNlargestint(4)
     END
     
     DEF FNlargestint(len%)
     LOCAL i%,l$,a$,b$,sorted%
     REPEAT
       sorted%=TRUE
       FOR i%=0 TO len%-2
         a$=STR$Nums%(i%)
         b$=STR$Nums%(i%+1)
         IF a$+b$<b$+a$ SWAP Nums%(i%),Nums%(i%+1):sorted%=FALSE
       NEXT
     UNTIL sorted%
     FOR i%=0 TO len%-1
       l$+=STR$Nums%(i%)
     NEXT
     =l$</lang>
Output:
998764543431
6054854654

Bracmat

<lang bracmat>( ( maxnum

 =   A Z F C
   .   !arg:#
     |   !arg
       :   %@?F
           ?
           ( #%@?C
           & ( str$(!F !C)+-1*str$(!C !F):~<0
             | !C:?F
             )
           & ~
           )
           ?
     | !arg:?A !F ?Z&!F maxnum$(!A !Z)
 )

& out$(str$(maxnum$(1 34 3 98 9 76 45 4))) & out$(str$(maxnum$(54 546 548 60))) );</lang>

Output:
998764543431
6054854654

C

<lang C>#include <stdio.h>

  1. include <stdlib.h>
  2. include <string.h>

int catcmp(const void *a, const void *b) { char ab[32], ba[32]; sprintf(ab, "%d%d", *(int*)a, *(int*)b); sprintf(ba, "%d%d", *(int*)b, *(int*)a); return strcmp(ba, ab); }

void maxcat(int *a, int len) { int i; qsort(a, len, sizeof(int), catcmp); for (i = 0; i < len; i++) printf("%d", a[i]); putchar('\n'); }

int main(void) { int x[] = {1, 34, 3, 98, 9, 76, 45, 4}; int y[] = {54, 546, 548, 60};

maxcat(x, sizeof(x)/sizeof(x[0])); maxcat(y, sizeof(y)/sizeof(y[0]));

return 0; }</lang>

Output:
998764543431
6054854654

C#

<lang csharp>using System; using System.Collections.Generic; using System.Linq;

class Program {

   static void Main(string[] args)
   {
       var source1 = new int[] { 1, 34, 3, 98, 9, 76, 45, 4 };
       var source2 = new int[] { 54, 546, 548, 60 };
       var largest1 = LargestPossibleSequence(source1);
       var largest2 = LargestPossibleSequence(source2);
       Console.WriteLine("The largest possible integer from set 1 is: {0}", largest1);
       Console.WriteLine("The largest possible integer from set 2 is: {0}", largest2);
   }
   static long LargestPossibleSequence(int[] ints)
   {
       return long.Parse(string.Join("", ints.OrderBy(i => i, new IntConcatenationComparer()).Reverse()));
   }

}

class IntConcatenationComparer : IComparer<int> {

   public int Compare(int x, int y)
   {
       var xy = int.Parse(x.ToString() + y.ToString());
       var yx = int.Parse(y.ToString() + x.ToString());
       return xy - yx;
   }

} </lang>

Output:
The largest possible integer from set 1 is: 998764543431
The largest possible integer from set 2 is: 6054854654

C++

<lang cpp>#include <iostream>

  1. include <sstream>
  2. include <algorithm>
  3. include <vector>
  4. include <string>

std::string findLargestConcat ( std::vector< int > & mynumbers ) {

  std::vector<std::string> concatnumbers ;
  std::sort ( mynumbers.begin( ) , mynumbers.end( ) ) ;
  do {
     std::ostringstream numberstream ;
     for ( int i : mynumbers ) 

numberstream << i ;

     concatnumbers.push_back( numberstream.str( ) ) ;
  } while ( std::next_permutation( mynumbers.begin( ) ,

mynumbers.end( ) )) ;

  return *( std::max_element( concatnumbers.begin( ) ,

concatnumbers.end( ) ) ) ; }

int main( ) {

  std::vector<int> mynumbers = { 98, 76 , 45 , 34, 9 , 4 , 3 , 1 } ;
  std::vector<int> othernumbers = { 54 , 546 , 548 , 60 } ;
  std::cout << "The largest concatenated int is " <<
     findLargestConcat( mynumbers ) << " !\n" ;
  std::cout << "And here it is " << findLargestConcat( othernumbers ) 
     << " !\n" ;
  return 0 ;

}</lang>

Output:
The largest concatenated int is 998764543431 !
And here it is 6054854654 !

Ceylon

Translation of: Kotlin
Works with: Ceylon version 1.3.3

<lang ceylon>shared void run() {

function comparator(Integer x, Integer y) { assert (is Integer xy = Integer.parse(x.string + y.string), is Integer yx = Integer.parse(y.string + x.string)); return yx <=> xy; }

function biggestConcatenation({Integer*} ints) => "".join(ints.sort(comparator));

value test1 = {1, 34, 3, 98, 9, 76, 45, 4}; print(biggestConcatenation(test1));

value test2 = {54, 546, 548, 60}; print(biggestConcatenation(test2)); }</lang>

Clojure

<lang Clojure>(defn maxcat [coll]

 (read-string
   (apply str
          (sort (fn [x y]
                  (apply compare
                         (map read-string [(str y x) (str x y)])))
                coll))))

(prn (map maxcat [[1 34 3 98 9 76 45 4] [54 546 548 60]]))</lang>

Output:
(998764543431 6054854654)

Common Lisp

Sort by two-by-two comparison of largest concatenated result

<lang lisp> (defun int-concat (ints)

 (read-from-string (format nil "~{~a~}" ints)))

(defun by-biggest-result (first second)

 (> (int-concat  (list first second)) (int-concat (list second first))))

(defun make-largest-int (ints)

 (int-concat (sort ints #'by-biggest-result)))

</lang>

Output:
> (make-largest-int '(1 34 3 98 9 76 45 4))
998764543431

> (make-largest-int '(54 546 548 60))
6054854654


Variation around the sort with padded most significant digit

<lang lisp>

Sort criteria is by most significant digit with least digits used as a tie
breaker

(defun largest-msd-with-less-digits (x y)

 (flet ((first-digit (x)
          (digit-char-p (aref x 0))))
   (cond ((> (first-digit x)
             (first-digit y))
          t)
         ((> (first-digit y)
             (first-digit x))
          nil)
         ((and (= (first-digit x)
                  (first-digit y))
               (> (length x)
                  (length y)))
          nil)
         (t t))))

(loop

 :for input :in '((54 546 548 60) (1 34 3 98 9 76 45 4))
 :do (format t "~{~A~}~%"
             (sort (mapcar #'write-to-string input)
                   #'largest-msd-with-less-digits)))

</lang>

Output:
6054548546
998764453341

D

The three algorithms. Uses the second module from the Permutations Task. <lang d>import std.stdio, std.algorithm, std.conv, std.array, permutations2;

auto maxCat1(in int[] arr) pure @safe {

   return arr.to!(string[]).permutations.map!join.reduce!max;

}

auto maxCat2(in int[] arr) pure nothrow @safe {

   return arr.to!(string[]).sort!q{b ~ a < a ~ b}.join;

}

auto maxCat3(in int[] arr) /*pure nothrow @safe*/ {

   immutable maxL = arr.reduce!max.text.length;
   return arr.to!(string[])
          .schwartzSort!(s => s.replicate(maxL/s.length + 1), "a > b")
          .join;

}

void main() {

   const lists = [[1, 34, 3, 98, 9, 76, 45, 4], [54, 546, 548, 60]];
   [&maxCat1, &maxCat2, &maxCat3].map!(cat => lists.map!cat).writeln;

}</lang>

Output:
[["998764543431", "6054854654"], ["998764543431", "6054854654"], ["998764543431", "6054854654"]]

Elixir

<lang elixir>defmodule RC do

 def largest_int(list) do
   sorted = Enum.sort(list, fn x,y -> "#{x}#{y}" >= "#{y}#{x}" end)
   Enum.join(sorted)
 end

end

IO.inspect RC.largest_int [1, 34, 3, 98, 9, 76, 45, 4] IO.inspect RC.largest_int [54, 546, 548, 60]</lang>

Output:
"998764543431"
"6054854654"

Erlang

<lang Erlang> -module( largest_int_from_concatenated ).

-export( [ints/1, task/0] ).

ints( Ints ) -> Int_strings = [erlang:integer_to_list(X) || X <- Ints], Pad_ints = [{X ++ X, X} || X <- Int_strings], erlang:list_to_integer( lists:append([Int || {_Pad, Int} <- lists:reverse(lists:sort(Pad_ints))]) ).

task() -> [io:fwrite("Largest ~p from ~p~n", [ints(X), X]) || X <- [[1, 34, 3, 98, 9, 76, 45, 4], [54, 546, 548, 60]]]. </lang>

Output:
8> largest_int_from_concatenated:task().
Largest 998764543431 from [1,34,3,98,9,76,45,4]
Largest 6054854654 from [54,546,548,60]

F#

<lang fsharp> // Form largest integer which is a permutation from a list of integers. Nigel Galloway: March 21st., 2018 let fN g = List.map (string) g |> List.sortWith(fun n g->if n+g<g+n then 1 else -1) |> System.String.Concat </lang>

Output:
fN [1; 34; 3; 98; 9; 76; 45; 4] -> "998764543431"
fN [54; 546; 548; 60]           -> "6054854654"

Factor

Using algorithm 3: <lang factor>USING: assocs io kernel math qw sequences sorting ; IN: rosetta-code.largest-int

pad ( target seq -- padded )
   2dup length / swap <repetition> concat swap head ;
   
largest-int ( seq -- )
   dup dup [ length ] map supremum    ! find longest length so we know how much to pad
   [ swap pad ] curry map             ! pad the integers
   <enum> sort-values                 ! sort the padded integers
   keys                               ! find the original indices of the sorted integers
   swap nths                          ! order non-padded integers according to their sorted order
   reverse concat print ;             
   

qw{ 1 34 3 98 9 76 45 4 } qw{ 54 546 548 60 } [ largest-int ] bi@</lang>

Output:
998764543431
6054854654

Or alternatively, a translation of F#.

