Euler's sum of powers conjecture

There is a conjecture in mathematics that held for over two hundred years before it was disproved by the finding of a counterexample in 1966 by Lander and Parkin.

Task
Euler's sum of powers conjecture
You are encouraged to solve this task according to the task description, using any language you may know.


Euler's (disproved) sum of powers   conjecture
  At least  k  positive  kth  powers are required to sum to a  kth  power,  
  except for the trivial case of one  kth power:  yk = yk 


In 1966,   Leon J. Lander   and   Thomas R. Parkin   used a brute-force search on a   CDC 6600   computer restricting numbers to those less than 250.


Task

Write a program to search for an integer solution for:

x05 + x15 + x25 + x35 == y5

Where all   xi's   and   y   are distinct integers between   0   and   250   (exclusive).

Show an answer here.


Related tasks



11l

Translation of: Python

<lang 11l>F eulers_sum_of_powers()

  V max_n = 250
  V pow_5 = (0 .< max_n).map(n -> Int64(n) ^ 5)
  V pow5_to_n = Dict(0 .< max_n, n -> (Int64(n) ^ 5, n))
  L(x0) 1 .< max_n
     L(x1) 1 .< x0
        L(x2) 1 .< x1
           L(x3) 1 .< x2
              V pow_5_sum = pow_5[x0] + pow_5[x1] + pow_5[x2] + pow_5[x3]
              I pow_5_sum C pow5_to_n
                 V y = pow5_to_n[pow_5_sum]
                 R (x0, x1, x2, x3, y)

V r = eulers_sum_of_powers() print(‘#.^5 + #.^5 + #.^5 + #.^5 = #.^5’.format(r[0], r[1], r[2], r[3], r[4]))</lang>

Output:
133^5 + 110^5 + 84^5 + 27^5 = 144^5

360 Assembly

In the program we do not user System/360 integers (31 bits) unable to handle the problem, but System/360 packed decimal (15 digits). 250^5 needs 12 digits.
This program could have been run in 1964. Here, for maximum compatibility, we use only the basic 360 instruction set. Macro instruction XPRNT can be replaced by a WTO. <lang 360asm> EULERCO CSECT

        USING  EULERCO,R13
        B      80(R15)
        DC     17F'0'
        DC     CL8'EULERCO'
        STM    R14,R12,12(R13)
        ST     R13,4(R15)
        ST     R15,8(R13)
        LR     R13,R15
        ZAP    X1,=P'1'

LOOPX1 ZAP PT,MAXN do x1=1 to maxn-4

        SP     PT,=P'4'
        CP     X1,PT
        BH     ELOOPX1
        ZAP    PT,X1
        AP     PT,=P'1'
        ZAP    X2,PT

LOOPX2 ZAP PT,MAXN do x2=x1+1 to maxn-3

        SP     PT,=P'3'
        CP     X2,PT
        BH     ELOOPX2
        ZAP    PT,X2
        AP     PT,=P'1'
        ZAP    X3,PT

LOOPX3 ZAP PT,MAXN do x3=x2+1 to maxn-2

        SP     PT,=P'2'
        CP     X3,PT
        BH     ELOOPX3
        ZAP    PT,X3
        AP     PT,=P'1'
        ZAP    X4,PT

LOOPX4 ZAP PT,MAXN do x4=x3+1 to maxn-1

        SP     PT,=P'1'
        CP     X4,PT
        BH     ELOOPX4
        ZAP    PT,X4
        AP     PT,=P'1'
        ZAP    X5,PT              x5=x4+1
        ZAP    SUMX,=P'0'         sumx=0
        ZAP    PT,X1              x1
        BAL    R14,POWER5
        AP     SUMX,PT
        ZAP    PT,X2              x2
        BAL    R14,POWER5
        AP     SUMX,PT
        ZAP    PT,X3              x3
        BAL    R14,POWER5
        AP     SUMX,PT
        ZAP    PT,X4              x4
        BAL    R14,POWER5
        AP     SUMX,PT            sumx=x1**5+x2**5+x3**5+x4**5
        ZAP    PT,X5              x5
        BAL    R14,POWER5
        ZAP    VALX,PT            valx=x5**5

LOOPX5 CP X5,MAXN while x5<=maxn & valx<=sumx

        BH     ELOOPX5
        CP     VALX,SUMX
        BH     ELOOPX5
        CP     VALX,SUMX          if valx=sumx 
        BNE    NOTEQUAL
        MVI    BUF,C' '
        MVC    BUF+1(79),BUF      clear buffer
        MVC    WC,MASK
        ED     WC,X1              x1
        MVC    BUF+0(8),WC+8     
        MVC    WC,MASK
        ED     WC,X2              x2
        MVC    BUF+8(8),WC+8    
        MVC    WC,MASK
        ED     WC,X3              x3
        MVC    BUF+16(8),WC+8    
        MVC    WC,MASK
        ED     WC,X4              x4
        MVC    BUF+24(8),WC+8     
        MVC    WC,MASK
        ED     WC,X5              x5
        MVC    BUF+32(8),WC+8     
        XPRNT  BUF,80             output x1,x2,x3,x4,x5
        B      ELOOPX1

NOTEQUAL ZAP PT,X5

        AP     PT,=P'1'
        ZAP    X5,PT              x5=x5+1
        ZAP    PT,X5
        BAL    R14,POWER5
        ZAP    VALX,PT            valx=x5**5
        B      LOOPX5

ELOOPX5 AP X4,=P'1'

        B      LOOPX4

ELOOPX4 AP X3,=P'1'

        B      LOOPX3

ELOOPX3 AP X2,=P'1'

        B      LOOPX2

ELOOPX2 AP X1,=P'1'

        B      LOOPX1

ELOOPX1 L R13,4(0,R13)

        LM     R14,R12,12(R13)
        XR     R15,R15
        BR     R14

POWER5 ZAP PQ,PT ^1

        MP     PQ,PT              ^2
        MP     PQ,PT              ^3
        MP     PQ,PT              ^4
        MP     PQ,PT              ^5
        ZAP    PT,PQ
        BR     R14

MAXN DC PL8'249' X1 DS PL8 X2 DS PL8 X3 DS PL8 X4 DS PL8 X5 DS PL8 SUMX DS PL8 VALX DS PL8 PT DS PL8 PQ DS PL8 WC DS CL17 MASK DC X'40',13X'20',X'212060' CL17 BUF DS CL80

        YREGS  
        END </lang>
Output:
      27      84     110     133     144

Ada

<lang Ada>with Ada.Text_IO;

procedure Sum_Of_Powers is

  type Base is range 0 .. 250; -- A, B, C, D and Y are in that range
  type Num is range 0 .. 4*(250**5); -- (A**5 + ... + D**5) is in that range
  subtype Fit is Num range 0 .. 250**5; -- Y**5 is in that range
  
  Modulus: constant Num := 254;
  type Modular is mod Modulus;

  type Result_Type is array(1..5) of Base; -- this will hold A,B,C,D and Y
 
  type Y_Type is array(Modular) of Base;
  type Y_Sum_Type is array(Modular) of Fit;
  Y_Sum: Y_Sum_Type := (others => 0);  
  Y: Y_Type := (others => 0);
     -- for I in 0 .. 250, we set Y_Sum(I**5 mod Modulus) := I**5
     --                       and Y(I**5 mod Modulus) := I
     -- Modulus has been chosen to avoid collisions on (I**5 mod Modulus)
     -- later we will compute Sum_ABCD := A**5 + B**5 + C**5 + D**5
     -- and check if Y_Sum(Sum_ABCD mod modulus) = Sum_ABCD
  
  function Compute_Coefficients return Result_Type is  
  
     Sum_A: Fit;
     Sum_AB, Sum_ABC, Sum_ABCD: Num;
     Short: Modular;
     
  begin
     for A in Base(0) .. 246 loop
        Sum_A := Num(A) ** 5;
        for B in A .. 247 loop
           Sum_AB := Sum_A + (Num(B) ** 5);
           for C in Base'Max(B,1) .. 248 loop -- if A=B=0 then skip C=0
              Sum_ABC := Sum_AB + (Num(C) ** 5);
              for D in C .. 249 loop
                 Sum_ABCD := Sum_ABC + (Num(D) ** 5);
                 Short    := Modular(Sum_ABCD mod Modulus);
                 if Y_Sum(Short) = Sum_ABCD then
                    return A & B & C & D & Y(Short);
                 end if;
              end loop;
           end loop;
        end loop;
     end loop;
     return 0 & 0 & 0 & 0 & 0;
  end Compute_Coefficients;
  Tmp: Fit;
  ABCD_Y: Result_Type;

begin -- main program

  -- initialize Y_Sum and Y
  for I in Base(0) .. 250 loop
     Tmp := Num(I)**5;
     if Y_Sum(Modular(Tmp mod Modulus)) /= 0 then 
        raise Program_Error with "Collision: Change Modulus and recompile!";
     else
        Y_Sum(Modular(Tmp mod Modulus)) := Tmp;
        Y(Modular(Tmp mod Modulus)) := I;
     end if;
  end loop;
  
  -- search for a solution (A, B, C, D, Y)
  ABCD_Y := Compute_Coefficients;
  -- output result
  for Number of ABCD_Y loop
     Ada.Text_IO.Put(Base'Image(Number));
  end loop;
  Ada.Text_IO.New_Line;
  

end Sum_Of_Powers;</lang>

Output:
 27 84 110 133 144

ALGOL 68

Works with: ALGOL 68G version Any - tested with release 2.8.win32

<lang algol68># max number will be the highest integer we will consider # INT max number = 250;

  1. Construct a table of the fifth powers of 1 : max number #

[ max number ]LONG INT fifth; FOR i TO max number DO

   LONG INT i2 =  i * i;
   fifth[ i ] := i2 * i2 * i

OD;

  1. find the first a, b, c, d, e such that a^5 + b^5 + c^5 + d^5 = e^5 #
  2. as the fifth powers are in order, we can use a binary search to determine #
  3. whether the value is in the table #

BOOL found := FALSE; FOR a TO max number WHILE NOT found DO

   FOR b FROM a TO max number WHILE NOT found DO
       FOR c FROM b TO max number WHILE NOT found DO
           FOR d FROM c TO max number WHILE NOT found DO
               LONG INT sum   = fifth[a] + fifth[b] + fifth[c] + fifth[d];
               INT      low  := d;
               INT      high := max number;
               WHILE low < high
                 AND NOT found
               DO
                   INT e := ( low + high ) OVER 2;
                   IF fifth[ e ] = sum
                   THEN
                       # the value at e is a fifth power                    #
                       found := TRUE;
                       print( ( ( whole( a, 0 ) + "^5 + " + whole( b, 0 ) + "^5 + "
                                + whole( c, 0 ) + "^5 + " + whole( d, 0 ) + "^5 = "
                                + whole( e, 0 ) + "^5"
                                )
                              , newline
                              )
                            )
                   ELIF sum < fifth[ e ]
                   THEN high := e - 1
                   ELSE low  := e + 1
                   FI
               OD
           OD
       OD
   OD

OD</lang> Output:

27^5 + 84^5 + 110^5 + 133^5 = 144^5

ALGOL W

As suggested by the REXX solution, we find a solution to a^5 + b^5 + c^5 = e^5 - d^5 which results in a significant reduction in run time.
Algol W integers are 32-bit only, so we simulate the necessary 12 digit arithmetic with pairs of integers. <lang algolw>begin

   % find a, b, c, d, e such that a^5 + b^5 + c^5 + d^5 = e^5                              %
   %                        where 1 <= a <= b <= c <= d <= e <= 250                        %
   % we solve this using the equivalent equation a^5 + b^5 + c^5 = e^5 - d^5               %
   % 250^5 is 976 562 500 000 - too large for a 32 bit number so we will use pairs of      %
   % integers and constrain their values to be in 0..1 000 000                             %
   % Note only positive numbers are needed                                                 %
   integer MAX_NUMBER, MAX_V;
   MAX_NUMBER := 250;
   MAX_V      := 1000000;
   begin
       % quick sorts the fifth power differences table                                     %
       procedure quickSort5 ( integer value lb, ub ) ;
           if ub > lb then begin
               % more than one element, so must sort                                       %
               integer left, right, pivot, pivotLo, pivotHi;
               left    := lb;
               right   := ub;
               % choosing the middle element of the array as the pivot %
               pivot   := left + ( ( ( right + 1 ) - left ) div 2 );
               pivotLo := loD( pivot );
               pivotHi := hiD( pivot );
               while begin
                   while left  <= ub
                     and begin integer cmp;
                               cmp := hiD( left ) - pivotHi;
                               if cmp = 0 then cmp := loD( left ) - pivotLo;
                               cmp < 0
                         end
                   do left := left + 1;
                   while right >= lb
                     and begin integer cmp;
                               cmp := hiD( right ) - pivotHi;
                               if cmp = 0 then cmp := loD( right ) - pivotLo;
                               cmp > 0
                         end
                   do right := right - 1;
                   left <= right
               end do begin
                   integer swapLo, swapHi, swapD, swapE;
                   swapLo       := loD( left  );
                   swapHi       := hiD( left  );
                   swapD        := Dd(  left  );
                   swapE        := De(  left  );
                   loD( left  ) := loD( right );
                   hiD( left  ) := hiD( right );
                   Dd(  left  ) := Dd(  right );
                   De(  left  ) := De(  right );
                   loD( right ) := swapLo;
                   hiD( right ) := swapHi;
                   Dd(  right ) := swapD;
                   De(  right ) := swapE;
                   left         := left  + 1;
                   right        := right - 1
               end while_left_le_right ;
               quickSort5( lb,   right );
               quickSort5( left, ub    )
           end quickSort5 ;
       % table of fifth powers                                                             %
       integer array lo5, hi5         ( 1 :: MAX_NUMBER );
       % table if differences between fifth powers                                         %
       integer array loD, hiD, De, Dd ( 1 :: MAX_NUMBER * MAX_NUMBER );
       integer dUsed, dPos;
       % compute fifth powers                                                              %
       for i := 1 until MAX_NUMBER do begin
           lo5( i ) := i * i; hi5( i ) := 0;
           for p := 3 until 5 do begin
               integer carry;
               lo5( i ) := lo5( i ) * i;
               carry    := lo5( i ) div MAX_V;
               lo5( i ) := lo5( i ) rem MAX_V;
               hi5( i ) := hi5( i ) * i;
               hi5( i ) := hi5( i ) + carry
           end for_p
       end for_i ;
       % compute the differences between fifth powers e^5 - d^5, 1 <= d < e <= MAX_NUMBER  %
       dUsed := 0;
       for e := 2 until MAX_NUMBER do begin
           for d := 1 until e - 1  do begin
               dUsed := dUsed + 1;
               De(  dUsed ) := e;
               Dd(  dUsed ) := d;
               loD( dUsed ) := lo5( e ) - lo5( d );
               hiD( dUsed ) := hi5( e ) - hi5( d );
               if loD( dUsed ) < 0 then begin
                   loD( dUsed ) := loD( dUsed ) + MAX_V;
                   hiD( dUsed ) := hiD( dUsed ) - 1
               end if_need_to_borrow
           end for_d
       end for_e;
       % sort the fifth power differences                                                  %
       quickSort5( 1, dUsed );
       % attempt to find a^5 + b^5 + c^5 = e^5 - d^5                                       %
       for a := 1 until MAX_NUMBER do begin
           integer loA, hiA;
           loA := lo5( a ); hiA := hi5( a );
           for b := a until MAX_NUMBER do begin
               integer loB, hiB;
               loB := lo5( b ); hiB := hi5( b );
               for c := b until MAX_NUMBER do begin
                   integer low, high, loSum, hiSum;
                   loSum :=                       loA + loB + lo5( c );
                   hiSum := ( loSum div MAX_V ) + hiA + hiB + hi5( c );
                   loSum :=   loSum rem MAX_V;
                   % look for hiSum,loSum in hiD,loD                                       %
                   low   := 1;
                   high  := dUsed;
                   while low < high do begin
                       integer mid, cmp;
                       mid := ( low + high ) div 2;
                       cmp := hiD( mid ) - hiSum;
                       if cmp = 0 then cmp := loD( mid ) - loSum;
                       if cmp = 0 then begin
                           % the value at mid is the difference of two fifth powers        %
                           write( i_w := 1, s_w := 0
                                , a, "^5 + ", b, "^5 + ", c, "^5 + "
                                , Dd( mid ), "^5 = ", De( mid ), "^5"
                                );
                           go to found
                           end
                       else if cmp > 0 then high := mid - 1
                       else                 low  := mid + 1
                   end while_low_lt_high
               end for_c
           end for_b
       end for_a ;