Translation of: F#

<lang factor>USING: kernel math.order qw sequences sorting ;

fn ( seq -- str )
   [ 2dup swap [ append ] 2bi@ after? +lt+ +gt+ ? ] sort concat ;</lang>
Output:
qw{ 1 34 3 98 9 76 45 4 } qw{ 54 546 548 60 } [ fn ] bi@

--- Data stack:
"998764543431"
"6054854654"

Fortran

There is often a potential ambiguity when reading numbers. While three definitely names the Platonic number notion, 3 might instead be regarded as being a text that happens to have the glyph of a number but is not a number. This sort of discussion arises when a spreadsheet has read in a text file and behold! numbers are on the display and they look just like what is displayed when numbers are being shown, but, they are not numbers, they are only drawn that way. Within the spreadsheet they are parts of some text, and the notion that takes over is one of a "blunt, heavy object", not alas close to hand.

So, the plan is to regard the numbers as being text sequences aligned to the left, containing only digit characters of course - except for the fact that CHARACTER variables often end up having trailing spaces. F2003 formalised a scheme whereby such variables can be "cut-to-fit" as execution proceeds but with earlier Fortrans the standard method is to pay attention to the number of characters in use. F90 introduced a function LEN_TRIM(text) to return the index of the last non-blank character in a text so the only problem now is to decide on how long might the largest number be (and by representing numbers as text strings, there is no difficulty with the limits of INTEGER*2 or INTEGER*4 etc.), and what will be the maximum number of numbers. By devising a subroutine to do the work, these issues can be handled by the caller that is providing the data. The subroutine however intends to sort the collection of texts. This could be done by damaging its parameter which might be regarded as impolite or even unwanted so instead the sort is effected via an array XLAT and juggling its values. This has the advantage that the possibly large elements of the text array are not being moved about, but means that the subroutine must be able to have an XLAT array that is "large enough". F90 standardised the ability for a routine to declare such an array at run-time; previously, arrays within a subroutine (or indeed anywhere) had to have a size fixed at compilation time. In the past this might have been handled by the caller supplying such an array as an additional parameter.

Passing arrays as parameters can be tricky, especially for multi-dimensional arrays. This uses the old style whereby the size is left unstated via the * in TEXT(*), though one could use TEXT(N) instead - but at the risk that the actual value of N is wrong and array index checking might be confused thereby. Still earlier one would simply place some integer value there, any valid integer, as in TEXT(666), and not worry about bound checking at all because old-style compilers did not produce checking code even if it was wanted. F90 standardised the MODULE protocol, within which the size is specified as TEXT(:) whereby secret additional parameters are supplied that contain the actual bound information and bound checking will be correct, possibly not so if the TEXT(N) form is used instead and N is wrong. This extra overhead in every use is possibly better than undetected errors in some uses...

The sorting of the text array was to be by the notorious BubbleSort, taking advantage of the fact that each pass delivers the maximum value of the unsorted portion to its final position: the output could thereby be produced as the sort worked. Rather than mess about with early termination (no element being swapped) or attention to the bounds within which swapping took place, attention concentrated upon the comparison. Because of the left-alignment of the texts, a simple comparison seemed sufficient until I thought of unequal text lengths and then the following example. Suppose there are two numbers, 5, and one of 54, 55, or 56 as the other. Via normal comparisons, the 5 would always be first (because short texts are considered expanded with trailing spaces when compared against longer texts, and a space precedes every digit) however the biggest ordering is 5 54 for the first case but 56 5 for the last. This possibility is not exemplified in the specified trial sets. So, a more complex comparison is required. One could of course write a suitable function and consider the issue there but instead the comparison forms the compound text in the same manner as the result will be, in the two ways AB and BA, and looks to see which yields the bigger sequence. This need only be done for unequal length text pairs.

The source is F77 style, except for the declaration of XLAT(N), the use of <N> in the FORMAT statements instead of some large constant or similar, and the ability to declare an array via constants as in (/"5","54"/) rather than mess about declaring arrays and initialising them separately. The I0 format code to convert a number (an actual number) into a digit string aligned leftwards in a CHARACTER variable of sufficient size is also a F90 introduction, though the B6700 compiler allowed a code J instead. This last is to demonstrate usage of actual numbers for those unpersuaded by the argument for ambiguity that allows for texts. If the I0 format code is unavailable then I9 (or some suitable size) could be used, followed by text = ADJUSTL(text), except that this became an intrinsic function only in F90, so perhaps you will have to write a simple alignment routine. <lang Fortran> SUBROUTINE SWAP(A,B) !Why can't the compiler supply these!

      INTEGER A,B,T
       T = B
       B = A
       A = T
     END
     SUBROUTINE BIGUP(TEXT,N)	!Outputs the numbers in TEXT to give the biggest number.
      CHARACTER*(*) TEXT(*)	!The numbers as text, aligned left.
      INTEGER N		!The number of them.
      INTEGER XLAT(N),L(N)	!An index and a set of lengths.
      INTEGER I,J,M		!Assorted steppers.
      INTEGER TI,TJ		!Fingers to a text.
      INTEGER LI,LJ		!Lengths of the fingered texts.
      INTEGER MSG		!I/O unit number.
      COMMON /IODEV/ MSG	!Old style.
       DO I = 1,N	!Step through my supply of texts.
         XLAT(I) = I		!Preparing a finger to them.
         L(I) = LEN_TRIM(TEXT(I))	!And noting their last non-blank.
       END DO		!On to the next.
       WRITE (MSG,1) "Supplied",(TEXT(I)(1:L(I)), I = 1,N)	!Show the grist.
   1   FORMAT (A12,":",<N>(A,","))	!Instead of <N>, 666 might suffice.

Crude bubblesort. No attempt at noting the bounds of swaps made.

       DO M = N,1,-1	!Just for fun, go backwards.
         DO I = 2,M		!Start a scan.
           J = I - 1		!Comparing element I to element I - 1.
           TI = XLAT(I)	!Thus finger the I'th text in XLAT order.
           TJ = XLAT(J)	!And its supposed predecessor.
           LI = L(TI)		!The length of the fingered text.
           LJ = L(TJ)		!All this to save on typing below.
           IF (LI .EQ. LJ) THEN	!If the texts are equal lengths,
             IF (TEXT(TI).LT.TEXT(TJ)) CALL SWAP(XLAT(I),XLAT(J))	!A simple comparison.
            ELSE	!But if not, construct the actual candidate texts for comparison.
             IF (TEXT(TI)(1:LI)//TEXT(TJ)(1:LJ)	!These two will be the same length.
    1        .LT.TEXT(TJ)(1:LJ)//TEXT(TI)(1:LI))	!Just as above.
    2        CALL SWAP(XLAT(I),XLAT(J))	!J shall now follow I.
           END IF			!So much for that comparison.
         END DO		!On to the next.
       END DO	!The original plan was to reveal element XLAT(M) as found.
       WRITE (MSG,2) "Biggest",(TEXT(XLAT(I))(1:L(XLAT(I))),I = N,1,-1)	!But, all at once is good too.
   2   FORMAT (A12,":",<N>(A," "))	!The space maintains identity.
     END	!That was fun.
     PROGRAM POKE
     CHARACTER*4 T1(10)	!Prepare some example arrays.
     CHARACTER*4 T2(4)		!To hold the specified examples.
     INTEGER MSG
     COMMON /IODEV/ MSG
     DATA T1(1:8)/"1","34","3","98","9","76","45","4"/
     DATA T2/"54","546","548","60"/
     MSG = 6		!Standard output.
     WRITE (MSG,1)
   1 FORMAT ("Takes a list of integers and concatenates them so as ",
    1 "to produce the biggest possible number.",/,
    2 "The result is shown with spaces between the parts ",
    3 "to show provenance. Ignore them otherwise."/)
     CALL BIGUP(T1,8)
     WRITE (MSG,*)
     CALL BIGUP(T2,4)
     WRITE (MSG,*) "These are supplied in lexicographical order..."
     CALL BIGUP((/"5","54"/),2)
     WRITE (MSG,*) "But this is not necessarily the biggest order."
     CALL BIGUP((/"5","56"/),2)
     WRITE (MSG,*) "And for those who count..."
     DO I = 1,10
       WRITE (T1(I),"(I0)") I	!This format code produces only the necessary text.
     END DO			!Thus, the numbers are aligned left in the text field.
     CALL BIGUP(T1,10)
     END </lang>

Output: the Fortran compiler ignores spaces when reading fortran source, so, hard-core fortranners should have no difficulty doing likewise for the output...

Takes a list of integers and concatenates them so as to produce the biggest possible number.
The result is shown with spaces between the parts to show provenance. Ignore them otherwise.

    Supplied:1,34,3,98,9,76,45,4,
     Biggest:9 98 76 45 4 34 3 1

    Supplied:54,546,548,60,
     Biggest:60 548 546 54
 These are supplied in lexicographical order...
    Supplied:5,54,
     Biggest:5 54
 But this is not necessarily the biggest order.
    Supplied:5,56,
     Biggest:56 5
 And for those who count...
    Supplied:1,2,3,4,5,6,7,8,9,10,
     Biggest:9 8 7 6 5 4 3 2 1 10

FreeBASIC

<lang freebasic>#define MAXDIGITS 8

function catint( a as string, b as string ) as uinteger

   return valint(a+b)

end function

function grt( a as string, b as string ) as boolean

   return catint(a, b)>catint(b, a)

end function

sub shellsort( a() as string )

   'quick and dirty shellsort, not the focus of this exercise
   dim as uinteger gap = ubound(a), i, j, n=ubound(a)
   dim as string temp
   do 
       gap = int(gap / 2.2)
       for i=gap to n
           temp = a(i)
           j=i
           while j>=gap andalso grt( a(j-gap), temp )
               a(j) = a(j - gap)
               j -= gap
           wend 
           a(j) = temp
       next i
   loop until gap = 1

end sub

sub sort_and_print( a() as string )

   dim as uinteger i
   dim as string outstring = ""
   shellsort(a())
   for i=0 to ubound(a)
       outstring = a(i)+outstring
   next i
   print outstring

end sub

dim as string set1(8) = {"1", "34", "3", "98", "9", "76", "45", "4"} dim as string set2(4) = {"54", "546", "548", "60"}

sort_and_print(set1()) sort_and_print(set2())</lang>

Output:
998764543431
6054854654 

Gambas

Click this link to run this code <lang gambas>'Largest int from concatenated ints

Public Sub Main() Dim iList1 As Integer[] = [1, 34, 3, 98, 9, 76, 45, 4] 'Integer list 1 Dim iList2 As Integer[] = [54, 546, 548, 60] 'Integer list 2

Calc(iList1) 'Send List 1 to Calc routine Calc(iList2) 'Send List 2 to Calc routine

End '_________________________________________________________________________________________

Public Sub Calc(iList As Integer[]) Dim siCount1, siCount2, siCounter As Short 'Counters Dim sList As New String[] 'To hold converted integers Dim bTrigger As Boolean 'To trigger a found match

For Each siCount1 In iList 'For each integer in the list..

 sList.Add(Str(siCount1))                                  'Convert to a string and add to sList
 If Len(Str(siCount1)) > siCounter Then                    'If the length of the string is greater than siCounter then..
   siCounter = Len(Str(siCount1))                          'siCounter = length of the string
 End If

Next

For siCount1 = 0 To sList.Max 'For each item in sList

 If Len(sList[siCount1]) < siCounter Then                  'If the length of the string is less that siCounter then..
   sList[siCount1] &= Right(sList[siCount1], 1)            'Add the same digit to the string e.g. in list 1 "9" becomes "99", list 2 "54" becomes "544"
 End If

Next

sList.Sort(gb.Descent) 'Sort the list in decending order

For siCount1 = 0 To sList.Max 'For each item in sList

 bTrigger = False                                          'Set bTrigger to False
 For siCount2 = 0 To iList.Max                             'Loop through each item in iList
   If Val(sList[siCount1]) = iList[siCount2] Then          'If the value of each is the same e.g. "98" = 98 then
     bTrigger = True                                       'Set bTrigger to True
     Continue                                              'Exit the loop
   Endif
 Next
 If Not bTrigger Then                                      'If there was no match e.g. there is no "99" then.. 
   sList[siCount1] = Left(sList[siCount1], siCounter - 1)  'Strip out the end digit e.g. "99" becomes 9 again
 End If

Next

Print Val(sList.Join("")) 'Join all items in sList together and print

End</lang> Output:

998764543431
6054854654

Go

<lang go>// Variation of method 3. Repeat digits to at least the size of the longest, // then sort as strings. package main

import (

   "fmt"
   "math/big"
   "sort"
   "strconv"
   "strings"

)

type c struct {

   i     int
   s, rs string

}

type cc []*c

func (c cc) Len() int { return len(c) } func (c cc) Less(i, j int) bool { return c[j].rs < c[i].rs } func (c cc) Swap(i, j int) { c[i], c[j] = c[j], c[i] }

// Function required by task. Takes a list of integers, returns big int. func li(is ...int) *big.Int {

   ps := make(cc, len(is))
   ss := make([]c, len(is))
   ml := 0
   for j, i := range is {
       p := &ss[j]
       ps[j] = p
       p.i = i
       p.s = strconv.Itoa(i)
       if len(p.s) > ml {
           ml = len(p.s)
       }
   }
   for _, p := range ps {
       p.rs = strings.Repeat(p.s, (ml+len(p.s)-1)/len(p.s))
   }
   sort.Sort(ps)
   s := make([]string, len(ps))
   for i, p := range ps {
       s[i] = p.s
   }
   b, _ := new(big.Int).SetString(strings.Join(s, ""), 10)
   return b

}

func main() {

   fmt.Println(li(1, 34, 3, 98, 9, 76, 45, 4))
   fmt.Println(li(54, 546, 548, 60))

}</lang>

Output:
998764543431
6054854654

Groovy

<lang groovy>def largestInt = { c -> c.sort { v2, v1 -> "$v1$v2" <=> "$v2$v1" }.join() as BigInteger }</lang> Testing: <lang groovy>assert largestInt([1, 34, 3, 98, 9, 76, 45, 4]) == 998764543431 assert largestInt([54, 546, 548, 60]) == 6054854654</lang>

Haskell

Compare repeated string method

<lang Haskell>import Data.List (sortBy) import Data.Ord (comparing)

main = print (map maxcat [[1,34,3,98,9,76,45,4], [54,546,548,60]] :: [Integer])

   where
     sorted xs = let pad x  = concat $ replicate (maxLen `div` length x + 1) x
                     maxLen = maximum $ map length xs
                 in  sortBy (flip $ comparing pad) xs
     maxcat = read . concat . sorted . map show</lang>
Output:
[998764543431,6054854654]

Since repeating numerical string "1234" is the same as taking all the digits of 1234/9999 after the decimal point, the following does essentially the same as above: <lang haskell>import Data.List (sortBy) import Data.Ord (comparing) import Data.Ratio ((%))

nines = iterate ((+9).(*10)) 9

maxcat = foldl (\a (n,d)->a * (1 + d) + n) 0 .

   sortBy (flip $ comparing $ uncurry (%)) .
   map (\a->(a, head $ dropWhile (<a) nines))

main = mapM_ (print.maxcat) [[1,34,3,98,9,76,45,4], [54,546,548,60]]</lang>

Sort on comparison of concatenated ints method

<lang Haskell>import Data.List (sortBy)

main = print (map maxcat [[1,34,3,98,9,76,45,4], [54,546,548,60]] :: [Integer])

   where sorted = sortBy (\a b -> compare (b++a) (a++b))
         maxcat = read . concat . sorted . map show</lang>
Output as above.

Try all permutations method

<lang Haskell>import Data.List (permutations)

main :: IO () main =

 print
   (maxcat <$> [[1, 34, 3, 98, 9, 76, 45, 4], [54, 546, 548, 60]] :: [Integer])
 where
   maxcat = read . maximum . fmap (concatMap show) . permutations</lang>
Output as above.

Icon and Unicon

This solution only works in Unicon as it uses a Heap class to do the heavy lifting.

<lang unicon>import Collections # For the Heap (dense priority queue) class

procedure main(a)

   write(lici(a))

end

procedure lici(a)

   every (result := "") ||:= Heap(a,,cmp).gen()
   return result

end

procedure cmp(a,b)

  return (a||b) > (b||a)

end</lang>

Sample runs:

->lici 1 34 3 98 9 76 45 4
998764543431
->lici 54 546 548 60
6054854654
->

J

Solution: <lang j>maxlen=: [: >./ #&> maxnum=: (0 ". ;)@(\: maxlen $&> ])@(8!:0)</lang> Usage: <lang j> maxnum&> 1 34 3 98 9 76 45 4 ; 54 546 548 60 998764543431 6054854654</lang>

Java

Works with: Java version 1.5+

This example sets up a comparator to order the numbers using Collections.sort as described in method #3 (padding and reverse sorting). It was also necessary to make a join method to meet the output requirements. <lang java5>import java.util.*;

public class IntConcat {

   private static Comparator<Integer> sorter = new Comparator<Integer>(){
       @Override
       public int compare(Integer o1, Integer o2){
           String o1s = o1.toString();
           String o2s = o2.toString();
           
           if(o1s.length() == o2s.length()){
               return o2s.compareTo(o1s);
           }
           int mlen = Math.max(o1s.length(), o2s.length());
           while(o1s.length() < mlen * 2) o1s += o1s;
           while(o2s.length() < mlen * 2) o2s += o2s;
           
           return o2s.compareTo(o1s);
       }
   };
   
   public static String join(List<?> things){
       String output = "";
       for(Object obj:things){
           output += obj;
       }
       return output;
   }
   
   public static void main(String[] args){
       List<Integer> ints1 = new ArrayList<Integer>(Arrays.asList(1, 34, 3, 98, 9, 76, 45, 4));
       
       Collections.sort(ints1, sorter);
       System.out.println(join(ints1));
       
       List<Integer> ints2 = new ArrayList<Integer>(Arrays.asList(54, 546, 548, 60));
       