found :

   end

end.</lang>

Output:
27^5 + 84^5 + 110^5 + 133^5 = 144^5

Arturo

Translation of: Nim

<lang rebol>eulerSumOfPowers: function [top][

   p5: map 0..top => [& ^ 5]
   loop 4..top 'a [
       loop 3..a-1 'b [
           loop 2..b-1 'c [
               loop 1..c-1 'd [
                   s: (get p5 a) + (get p5 b) + (get p5 c) + (get p5 d)
                   if integer? index p5 s ->
                       return ~"|a|^5 + |b|^5 + |c|^5 + |d|^5 = |index p5 s|^5"
               ]
           ]
       ]
   ]
   return "not found" ; shouldn't reach here

]

print eulerSumOfPowers 249</lang>

Output:
133^5 + 110^5 + 84^5 + 27^5 = 144^5

AWK

<lang AWK>

  1. syntax: GAWK -f EULERS_SUM_OF_POWERS_CONJECTURE.AWK

BEGIN {

   start_int = systime()
   main()
   printf("%d seconds\n",systime()-start_int)
   exit(0)

} function main( sum,s1,x0,x1,x2,x3) {

   for (x0=1; x0<=250; x0++) {
     for (x1=1; x1<=x0; x1++) {
       for (x2=1; x2<=x1; x2++) {
         for (x3=1; x3<=x2; x3++) {
           sum = (x0^5) + (x1^5) + (x2^5) + (x3^5)
           s1 = int(sum ^ 0.2)
           if (sum == s1^5) {
             printf("%d^5 + %d^5 + %d^5 + %d^5 = %d^5\n",x0,x1,x2,x3,s1)
             return
           }
         }
       }
     }
   }

} </lang>

Output:
133^5 + 110^5 + 84^5 + 27^5 = 144^5
15 seconds

Bracmat

<lang bracmat> 0:?x0 & whl

 ' ( 1+!x0:<250:?x0
   & out$(x0 !x0)
   & 0:?x1
   &   whl
     ' ( 1+!x1:~>!x0:?x1
       & out$(x0 !x0 x1 !x1)
       & 0:?x2
       &   whl
         ' ( 1+!x2:~>!x1:?x2
           & 0:?x3
           &   whl
             ' ( 1+!x3:~>!x2:?x3
               &   (!x0^5+!x1^5+!x2^5+!x3^5)^1/5
                 : (   #?y
                     & out$(x0 !x0 x1 !x1 x2 !x2 x3 !x3 y !y)
                     & 250:?x0:?x1:?x2:?x3
                   | ?
                   )
               )
           )
       )
   )</lang>

Output

x0 133 x1 110 x2 84 x3 27 y 144

C

The trick to speed up was the observation that for any x we have x^5=x modulo 2, 3, and 5, according to the Fermat's little theorem. Thus, based on the Chinese Remainder Theorem we have x^5==x modulo 30 for any x. Therefore, when we have computed the left sum s=a^5+b^5+c^5+d^5, then we know that the right side e^5 must be such that s==e modulo 30. Thus, we do not have to consider all values of e, but only values in the form e=e0+30k, for some starting value e0, and any k. Also, we follow the constraints 1<=a<b<c<d<e<N in the main loop. <lang c>// Alexander Maximov, July 2nd, 2015

  1. include <stdio.h>
  2. include <time.h>

typedef long long mylong;

void compute(int N, char find_only_one_solution) { const int M = 30; /* x^5 == x modulo M=2*3*5 */ int a, b, c, d, e; mylong s, t, max, *p5 = (mylong*)malloc(sizeof(mylong)*(N+M));

for(s=0; s < N; ++s) p5[s] = s * s, p5[s] *= p5[s] * s; for(max = p5[N - 1]; s < (N + M); p5[s++] = max + 1);

for(a = 1; a < N; ++a) for(b = a + 1; b < N; ++b) for(c = b + 1; c < N; ++c) for(d = c + 1, e = d + ((t = p5[a] + p5[b] + p5[c]) % M); ((s = t + p5[d]) <= max); ++d, ++e) { for(e -= M; p5[e + M] <= s; e += M); /* jump over M=30 values for e>d */ if(p5[e] == s) { printf("%d %d %d %d %d\r\n", a, b, c, d, e); if(find_only_one_solution) goto onexit; } } onexit: free(p5); }

int main(void) { int tm = clock(); compute(250, 0); printf("time=%d milliseconds\r\n", (int)((clock() - tm) * 1000 / CLOCKS_PER_SEC)); return 0; }</lang>

Output:

The fair way to measure the speed of the code above is to measure it's run time to find all possible solutions to the problem, given N (and not just a single solution, since then the time may depend on the way and the order we organize for-loops).

27 84 110 133 144
time=235 milliseconds

Another test with N=1000 produces the following results:

27 84 110 133 144
54 168 220 266 288
81 252 330 399 432
108 336 440 532 576
135 420 550 665 720
162 504 660 798 864
time=65743 milliseconds

PS: The solution for C++ provided below is actually quite good in its design idea behind. However, with all proposed tricks to speed up, the measurements for C++ solution for N=1000 showed the execution time 81447ms (+23%) on the same environment as above for C solution (same machine, same compiler, 64-bit platform). The reason that C++ solution is a bit slower is, perhaps, the fact that the inner loops over rs have complexity ~N/2 steps in average, while with the modulo 30 trick that complexity can be reduced down to ~N/60 steps, although one "expensive" extra %-operation is still needed.

C#

Loops

Translation of: Java

<lang csharp>using System;

namespace EulerSumOfPowers {

   class Program {
       const int MAX_NUMBER = 250;
       static void Main(string[] args) {
           bool found = false;
           long[] fifth = new long[MAX_NUMBER];
           for (int i = 1; i <= MAX_NUMBER; i++) {
               long i2 = i * i;
               fifth[i - 1] = i2 * i2 * i;
           }
           for (int a = 0; a < MAX_NUMBER && !found; a++) {
               for (int b = a; b < MAX_NUMBER && !found; b++) {
                   for (int c = b; c < MAX_NUMBER && !found; c++) {
                       for (int d = c; d < MAX_NUMBER && !found; d++) {
                           long sum = fifth[a] + fifth[b] + fifth[c] + fifth[d];
                           int e = Array.BinarySearch(fifth, sum);
                           found = e >= 0;
                           if (found) {
                               Console.WriteLine("{0}^5 + {1}^5 + {2}^5 + {3}^5 = {4}^5", a + 1, b + 1, c + 1, d + 1, e + 1);
                           }
                       }
                   }
               }
           }
       }
   }

}</lang>

Paired Powers, Mod 30, etc...

Translation of: vbnet

<lang csharp>using System; using System.Collections.Generic; using System.Linq; using System.Threading.Tasks;

namespace Euler_cs {

   class Program
   {
       struct Pair
       {
           public int a, b;
           public Pair(int x, int y)
           {
               a = x; b = y;
           }
       }
       static int min = 1, max = 250;
       static ulong[] p5;
       static SortedDictionary<ulong, Pair>[] sum2 =
                  new SortedDictionary<ulong, Pair>[30];
       static string Fmt(Pair p)
       {
           return string.Format("{0}^5 + {1}^5", p.a, p.b);
       }
       public static void InitM()
       {
           for (int i = 0; i <= 29; i++)
               sum2[i] = new SortedDictionary<ulong, Pair>();
           p5 = new ulong[max + 1];
           p5[min] = Convert.ToUInt64(min) * Convert.ToUInt64(min);
           p5[min] *= p5[min] * Convert.ToUInt64(min);
           for (int i = min; i <= max - 1; i++)
           {
               for (int j = i + 1; j <= max; j++)
               {
                   p5[j] = Convert.ToUInt64(j) * Convert.ToUInt64(j);
                   p5[j] *= p5[j] * Convert.ToUInt64(j);
                   if (j == max) continue;
                   ulong x = p5[i] + p5[j];
                   sum2[x % 30].Add(x, new Pair(i, j));
               }
           }
       }
       static List<string> CalcM(int m)
       {
           List<string> res = new List<string>();
           for (int i = max; i >= min; i--)
           {
               ulong p = p5[i]; int pm = i % 30, mp = (pm - m + 30) % 30;
               foreach (var s in sum2[m].Keys)
               {
                   if (p <= s) break;
                   ulong t = p - s;
                   if (sum2[mp].Keys.Contains(t) && sum2[mp][t].a > sum2[m][s].b)
                       res.Add(string.Format("  {1} + {2} = {0}^5",
                           i, Fmt(sum2[m][s]), Fmt(sum2[mp][t])));
               }
           }
           return res;
       }
       static int Snip(string s)
       {
           int p = s.IndexOf("=") + 1;
           return Convert.ToInt32(s.Substring(p, s.IndexOf("^", p) - p));
       }
       static int CompareRes(string x, string y)
       {
           int res = Snip(x).CompareTo(Snip(y));
           if (res == 0) res = x.CompareTo(y);
           return res;
       }
       static int Validify(int def, string s)
       {
           int res = def, t = 0; int.TryParse(s, out t);
           if (t >= 1 && t < Math.Pow((double)(ulong.MaxValue >> 1), 0.2))
               res = t;
           return res;
       }
       static void Switch(ref int a, ref int b)
       {
           int t = a; a = b; b = t;
       }
       static void Main(string[] args)
       {
           if (args.Count() > 1)
           {
               min = Validify(min, args[0]);
               max = Validify(max, args[1]);
               if (max < min) Switch(ref max, ref min);
           }
           else if (args.Count() == 1)
               max = Validify(max, args[0]);
           Console.WriteLine("Mod 30 shortcut with threading, checking from {0} to {1}...", min, max);
           List<string> res = new List<string>();
           DateTime st = DateTime.Now;
           List<Task<List<string>>> taskList = new List<Task<List<string>>>();
           InitM();
           for (int j = 0; j <= 29; j++)
           {
               var jj = j;
               taskList.Add(Task.Run(() => CalcM(jj)));
           }
           Task.WhenAll(taskList);
           foreach (var item in taskList.Select(t => t.Result))
               res.AddRange(item);
           res.Sort(CompareRes);
           foreach (var item in res)
               Console.WriteLine(item);
           Console.WriteLine("  Computation time to check entire space was {0} seconds",
               (DateTime.Now - st).TotalSeconds);
           if (System.Diagnostics.Debugger.IsAttached)
               Console.ReadKey();
       }
   }

}</lang>

Output:

(no command line arguments)

Mod 30 shortcut with threading, checking from 1 to 250...

27^5 + 84^5 + 110^5 + 133^5 = 144^5

Computation time to check entire space was 0.0838058 seconds

(command line argument = "1000")

Mod 30 shortcut with threading, checking from 1 to 1000...
  27^5 + 84^5 + 110^5 + 133^5 = 144^5
  54^5 + 168^5 + 220^5 + 266^5 = 288^5
  81^5 + 252^5 + 330^5 + 399^5 = 432^5
  108^5 + 336^5 + 440^5 + 532^5 = 576^5
  135^5 + 420^5 + 550^5 + 665^5 = 720^5
  162^5 + 504^5 + 660^5 + 798^5 = 864^5
  Computation time to check entire space was 5.4109744 seconds

C++

First version

The simplest brute-force find is already reasonably quick: <lang cpp>#include <algorithm>

  1. include <iostream>
  2. include <cmath>
  3. include <set>
  4. include <vector>

using namespace std;

bool find() {

   const auto MAX = 250;
   vector<double> pow5(MAX);
   for (auto i = 1; i < MAX; i++)
       pow5[i] = (double)i * i * i * i * i;
   for (auto x0 = 1; x0 < MAX; x0++) {
       for (auto x1 = 1; x1 < x0; x1++) {
           for (auto x2 = 1; x2 < x1; x2++) {
               for (auto x3 = 1; x3 < x2; x3++) {
                   auto sum = pow5[x0] + pow5[x1] + pow5[x2] + pow5[x3];
                   if (binary_search(pow5.begin(), pow5.end(), sum))
                   {
                       cout << x0 << " " << x1 << " " << x2 << " " << x3 << " " << pow(sum, 1.0 / 5.0) << endl;
                       return true;
                   }
               }
           }
       }
   }
   // not found
   return false;

}

int main(void) {

   int tm = clock();
   if (!find())
       cout << "Nothing found!\n";
   cout << "time=" << (int)((clock() - tm) * 1000 / CLOCKS_PER_SEC) << " milliseconds\r\n";
   return 0;

}</lang>

Output:
133 110 84 27 144
time=234 milliseconds

We can accelerate this further by creating a parallel std::set<double> p5s containing the elements of the std::vector pow5, and using it to replace the call to std::binary_search: <lang cpp> set<double> pow5s; for (auto i = 1; i < MAX; i++) { pow5[i] = (double)i * i * i * i * i; pow5s.insert(pow5[i]); } //...

       if (pow5s.find(sum) != pow5s.end())</lang>

This reduces the timing to 125 ms on the same hardware.

A different, more effective optimization is to note that each successive sum is close to the previous one, and use a bidirectional linear search with memory. We also note that inside the innermost loop, we only need to search upward, so we hoist the downward linear search to the loop over x2. <lang cpp>bool find() { const auto MAX = 250; vector<double> pow5(MAX); for (auto i = 1; i < MAX; i++) pow5[i] = (double)i * i * i * i * i; auto rs = 5; for (auto x0 = 1; x0 < MAX; x0++) { for (auto x1 = 1; x1 < x0; x1++) { for (auto x2 = 1; x2 < x1; x2++) { auto s2 = pow5[x0] + pow5[x1] + pow5[x2]; while (rs > 0 && pow5[rs] > s2) --rs; for (auto x3 = 1; x3 < x2; x3++) { auto sum = s2 + pow5[x3]; while (rs < MAX - 1 && pow5[rs] < sum) ++rs; if (pow5[rs] == sum) { cout << x0 << " " << x1 << " " << x2 << " " << x3 << " " << pow(sum, 1.0 / 5.0) << endl; return true; } } } } } // not found return false; }</lang> This reduces the timing to around 25 ms. We could equally well replace rs with an iterator inside pow5; the timing is unaffected.

For comparison with the C code, we also check the timing of an exhaustive search up to MAX=1000. (Don't try this in Python.) This takes 87.2 seconds on the same hardware, comparable to the results found by the C code authors, and supports their conclusion that the mod-30 trick used in the C solution leads to better scalability than the iterator optimizations.

Fortunately, we can incorporate the same trick into the above code, by inserting a forward jump to a feasible solution mod 30 into the loop over x3: <lang cpp> for (auto x3 = 1; x3 < x2; x3++) { // go straight to the first appropriate x3, mod 30 if (int err30 = (x0 + x1 + x2 + x3 - rs) % 30) x3 += 30 - err30; if (x3 >= x2) break; auto sum = s2 + pow5[x3];</lang> With this refinement, the exhaustive search up to MAX=1000 takes 16.9 seconds.

Thanks, C guys!

Second version

We can create a more efficient method by using the idea (taken from the EchoLisp listing below) of precomputing difference between pairs of fifth powers. If we combine this with the above idea of using linear search with memory, this still requires asymptotically O(N^4) time (because of the linear search within diffs), but is at least twice as fast as the solution above using the mod-30 trick. Exhaustive search up to MAX=1000 took 6.2 seconds for me (64-bit on 3.4GHz i7). It is not clear how it can be combined with the mod-30 trick.

The asymptotic behavior can be improved to O(N^3 ln N) by replacing the linear search with an increasing-increment "hunt" (and the outer linear search, which is also O(N^4), with a call to std::upper_bound). With this replacement, the first solution was found in 0.05 seconds; exhaustive search up to MAX=1000 took 2.80 seconds; and the second nontrivial solution (discarding multiples of the first solution), at y==2615, was found in 94.6 seconds. Note: there is no solution 2615, because 645^5 + 1523^5 + 1722^5 +2506^5 = 122 280 854 808 884 376, but 2615^5=122 280 854 808 884 375. This is an error due to limitation in mantissa of double type (52 bits). 128 bit type is required for the next solution 85359.


<lang cpp>template<class C_, class LT_> C_ Unique(const C_& src, const LT_& less) { C_ retval(src); std::sort(retval.begin(), retval.end(), less); retval.erase(unique(retval.begin(), retval.end()), retval.end()); return retval; }

template<class I_, class P_> I_ HuntFwd(const I_& hint, const I_& end, const P_& less) // if less(x) is false, then less(x+1) must also be false { I_ retval(hint); int step = 1; // expanding phase while (end - retval > step) { I_ test = retval + step; if (!less(test)) break; retval = test; step <<= 1; } // contracting phase while (step > 1) { step >>= 1; if (end - retval <= step) continue; I_ test = retval + step; if (less(test)) retval = test; } if (retval != end && less(retval)) ++retval; return retval; }

bool DPFind(int how_many) { const int MAX = 1000; vector<double> pow5(MAX); for (int i = 1; i < MAX; i++) pow5[i] = (double)i * i * i * i * i; vector<pair<double, int>> diffs; for (int i = 2; i < MAX; ++i) { for (int j = 1; j < i; ++j) diffs.emplace_back(pow5[i] - pow5[j], j); } auto firstLess = [](const pair<double, int>& lhs, const pair<double, int>& rhs) { return lhs.first < rhs.first; }; diffs = Unique(diffs, firstLess);

for (int x4 = 4; x4 < MAX - 1; ++x4) { for (int x3 = 3; x3 < x4; ++x3) { // if (133 * x3 == 110 * x4) continue; // skip duplicates of first solution const auto s2 = pow5[x4] + pow5[x3]; auto pd = upper_bound(diffs.begin() + 1, diffs.end(), make_pair(s2, 0), firstLess) - 1; for (int x2 = 2; x2 < x3; ++x2) { const auto sum = s2 + pow5[x2]; pd = HuntFwd(pd, diffs.end(), [&](decltype(pd) it){ return it->first < sum; }); if (pd != diffs.end() && pd->first == sum && pd->second < x3) // find each solution only once { const double y = pow(pd->first + pow5[pd->second], 0.2); cout << x4 << " " << x3 << " " << x2 << " " << pd->second << " -> " << static_cast<int>(y + 0.5) << "\n"; if (--how_many <= 0) return true; } } } } return false; }</lang>

Thanks, EchoLisp guys!

Clojure

<lang Clojure> (ns test-p.core

 (:require [clojure.math.numeric-tower :as math])
 (:require [clojure.data.int-map :as i]))

(defn solve-power-sum [max-value max-sols]

 " Finds solutions by using method approach of EchoLisp
   Large difference is we store a dictionary of all combinations 
   of y^5 - x^5 with the x, y value so we can simply lookup rather than have to search "
 (let [pow5 (mapv #(math/expt % 5) (range 0 (* 4 max-value)))                  ; Pow5 = Generate Lookup table for x^5
       y5-x3 (into (i/int-map) (for [x (range 1 max-value)                     ; For x0^5 + x1^5 + x2^5 + x3^5  = y^5
                                     y (range (+ 1 x) (* 4 max-value))]        ; compute y5-x3 = set of all possible differnences
                                 [(- (get pow5 y) (get pow5 x)) [x y]])) ; note: (get pow5 y) is closure for: pow5[y]
       solutions-found (atom 0)]
   (for [x0 (range 1 max-value)                                    ; Search over x0, x1, x2 for sums equal y5-x3
         x1 (range 1 x0)
         x2 (range 1 x1)
         :when (< @solutions-found max-sols)
         :let [sum (apply + (map pow5 [x0 x1 x2]))]         ; compute sum of items to the 5th power
         :when (contains? y5-x3 sum)]                       ; check if sum is in set of differences
     (do
       (swap! solutions-found inc)                          ; increment counter for solutions found
       (concat [x0 x1 x2] (get y5-x3 sum))))))              ; create result (since in set of differences)
Output results with numbers in ascending order placing results into a set (i.e. #{}) so duplicates are discarded
                                                           ; CPU i7 920 Quad Core @2.67 GHz clock Windows 10

(println (into #{} (map sort (solve-power-sum 250 1))))  ; MAX = 250, find only 1 value: Duration was 0.26 seconds (println (into #{} (map sort (solve-power-sum 1000 1000))));MAX = 1000, high max-value so all solutions found: Time = 4.8 seconds </lang> Output

1st Solution with MAX = 250 (Solution Time: 260 ms CPU i7 920 Quad Core)
#{(27 84 110 133 144))

All Solutions with MAX = 1000 (Solution Time: 4.8 seconds CPU i7 920 Quad Core)
#{(27 84 110 133 144) 
(162 504 660 798 864) 
(135 420 550 665 720) 
(108 336 440 532 576) 
(189 588 770 931 1008) 
(54 168 220 266 288) 
(81 252 330 399 432)}

COBOL

<lang cobol>

      IDENTIFICATION DIVISION.
      PROGRAM-ID. EULER.
      DATA DIVISION.
      FILE SECTION.
      WORKING-STORAGE SECTION.
      1   TABLE-LENGTH CONSTANT 250.
      1   SEARCHING-FLAG     PIC 9.
       88  FINISHED-SEARCHING VALUE IS 1
                              WHEN SET TO FALSE IS 0.
      1  CALC.
       3  A               PIC 999 USAGE COMPUTATIONAL-5.
       3  B               PIC 999 USAGE COMPUTATIONAL-5.
       3  C               PIC 999 USAGE COMPUTATIONAL-5.
       3  D               PIC 999 USAGE COMPUTATIONAL-5.
       3  ABCD            PIC 9(18) USAGE COMPUTATIONAL-5.
       3  FIFTH-ROOT-OFFS PIC 999 USAGE COMPUTATIONAL-5.
       3  POWER-COUNTER   PIC 999 USAGE COMPUTATIONAL-5.
       88 POWER-MAX       VALUE TABLE-LENGTH.
      
      1   PRETTY.
       3  A               PIC ZZ9.
       3  FILLER          VALUE "^5 + ".
       3  B               PIC ZZ9.
       3  FILLER          VALUE "^5 + ".
       3  C               PIC ZZ9.
       3  FILLER          VALUE "^5 + ".
       3  D               PIC ZZ9.
       3  FILLER          VALUE "^5 = ".
       3  FIFTH-ROOT-OFFS PIC ZZ9.
       3  FILLER          VALUE "^5.".
      1   FIFTH-POWER-TABLE   OCCURS TABLE-LENGTH TIMES
                              ASCENDING KEY IS FIFTH-POWER
                              INDEXED BY POWER-INDEX.
       3  FIFTH-POWER PIC 9(18) USAGE COMPUTATIONAL-5.


      PROCEDURE DIVISION.
      MAIN-PARAGRAPH.
          SET FINISHED-SEARCHING TO FALSE.
          PERFORM POWERS-OF-FIVE-TABLE-INIT.
          PERFORM VARYING
              A IN CALC
              FROM 1 BY 1 UNTIL A IN CALC = TABLE-LENGTH
              AFTER B IN CALC
              FROM 1 BY 1 UNTIL B IN CALC = A IN CALC
              AFTER C IN CALC
              FROM 1 BY 1 UNTIL C IN CALC = B IN CALC
              AFTER D IN CALC
              FROM 1 BY 1 UNTIL D IN CALC = C IN CALC
              IF FINISHED-SEARCHING
                  STOP RUN
              END-IF
              PERFORM POWER-COMPUTATIONS
          END-PERFORM.
      POWER-COMPUTATIONS.
          MOVE ZERO TO ABCD IN CALC.
          ADD FIFTH-POWER(A IN CALC)
              FIFTH-POWER(B IN CALC)
              FIFTH-POWER(C IN CALC)
              FIFTH-POWER(D IN CALC)
                  TO ABCD IN CALC.
          SET POWER-INDEX TO 1.
          SEARCH ALL FIFTH-POWER-TABLE
              WHEN FIFTH-POWER(POWER-INDEX) = ABCD IN CALC
                     MOVE POWER-INDEX TO FIFTH-ROOT-OFFS IN CALC
                     MOVE CORRESPONDING CALC TO PRETTY
                     DISPLAY PRETTY END-DISPLAY
                     SET FINISHED-SEARCHING TO TRUE
          END-SEARCH
          EXIT PARAGRAPH.
      POWERS-OF-FIVE-TABLE-INIT.
          PERFORM VARYING POWER-COUNTER FROM 1 BY 1 UNTIL POWER-MAX
              COMPUTE FIFTH-POWER(POWER-COUNTER) = 
                  POWER-COUNTER *
                  POWER-COUNTER *
                  POWER-COUNTER *
                  POWER-COUNTER *
                  POWER-COUNTER 
              END-COMPUTE
          END-PERFORM.
          EXIT PARAGRAPH.
      END PROGRAM EULER.

</lang> Output

133^5 + 110^5 +  84^5 +  27^5 = 144^5.

Common Lisp

<lang lisp> (ql:quickload :alexandria) (let ((fifth-powers (mapcar #'(lambda (x) (expt x 5))

                           (alexandria:iota 250))))
 (loop named outer for x0 from 1 to (length fifth-powers) do
   (loop for x1 from 1 below x0 do
     (loop for x2 from 1 below x1 do
       (loop for x3 from 1 below x2 do
         (let ((x-sum (+ (nth x0 fifth-powers)
                         (nth x1 fifth-powers)
                         (nth x2 fifth-powers)
                         (nth x3 fifth-powers))))
           (if (member x-sum fifth-powers)
                 (return-from outer (list x0 x1 x2 x3 (round (expt x-sum 0.2)))))))))))

</lang>

Output:
(133 110 84 27 144)

D

First version

Translation of: Rust

<lang d>import std.stdio, std.range, std.algorithm, std.typecons;

auto eulersSumOfPowers() {

   enum maxN = 250;
   auto pow5 = iota(size_t(maxN)).map!(i => ulong(i) ^^ 5).array.assumeSorted;
   foreach (immutable x0; 1 .. maxN)
       foreach (immutable x1; 1 .. x0)
           foreach (immutable x2; 1 .. x1)
               foreach (immutable x3; 1 .. x2) {
                   immutable powSum = pow5[x0] + pow5[x1] + pow5[x2] + pow5[x3];
                   if (pow5.contains(powSum))
                       return tuple(x0, x1, x2, x3, pow5.countUntil(powSum));
               }
   assert(false);

}

void main() {

   writefln("%d^5 + %d^5 + %d^5 + %d^5 == %d^5", eulersSumOfPowers[]);

}</lang>

Output:
133^5 + 110^5 + 84^5 + 27^5 == 144^5

Run-time about 0.64 seconds. A Range-based Haskell-like solution is missing because of Issue 14833.

Second version

Translation of: Python

<lang d>void main() {

   import std.stdio, std.range, std.algorithm, std.typecons;
   enum uint MAX = 250;
   uint[ulong] p5;
   Tuple!(uint, uint)[ulong] sum2;
   foreach (immutable i; 1 .. MAX) {
       p5[ulong(i) ^^ 5] = i;
       foreach (immutable j; i .. MAX)
           sum2[ulong(i) ^^ 5 + ulong(j) ^^ 5] = tuple(i, j);
   }
   const sk = sum2.keys.sort().release;
   foreach (p; p5.keys.sort())
       foreach (immutable s; sk) {
           if (p <= s)
               break;
           if (p - s in sum2) {
               writeln(p5[p], " ", tuple(sum2[s][], sum2[p - s][]));
               return; // Finds first only.
           }
       }

}</lang>

Output:
144 Tuple!(uint, uint, uint, uint)(27, 84, 110, 133)

Run-time about 0.10 seconds.