       Collections.sort(ints2, sorter);
       System.out.println(join(ints2));
   }

}</lang>

Works with: Java version 1.8+

<lang java5>import java.util.Comparator; import java.util.stream.Collectors; import java.util.stream.Stream;

public interface IntConcat {

 public static Comparator<Integer> SORTER = (o1, o2) -> {
   String o1s = o1.toString();
   String o2s = o2.toString();
   
   if (o1s.length() == o2s.length()) {
     return o2s.compareTo(o1s);
   }
   
   int mlen = Math.max(o1s.length(), o2s.length());
   while (o1s.length() < mlen * 2) {
     o1s += o1s;
   }
   while (o2s.length() < mlen * 2) {
     o2s += o2s;
   }
   
   return o2s.compareTo(o1s);
 };
 public static void main(String[] args) {
   Stream<Integer> ints1 = Stream.of(
     1, 34, 3, 98, 9, 76, 45, 4
   );
   System.out.println(ints1
     .parallel()
     .sorted(SORTER)
     .map(String::valueOf)
     .collect(Collectors.joining())
   );
   Stream<Integer> ints2 = Stream.of(
     54, 546, 548, 60
   );
   System.out.println(ints2
     .parallel()
     .sorted(SORTER)
     .map(String::valueOf)
     .collect(Collectors.joining())
   );
 }

}</lang>

Output:
998764543431
6054854654

JavaScript

ES5

<lang JavaScript> (function () {

    'use strict';
    // maxCombine :: [Int] -> Int
    function maxCombine(xs) {
        return parseInt(
            xs.sort(
                function (x, y) {
                    var a = x.toString(),
                        b = y.toString(),
                        ab = parseInt(a + b),
                        ba = parseInt(b + a);
                    return ab > ba ? -1 : (ab < ba ? 1 : 0);
                }
            )
            .join(), 10
        );
    }
    return [
       [1, 34, 3, 98, 9, 76, 45, 4],
       [54, 546, 548, 60]
    ].map(maxCombine);
})();

</lang>

Output:
[998764543431, 6054854654]


ES6

<lang JavaScript>var maxCombine = (a) => +(a.sort((x, y) => +("" + y + x) - +("" + x + y)).join());

// test & output console.log([

 [1, 34, 3, 98, 9, 76, 45, 4],
 [54, 546, 548, 60]

].map(maxCombine));</lang>

jq

Works with: jq version 1.4

Padding

For jq versions greater than 1.4, it may be necessary to change "sort_by" to "sort". <lang jq>def largest_int:

 def pad(n):  . + (n - length) * .[length-1:];
 map(tostring)
 | (map(length) | max) as $max
 | map([., pad($max)]) 
 | sort_by( .[1] )
 | map( .[0] ) | reverse | join("") ;
  1. Examples:

([1, 34, 3, 98, 9, 76, 45, 4],

[54, 546, 548, 60])  | largest_int

</lang>

Output:
$ /usr/local/bin/jq -n -M -r -f Largest_int_from_concatenated_ints.jq
998764543431
6054854654

Custom Sort

The following uses quicksort/1: <lang jq>def largest_int:

 map(tostring)
 | quicksort( .[0] + .[1] < .[1] + .[0] )
 | reverse | join("") ;</lang>

Julia

Perhaps algorithm 3 is more efficient, but algorithm 2 is decent and very easy to implement in Julia. So this solution uses algorithm 2.

<lang julia>function maxconcat(arr::Vector{<:Integer})

   b = sort(string.(arr); lt=(x, y) -> x * y < y * x, rev=true) |> join
   return try parse(Int, b) catch parse(BigInt, b) end

end

tests = ([1, 34, 3, 98, 9, 76, 45, 4],

        [54, 546, 548, 60],
        [1, 34, 3, 98, 9, 76, 45, 4, 54, 546, 548, 60])

for arr in tests

   println("Max concatenating in $arr:\n -> ", maxconcat(arr))

end</lang>

Output:
Max concatenating in [1, 34, 3, 98, 9, 76, 45, 4]:
 -> 998764543431
Max concatenating in [54, 546, 548, 60]:
 -> 6054854654
Max concatenating in [1, 34, 3, 98, 9, 76, 45, 4, 54, 546, 548, 60]:
 -> 9987660548546544543431

Kotlin

Translation of: C#
Works with: Kotlin version 1.0b4

<lang scala>import java.util.Comparator

fun main(args: Array<String>) {

   val comparator = Comparator<Int> { x, y ->
       val xy = (x.toString() + y).toInt()
       val yx = (y.toString() + x).toInt()
       xy.compareTo(yx)
   }
   fun findLargestSequence(array: IntArray): String {
       return array.sortedWith(comparator).reversed().map { it.toString() }.joinToString("")
   }
   val source1 = intArrayOf(1, 34, 3, 98, 9, 76, 45, 4)
   println(findLargestSequence(source1))
   val source2 = intArrayOf(54, 546, 548, 60)
   println(findLargestSequence(source2))

}</lang>

Output:
998764543431
6054854654

Lua

Translation of: Python

<lang Lua>function icsort(numbers) table.sort(numbers,function(x,y) return (x..y) > (y..x) end) return numbers end

for _,numbers in pairs({{1, 34, 3, 98, 9, 76, 45, 4}, {54, 546, 548, 60}}) do print(('Numbers: {%s}\n Largest integer: %s'):format( table.concat(numbers,","),table.concat(icsort(numbers)) )) end</lang>

Output:
Numbers: {1,34,3,98,9,76,45,4}
  Largest integer: 998764543431
Numbers: {54,546,548,60}
  Largest integer: 6054854654

Mathematica

<lang Mathematica>makeLargestInt[list_] := Module[{sortedlist},

 sortedlist = Sort[list, Order[ToString[#1] <> ToString[#2], ToString[#2] <> ToString[#1]] < 0 &];
 Map[ToString, sortedlist] // StringJoin // FromDigits
 ]

(* testing with two examples *) makeLargestInt[{1, 34, 3, 98, 9, 76, 45, 4}] makeLargestInt[{54, 546, 548, 60}]</lang>

Output:
998764543431
6054854654

min

Works with: min version 0.19.6

<lang min>(quote cons "" join) :s+ ('string map (over over swap s+ 's+ dip <) sort "" join int) :fn

(1 34 3 98 9 76 45 4) fn puts! (54 546 548 60) fn puts!</lang>

Output:
998764543431
6054854654

NetRexx

<lang NetRexx>/* NetRexx */ options replace format comments java crossref symbols nobinary

runSample(arg) return

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ method largestInt(il) public static

 ri = 
 wa = 
 -- put the list into an indexed string
 wa[0] = il.words
 loop ww = 1 to wa[0]
   wa[ww] = il.word(ww)
   end ww
 -- order the list
 loop wx = 1 to wa[0] - 1
   loop wy = wx + 1 to wa[0]
     xx = wa[wx]
     yy = wa[wy]
     xy = xx || yy
     yx = yy || xx
     if xy < yx then do
       -- swap xx and yy
       wa[wx] = yy
       wa[wy] = xx
       end
     end wy
   end wx
 -- rebuild list from indexed string
 loop ww = 1 to wa[0]
   ri = ri wa[ww]
   end ww
 return ri.space(0) -- concatenate the list elements into a single numeric

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ method runSample(arg) private static

 ints = [ -
   '1 34 3 98 9 76 45 4', -
   '54 546 548 60' -
   ]
 loop il over ints
   say largestInt(il).right(20) ':' il.space(1, ',')
   end il
 return

</lang>

Output:
        998764543431 : 1,34,3,98,9,76,45,4
          6054854654 : 54,546,548,60

Nim

<lang nim>import algorithm, sequtils, strutils, sugar

proc maxNum(x: seq[int]): string =

 var c = x.mapIt($it)
 c.sort((x, y) => cmp(y&x, x&y))
 c.join()

echo maxNum(@[1, 34, 3, 98, 9, 76, 45, 4]) echo maxNum(@[54, 546, 548, 60])</lang>

Output:
998764543431
6054854654

OCaml

<lang ocaml>let myCompare a b = compare (b ^ a) (a ^ b) let icsort nums = String.concat "" (List.sort myCompare (List.map string_of_int nums))</lang>

testing
# icsort [1;34;3;98;9;76;45;4];;  
- : string = "998764543431"
# icsort [54;546;548;60];;
- : string = "6054854654"

Oforth

<lang Oforth>: largestInt map(#asString) sortWith(#[ 2dup + -rot swap + > ]) sum asInteger ;</lang>

Output:
[ [1, 34, 3, 98, 9, 76, 45, 4], [54, 546, 548, 60] ] map(#largestInt) .
[998764543431, 6054854654]

PARI/GP

Sorts then joins. Most of the noise comes from converting a vector of integers into a concatenated integer: eval(concat(apply(n->Str(n),v))). Note that the short form eval(concat(apply(Str,v))) is not valid here because Str is variadic.

<lang parigp>large(v)=eval(concat(apply(n->Str(n),vecsort(v,(x,y)->eval(Str(y,x,"-",x,y)))))); large([1, 34, 3, 98, 9, 76, 45, 4]) large([54, 546, 548, 60])</lang>

Output:
%1 = 998764543431
%2 = 6054854654

Pascal

tested with freepascal.Used a more extreme example 3.

algorithm 3

<lang pascal>const

 base    = 10;
 MaxDigitCnt = 11;
 source1 : array[0..7] of integer = (1, 34, 3, 98, 9, 76, 45, 4);
 source2 : array[0..3] of integer = (54,546,548,60);
 source3 : array[0..3] of integer = (60, 54,545454546,0);

type

 tdata = record
           datOrg,
           datMod : LongWord;
           datStrOrg       : string[MaxDigitCnt];
         end;
 tArrData = array of tData;

procedure DigitCount(var n: tdata); begin

 with n do
   //InttoStr is very fast
   str(datOrg,datStrOrg);

end;

procedure InsertData(var n: tdata;data:LongWord); begin

 n.datOrg := data;
 DigitCount(n);

end;

function FindMaxLen(const ArrData:tArrData): LongWord; var

 cnt : longInt;
 res,t : LongWord;

begin

 res := 0;// 1 is minimum
 for cnt :=  High(ArrData) downto Low(ArrData) do
 begin
   t := length(ArrData[cnt].datStrOrg);
   IF res < t then
     res := t;
 end;
 FindMaxLen := res;

end;

procedure ExtendCount(var ArrData:tArrData;newLen: integer); var

 cnt,
 i,k : integer;

begin

 For cnt := High(ArrData) downto Low(ArrData) do
   with ArrData[cnt] do
   begin
     datMod := datOrg;
     i := newlen-length(datStrOrg);
     k := 1;
     while i > 0 do
     begin
       datMod := datMod *Base+Ord(datStrOrg[k])-Ord('0');
       inc(k);
       IF k >length(datStrOrg) then
         k := 1;
       dec(i);
     end;
   end;

end;

procedure SortArrData(var ArrData:tArrData); var

 i,
 j,idx : integer;
 tmpData : tData;

begin

 For i := High(ArrData) downto Low(ArrData)+1 do
 begin
   idx := i;
   j := i-1;
   For j := j downto Low(ArrData) do
     IF ArrData[idx].datMod < ArrData[j].datMod then
        idx := j;
   IF idx <> i then
   begin
     tmpData     := ArrData[idx];
     ArrData[idx]:= ArrData[i];
     ArrData[i]  := tmpData;
   end;
 end;

end;

procedure ArrDataOutput(const ArrData:tArrData); var

 i,l : integer;
 s : string;

begin { the easy way

 For i := High(ArrData) downto Low(ArrData) do
   write(ArrData[i].datStrOrg);
 writeln;
 *}
 l := 0;
 For i := High(ArrData) downto Low(ArrData) do
   inc(l,length(ArrData[i].datStrOrg));
 setlength(s,l);
 l:= 1;
 For i := High(ArrData) downto Low(ArrData) do
   with ArrData[i] do
   begin
     move(datStrOrg[1],s[l],length(datStrOrg));
     inc(l,length(datStrOrg));
   end;
 writeln(s);

end;

procedure HighestInt(var ArrData:tArrData); begin

 ExtendCount(ArrData,FindMaxLen(ArrData));
 SortArrData(ArrData);
 ArrDataOutput(ArrData);

end;

var

 i : integer;
 tmpData : tArrData;

begin

 // Source1
 setlength(tmpData,length(source1));
 For i := low(tmpData) to high(tmpData) do
   InsertData(tmpData[i],source1[i]);
 HighestInt(tmpData);
 // Source2
 setlength(tmpData,length(source2));
 For i := low(tmpData) to high(tmpData) do
   InsertData(tmpData[i],source2[i]);
 HighestInt(tmpData);
 // Source3
 setlength(tmpData,length(source3));
 For i := low(tmpData) to high(tmpData) do
   InsertData(tmpData[i],source3[i]);
 HighestInt(tmpData);

end.</lang>

Output:
998764543431
6054854654
60545454546540

Inspired by Haskell

generate the repetition by dividing /(10^CountDigits-1) http://rosettacode.org/wiki/Largest_int_from_concatenated_ints#Compare_repeated_string_method

<lang pascal>const

 base    = 10;
 MaxDigitCnt = 11;
 source1 : array[0..7] of LongInt = (10 , 34, 3, 98, 9, 76, 45, 4);
 source2 : array[0..3] of LongInt = (54,546,548,60);
 source3 : array[0..3] of LongInt = (0,2121212122,21,60);

type

 tdata = record
           datMod : double;
           datOrg : LongInt;

//InttoStr is very fast and the string is always needed

           datStrOrg       : string[MaxDigitCnt];
         end;
 tArrData = array of tData;

procedure InsertData(var n: tdata;data:LongWord); begin

 with n do
 begin
   datOrg := data;
   str(datOrg,datStrOrg);
 end;

end;

function FindMaxLen(const ArrData:tArrData): LongWord; var

 cnt : longInt;
 res,t : LongWord;

begin

 res := 0;// 1 is minimum
 for cnt :=  High(ArrData) downto Low(ArrData) do
 begin
   t := length(ArrData[cnt].datStrOrg);
   IF res < t then
     res := t;
 end;
 FindMaxLen := res;

end;

procedure ExtendData(var ArrData:tArrData;newLen: integer); var

 cnt,
 i : integer;

begin

 For cnt := High(ArrData) downto Low(ArrData) do
   with ArrData[cnt] do
   begin
     //generating 10^length(datStrOrg)
     datMod := 1;
     i := length(datStrOrg);
     // i always >= 1
     repeat
       datMod := base*datMod;
       dec(i);
     until i <= 0;

// 1/(datMod-1.0) = 1/(9...9)

     datMod := datOrg/(datMod-1.0)+datOrg;
     i := newlen-length(datStrOrg);
     For i := i downto 1 do
       datMod := datMod*Base;
   end;

end;

procedure SortArrData(var ArrData:tArrData); //selection sort var

 i,
 j,idx : integer;
 tmpData : tData;

begin

 For i := High(ArrData) downto Low(ArrData)+1 do
 begin
   idx := i;
   j := i-1;
   //select max
   For j := j downto Low(ArrData) do
     IF ArrData[idx].datMod < ArrData[j].datMod then
        idx := j;
   //finally swap
   IF idx <> i then
   begin
     tmpData     := ArrData[idx];
     ArrData[idx]:= ArrData[i];
     ArrData[i]  := tmpData;
   end;
 end;

end;

procedure ArrDataOutput(const ArrData:tArrData); var

 i : integer;

begin { the easy way}

 For i := High(ArrData) downto Low(ArrData) do
   write(ArrData[i].datStrOrg);
 writeln;

end;

procedure HighestInt(var ArrData:tArrData); begin

 ExtendData(ArrData,FindMaxLen(ArrData));
 SortArrData(ArrData);
 ArrDataOutput(ArrData);

end;

var

 i : integer;
 tmpData : tArrData;

begin

 // Source1
 setlength(tmpData,length(source1));
 For i := low(tmpData) to high(tmpData) do
   InsertData(tmpData[i],source1[i]);
 HighestInt(tmpData);
 // Source2
 setlength(tmpData,length(source2));
 For i := low(tmpData) to high(tmpData) do
   InsertData(tmpData[i],source2[i]);
 HighestInt(tmpData);
 // Source3
 setlength(tmpData,length(source3));
 For i := low(tmpData) to high(tmpData) do
   InsertData(tmpData[i],source3[i]);
 HighestInt(tmpData);

end.</lang>

Output:
9987645434310
6054854654
602121212122210>

Perl

<lang perl>sub maxnum {

   join , sort { "$b$a" cmp "$a$b" } @_

}

print maxnum(1, 34, 3, 98, 9, 76, 45, 4), "\n"; print maxnum(54, 546, 548, 60), "\n";</lang>

Output:
998764543431
6054854654

Phix

<lang Phix>function catcmp(string a, string b)

   return compare(b&a,a&b)

end function

function method2(sequence s)

   for i=1 to length(s) do
       s[i] = sprintf("%d",s[i])
   end for
   s = custom_sort(routine_id("catcmp"),s)
   return join(s,"")

end function

? method2({1,34,3,98,9,76,45,4}) ? method2({54,546,548,60})</lang>

Output:
"998764543431"
"6054854654"

PHP

<lang php>function maxnum($nums) {

   usort($nums,  function ($x, $y) { return strcmp("$y$x", "$x$y"); });
   return implode(, $nums);

}

echo maxnum(array(1, 34, 3, 98, 9, 76, 45, 4)), "\n"; echo maxnum(array(54, 546, 548, 60)), "\n";</lang>

Output:
998764543431
6054854654

PicoLisp

Here are solutions for all three algorithms.