Third version

Translation of: C++

This solution is a brutal translation of the iterator-based C++ version, and it should be improved to use more idiomatic D Ranges. <lang d>import core.stdc.stdio, std.typecons, std.math, std.algorithm, std.range;

alias Pair = Tuple!(double, int); alias PairPtr = Pair*;

// If less(x) is false, then less(x + 1) must also be false. PairPtr huntForward(Pred)(PairPtr hint, const PairPtr end, const Pred less) pure nothrow @nogc {

   PairPtr result = hint;
   int step = 1;
   // Expanding phase.
   while (end - result > step) {
       PairPtr test = result + step;
       if (!less(test))
           break;
       result = test;
       step <<= 1;
   }
   // Contracting phase.
   while (step > 1) {
       step >>= 1;
       if (end - result <= step)
           continue;
       PairPtr test = result + step;
       if (less(test))
           result = test;
   }
   if (result != end && less(result))
       ++result;
   return result;

}


bool dPFind(int how_many) nothrow {

   enum MAX = 1_000;
   double[MAX] pow5;
   foreach (immutable i; 1 .. MAX)
       pow5[i] = double(i) ^^ 5;
   Pair[] diffs0; // Will contain (MAX-1) * (MAX-2) / 2 pairs.
   foreach (immutable i; 2 .. MAX)
       foreach (immutable j; 1 .. i)
           diffs0 ~= Pair(pow5[i] - pow5[j], j);
   // Remove pairs with duplicate first items.
   diffs0.length -= diffs0.sort!q{ a[0] < b[0] }.uniq.copy(diffs0).length;
   auto diffs = diffs0.assumeSorted!q{ a[0] < b[0] };
   foreach (immutable x4; 4 .. MAX - 1) {
       foreach (immutable x3; 3 .. x4) {
           immutable s2 = pow5[x4] + pow5[x3];
           auto pd0 = diffs[1 .. $].upperBound(Pair(s2, 0));
           PairPtr pd = &pd0[0] - 1;
           foreach (immutable x2; 2 .. x3) {
               immutable sum = s2 + pow5[x2];
               const PairPtr endPtr = &diffs[$ - 1] + 1;
               // This lambda heap-allocates.
               pd = huntForward(pd, endPtr, (in PairPtr p) pure => (*p)[0] < sum);
               if (pd != endPtr && (*pd)[0] == sum && (*pd)[1] < x3) { // Find each solution only once.
                   immutable y = ((*pd)[0] + pow5[(*pd)[1]]) ^^ 0.2;
                   printf("%d %d %d %d : %d\n", x4, x3, x2, (*pd)[1], cast(int)(y + 0.5));
                   if (--how_many <= 0)
                       return true;
               }
           }
       }
   }
   return false;

}


void main() nothrow {

   if (!dPFind(100))
       printf("Search finished.\n");

}</lang>

Output:
133 110 27 84 : 144
133 110 84 27 : 144
266 220 54 168 : 288
266 220 168 54 : 288
399 330 81 252 : 432
399 330 252 81 : 432
532 440 108 336 : 576
532 440 336 108 : 576
665 550 135 420 : 720
665 550 420 135 : 720
798 660 162 504 : 864
798 660 504 162 : 864
Search finished.

Run-time about 7.1 seconds.

Delphi

See Pascal.

EasyLang

<lang>n = 250 len p5[] n len h5[] 65537 for i range n

 p5[i] = i * i * i * i * i
 h5[p5[i] mod 65537] = 1

. func search a s . y .

 y = -1
 b = n
 while a + 1 < b
   i = (a + b) div 2
   if p5[i] > s
     b = i
   elif p5[i] < s
     a = i
   else
     a = b
     y = i
   .
 .

. for x0 range n

 for x1 range x0
   sum1 = p5[x0] + p5[x1]
   for x2 range x1
     sum2 = p5[x2] + sum1
     for x3 range x2
       sum = p5[x3] + sum2
       if h5[sum mod 65537] = 1
         call search x0 sum y
         if y >= 0
           print x0 & " " & x1 & " " & x2 & " " & x3 & " " & y
           break 4
         .
       .
     .
   .
 .

.</lang>

EchoLisp

To speed up things, we search for x0, x1, x2 such as x0^5 + x1^5 + x2^5 = a difference of 5-th powers. <lang lisp> (define dim 250)

speed up n^5

(define (p5 n) (* n n n n n)) (remember 'p5) ;; memoize

build vector of all y^5 - x^5 diffs - length 30877

(define all-y^5-x^5 (for*/vector [(x (in-range 1 dim)) (y (in-range (1+ x) dim))] (- (p5 y) (p5 x))))

sort to use vector-search

(begin (vector-sort! < all-y^5-x^5) 'sorted)

;; find couple (x y) from y^5 - x^5

(define (x-y y^5-x^5) (for*/fold (x-y null) [(x (in-range 1 dim)) (y (in-range (1+ x ) dim))] (when (= (- (p5 y) (p5 x)) y^5-x^5) (set! x-y (list x y)) (break #t)))) ; stop on first

search

(for*/fold (sol null) [(x0 (in-range 1 dim)) (x1 (in-range (1+ x0) dim)) (x2 (in-range (1+ x1) dim))] (set! sol (+ (p5 x0) (p5 x1) (p5 x2)))

	(when 
		(vector-search sol all-y^5-x^5)  ;; x0^5 + x1^5 + x2^5 = y^5 - x3^5 ???
		(set! sol (append (list x0 x1 x2) (x-y  sol))) ;; found
		(break #t))) ;; stop on first
 →   (27 84 110 133 144) ;; time 2.8 sec
		

</lang>

Elixir

Translation of: Ruby

<lang elixir>defmodule Euler do

 def sum_of_power(max \\ 250) do
   {p5, sum2} = setup(max)
   sk = Enum.sort(Map.keys(sum2))
   Enum.reduce(Enum.sort(Map.keys(p5)), Map.new, fn p,map ->
     sum(sk, p5, sum2, p, map)
   end)
 end
 
 defp setup(max) do
   Enum.reduce(1..max, {%{}, %{}}, fn i,{p5,sum2} ->
     i5 = i*i*i*i*i
     add = for j <- i..max, into: sum2, do: {i5 + j*j*j*j*j, [i,j]}
     {Map.put(p5, i5, i), add}
   end)
 end
 
 defp sum([], _, _, _, map), do: map
 defp sum([s|_], _, _, p, map) when p<=s, do: map
 defp sum([s|t], p5, sum2, p, map) do
   if sum2[p - s],
     do:   sum(t, p5, sum2, p, Map.put(map, Enum.sort(sum2[s] ++ sum2[p-s]), p5[p])),
     else: sum(t, p5, sum2, p, map)
 end

end

Enum.each(Euler.sum_of_power, fn {k,v} ->

 IO.puts Enum.map_join(k, " + ", fn i -> "#{i}**5" end) <> " = #{v}**5"

end)</lang>

Output:
27**5 + 84**5 + 110**5 + 133**5 = 144**5

ERRE

<lang ERRE>PROGRAM EULERO

CONST MAX=250

!$DOUBLE

FUNCTION POW5(X)

   POW5=X*X*X*X*X

END FUNCTION

!$INCLUDE="PC.LIB"

BEGIN

  CLS
  FOR X0=1 TO MAX DO
    FOR X1=1 TO X0 DO
       FOR X2=1 TO X1 DO
          FOR X3=1 TO X2 DO
             LOCATE(3,1) PRINT(X0;X1;X2;X3)
             SUM=POW5(X0)+POW5(X1)+POW5(X2)+POW5(X3)
             S1=INT(SUM^0.2#+0.5#)
             IF SUM=POW5(S1) THEN PRINT(X0,X1,X2,X3,S1) END IF
          END FOR
       END FOR
    END FOR
  END FOR

END PROGRAM</lang>

Output:
133 110 84 27 144

F#

<lang fsharp> //Find 4 integers whose 5th powers sum to the fifth power of an integer (Quickly!) - Nigel Galloway: April 23rd., 2015 let G =

 let GN = Array.init<float> 250 (fun n -> (float n)**5.0)
 let rec gng (n, i, g, e) =
   match (n, i, g, e) with
   | (250,_,_,_) -> "No Solution Found"
   | (_,250,_,_) -> gng (n+1, n+1, n+1, n+1)
   | (_,_,250,_) -> gng (n, i+1, i+1, i+1)
   | (_,_,_,250) -> gng (n, i, g+1, g+1)
   | _ -> let l = GN.[n] + GN.[i] + GN.[g] + GN.[e]
          match l with
          | _ when l > GN.[249]           -> gng(n,i,g+1,g+1)
          | _ when l = round(l**0.2)**5.0 -> sprintf "%d**5 + %d**5 + %d**5 + %d**5 = %d**5" n i g e (int (l**0.2))
          | _                             -> gng(n,i,g,e+1)
 gng (1, 1, 1, 1)

</lang>

Output:
"27**5 + 84**5 + 110**5 + 133**5 = 144**5"

Factor

This solution uses Factor's backtrack vocabulary (based on continuations) to simplify the reduction of the search space. Each time xn is called, a new summand is introduced which can only take on a value as high as the previous summand - 1. This also creates a checkpoint for the backtracker. fail causes the backtracking to occur. <lang factor>USING: arrays backtrack kernel literals math.functions math.ranges prettyprint sequences ;

CONSTANT: pow5 $[ 0 250 [a,b) [ 5 ^ ] map ]

xn ( n1 -- n2 n2 ) [1,b) amb-lazy dup ;

250 xn xn xn xn drop 4array dup pow5 nths sum dup pow5 member? [ pow5 index suffix . ] [ 2drop fail ] if</lang>

Output:
{ 133 110 84 27 144 }

Forth

Translation of: Go

<lang forth>

sq dup * ;
5^ dup sq sq * ;

create pow5 250 cells allot

noname
  250 0 DO  i 5^  pow5 i cells + !  LOOP ; execute
@5^ cells pow5 + @ ;
solution? ( n -- n )
  pow5 250 cells bounds DO
     dup i @ = IF  drop i pow5 - cell / unloop EXIT  THEN
  cell +LOOP drop 0 ;

\ GFORTH only provides 2 index variables: i, j \ so the code creates locals for two outer loop vars, k & l

euler ( -- )
  250 4 DO i { l }
     l 3 DO i { k }
        k 2 DO
           i 1 DO
              i @5^ j @5^ + k @5^ + l @5^ + solution?
              dup IF
                 l . k . j . i . . cr
                 unloop unloop unloop unloop EXIT
              ELSE
                 drop
              THEN
           LOOP
        LOOP
     LOOP
  LOOP ;

euler bye </lang>

Output:
$ gforth-fast ./euler.fs
133 110 84 27 144 

Fortran

FORTRAN IV

To solve this problem, we must handle integers up 250**5 ~= 9.8*10**11 . So we need integers with at less 41 bits. In 1966 all Fortrans were not equal. On IBM360, INTEGER was a 32-bit integer; on CDC6600, INTEGER was a 60-bit integer. And Leon J. Lander and Thomas R. Parkin used the CDC6600. <lang fortran>C EULER SUM OF POWERS CONJECTURE - FORTRAN IV C FIND I1,I2,I3,I4,I5 : I1**5+I2**5+I3**5+I4**5=I5**5

     INTEGER I,P5(250),SUMX
     MAXN=250
     DO 1 I=1,MAXN
  1  P5(I)=I**5
     DO 6 I1=1,MAXN
     DO 6 I2=1,MAXN
     DO 6 I3=1,MAXN
     DO 6 I4=1,MAXN	  
     SUMX=P5(I1)+P5(I2)+P5(I3)+P5(I4)
     I5=1
  2  IF(I5-MAXN) 3,3,6
  3  IF(P5(I5)-SUMX) 5,4,6
  4  WRITE(*,300) I1,I2,I3,I4,I5
     STOP
  5  I5=I5+1
     GOTO 2
  6  CONTINUE
300  FORMAT(5(1X,I3))
     END </lang>
Output:
  27  84 110 133 144

Fortran 95

Works with: Fortran version 95 and later

<lang fortran>program sum_of_powers

 implicit none
 integer, parameter :: maxn = 249      
 integer, parameter :: dprec = selected_real_kind(15)
 integer :: i, x0, x1, x2, x3, y
 real(dprec) :: n(maxn), sumx
 n = (/ (real(i, dprec)**5, i = 1, maxn) /)

outer: do x0 = 1, maxn

        do x1 = 1, maxn
          do x2 = 1, maxn
            do x3 = 1, maxn
              sumx = n(x0)+ n(x1)+ n(x2)+ n(x3)
              y = 1
              do while(y <= maxn .and. n(y) <= sumx)
                if(n(y) == sumx) then
                  write(*,*) x0, x1, x2, x3, y
                  exit outer
                end if
                y = y + 1
              end do  
            end do
          end do
        end do
      end do outer
       

end program</lang>

Output:
          27          84         110         133         144

FreeBASIC

<lang freebasic>' version 14-09-2015 ' compile with: fbc -s console

' some constants calculated when the program is compiled

Const As UInteger max = 250 Const As ULongInt pow5_max = CULngInt(max) * max * max * max * max ' limit x1, x2, x3 Const As UInteger limit_x1 = (pow5_max / 4) ^ 0.2 Const As UInteger limit_x2 = (pow5_max / 3) ^ 0.2 Const As UInteger limit_x3 = (pow5_max / 2) ^ 0.2

' ------=< MAIN >=------

Dim As ULongInt pow5(max), ans1, ans2, ans3 Dim As UInteger x1, x2, x3, x4, x5 , m1, m2

Cls : Print

For x1 = 1 To max

   pow5(x1) = CULngInt(x1) * x1 * x1 * x1 * x1

Next x1

For x1 = 1 To limit_x1

   For x2 = x1 +1 To limit_x2
       m1 = x1 + x2
       ans1 = pow5(x1) + pow5(x2)
       If ans1 > pow5_max Then Exit For
       For x3 = x2 +1 To limit_x3
           ans2 = ans1 + pow5(x3)
           If ans2 > pow5_max Then Exit For
           m2 = (m1 + x3) Mod 30
           If m2 = 0 Then m2 = 30
           For x4 = x3 +1 To max -1
               ans3 = ans2 + pow5(x4)
               If ans3 > pow5_max Then Exit For
               For x5 = x4 + m2 To max Step 30
                   If ans3 < pow5(x5) Then Exit For
                   If ans3 = pow5(x5) Then
                       Print x1; "^5 + "; x2; "^5 + "; x3; "^5 + "; _
                             x4; "^5 = "; x5; "^5"
                       Exit For, For
                   EndIf
               Next x5
           Next x4
       Next x3
   Next x2

Next x1

Print Print "done"

' empty keyboard buffer While Inkey <> "" : Wend Print : Print "hit any key to end program" Sleep End</lang>

Output:
27^5 + 84^5 + 110^5 + 133^5 = 144^5

Go

Translation of: Python

<lang go>package main

import ( "fmt" "log" )

func main() { fmt.Println(eulerSum()) }

func eulerSum() (x0, x1, x2, x3, y int) { var pow5 [250]int for i := range pow5 { pow5[i] = i * i * i * i * i } for x0 = 4; x0 < len(pow5); x0++ { for x1 = 3; x1 < x0; x1++ { for x2 = 2; x2 < x1; x2++ { for x3 = 1; x3 < x2; x3++ { sum := pow5[x0] + pow5[x1] + pow5[x2] + pow5[x3] for y = x0 + 1; y < len(pow5); y++ { if sum == pow5[y] { return } } } } } } log.Fatal("no solution") return }</lang>

Output:
133 110 84 27 144

Groovy

Translation of: Java

<lang groovy>class EulerSumOfPowers {

   static final int MAX_NUMBER = 250
   static void main(String[] args) {
       boolean found = false
       long[] fifth = new long[MAX_NUMBER]
       for (int i = 1; i <= MAX_NUMBER; i++) {
           long i2 = i * i
           fifth[i - 1] = i2 * i2 * i
       }
       for (int a = 0; a < MAX_NUMBER && !found; a++) {
           for (int b = a; b < MAX_NUMBER && !found; b++) {
               for (int c = b; c < MAX_NUMBER && !found; c++) {
                   for (int d = c; d < MAX_NUMBER && !found; d++) {
                       long sum = fifth[a] + fifth[b] + fifth[c] + fifth[d]
                       int e = Arrays.binarySearch(fifth, sum)
                       found = (e >= 0)
                       if (found) {
                           println("${a + 1}^5 + ${b + 1}^5 + ${c + 1}^5 + ${d + 1}^5 + ${e + 1}^5")
                       }
                   }
               }
           }
       }
   }

}</lang>

Output:
27^5 + 84^5 + 110^5 + 133^5 + 144^5

Haskell

<lang haskell>import Data.List import Data.List.Ordered

main :: IO () main = print $ head [(x0,x1,x2,x3,x4) |

                                       -- choose x0, x1, x2, x3 
                                       -- so that 250 < x3 < x2 < x1 < x0
                                       x3 <- [1..250-1], 
                                       x2 <- [1..x3-1], 
                                       x1 <- [1..x2-1], 
                                       x0 <- [1..x1-1], 
                                       let p5Sum = x0^5 + x1^5 + x2^5 + x3^5,
                                       -- lazy evaluation of powers of 5
                                       let p5List = [i^5|i <- [1..]], 
                                       -- is sum a power of 5 ?
                                       member p5Sum p5List, 
                                       -- which power of 5 is sum ?
                                       let Just x4 = elemIndex p5Sum p5List ]</lang>
Output:
(27,84,110,133,144)

Or, using dictionaries of powers and sums, and thus rather faster:

Translation of: Python

<lang haskell>import qualified Data.Map.Strict as M import Data.List (find, intercalate) import Data.Maybe (maybe)



EULER'S SUM OF POWERS CONJECTURE -----------

counterExample :: (M.Map Int (Int, Int), M.Map Int Int) -> Maybe (Int, Int) counterExample (sumMap, powerMap) =

 find
   (\(p, s) -> M.member (p - s) sumMap)
   (M.keys powerMap >>=
    (((>>=) . flip takeWhile (M.keys sumMap) . (>)) <*> \ p s -> [(p, s)]))

sumMapForRange :: [Int] -> M.Map Int (Int, Int) sumMapForRange xs =

 M.fromList
   [ ((x ^ 5) + (y ^ 5), (x, y))
   | x <- xs 
   , y <- tail xs 
   , x > y ]

powerMapForRange :: [Int] -> M.Map Int Int powerMapForRange = M.fromList . (zip =<< fmap (^ 5))



TEST -------------------------

main :: IO () main =

 putStrLn $
 "Euler's sum of powers conjecture – " <>
 maybe
   ("no counter-example found in the range " <> rangeString xs)
   (showExample sumsAndPowers xs)
   (counterExample sumsAndPowers)
 where
   xs = [1 .. 249]
   sumsAndPowers = ((,) . sumMapForRange <*> powerMapForRange) xs

showExample :: (M.Map Int (Int, Int), M.Map Int Int) -> [Int] -> (Int, Int) -> String showExample (sumMap, powerMap) xs (p, s) =

 "a counter-example in range " <> rangeString xs <> ":\n\n" <>
 intercalate "^5 + " (show <$> [a, b, c, d]) <>
 "^5 = " <>
 show (powerMap M.! p) <>
 "^5"
 where
   (a, b) = sumMap M.! (p - s)
   (c, d) = sumMap M.! s

rangeString :: [Int] -> String rangeString [] = "[]" rangeString (x:xs) = '[' : show x <> " .. " <> show (last xs) <> "]"</lang>

Output:
Euler's sum of powers conjecture – a counter-example in range [1 .. 249]:

133^5 + 110^5 + 84^5 + 27^5 = 144^5

J

<lang J> require 'stats'

  (#~ (= <.)@((+/"1)&.:(^&5)))1+4 comb 248

27 84 110 133</lang>

Explanation:

<lang J>1+4 comb 248</lang> finds all the possibilities for our four arguments.

Then, <lang J>(#~ (= <.)@((+/"1)&.:(^&5)))</lang> discards the cases we are not interested in. (It only keeps the case(s) where the fifth root of the sum of the fifth powers is an integer.)

Only one possibility remains.

Here's a significantly faster approach (about 100 times faster), based on the echolisp implementation:

<lang J>find5=:3 :0

 y=. 250
 n=. i.y
 p=. n^5
 a=. (#~ 0&<),-/~p
 s=. /:~a
 l=. (i.*:y)(#~ 0&<),-/~p
 c=. 3 comb <.5%:(y^5)%4
 t=. +/"1 c{p
 x=. (t e. s)#t
 |.,&<&~./|:(y,y)#:l#~a e. x

)</lang>

Use:

<lang J> find5 ┌─────────────┬───┐ │27 84 110 133│144│ └─────────────┴───┘</lang>

Note that this particular implementation is a bit hackish, since it relies on the solution being unique for the range of numbers being considered. If there were more solutions it would take a little extra code (though not much time) to untangle them.

Java

Translation of: ALGOL 68

Tested with Java 6. <lang java>public class eulerSopConjecture {

   static final int    MAX_NUMBER = 250;
   public static void main( String[] args )
   {
       boolean found = false;
       long[]  fifth = new long[ MAX_NUMBER ];
       for( int i = 1; i <= MAX_NUMBER; i ++ )
       {
           long i2 =  i * i;
           fifth[ i - 1 ] = i2 * i2 * i;
       } // for i
       for( int a = 0; a < MAX_NUMBER && ! found ; a ++ )
       {
           for( int b = a; b < MAX_NUMBER && ! found ; b ++ )
           {
               for( int c = b; c < MAX_NUMBER && ! found ; c ++ )
               {
                   for( int d = c; d < MAX_NUMBER && ! found ; d ++ )
                   {
                       long sum  = fifth[a] + fifth[b] + fifth[c] + fifth[d];
                       int  e = java.util.Arrays.binarySearch( fifth, sum );
                       found  = ( e >= 0 );
                       if( found )
                       {
                           // the value at e is a fifth power
                           System.out.print( (a+1) + "^5 + "
                                           + (b+1) + "^5 + "
                                           + (c+1) + "^5 + "
                                           + (d+1) + "^5 = "
                                           + (e+1) + "^5"
                                           );
                       } // if found;;
                   } // for d
               } // for c
           } // for b
       } // for a
   } // main

} // eulerSopConjecture</lang> Output:

27^5 + 84^5 + 110^5 + 133^5 = 144^5

JavaScript

ES5

<lang javascript>var eulers_sum_of_powers = function (iMaxN) {

   var aPow5 = [];
   var oPow5ToN = {};
   for (var iP = 0; iP <= iMaxN; iP++) {
       var iPow5 = Math.pow(iP, 5);
       aPow5.push(iPow5);
       oPow5ToN[iPow5] = iP;
   }
   for (var i0 = 1; i0 <= iMaxN; i0++) {
       for (var i1 = 1; i1 <= i0; i1++) {
           for (var i2 = 1; i2 <= i1; i2++) {
               for (var i3 = 1; i3 <= i2; i3++) {
                   var iPow5Sum = aPow5[i0] + aPow5[i1] + aPow5[i2] + aPow5[i3];
                   if (typeof oPow5ToN[iPow5Sum] != 'undefined') {
                       return {
                           i0: i0,
                           i1: i1,l
                           i2: i2,
                           i3: i3,
                           iSum: oPow5ToN[iPow5Sum]
                       };
                   }
               }
           }
       }
   }

};

var oResult = eulers_sum_of_powers(250);

console.log(oResult.i0 + '^5 + ' + oResult.i1 + '^5 + ' + oResult.i2 +

   '^5 + ' + oResult.i3 + '^5 = ' + oResult.iSum + '^5');</lang>
Output:
133^5 + 110^5 + 84^5 + 27^5 = 144^5

This

Translation of: D

that verify: a^5 + b^5 + c^5 + d^5 = x^5

<lang javascript>var N=1000, first=false var ns={}, npv=[] for (var n=0; n<=N; n++) { var np=Math.pow(n,5); ns[np]=n; npv.push(np) } loop: for (var a=1; a<=N; a+=1) for (var b=a+1; b<=N; b+=1) for (var c=b+1; c<=N; c+=1) for (var d=c+1; d<=N; d+=1) { var x = ns[ npv[a]+npv[b]+npv[c]+npv[d] ] if (!x) continue print( [a, b, c, d, x] ) if (first) break loop } function print(c) { var e='5', ep=e+' + ' document.write(c[0], ep, c[1], ep, c[2], ep, c[3], e, ' = ', c[4], e, '
') }</lang>

Or this

Translation of: C

that verify: a^5 + b^5 + c^5 + d^5 = x^5

<lang javascript>var N=1000, first=false var npv=[], M=30 // x^5 == x modulo M (=2*3*5) for (var n=0; n<=N; n+=1) npv[n]=Math.pow(n, 5) var mx=1+npv[N]; while(n<=N+M) npv[n++]=mx

loop: for (var a=1; a<=N; a+=1) for (var b=a+1; b<=N; b+=1) for (var c=b+1; c<=N; c+=1) for (var t=npv[a]+npv[b]+npv[c], d=c+1, x=t%M+d; (n=t+npv[d])<mx; d+=1, x+=1) { while (npv[x]<=n) x+=M; x-=M // jump over M=30 values for x>d if (npv[x] != n) continue print( [a, b, c, d, x] ) if (first) break loop; } function print(c) { var e='5', ep=e+' + ' document.write(c[0], ep, c[1], ep, c[2], ep, c[3], e, ' = ', c[4], e, '
') }</lang>

Or this

Translation of: EchoLisp

that verify: a^5 + b^5 + c^5 = x^5 - d^5

<lang javascript>var N=1000, first=false var dxs={}, pow=Math.pow for (var d=1; d<=N; d+=1) for (var dp=pow(d,5), x=d+1; x<=N; x+=1) dxs[pow(x,5)-dp]=[d,x] loop: for (var a=1; a<N; a+=1) for (var ap=pow(a,5), b=a+1; b<N; b+=1) for (var abp=ap+pow(b,5), c=b+1; c<N; c+=1) { var dx = dxs[ abp+pow(c,5) ] if (!dx || c >= dx[0]) continue print( [a, b, c].concat( dx ) ) if (first) break loop } function print(c) { var e='5', ep=e+' + ' document.write(c[0], ep, c[1], ep, c[2], ep, c[3], e, ' = ', c[4], e, '
') }</lang>

Or this

Translation of: Python

that verify: a^5 + b^5 = x^5 - (c^5 + d^5)

<lang javascript>var N=1000, first=false var is={}, ipv=[], ijs={}, ijpv=[], pow=Math.pow for (var i=1; i<=N; i+=1) { var ip=pow(i,5); is[ip]=i; ipv.push(ip) for (var j=i+1; j<=N; j+=1) { var ijp=ip+pow(j,5); ijs[ijp]=[i,j]; ijpv.push(ijp) } } ijpv.sort( function (a,b) {return a - b } ) loop: for (var i=0, ei=ipv.length; i<ei; i+=1) for (var xp=ipv[i], j=0, je=ijpv.length; j<je; j+=1) { var cdp = ijpv[j] if (cdp >= xp) break var cd = ijs[xp-cdp] if (!cd) continue var ab = ijs[cdp] if (ab[1] >= cd[0]) continue print( [].concat(ab, cd, is[xp]) ) if (first) break loop } function print(c) { var e='5', ep=e+' + ' document.write(c[0], ep, c[1], ep, c[2], ep, c[3], e, ' = ', c[4], e, '
') }</lang>

Output:
 275 + 845 + 1105 + 1335 = 1445
 545 + 1685 + 2205 + 2665 = 2885
 815 + 2525 + 3305 + 3995 = 4325
 1085 + 3365 + 4405 + 5325 = 5765
 1355 + 4205 + 5505 + 6655 = 7205
 1625 + 5045 + 6605 + 7985 = 8645

ES6

Procedural

<lang JavaScript>(() => {

   'use strict';
   const eulersSumOfPowers = intMax => {
       const
           pow = Math.pow,
           xs = range(0, intMax)
           .map(x => pow(x, 5)),
           dct = xs.reduce((a, x, i) =>
               (a[x] = i,
                   a
               ), {});
       for (let a = 1; a <= intMax; a++) {
           for (let b = 2; b <= a; b++) {
               for (let c = 3; c <= b; c++) {
                   for (let d = 4; d <= c; d++) {
                       const sumOfPower = dct[xs[a] + xs[b] + xs[c] + xs[d]];
                       if (sumOfPower !== undefined) {
                           return [a, b, c, d, sumOfPower];
                       }
                   }
               }
           }
       }
       return undefined;
   };
   // range :: Int -> Int -> [Int]
   const range = (m, n) =>
       Array.from({
           length: Math.floor(n - m) + 1
       }, (_, i) => m + i);
   // TEST
   const soln = eulersSumOfPowers(250);
   return soln ? soln.slice(0, 4)
       .map(x => `${x}^5`)
       .join(' + ') + ` = ${soln[4]}^5` : 'No solution found.'