The third solution actually avoids padding the numbers, by converting them into circular lists and comparing these. As a drawback, however, this works only for unique lists (as the comparison of identical numbers would not terminate), so a better solution might involve additional checks. <lang PicoLisp>(load "@lib/simul.l") # For 'permute'</lang>

Algorithm 1

<lang PicoLisp>(for L '((1 34 3 98 9 76 45 4) (54 546 548 60))

  (prinl (maxi format (permute L))) )</lang>

Algorithm 2

<lang PicoLisp>(for L '((1 34 3 98 9 76 45 4) (54 546 548 60))

  (prinl
     (sort L
        '((A B)
           (>
              (format (pack A B))
              (format (pack B A)) ) ) ) ) )</lang>

Algorithm 3

<lang PicoLisp>(for L '((1 34 3 98 9 76 45 4) (54 546 548 60))

  (prinl
     (flip
        (by '((N) (apply circ (chop N))) sort L) ) ) )</lang>
Output:

in all three cases

998764543431
6054854654

PL/I

<lang pli> /* Largest catenation of integers 16 October 2013 */ /* Sort using method 2, comparing pairs of adjacent integers. */

Largest: procedure options (main);

  declare s(*) char (20) varying controlled, n fixed binary;
  get (n);
  allocate s(n);
  get list (s);
  s = trim(s);
  put skip edit (s) (a, x(1));
  put skip list ('Largest integer=', Largest_integer());

largest_integer: procedure () returns (char(100) varying);

  declare sorted bit (1);
  declare (true value ('1'b), false value ('0'b)) bit (1);
  declare i fixed binary;
  declare temp character(20) varying;
  do until (sorted);
     sorted = true;
     do i = 1 to n-1;
        if char(s(i)) || char(s(i+1)) < char(s(i+1)) || char(s(i)) then
           do;
              temp = s(i); s(i) = s(i+1); s(i+1) = temp; sorted = false;
           end;
     end;
  end;
  return (string(s));

end largest_integer; end Largest; </lang>

54 546 548 60
Largest integer=        6054854654 

1 34 3 98 9 76 45 4
Largest integer=        998764543431 

PowerShell

Works with: PowerShell version 2

Using algorithm 3 <lang PowerShell>Function Get-LargestConcatenation ( [int[]]$Integers )

   {
   #  Get the length of the largest integer
   $Length = ( $Integers | Sort -Descending | Select -First 1 ).ToString().Length

   #  Convert to an array of strings,
   #  sort by each number repeated Length times and truncated to Length,
   #  and concatenate (join)
   $Concat = ( [string[]]$Integers | Sort { ( $_ * $Length ).Substring( 0, $Length ) } -Descending ) -join 

   #  Convert to integer (upsizing type if needed)
   try           { $Integer = [ int32]$Concat }
   catch { try   { $Integer = [ int64]$Concat }
           catch { $Integer = [bigint]$Concat } }

   return $Integer
   }</lang>

<lang PowerShell>Get-LargestConcatenation 1, 34, 3, 98, 9, 76, 45, 4 Get-LargestConcatenation 54, 546, 548, 60 Get-LargestConcatenation 54, 546, 548, 60, 54, 546, 548, 60</lang>

Output:
998764543431
6054854654
60605485485465465454

Prolog

Works with SWI-Prolog 6.5.3.

All permutations method

<lang Prolog>largest_int_v1(In, Out) :- maplist(name, In, LC), aggregate(max(V), get_int(LC, V), Out).


get_int(LC, V) :- permutation(LC, P), append(P, LV), name(V, LV). </lang>

Output:
 ?- largest_int_v1([1, 34, 3, 98, 9, 76, 45, 4], Out).
Out = 998764543431.

 ?- largest_int_v1([54, 546, 548, 60], Out).
Out = 6054854654.

Method 2

<lang Prolog>largest_int_v2(In, Out) :- maplist(name, In, LC), predsort(my_sort,LC, LCS), append(LCS, LC1), name(Out, LC1).


my_sort(R, L1, L2) :- append(L1, L2, V1), name(I1, V1), append(L2, L1, V2), name(I2, V2), ( I1 < I2, R = >; I1 = I2, R = '='; R = <).


% particular case 95 958 my_sort(>, [H1], [H1, H2 | _]) :- H1 > H2.

my_sort(<, [H1], [H1, H2 | _]) :- H1 < H2.

my_sort(R, [H1], [H1, H1 | T]) :- my_sort(R, [H1], [H1 | T]).


% particular case 958 95 my_sort(>, [H1, H2 | _], [H1]) :- H1 > H2.

my_sort(<, [H1, H2 | _], [H1]) :- H1 < H2.

my_sort(R, [H1, H1 | T], [H1]) :- my_sort(R, [H1 | T], [H1]) . </lang>

Output:
 ?- largest_int_v2([1, 34, 3, 98, 9, 76, 45, 4], Out).
Out = 998764543431 .

 ?- largest_int_v2([54, 546, 548, 60], Out).
Out = 5486054654 .

Python

Python: Sort on comparison of concatenated ints method

This also shows one of the few times where cmp= is better than key= on sorted()

<lang python>try:

   cmp     # Python 2 OK or NameError in Python 3
   def maxnum(x):
       return .join(sorted((str(n) for n in x),
                             cmp=lambda x,y:cmp(y+x, x+y)))

except NameError:

   # Python 3
   from functools import cmp_to_key
   def cmp(x, y):
       return -1 if x<y else ( 0 if x==y else 1)
   def maxnum(x):
       return .join(sorted((str(n) for n in x),
                             key=cmp_to_key(lambda x,y:cmp(y+x, x+y))))

for numbers in [(1, 34, 3, 98, 9, 76, 45, 4), (54, 546, 548, 60)]:

   print('Numbers: %r\n  Largest integer: %15s' % (numbers, maxnum(numbers)))</lang>
Output:
Numbers: (1, 34, 3, 98, 9, 76, 45, 4)
  Largest integer:    998764543431
Numbers: (54, 546, 548, 60)
  Largest integer:      6054854654

Python: Compare repeated string method

<lang python>def maxnum(x):

   maxlen = len(str(max(x)))
   return .join(sorted((str(v) for v in x), reverse=True,
                         key=lambda i: i*(maxlen * 2 // len(i))))

for numbers in [(212, 21221), (1, 34, 3, 98, 9, 76, 45, 4), (54, 546, 548, 60)]:

   print('Numbers: %r\n  Largest integer: %15s' % (numbers, maxnum(numbers)))</lang>
Output:
Numbers: (212, 21221)
  Largest integer:        21221221
Numbers: (1, 34, 3, 98, 9, 76, 45, 4)
  Largest integer:    998764543431
Numbers: (54, 546, 548, 60)
  Largest integer:      6054854654
Works with: Python version 2.6+

<lang python>from fractions import Fraction from math import log10

def maxnum(x):

   return .join(str(n) for n in sorted(x, reverse=True,
                         key=lambda i: Fraction(i, 10**(int(log10(i))+1)-1)))

for numbers in [(1, 34, 3, 98, 9, 76, 45, 4), (54, 546, 548, 60)]:

   print('Numbers: %r\n  Largest integer: %15s' % (numbers, maxnum(numbers)))</lang>
Output as first Python example, above.

Python: Try all permutations method

<lang python>from itertools import permutations def maxnum(x):

   return max(int(.join(n) for n in permutations(str(i) for i in x)))

for numbers in [(1, 34, 3, 98, 9, 76, 45, 4), (54, 546, 548, 60)]:

   print('Numbers: %r\n  Largest integer: %15s' % (numbers, maxnum(numbers)))</lang>
Output as above.

Quackery

<lang quackery>[ sortwith

   [ 2dup swap join
     dip join $< ]
 [] swap witheach join ] is largest-int ( [ --> $ )

$ '1 34 3 98 9 76 45 4' nest$ largest-int echo$ cr $ '54 546 548 60' nest$ largest-int echo$</lang>

Output:
998764543431
6054854654

Racket

<lang Racket>

  1. lang racket

(define (largest-int ns)

 (string->number (apply ~a (sort ns (λ(x y) (string>? (~a x y) (~a y x)))))))

(map largest-int '((1 34 3 98 9 76 45 4) (54 546 548 60)))

-> '(998764543431 6054854654)

</lang>

Raku

(formerly Perl 6) <lang perl6>sub maxnum(*@x) {

   [~] @x.sort: -> $a, $b { $b ~ $a leg $a ~ $b }

}

say maxnum <1 34 3 98 9 76 45 4>; say maxnum <54 546 548 60>;</lang>

Output:
998764543431
6054854654

Red

<lang Rebol>Red []

foreach seq [[1 34 3 98 9 76 45 4] [54 546 548 60]] [

 print rejoin sort/compare seq function [a b] [ (rejoin [a b]) > rejoin [b a] ] 

] </lang>

Output:
998764543431
6054854654

REXX

The algorithm used is based on exact comparisons (left to right)   with   right digit fill   of the   left digit.
This allows the integers to be of any size.

This REXX version works with any size integer   (negative, zero, positive),   and does some basic error checking to
verify that the numbers are indeed integers   (and it also normalizes the integers).

The absolute value is used for negative numbers.   No sorting of the numbers is required for the 1st two examples.

simple integers

<lang rexx>/*REXX program constructs the largest integer from an integer list using concatenation.*/ @.=.; @.1 = 1 34 3 98 9 76 45 4 /*the 1st integer list to be used. */

         @.2 =  54  546  548  60                /* "   2nd     "      "   "  "   "     */
         @.3 =   4   45   54   5                /* "   3rd     "      "   "  "   "     */

w=0 /* [↓] process all the integer lists.*/

   do j=1  while @.j\==.;         z= space(@.j) /*keep truckin' until lists exhausted. */
   w=max(w, length(z) );          $=            /*obtain maximum width to align output.*/
       do  while z\=;  idx= 1;  big= norm(1)  /*keep examining the list  until  done.*/
         do k=2  to  words(z);    #= norm(k)    /*obtain an a number from the list.    */
         L= max(length(big), length(#) )        /*get the maximum length of the integer*/
         if left(#, L, left(#, 1) )   <<=   left(big, L, left(big, 1) )    then iterate
         big= #;                  idx= k        /*we found a new biggie (and the index)*/
         end   /*k*/                            /* [↑]  find max concatenated integer. */
       z= delword(z, idx, 1)                    /*delete this maximum integer from list*/
       $= $  ||  big                            /*append   "     "       "    ───►  $. */
       end     /*while z*/                      /* [↑]  process all integers in a list.*/
   say 'largest concatenatated integer from '  left( space(@.j), w)    " is ─────► "    $
   end         /*j*/                            /* [↑]  process each list of integers. */

exit 0 /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ norm: arg i; #= word(z, i); er= '***error***'; if left(#, 1)=="-" then #= substr(#, 2)

     if \datatype(#,'W')  then do; say er # "isn't an integer."; exit 13; end; return #/1</lang>
output   when using the default (internal) integer lists:
largest concatenatated integer from  1 34 3 98 9 76 45 4  is ─────►  998764543431
largest concatenatated integer from  54 546 548 60        is ─────►  6054854654
largest concatenatated integer from  4 45 54 5            is ─────►  554454

exponentiated integers

In REXX, a number such as   6.6e77   would be considered an integer   if   the (current)   numeric digits   is
large enough to express that number as an integer without the exponent.

The default for REXX is   9   decimal digits,   but the   norm   function automatically uses enough decimal digits to
express the number as an integer.

This REXX version can handle any sized integer   (most REXXes can handle up to around eight million decimal
digits,   but displaying the result would be problematic for results wider than the display area). <lang rexx>/*REXX program constructs the largest integer from an integer list using concatenation.*/ @.=.; @.1 = 1 34 3 98 9 76 45 4 /*the 1st integer list to be used. */

         @.2 =  54  546  548  60                /* "   2nd     "      "   "  "   "     */
         @.3 =   4   45   54   5                /* "   3rd     "      "   "  "   "     */
         @.4 =   4   45   54   5  6.6e77        /* "   4th     "      "   "  "   "     */

w= 0 /* [↓] process all the integer lists.*/

   do j=1  while @.j\==.;        z= space(@.j)  /*keep truckin' until lists exhausted. */
   w=max(w, length(z) );         $=             /*obtain maximum width to align output.*/
       do while z\=;  idx=1;   big= norm(1)   /*keep examining the list  until  done.*/
         do k=2  to  words(z);   #= norm(k)     /*obtain an a number from the list.    */
         L= max(length(big), length(#) )        /*get the maximum length of the integer*/
         if left(#, L, left(#, 1) )   <<=   left(big, L, left(big, 1) )    then iterate
         big=#;                  idx= k         /*we found a new biggie (and the index)*/
         end   /*k*/                            /* [↑]  find max concatenated integer. */
       z= delword(z, idx, 1)                    /*delete this maximum integer from list*/
       $= $  ||  big                            /*append   "     "       "    ───►  $. */
       end     /*while z*/                      /* [↑]  process all integers in a list.*/
   say 'largest concatenatated integer from '    left( space(@.j), w)       " is "      $
   end         /*j*/                            /* [↑]  process each list of integers. */

exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ norm: arg i; #= word(z, i); er= '***error***'; if left(#, 1)=="-" then #= substr(#, 2)

     if \datatype(#, 'N')  then signal er13                      /*go and tell err msg.*/
                           else #= # / 1                         /*a #, so normalize it*/
     if pos('E',#)>0  then do; parse var # mant "E" pow          /*Has exponent? Expand*/
                               numeric digits pow + length(mand) /*expand digs, adjust#*/
                           end
     if datatype(#, 'W')  then return # / 1

er13: say er # "isn't an integer."; exit 13</lang>

output   when using the default (internal) integer lists:

(Output shown at three-quarter size.)

largest concatenatated integer from  1 34 3 98 9 76 45 4  is  998764543431
largest concatenatated integer from  54 546 548 60        is  6054854654
largest concatenatated integer from  4 45 54 5            is  554454
largest concatenatated integer from  4 45 54 5 6.6e77     is  660000000000000000000000000000000000000000000000000000000000000000000000000000554454

Alternate Version

Inspired by the previous versions. <lang>/*REXX program constructs the largest integer from an integer list using concatenation.*/ l.=; l.1 = '1 34 3 98 9 76 45 4' /*the 1st integer list to be used. */

         l.2 = '54 546 548 60'             /* "   2nd     "      "   "  "   "     */
         l.3 = ' 4  45  54  5'             /* "   3rd     "      "   "  "   "     */
         l.4 = ' 4  45  54  5  6.6e77'    /* "   4th     "      "   "  "   "     */
         l.5 = ' 3 3 .2'                  /* "   5th     "      "   "  "   "     */

/* soll.1=998764543431 soll.2=6054854654 soll.3=554454 soll.4=660000000000000000000000000000000000000000000000000000000000000000000000000000545454

  • /

l_length=0 Do li=1 By 1 While l.li<>

 l_length=max(l_length,length(space(l.li)))
 End

Do li=1 By 1 While l.li<>

 z=
 Do j=1 To words(l.li)
   int=integer(word(l.li,j))
   If int='?' Then Do
     Say left(space(l.li),l_length) '-> ** invalid ** bad integer' word(l.li,j)
     Iterate li
     End
   Else
     z=z int
   End

/*Say copies(' ',l_length) ' ' soll.li */

 Say left(space(l.li),l_length) '->' largeint(l.li)
 End

Exit

integer: Procedure Numeric Digits 1000 Parse Arg z If Datatype(z,'W') Then

 Return z+0

Else

 Return '?'

largeint: result= Do While z<> /* [?] check the rest of the integers.*/

 big=word(z,1); index=1; LB=length(big)       /*assume that first integer is biggest.*/
 do k=2 to words(z);
   n=word(z,k)                                /*obtain an integer from the list.     */
   L=max(LB,length(n))                        /*get the maximum length of the integer*/
   if left(n,L,left(n,1))<<=left(big,L,left(big,1)) then iterate
   big=n; index=k                             /*we found a new biggie (and the index)*/
   LB=length(big)
   End   /*k*/
 z=delword(z,index,1)                         /*delete this maximum integer from list*/
 result=result||big                           /*append   "     "       "    ---?  $. */
 end     /*while z*/                          /* [?]  process all integers in a list.*/

Return result</lang>

Output:
1 34 3 98 9 76 45 4 -> 998764543431
54 546 548 60       -> 6054854654
4 45 54 5           -> 554454
4 45 54 5 6.6e77    -> 660000000000000000000000000000000000000000000000000000000000000000000000000000554454
3 3 .2              -> ** invalid ** bad integer .2

Version 4

Translation of: NetRexx

<lang rexx>/*REXX program constructs the largest integer from an integer list using concatenation.*/ l.=; l.1 = '1 34 3 98 9 76 45 4' /*the 1st integer list to be used. */

         l.2 = '54 546 548 60'                 /* "   2nd     "      "   "  "   "     */
         l.3 = ' 4  45  54  5'                 /* "   3rd     "      "   "  "   "     */
         l.4 = ' 4  45  54  5  6.6e77'         /* "   4th     "      "   "  "   "     */
         l.5 = ' 3 3 .2'                       /* "   5th     "      "   "  "   "     */
         l.6 = ' 4  45  54  5  6.6e1001'       /* "   6th     "      "   "  "   "     */
         l.7 = ' 4.0000 45 54 5.00'            /* "   7th     "      "   "  "   "     */
         l.8 = ' 10e999999999 5'               /* "   8th     "      "   "  "   "     */

l_length=0 Do li=1 By 1 While l.li<>

 l_length=max(l_length,length(space(l.li)))
 End

Do li=1 By 1 While l.li<>

 z=
 msg=
 Do j=1 To words(l.li)
   int=integer(word(l.li,j))
   If int='?' Then Do
     Say left(space(l.li),l_length) '-> ** invalid ** bad list item:' word(l.li,j) msg
     Iterate li
     End
   Else
     z=z int
   End
 zz=largeint(z)
 If length(zz)<60 Then
   Say left(space(l.li),l_length) '->' zz
 Else
   Say left(space(l.li),l_length) '->' left(zz,5)'...'right(zz,5)
 End

Exit

integer: Procedure Expose msg Numeric Digits 1000 Parse Arg z If Datatype(z,'W') Then

 Return z/1

Else Do

 If Datatype(z,'NUM') Then Do
   Do i=1 To 6 Until dig>=999999999
     dig= digits()*10
     dig=min(dig,999999999)
     Numeric Digits dig
     If Datatype(z,'W') Then
       Return z/1
     End
   msg='cannot convert it to an integer'
   Return '?'
   End
 Else Do
   msg='not a number (larger than what this REXX can handle)'
   Return '?'
   End
 End

largeint: Procedure Parse Arg list w.0=words(list) Do i=1 To w.0

 w.i=word(list,i)
 End

Do wx=1 To w.0-1

 Do wy=wx+1 To w.0
   xx=w.wx
   yy=w.wy
   xy=xx||yy
   yx=yy||xx
   if xy < yx then do
     /* swap xx and yy */
     w.wx = yy
     w.wy = xx
     end
   End
 End

list= Do ww=1 To w.0

 list=list w.ww
 End

Return space(list,0)</lang>

Output:
1 34 3 98 9 76 45 4 -> 998764543431
54 546 548 60       -> 6054854654
4 45 54 5           -> 554454
4 45 54 5 6.6e77    -> 66000...54454
3 3 .2              -> ** invalid ** bad list item: .2 cannot convert it to an integer
4 45 54 5 6.6e1001  -> 66000...54454
4.0000 45 54 5.00   -> 554454
10e999999999 5      -> ** invalid ** bad list item: 10e999999999 not a number (larger than what this REXX can handle)

Ring

<lang ring> nums=[1,34,3,98,9,76,45,4] see largestInt(8) + nl nums=[54,546,548,60] see largestInt(4) + nl

func largestInt len l = "" sorted = false while not sorted

     sorted=true
     for i=1 to len-1
         a=string(nums[i])
         b=string(nums[i+1])
         if a+b<b+a 
            temp = nums[i]
            nums[i] = nums[i+1]
            nums[i+1] = temp
            sorted=false ok
     next

end for i=1 to len

   l+=string(nums[i])

next return l </lang> Output:

998764543431
6054854654

Ruby

Sort on comparison of concatenated ints method

Translation of: Tcl

<lang Ruby>def icsort nums

 nums.sort { |x, y| "#{y}#{x}" <=> "#{x}#{y}" }

end

[[54, 546, 548, 60], [1, 34, 3, 98, 9, 76, 45, 4]].each do |c|

 p c # prints nicer in Ruby 1.8
 puts icsort(c).join

end</lang>

Output:
[54, 546, 548, 60]
6054854654
[1, 34, 3, 98, 9, 76, 45, 4]
998764543431

Compare repeated string method

<lang ruby>def icsort nums

 maxlen = nums.max.to_s.length
 nums.map{ |x| x.to_s }.sort_by { |x| x * (maxlen * 2 / x.length) }.reverse

end

[[54, 546, 548, 60], [1, 34, 3, 98, 9, 76, 45, 4]].each do |c|

 p c # prints nicer in Ruby 1.8
 puts icsort(c).join

end</lang>

Output as above.