})();</lang>

Output:
133^5 + 110^5 + 84^5 + 27^5 = 144^5

Functional

Using dictionaries of powers and sums, and a little faster than the procedural version above:

Translation of: Python
Translation of: Haskell

<lang javascript>(() => {

   'use strict';
   const main = () => {
       const
           iFrom = 1,
           iTo = 249,
           xs = enumFromTo(1, 249),
           p5 = x => Math.pow(x, 5);
       const
           // powerMap :: Dict Int Int
           powerMap = mapFromList(
               zip(map(p5, xs), xs)
           ),
           // sumMap :: Dict Int (Int, Int)
           sumMap = mapFromList(
               bind(
                   xs,
                   x => bind(
                       tail(xs),
                       y => Tuple(
                           p5(x) + p5(y),
                           Tuple(x, y)
                       )
                   )
               )
           );
       // mbExample :: Maybe (Int, Int)
       const mbExample = find(
           tpl => member(fst(tpl) - snd(tpl), sumMap),
           bind(
               map(x => parseInt(x, 10),
                   keys(powerMap)
               ),
               p => bind(
                   takeWhile(
                       x => x < p,
                       map(x => parseInt(x, 10),
                           keys(sumMap)
                       )
                   ),
                   s => [Tuple(p, s)]
               )
           )
       );
       // showExample :: (Int, Int) -> String
       const showExample = tpl => {
           const [p, s] = Array.from(tpl);
           const [a, b] = Array.from(sumMap[p - s]);
           const [c, d] = Array.from(sumMap[s]);
           return 'Counter-example found:\n' + intercalate(
               '^5 + ',
               map(str, [a, b, c, d])
           ) + '^5 = ' + str(powerMap[p]) + '^5';
       };
       return maybe(
           'No counter-example found',
           showExample,
           mbExample
       );
   };
   // GENERIC FUNCTIONS ----------------------------------
   // Just :: a -> Maybe a
   const Just = x => ({
       type: 'Maybe',
       Nothing: false,
       Just: x
   });
   // Nothing :: Maybe a
   const Nothing = () => ({
       type: 'Maybe',
       Nothing: true,
   });
   // Tuple (,) :: a -> b -> (a, b)
   const Tuple = (a, b) => ({
       type: 'Tuple',
       '0': a,
       '1': b,
       length: 2
   });
   // bind (>>=) :: [a] -> (a -> [b]) -> [b]
   const bind = (xs, mf) => [].concat.apply([], xs.map(mf));
   // concat :: a -> [a]
   // concat :: [String] -> String
   const concat = xs =>
       0 < xs.length ? (() => {
           const unit = 'string' !== typeof xs[0] ? (
               []
           ) : ;
           return unit.concat.apply(unit, xs);
       })() : [];


   // enumFromTo :: (Int, Int) -> [Int]
   const enumFromTo = (m, n) =>
       Array.from({
           length: 1 + n - m
       }, (_, i) => m + i);
   // find :: (a -> Bool) -> [a] -> Maybe a
   const find = (p, xs) => {
       for (let i = 0, lng = xs.length; i < lng; i++) {
           if (p(xs[i])) return Just(xs[i]);
       }
       return Nothing();
   };
   // fst :: (a, b) -> a
   const fst = tpl => tpl[0];
   // intercalate :: [a] -> a -> [a]
   // intercalate :: String -> [String] -> String
   const intercalate = (sep, xs) =>
       0 < xs.length && 'string' === typeof sep &&
       'string' === typeof xs[0] ? (
           xs.join(sep)
       ) : concat(intersperse(sep, xs));
   // intersperse(0, [1,2,3]) -> [1, 0, 2, 0, 3]
   // intersperse :: a -> [a] -> [a]
   // intersperse :: Char -> String -> String
   const intersperse = (sep, xs) => {
       const bln = 'string' === typeof xs;
       return xs.length > 1 ? (
           (bln ? concat : x => x)(
               (bln ? (
                   xs.split()
               ) : xs)
               .slice(1)
               .reduce((a, x) => a.concat([sep, x]), [xs[0]])
           )) : xs;
   };
   // keys :: Dict -> [String]
   const keys = Object.keys;
   // Returns Infinity over objects without finite length.
   // This enables zip and zipWith to choose the shorter
   // argument when one is non-finite, like cycle, repeat etc
   // length :: [a] -> Int
   const length = xs =>
       (Array.isArray(xs) || 'string' === typeof xs) ? (
           xs.length
       ) : Infinity;
   // map :: (a -> b) -> [a] -> [b]
   const map = (f, xs) =>
       (Array.isArray(xs) ? (
           xs
       ) : xs.split()).map(f);
   // mapFromList :: [(k, v)] -> Dict
   const mapFromList = kvs =>
       kvs.reduce(
           (a, kv) => {
               const k = kv[0];
               return Object.assign(a, {
                   [
                       (('string' === typeof k) && k) || JSON.stringify(k)
                   ]: kv[1]
               });
           }, {}
       );
   // Default value (v) if m.Nothing, or f(m.Just)
   // maybe :: b -> (a -> b) -> Maybe a -> b
   const maybe = (v, f, m) =>
       m.Nothing ? v : f(m.Just);
   // member :: Key -> Dict -> Bool
   const member = (k, dct) => k in dct;
   // snd :: (a, b) -> b
   const snd = tpl => tpl[1];
   // str :: a -> String
   const str = x => x.toString();
   // tail :: [a] -> [a]
   const tail = xs => 0 < xs.length ? xs.slice(1) : [];
   // take :: Int -> [a] -> [a]
   // take :: Int -> String -> String
   const take = (n, xs) =>
       'GeneratorFunction' !== xs.constructor.constructor.name ? (
           xs.slice(0, n)
       ) : [].concat.apply([], Array.from({
           length: n
       }, () => {
           const x = xs.next();
           return x.done ? [] : [x.value];
       }));
   // takeWhile :: (a -> Bool) -> [a] -> [a]
   // takeWhile :: (Char -> Bool) -> String -> String
   const takeWhile = (p, xs) =>
       xs.constructor.constructor.name !==
       'GeneratorFunction' ? (() => {
           const lng = xs.length;
           return 0 < lng ? xs.slice(
               0,
               until(
                   i => lng === i || !p(xs[i]),
                   i => 1 + i,
                   0
               )
           ) : [];
       })() : takeWhileGen(p, xs);


   // until :: (a -> Bool) -> (a -> a) -> a -> a
   const until = (p, f, x) => {
       let v = x;
       while (!p(v)) v = f(v);
       return v;
   };
   // Use of `take` and `length` here allows for zipping with non-finite
   // lists - i.e. generators like cycle, repeat, iterate.
   // zip :: [a] -> [b] -> [(a, b)]
   const zip = (xs, ys) => {
       const lng = Math.min(length(xs), length(ys));
       return Infinity !== lng ? (() => {
           const bs = take(lng, ys);
           return take(lng, xs).map((x, i) => Tuple(x, bs[i]));
       })() : zipGen(xs, ys);
   };
   // MAIN ---
   return main();

})();</lang>

Output:
Counter-example found:
133^5 + 110^5 + 84^5 + 27^5 = 144^5

jq

Works with: jq version 1.4

This version finds all non-decreasing solutions within the specified bounds, using a brute-force but not entirely blind approach. <lang jq># Search for y in 1 .. maxn (inclusive) for a solution to SIGMA (xi ^ 5) = y^5

  1. and for each solution with x0<=x1<=...<x3, print [x0, x1, x3, x3, y]

def sum_of_powers_conjecture(maxn):

 def p5: . as $in | (.*.) | ((.*.) * $in);
 def fifth: log / 5 | exp;
 # return the fifth root if . is a power of 5
 def integral_fifth_root: fifth | if . == floor then . else false end;
 (maxn | p5) as $uber
 | range(1; maxn) as $x0
 | ($x0 | p5) as $s0
 | if $s0 < $uber then range($x0; ($uber - $s0 | fifth) + 1) as $x1
   | ($s0 + ($x1 | p5)) as $s1
   | if $s1 < $uber then range($x1; ($uber - $s1 | fifth) + 1) as $x2
     | ($s1 + ($x2 | p5)) as $s2
       | if $s2 < $uber then range($x2; ($uber - $s2 | fifth) + 1) as $x3
         | ($s2 + ($x3 | p5)) as $sumx

| ($sumx | integral_fifth_root) | if . then [$x0,$x1,$x2,$x3,.] else empty end else empty end

     else empty
     end
   else empty
   end ;</lang>

The task: <lang jq>sum_of_powers_conjecture(249)</lang>

Output:

<lang sh>$ jq -c -n -f Euler_sum_of_powers_conjecture_fifth_root.jq [27,84,110,133,144]</lang>

Julia

<lang Julia> const lim = 250 const pwr = 5 const p = [i^pwr for i in 1:lim]

x = zeros(Int, pwr-1) y = 0

for a in combinations(1:lim, pwr-1)

   b = searchsorted(p, sum(p[a]))
   0 < length(b) || continue
   x = a
   y = b[1]
   break

end

if y == 0

   println("No solution found for power = ", pwr, " and limit = ", lim, ".")

else

   s = [@sprintf("%d^%d", i, pwr) for i in x]
   s = join(s, " + ")
   println("A solution is ", s, " = ", @sprintf("%d^%d", y, pwr), ".")

end </lang>

Output:
A solution is 27^5 + 84^5 + 110^5 + 133^5 = 144^5.

Kotlin

<lang scala>fun main(args: Array<String>) {

   val p5 = LongArray(250){ it.toLong() * it * it * it * it }
   var sum: Long
   var y: Int
   var found = false
   loop@ for (x0 in 0 .. 249)
       for (x1 in 0 .. x0 - 1)
           for (x2 in 0 .. x1 - 1)
               for (x3 in 0 .. x2 - 1) {
                   sum = p5[x0] + p5[x1] + p5[x2] + p5[x3]
                   y = p5.binarySearch(sum)
                   if (y >= 0) {
                       println("$x0^5 + $x1^5 + $x2^5 + $x3^5 = $y^5")
                       found = true
                       break@loop
                   }
               }
   if (!found) println("No solution was found")

}</lang>

Output:
133^5 + 110^5 + 84^5 + 27^5 = 144^5

Lua

Brute force but still takes under two seconds with LuaJIT. <lang Lua>-- Fast table search (only works if table values are in order) function binarySearch (t, n)

   local start, stop, mid = 1, #t
   while start < stop do
       mid = math.floor((start + stop) / 2)
       if n == t[mid] then
           return mid
       elseif n < t[mid] then
           stop = mid - 1
       else
           start = mid + 1
       end
   end
   return nil

end

-- Test Euler's sum of powers conjecture function euler (limit)

   local pow5, sum = {}
   for i = 1, limit do pow5[i] = i^5 end
   for x0 = 1, limit do
       for x1 = 1, x0 do
           for x2 = 1, x1 do
               for x3 = 1, x2 do
                   sum = pow5[x0] + pow5[x1] + pow5[x2] + pow5[x3]
                   if binarySearch(pow5, sum) then
                       print(x0 .. "^5 + " .. x1 .. "^5 + " .. x2 .. "^5 + " .. x3 .. "^5 = " .. sum^(1/5) .. "^5")
                       return true
                   end
               end
           end
       end
   end
   return false

end

-- Main procedure if euler(249) then

   print("Time taken: " .. os.clock() .. " seconds")

else

   print("Looks like he was right after all...")

end</lang>

Output:
133^5 + 110^5 + 84^5 + 27^5 = 144^5
Time taken: 1.247 seconds

Mathematica/Wolfram Language

<lang Mathematica>Sort[FindInstance[

  x0^5 + x1^5 + x2^5 + x3^5 == y^5 && x0 > 0 && x1 > 0 && x2 > 0 && 
   x3 > 0, {x0, x1, x2, x3, y}, Integers]1, All, -1]</lang>
Output:
{27,84,110,133,144}

Microsoft Small Basic

<lang smallbasic>' Euler sum of powers conjecture - 03/07/2015

 'find: x1^5+x2^5+x3^5+x4^5=x5^5
 '-> x1=27 x2=84 x3=110 x4=133 x5=144
 maxn=250
 For i=1 to maxn

p5[i]=Math.Power(i,5)

 EndFor
 For x1=1 to maxn-4
   For x2=x1+1 to maxn-3
     'TextWindow.WriteLine("x1="+x1+", x2="+x2)
     For x3=x2+1 to maxn-2
       'TextWindow.WriteLine("x1="+x1+", x2="+x2+", x3="+x3)
       For x4=x3+1 to maxn-1
         'TextWindow.WriteLine("x1="+x1+", x2="+x2+", x3="+x3+", x4="+x4)
         x5=x4+1
         valx=p5[x5]
         sumx=p5[x1]+p5[x2]+p5[x3]+p5[x4]
         While x5<=maxn and valx<=sumx
           If valx=sumx Then
             TextWindow.WriteLine("Found!")
             TextWindow.WriteLine("-> "+x1+"^5+"+x2+"^5+"+x3+"^5+"+x4+"^5="+x5+"^5")
             TextWindow.WriteLine("x5^5="+sumx)
             Goto EndPgrm
           EndIf
           x5=x5+1
           valx=p5[x5]
         EndWhile 'x5
       EndFor 'x4
     EndFor 'x3
   EndFor 'x2
 EndFor 'x1
EndPgrm: </lang>
Output:
Found!
-> 27^5+84^5+110^5+133^5=144^5
x5^5=61917364224 

Modula-2

This example does not show the output mentioned in the task description on this page (or a page linked to from here). Please ensure that it meets all task requirements and remove this message.
Note that phrases in task descriptions such as "print and display" and "print and show" for example, indicate that (reasonable length) output be a part of a language's solution.