<lang ruby>require 'rational' #Only needed in Ruby < 1.9

def icsort nums

 nums.sort_by { |i| Rational(i, 10**(Math.log10(i).to_i+1)-1) }.reverse

end

[[54, 546, 548, 60], [1, 34, 3, 98, 9, 76, 45, 4]].each do |c|

 p c # prints nicer in Ruby 1.8
 puts icsort(c).join

end</lang>

Output as above.

Run BASIC

<lang runbasic>a1$ = "1, 34, 3, 98, 9, 76, 45, 4" a2$ = "54,546,548,60"

print "Max Num ";a1$;" = ";maxNum$(a1$) print "Max Num ";a2$;" = ";maxNum$(a2$)

function maxNum$(a1$) while word$(a1$,i+1,",") <> ""

i = i + 1
a$(i) = trim$(word$(a1$,i,","))

wend

s = 1 while s = 1

s = 0
for j = 1 to i -1
 if a$(j)+a$(j+1) < a$(j+1)+a$(j) then
  h$      = a$(j)
  a$(j)   = a$(j+1)
  a$(j+1) = h$
  s       = 1
 end if
next j

wend

for j = 1 to i

maxNum$ = maxNum$ ; a$(j)

next j end function</lang>

Output:
Max Num 1, 34, 3, 98, 9, 76, 45, 4 = 998764543431
Max Num 54,546,548,60 = 6054854654

Rust

<lang Rust>fn maxcat(a: &mut [u32]) {

   a.sort_by(|x, y| {
       let xy = format!("{}{}", x, y);
       let yx = format!("{}{}", y, x);
       xy.cmp(&yx).reverse()
   });
   for x in a {
       print!("{}", x);
   }
   println!();

}

fn main() {

   maxcat(&mut [1, 34, 3, 98, 9, 76, 45, 4]);
   maxcat(&mut [54, 546, 548, 60]);

}</lang>

Output:
998764543431
6054854654

S-lang

<lang S-lang>define catcmp(a, b) {

  a = string(a);
  b = string(b);
  return strcmp(b+a, a+b);

}

define maxcat(arr) {

  arr = arr[array_sort(arr, &catcmp)];
  variable result = "", elem;
  foreach elem (arr)
    result += string(elem);
  return result;

}

print("max of series 1 is " + maxcat([1, 34, 3, 98, 9, 76, 45, 4])); print("max of series 2 is " + maxcat([54, 546, 548, 60])); </lang>

Output:
"max of series 1 is 998764543431"
"max of series 2 is 6054854654"

Scala

Library: Scala

<lang Scala>object LIFCI extends App {

 def lifci(list: List[Long]) = list.permutations.map(_.mkString).max
 println(lifci(List(1, 34, 3, 98, 9, 76, 45, 4)))
 println(lifci(List(54, 546, 548, 60)))

}</lang>

Output:
 998764543431
 6054854654

Scheme

<lang Scheme>(define (cat . nums) (apply string-append (map number->string nums)))

(define (my-compare a b) (string>? (cat a b) (cat b a)))

(map (lambda (xs) (string->number (apply cat (sort xs my-compare))))

     '((1 34 3 98 9 76 45 4) (54 546 548 60)))</lang>
Output:
(998764543431 6054854654)

Sidef

Translation of: Ruby

<lang ruby>func maxnum(nums) {

   nums.sort {|x,y|  "#{y}#{x}" <=> "#{x}#{y}" };

}

[[54, 546, 548, 60], [1, 34, 3, 98, 9, 76, 45, 4]].each { |c|

   say maxnum(c).join.to_num;

}</lang>

Output:
6054854654
998764543431

Smalltalk

Version 1) sort by padded print strings:

Works with: Smalltalk/X

<lang smalltalk>#(

   (54  546  548  60)
   (1  34  3  98  9  76  45  4)

) do:[:ints |

   |resultString|
   "sort ints by padded strings (sort a copy - literals are immudatble),
    then collect their strings, then concatenate"
   resultString :=
       ((ints copy sort:[:a :b | 
               |pad|
               pad := (a integerLog10) max:(b integerLog10).
               (a printString paddedTo:pad with:$0) > (b printString paddedTo:pad with:$0)])
           collect:#printString) asStringWith:.
   Stdout printCR: resultString.

].</lang> Version 2) alternative: sort by concatenated pair's strings: <lang smalltalk>#(

   (54  546  548  60)
   (1  34  3  98  9  76  45  4)

) do:[:ints |

   |resultString|
   resultString :=
       ((ints copy sort:[:a :b | e'{a}{b}' > e'{b}{a}']) "(1)"
           collect:#printString) asStringWith:.
   Stdout printCR: resultString.

].</lang> Note ¹ replace "e'{a}{b}'" by "(a printString,b printString)" in dialects, which do not support embedded expression strings.

Version 3) no need to collect the resultString; simply print the sorted list (ok, if printing is all we want): <lang smalltalk>#(

   (54  546  548  60)
   (1  34  3  98  9  76  45  4)

) do:[:ints |

   (ints copy sort:[:a :b | e'{a}{b}' > e'{b}{a}'])
       do:[:eachNr | eachNr printOn:Stdout].
   Stdout cr.

]</lang>

Version 4) no need to generate any intermediate strings; the following will do as well: <lang smalltalk>#(

   (54  546  548  60)
   (1  34  3  98  9  76  45  4)

) do:[:ints |

   (ints copy sortByApplying:[:i | i log10 fractionPart]) reverseDo:#print.
   Stdout cr.

]</lang>

Output:
6054854654
989764543431

Tcl

<lang tcl>proc intcatsort {nums} {

   lsort -command {apply {{x y} {expr {"$y$x" - "$x$y"}}}} $nums

}</lang> Demonstrating: <lang tcl>foreach collection {

   {1 34 3 98 9 76 45 4}
   {54 546 548 60}

} {

   set sorted [intcatsort $collection]
   puts "\[$collection\] => \[$sorted\]  (concatenated: [join $sorted ""])"

}</lang>

Output:
[1 34 3 98 9 76 45 4] => [9 98 76 45 4 34 3 1]  (concatenated: 998764543431)
[54 546 548 60] => [60 548 546 54]  (concatenated: 6054854654)

VBScript

Translation of: BBC BASIC

<lang vb> Function largestint(list) nums = Split(list,",") Do Until IsSorted = True IsSorted = True For i = 0 To UBound(nums) If i <> UBound(nums) Then a = nums(i) b = nums(i+1) If CLng(a&b) < CLng(b&a) Then tmpnum = nums(i) nums(i) = nums(i+1) nums(i+1) = tmpnum IsSorted = False End If End If Next Loop For j = 0 To UBound(nums) largestint = largestint & nums(j) Next End Function

WScript.StdOut.Write largestint(WScript.Arguments(0)) WScript.StdOut.WriteLine </lang>

Output:
F:\>cscript /nologo largestint.vbs 1,34,3,98,9,76,45,4
998764543431

F:\>cscript /nologo largestint.vbs 54,546,548,60
6054854654

Vim Script

This solution is intended to be run as an Ex command within a buffer containing the integers to be processed, one per line. <lang Vim>%s/\(.\+\)/\1\1/ | sort! | %s/\(.\+\)\1\n/\1/</lang>

Demonstration

<lang Bash>$ paste -s nums 1 34 3 98 9 76 45 4 $ vim -S icsort.vim nums 998764543431</lang>

Wren

Translation of: Kotlin
Library: Wren-sort

<lang ecmascript>import "/sort" for Sort

var cmp = Fn.new { |x, y|

   var xy = Num.fromString(x.toString + y.toString)
   var yx = Num.fromString(y.toString + x.toString)
   return (xy - yx).sign

}

var findLargestSequence = Fn.new { |a|

   var b = Sort.merge(a, cmp)
   return b[-1..0].join()

}

var arrays = [

   [1, 34, 3, 98, 9, 76, 45, 4],
   [54, 546, 548, 60]

] for (a in arrays) {

   System.print("%(a) -> %(findLargestSequence.call(a))")

}</lang>

Output:
[1, 34, 3, 98, 9, 76, 45, 4] -> 998764543431
[54, 546, 548, 60] -> 6054854654

zkl

<lang zkl>fcn bigCI(ns){

  ns.apply("toString").sort(fcn(a,b){ (a+b)>(b+a) }).concat();

}</lang> <lang zkl>bigCI(T(1, 34, 3, 98, 9, 76, 45, 4)).println(); bigCI(T(54, 546, 548, 60)).println();</lang>

Output:
998764543431
6054854654