<lang modula2>MODULE EulerConjecture; FROM FormatString IMPORT FormatString; FROM Terminal IMPORT WriteString,WriteLn,ReadChar;

PROCEDURE Pow5(a : LONGINT) : LONGINT; BEGIN

   RETURN a * a * a * a * a

END Pow5;

VAR

   buf : ARRAY[0..63] OF CHAR;
   a,b,c,d,e,sum,curr : LONGINT;

BEGIN

   FOR a:=0 TO 250 DO
       FOR b:=a TO 250 DO
           IF b=a THEN CONTINUE END;
           FOR c:=b TO 250 DO
               IF (c=a) OR (c=b) THEN CONTINUE END;
               FOR d:=c TO 250 DO
                   IF (d=a) OR (d=b) OR (d=c) THEN CONTINUE END;
                   sum := Pow5(a) + Pow5(b) + Pow5(c) + Pow5(d);
                   FOR e:=d TO 250 DO
                       IF (e=a) OR (e=b) OR (e=c) OR (e=d) THEN CONTINUE END;
                       curr := Pow5(e);
                       IF (sum#0) AND (sum=curr) THEN
                           FormatString("%l^5 + %l^5 + %l^5 + %l^5 = %l^5\n", buf, a, b, c, d, e);
                           WriteString(buf)
                       ELSIF curr > sum THEN
                           BREAK
                       END
                   END;
               END;
           END;
       END;
   END;
   WriteString("Done");
   WriteLn;
   ReadChar

END EulerConjecture.</lang>

Nim

Translation of: PureBasic

<lang Nim>

  1. Brute force approach

import times

  1. assumes an array of non-decreasing positive integers

proc binarySearch(a : openArray[int], target : int) : int =

 var left, right, mid : int
 left = 0
 right = len(a) - 1
 while true :
   if left > right : return 0  # no match found
   mid = (left + right) div 2
   if a[mid] < target :
     left = mid + 1
   elif a[mid] > target :
     right = mid - 1
   else :
     return mid  # match found

var

 p5 : array[250, int]
 sum = 0
 y, t1 : int

let t0 = cpuTime()

for i in 1 .. 249 :

 p5[i] = i * i * i * i * i

for x0 in 1 .. 249 :

 for x1 in 1 .. x0 - 1 :
   for x2 in 1 .. x1 - 1 :
     for x3 in 1 .. x2 - 1 :
       sum = p5[x0] + p5[x1] + p5[x2] + p5[x3]
       y = binarySearch(p5, sum)
       if y > 0 :
         t1 = int((cputime() - t0) * 1000.0) 
         echo "Time : ", t1, " milliseconds"
         echo  $x0 & "^5 + " & $x1 & "^5 + " & $x2 & "^5 + " & $x3 & "^5 = " & $y & "^5"
         quit()

if y == 0 :

 echo "No solution was found"  

</lang>

Output:
Time : 156 milliseconds
133^5 + 110^5 + 84^5 + 27^5 = 144^5

Oforth

<lang Oforth>: eulerSum | i j k l ip jp kp |

  250 loop: i [
     i 5 pow ->ip
     i 1 + 250 for: j [
        j 5 pow ip + ->jp
        j 1 + 250 for: k [
           k 5 pow jp + ->kp
           k 1 + 250 for: l [
              kp l 5 pow + 0.2 powf dup asInteger == ifTrue: [ [ i, j, k, l ] println ]
             ]
           ]
        ]
     ] ;</lang>
Output:
>eulerSum
[27, 84, 110, 133]

PARI/GP

Naive script: <lang parigp>forvec(v=vector(4,i,[0,250]), if(ispower(v[1]^5+v[2]^5+v[3]^5+v[4]^5,5,&n), print(n" "v)), 2)</lang>

Output:
144 [27, 84, 110, 133]

Naive + caching (setbinop): <lang parigp>{ v2=setbinop((x,y)->[min(x,y),max(x,y),x^5+y^5],[0..250]); \\ sums of two fifth powers for(i=2,#v2,

 for(j=1,i-1,
   if(v2[i][2]<v2[j][2] && ispower(v2[i][3]+v2[j][3],5,&n) && #(v=Set([v2[i][1],v2[i][2],v2[j][1],v2[j][2]]))==4,
     print(n" "v)
   )
 )

) }</lang>

Output:
144 [27, 84, 110, 133]

Pascal

Works with: Free Pascal

slightly improved.Reducing calculation time by temporary sum and early break. <lang pascal>program Pot5Test; {$IFDEF FPC} {$MODE DELPHI}{$ELSE]{$APPTYPE CONSOLE}{$ENDIF} type

 tTest = double;//UInt64;{ On linux 32Bit double is faster than  Uint64 } 

var

 Pot5 : array[0..255] of tTest;
 res,tmpSum : tTest;
 x0,x1,x2,x3, y : NativeUint;//= Uint32 or 64 depending on OS xx-Bit
 i : byte;

BEGIN

 For i := 1 to 255 do
   Pot5[i] := (i*i*i*i)*Uint64(i);
 For x0 := 1 to 250-3 do
   For x1 := x0+1 to 250-2 do
     For x2 := x1+1 to 250-1 do
     Begin
       //set y here only, because pot5 is strong monoton growing,
       //therefor the sum is strong monoton growing too.
       y := x2+2;// aka x3+1
       tmpSum := Pot5[x0]+Pot5[x1]+Pot5[x2];
       For x3 := x2+1 to 250 do
       Begin
         res := tmpSum+Pot5[x3];
         while (y< 250) AND (res > Pot5[y]) do
           inc(y);
         IF y > 250 then BREAK;
         if res = Pot5[y] then
           writeln(x0,'^5+',x1,'^5+',x2,'^5+',x3,'^5 = ',y,'^5');
       end;
     end;

END. </lang>

output
27^5+84^5+110^5+133^5 = 144^5
real  0m1.091s {Uint64; Linux 32}real  0m0.761s {double; Linux 32}real  0m0.511s{Uint64; Linux 64}

Perl

Brute Force: <lang perl>use constant MAX => 250; my @p5 = (0,map { $_**5 } 1 .. MAX-1); my $s = 0; my %p5 = map { $_ => $s++ } @p5; for my $x0 (1..MAX-1) {

 for my $x1 (1..$x0-1) {
   for my $x2 (1..$x1-1) {
     for my $x3 (1..$x2-1) {
       my $sum = $p5[$x0] + $p5[$x1] + $p5[$x2] + $p5[$x3];
       die "$x3 $x2 $x1 $x0 $p5{$sum}\n" if exists $p5{$sum};
     }
   }
 }

}</lang>

Output:
27 84 110 133 144

Adding some optimizations makes it 5x faster with similar output, but obfuscates things.

Translation of: C++

<lang perl>use constant MAX => 250;

my @p5 = (0,map { $_**5 } 1 .. MAX-1); my $rs = 5; for my $x0 (1..MAX-1) {

 for my $x1 (1..$x0-1) {
   for my $x2 (1..$x1-1) {
     my $s2 = $p5[$x0] + $p5[$x1] + $p5[$x2];
     $rs-- while $rs > 0 && $p5[$rs] > $s2;
     for (my $x3 = 1;  $x3 < $x2;  $x3++) {
       my $e30 = ($x0 + $x1 + $x2 + $x3 - $rs) % 30;
       $x3 += (30-$e30) if $e30;
       last if $x3 >= $x2;
       my $sum = $s2 + $p5[$x3];
       $rs++ while $rs < MAX-1 && $p5[$rs] < $sum;
       die "$x3 $x2 $x1 $x0 $rs\n" if $p5[$rs] == $sum;
     }
   }
 }

}</lang>

Phix

Translation of: Python

Around four seconds, not spectacularly fast. My naive brute force was over a minute. This is not where Phix shines.
Quitting when the first is found drops the main loop to 0.7s, so 1.1s in all, vs 4.3s for the full search.
Without the return 0, you just get six permutes (of ordered pairs) for 144. <lang Phix>constant MAX = 250

constant p5 = new_dict(),

        sum2 = new_dict()

atom t0 = time() for i=1 to MAX do

   atom i5 = power(i,5)
   setd(i5,i,p5)
   for j=1 to i-1 do
       atom j5 = power(j,5)
       setd(j5+i5,{j,i},sum2)
   end for

end for

?time()-t0

function forsum2(object s, object data, object p)

   if p<=s then return 0 end if
   integer k = getd_index(p-s,sum2)
   if k!=NULL then
       ?getd(p,p5)&data&getd_by_index(k,sum2)
       return 0 -- (show one solution per p)
   end if
   return 1

end function

function forp5(object key, object /*data*/, object /*user_data*/)

   traverse_dict(routine_id("forsum2"),key,sum2)
   return 1

end function

traverse_dict(routine_id("forp5"),0,p5)

?time()-t0</lang>

Output:
0.421
{144,27,84,110,133}
4.312

PHP

Translation of: Python

<lang php><?php

function eulers_sum_of_powers () { $max_n = 250; $pow_5 = array(); $pow_5_to_n = array(); for ($p = 1; $p <= $max_n; $p ++) { $pow5 = pow($p, 5); $pow_5 [$p] = $pow5; $pow_5_to_n[$pow5] = $p; } foreach ($pow_5 as $n_0 => $p_0) { foreach ($pow_5 as $n_1 => $p_1) { if ($n_0 < $n_1) continue; foreach ($pow_5 as $n_2 => $p_2) { if ($n_1 < $n_2) continue; foreach ($pow_5 as $n_3 => $p_3) { if ($n_2 < $n_3) continue; $pow_5_sum = $p_0 + $p_1 + $p_2 + $p_3; if (isset($pow_5_to_n[$pow_5_sum])) { return array($n_0, $n_1, $n_2, $n_3, $pow_5_to_n[$pow_5_sum]); } } } } } }

list($n_0, $n_1, $n_2, $n_3, $y) = eulers_sum_of_powers();

echo "$n_0^5 + $n_1^5 + $n_2^5 + $n_3^5 = $y^5";

?></lang>

Output:
133^5 + 110^5 + 84^5 + 27^5 = 144^5

PicoLisp

<lang PicoLisp>(off P) (off S)

(for I 250

  (idx
     'P
     (list (setq @@ (** I 5)) I)
     T )
  (for (J I (>= 250 J) (inc J))
     (idx
        'S
        (list (+ @@ (** J 5)) (list I J))
        T ) ) )

(println

  (catch 'found
     (for A (idx 'P)
        (for B (idx 'S)
           (T (<= (car A) (car B)))
           (and
              (lup S (- (car A) (car B)))
              (throw 'found
                 (conc
                    (cadr (lup S (car B)))
                    (cadr (lup S (- (car A) (car B))))
                    (cdr (lup P (car A))) ) ) ) ) ) ) )</lang>
Output:
(27 84 110 133 144)

PowerShell

Brute Force Search
This is a slow algorithm, so attempts have been made to speed it up, including pre-computing the powers, using an ArrayList for them, and using [int] to cast the 5th root rather than use truncate. <lang powershell># EULER.PS1 $max = 250

$powers = New-Object System.Collections.ArrayList for ($i = 0; $i -lt $max; $i++) {

 $tmp = $powers.Add([Math]::Pow($i, 5)) 

}

for ($x0 = 1; $x0 -lt $max; $x0++) {

 for ($x1 = 1; $x1 -lt $x0; $x1++) {
   for ($x2 = 1; $x2 -lt $x1; $x2++) {
     for ($x3 = 1; $x3 -lt $x2; $x3++) {
       $sum = $powers[$x0] + $powers[$x1] + $powers[$x2] + $powers[$x3]
       $S1 = [int][Math]::pow($sum,0.2)
       if ($sum -eq $powers[$S1]) {
         Write-host "$x0^5 + $x1^5 + $x2^5 + $x3^5 = $S1^5"
         return
       }
     }
   }
 }

}</lang>

Output:
PS > measure-command { .\euler.ps1 | out-default }
133^5 + 110^5 + 84^5 + 27^5 = 144^5


Days              : 0
Hours             : 0
Minutes           : 0
Seconds           : 31
Milliseconds      : 608
Ticks             : 316082251
TotalDays         : 0.000365835938657407

Prolog

<lang prolog> makepowers :-

   retractall(pow5(_, _)),
   between(1, 249, X),
   Y is X * X * X * X * X,
   assert(pow5(X, Y)),
   fail.

makepowers.

within(A, Bx, N) :-  % like between but with an exclusive upper bound

  succ(B, Bx),
  between(A, B, N).

solution(X0, X1, X2, X3, Y) :-

   makepowers,
   within(4, 250, X0), pow5(X0, X0_5th),
   within(3, X0,  X1), pow5(X1, X1_5th),
   within(2, X1,  X2), pow5(X2, X2_5th),
   within(1, X2,  X3), pow5(X3, X3_5th),
   Y_5th is X0_5th + X1_5th + X2_5th + X3_5th,
   pow5(Y, Y_5th).

</lang>

Output:
?- solution(X0,X1,X2,X3,Y).
X0 = 133,
X1 = 110,
X2 = 84,
X3 = 27,
Y = 144 .

PureBasic

<lang PureBasic> EnableExplicit

assumes an array of non-decreasing positive integers

Procedure.q BinarySearch(Array a.q(1), Target.q)

 Protected l = 0, r = ArraySize(a()), m
 Repeat
   If l > r : ProcedureReturn 0 : EndIf; no match found
   m = (l + r) / 2
   If a(m) < target
     l = m + 1
   ElseIf a(m) > target
     r = m - 1
   Else
     ProcedureReturn m ; match found
   EndIf  
 ForEver

EndProcedure

Define i, x0, x1, x2, x3, y Define.q sum Define Dim p5.q(249)

For i = 1 To 249

 p5(i) = i * i * i * i * i

Next

If OpenConsole()

 For x0 = 1 To 249
   For x1 = 1 To x0 - 1
     For x2 = 1 To x1 - 1 
       For x3 = 1 To x2 - 1 
         sum = p5(x0) + p5(x1) + p5(x2) + p5(x3)
         y = BinarySearch(p5(), sum)
         If y > 0          
           PrintN(Str(x0) + "^5 + " + Str(x1) + "^5 + " + Str(x2) + "^5 + " + Str(x3) + "^5 = " + Str(y) + "^5")
           Goto finish
         EndIf
       Next x3
     Next x2
   Next x1
 Next x0
 
 PrintN("No solution was found")
 finish:
 PrintN("")
 PrintN("Press any key to close the console")
 Repeat: Delay(10) : Until Inkey() <> ""
 CloseConsole()

EndIf </lang>

Output:
133^5 + 110^5 + 84^5 + 27^5 = 144^5

Python

Procedural

<lang python>def eulers_sum_of_powers():

   max_n = 250
   pow_5 = [n**5 for n in range(max_n)]
   pow5_to_n = {n**5: n for n in range(max_n)}
   for x0 in range(1, max_n):
       for x1 in range(1, x0):
           for x2 in range(1, x1):
               for x3 in range(1, x2):
                   pow_5_sum = sum(pow_5[i] for i in (x0, x1, x2, x3))
                   if pow_5_sum in pow5_to_n:
                       y = pow5_to_n[pow_5_sum]
                       return (x0, x1, x2, x3, y)

print("%i**5 + %i**5 + %i**5 + %i**5 == %i**5" % eulers_sum_of_powers())</lang>

Output:
133**5 + 110**5 + 84**5 + 27**5 == 144**5

The above can be written as:

Works with: Python version 2.6+

<lang python>from itertools import combinations

def eulers_sum_of_powers():

   max_n = 250
   pow_5 = [n**5 for n in range(max_n)]
   pow5_to_n = {n**5: n for n in range(max_n)}
   for x0, x1, x2, x3 in combinations(range(1, max_n), 4):
       pow_5_sum = sum(pow_5[i] for i in (x0, x1, x2, x3))
       if pow_5_sum in pow5_to_n:
           y = pow5_to_n[pow_5_sum]
           return (x0, x1, x2, x3, y)

print("%i**5 + %i**5 + %i**5 + %i**5 == %i**5" % eulers_sum_of_powers())</lang>

Output:
27**5 + 84**5 + 110**5 + 133**5 == 144**5

It's much faster to cache and look up sums of two fifth powers, due to the small allowed range: <lang python>MAX = 250 p5, sum2 = {}, {}

for i in range(1, MAX): p5[i**5] = i for j in range(i, MAX): sum2[i**5 + j**5] = (i, j)

sk = sorted(sum2.keys()) for p in sorted(p5.keys()): for s in sk: if p <= s: break if p - s in sum2: print(p5[p], sum2[s] + sum2[p-s]) exit()</lang>

Output:
144 (27, 84, 110, 133)

Composition of pure functions

Works with: Python version 3.7

<lang python>Euler's sum of powers conjecture

from itertools import (chain, takewhile)


  1. main :: IO ()

def main():

   Search for counter-example
   xs = enumFromTo(1)(249)
   powerMap = {x**5: x for x in xs}
   sumMap = {
       x**5 + y**5: (x, y)
       for x in xs[1:]
       for y in xs if x > y
   }
   # isExample :: (Int, Int) -> Bool
   def isExample(ps):
       p, s = ps
       return p - s in sumMap
   # display :: (Int, Int) -> String
   def display(ps):
       p, s = ps
       a, b = sumMap[p - s]
       c, d = sumMap[s]
       return '^5 + '.join([str(n) for n in [a, b, c, d]]) + (
           '^5 = ' + str(powerMap[p]) + '^5'
       )
   print(__doc__ + ' – counter-example:\n')
   print(
       maybe('No counter-example found.')(display)(
           find(isExample)(
               bind(powerMap.keys())(
                   lambda p: bind(
                       takewhile(
                           lambda x: p > x,
                           sumMap.keys()
                       )
                   )(lambda s: [(p, s)])
               )
           )
       )
   )


  1. ----------------------- GENERIC ------------------------
  1. Just :: a -> Maybe a

def Just(x):

   Constructor for an inhabited Maybe (option type) value.
      Wrapper containing the result of a computation.
   
   return {'type': 'Maybe', 'Nothing': False, 'Just': x}


  1. Nothing :: () -> Maybe a

def Nothing():

   Constructor for an empty Maybe (option type) value.
      Empty wrapper returned where a computation is not possible.
   
   return {'type': 'Maybe', 'Nothing': True}


  1. bind (>>=) :: [a] -> (a -> [b]) -> [b]

def bind(xs):

   List monad injection operator.
      Two computations sequentially composed,
      with any value produced by the first
      passed as an argument to the second.
   
   def go(f):
       return chain.from_iterable(map(f, xs))
   return go


  1. enumFromTo :: (Int, Int) -> [Int]

def enumFromTo(m):

   Integer enumeration from m to n.
   return lambda n: range(m, 1 + n)


  1. find :: (a -> Bool) -> [a] -> Maybe a

def find(p):

   Just the first element in the list that matches p,
      or Nothing if no elements match.
   
   def go(xs):
       try:
           return Just(next(x for x in xs if p(x)))
       except StopIteration:
           return Nothing()
   return go


  1. maybe :: b -> (a -> b) -> Maybe a -> b

def maybe(v):

   Either the default value v, if m is Nothing,
      or the application of f to x,
      where m is Just(x).
   
   return lambda f: lambda m: v if (
       None is m or m.get('Nothing')
   ) else f(m.get('Just'))


  1. MAIN ---

if __name__ == '__main__':

   main()</lang>
Output:
Euler's sum of powers conjecture – counter-example:

133^5 + 110^5 + 84^5 + 27^5 = 144^5

QL SuperBASIC

This program enhances a modular brute-force search posted on fidonet in the 1980s via number theoretical enhancements as used by the program listed under ZX Spectrum Basic--but without the early exit in the control framework so as to be backward-compatible with the lack of floating point in Sinclair ZX80 BASIC (whereby the latter is truly 'zeroeth' generation). So that it will run on a ZX80 (with a 16K RAM pack & some MODification) & complete the task sooner than than that for an unexpanded Spectrum, it relies entirely on integer functions, their upper limit being 2^15- 1 in ZX80 BASIC as well. Thus, the "slide rule" calculation of each percentage on the Spectrum is replaced by that of least significant digits across "abaci" of relatively prime bases Pi. Given that each Pi is to be <= 2^7 for said limit's sake, it will take at least six prime numbers or powers thereof to serve as bases of such a mixed-base number system, since it is necessary that ΠPi > 249^5 for unambiguous representation. The difference between successive bases is successive powers of 2, so that one can more easily convert (esp. via assembly, as just shifts & subtractions will be needed) between base 2^7 & mixed-base representations as character strings. In disproving Euler's conjecture, the program demonstrates that using 60 bits of integer precision in 1966 was 2-fold overkill, or even more so in terms of overhead cost vis-a-vis contemporaneous computers less sophisticated than a CDC 6600.

<lang qbasic> 1 CLS 2 DIM i%(255,6) : DIM n%(6) : DIM a%(6) 3 DIM v%(255,6) : DIM u%(6) : DIM b%(6) : DIM d%(29) 4 RESTORE 137 5 LET t%=48 6 FOR m=0 TO 6: READ n%(m) 8 FOR j=1 TO 255 9 i%(j,0)=j MOD 30 10 FOR m=1 TO 6 11 LET i%(j,m)=j MOD n%(m) 12 LET v%(j,m)=(i%(j,m) * i%(j,m))MOD n%(m) 14 LET v%(j,m)=(v%(j,m) * v%(j,m))MOD n%(m) 15 LET v%(j,m)=(v%(j,m) * i%(j,m))MOD n%(m) 17 END FOR m : END FOR j 19 PRINT "Abaci ready" 21 FOR j=10 TO 29: d%(j)=210+ j 24 FOR j=0 TO 9: d%(j)=240+ j 30 FOR w=6 TO 246 STEP 3 33 LET o=w 42 FOR x=4 TO 248 STEP 2 44 IF o<x THEN o=x 46 FOR m=1 TO 6: a%(m)=i%((v%(w,m)+v%(x,m)),m) 50 FOR y=10 TO 245 STEP 5 54 IF o<y THEN o=y 56 FOR m=1 TO 6: b%(m)=i%((a%(m)+v%(y,m)),m) 57 FOR z=14 TO 245 STEP 7 59 IF o<z THEN o=z 60 FOR m=1 TO 6: u%(m)=i%((b%(m)+v%(z,m)),m) 65 LET s$="" : FOR m=1 TO 6: s$=s$&CHR$(u%(m)+t%) 70 LET o=o+1 : j=d%(i%((i%(w,0)+i%(x,0)+i%(y,0)+i%(z,0)),0)) 80 FOR k=j TO o STEP -30 85 LET e$="" : FOR m=1 TO 6: e$=e$&CHR$(v%(k,m)+t%) 90 IF s$=e$ THEN PRINT w,x,y,z,k,s$,e$: STOP 95 END FOR k : END FOR z : END FOR y : END FOR x : END FOR w 137 DATA 30,97,113,121,125,127,128 </lang>

Output:

Abaci ready

 27      84     110     133     144   bT`íα0   bT`íα0

Racket

Translation of: C++

<lang scheme>#lang racket (define MAX 250) (define pow5 (make-vector MAX)) (for ([i (in-range 1 MAX)])

 (vector-set! pow5 i (expt i 5)))  

(define pow5s (list->set (vector->list pow5))) (let/ec break

 (for* ([x0 (in-range 1 MAX)]
        [x1 (in-range 1 x0)]
        [x2 (in-range 1 x1)]
        [x3 (in-range 1 x2)])
   (define sum (+ (vector-ref pow5 x0)
                  (vector-ref pow5 x1)
                  (vector-ref pow5 x2)
                  (vector-ref pow5 x3)))
   (when (set-member? pow5s sum)
     (displayln (list x0 x1 x2 x3 (inexact->exact (round (expt sum 1/5)))))
     (break))))</lang>
Output:
(133 110 84 27 144)

Raku

(formerly Perl 6)

Works with: rakudo version 2018.10
Translation of: Python

<lang perl6>constant MAX = 250;

my %po5{Int}; my %sum2{Int};

(1..MAX).map: -> $i {

   %po5{$i**5} = $i;
   for 1..MAX -> $j {
       %sum2{$i**5 + $j**5} = ($i, $j);
   }

}

my @sk = %sum2.keys.sort; %po5.keys.sort.race.map: -> $p {

   for @sk -> $s {
       next if $p <= $s;
       if %sum2{$p - $s} {
           say ((sort |%sum2{$s}[],|%sum2{$p-$s}[]) X~ '⁵').join(' + ') ~ " =  %po5{$p}" ~ "⁵";
           exit;
       }
   }

}</lang>

Output:
27⁵ + 84⁵ + 110⁵ + 133⁵ =  144⁵



REXX

fast computation

Programming note:   the 3rd argument can be specified which causes an attempt to find   N   solutions.  
The starting and ending (low and high) values can also be specified   (to limit or expand the search range).
If any of the arguments are omitted, they default to the Rosetta Code task's specifications.

The method used is:

  •   precompute all powers of five   (within the confines of allowed integers)
  •   precompute all (positive) differences between two applicable 5th powers
  •   see if any of the sums of any three   5th   powers are equal to any of those (above) differences
  •           {thanks to the real nifty idea   (↑↑↑)   from user ID   G. Brougnard}
  •   see if the sum of any four   5th   powers is equal to   any   5th power
  •           (this is needed as the fourth number   d   isn't known yet).
  •   {all of the above utilizes REXX's   sparse stemmed array hashing   which eliminates the need for sorting.}

By implementing (user ID)   G. Brougnard's   idea of   differences of two 5th powers,  
the time used for computation was reduced by over a factor of   seventy.


In essence, the new formula being solved is:       a5   +   b5   +   c5     ==     x5   ─   d5

which lends itself to algorithm optimization by (only) having to:

  •   [the right side of the above equation]   pre-compute all possible differences between any two applicable
            integer powers of five   (there are   30,135   unique differences)
  •   [the   left side of the above equation]   sum any applicable three integer powers of five  
  •   [the   ==   part of the above equation]   see if any of the above left─side sums match any of the   ≈30k   right─side differences

<lang rexx>/*REXX program finds unique positive integers for ────────── aⁿ+bⁿ+cⁿ+dⁿ==xⁿ where n=5 */ parse arg L H N . /*get optional LOW, HIGH, #solutions.*/ if L== | L=="," then L= 0 + 1 /*Not specified? Then use the default.*/ if H== | H=="," then H= 250 - 1 /* " " " " " " */ if N== | N=="," then N= 1 /* " " " " " " */ w= length(H) /*W: used for display aligned numbers.*/ say center(' 'subword(sourceLine(1), 9, 3)" ", 70 +5*w, '─') /*show title from 1st line*/ numeric digits 1000 /*be able to handle the next expression*/ numeric digits max(9, length(3*H**5) ) /* " " " " 3* [H to 5th power]*/ bH= H - 2; cH= H - 1 /*calculate the upper DO loop limits.*/ !.= 0 /* [↓] define values of 5th powers. */

      do pow=1  for H;    @.pow= pow**5;     _= @.pow;        !._= 1;          $._= pow
      end   /*pow*/

?.= !.

      do    j=4   for H-3                       /*use the range of:   four  to   cH.   */
         do k=j+1  to H;  _= @.k - @.j;  ?._= 1 /*compute the   xⁿ - dⁿ    differences.*/
         end   /*k*/                            /* [↑]  diff. is always positive as k>j*/
      end      /*j*/                            /*define [↑]    5th  power differences.*/
  1. = 0 /*#: is the number of solutions found.*/ /* [↓] for N=∞ solutions.*/
   do       a=L    to H-3                       /*traipse through possible  A  values. */   /*◄──done       246 times.*/
     do     b=a+1  to bH;      s1= @.a + @.b    /*   "       "        "     B    "     */   /*◄──done    30,381 times.*/
       do   c=b+1  to cH;      s2= s1  + @.c    /*   "       "        "     C    "     */   /*◄──done 2,511,496 times.*/
       if ?.s2  then do d=c+1  to H;  s= s2+@.d /*find the appropriate solution.       */
                     if !.s  then call show     /*Is it a solution?   Then display it. */
                     end   /*d*/                /* [↑]    !.S  is a boolean.           */
       end                 /*c*/
     end                   /*b*/
   end                     /*a*/

if #==0 then say "Didn't find a solution."; exit 0 /*──────────────────────────────────────────────────────────────────────────────────────*/ show: _= left(, 5); #= # + 1 /*_: used as a spacer; bump # counter.*/

     say _  'solution'   right(#, length(N))":"  _  'a='right(a, w)   _  "b="right(b, w),
         _  'c='right(c, w)     _    "d="right(d, w)     _    'x='right($.s, w+1)
     if #<N  then return                        /*return, keep searching for more sols.*/
     exit #                                     /*stick a fork in it,  we're all done. */

</lang>

output   when using the default input:
──────────────────────────── aⁿ+bⁿ+cⁿ+dⁿ==xⁿ  where ⁿ=5 ─────────────────────────────
      solution 1:       a= 27       b= 84       c=110       d=133       x= 144
output   when using the input of:     1   4000   999
─────────────────────────────── aⁿ+bⁿ+cⁿ+dⁿ==xⁿ  where ⁿ=5 ───────────────────────────────
      solution   1:       a=  27       b=  84       c= 110       d= 133       x=  144
      solution   2:       a=  54       b= 168       c= 220       d= 266       x=  288
      solution   3:       a=  81       b= 252       c= 330       d= 399       x=  432
      solution   4:       a= 108       b= 336       c= 440       d= 532       x=  576
      solution   5:       a= 135       b= 420       c= 550       d= 665       x=  720
      solution   6:       a= 162       b= 504       c= 660       d= 798       x=  864
      solution   7:       a= 189       b= 588       c= 770       d= 931       x= 1008
      solution   8:       a= 216       b= 672       c= 880       d=1064       x= 1152
      solution   9:       a= 243       b= 756       c= 990       d=1197       x= 1296
      solution  10:       a= 270       b= 840       c=1100       d=1330       x= 1440
      solution  11:       a= 297       b= 924       c=1210       d=1463       x= 1584
      solution  12:       a= 324       b=1008       c=1320       d=1596       x= 1728
      solution  13:       a= 351       b=1092       c=1430       d=1729       x= 1872
      solution  14:       a= 378       b=1176       c=1540       d=1862       x= 2016
      solution  15:       a= 405       b=1260       c=1650       d=1995       x= 2160
      solution  16:       a= 432       b=1344       c=1760       d=2128       x= 2304
      solution  17:       a= 459       b=1428       c=1870       d=2261       x= 2448
      solution  18:       a= 486       b=1512       c=1980       d=2394       x= 2592
      solution  19:       a= 513       b=1596       c=2090       d=2527       x= 2736
      solution  20:       a= 540       b=1680       c=2200       d=2660       x= 2880
      solution  21:       a= 567       b=1764       c=2310       d=2793       x= 3024
      solution  22:       a= 594       b=1848       c=2420       d=2926       x= 3168
      solution  23:       a= 621       b=1932       c=2530       d=3059       x= 3312
      solution  24:       a= 648       b=2016       c=2640       d=3192       x= 3456
      solution  25:       a= 675       b=2100       c=2750       d=3325       x= 3600
      solution  26:       a= 702       b=2184       c=2860       d=3458       x= 3744
      solution  27:       a= 729       b=2268       c=2970       d=3591       x= 3888

lightning-fast computation

Programming note:   it can be observed from the 1st REXX program's output   (2nd example)   that all of the index solutions are just multiples of the 1st known set:

     for A,   a multiple of   27
     for B,   a multiple of   84      
     for C,   a multiple of  110
     for D,   a multiple of  133
     for X,   a multiple of  144

where "a multiple" is some positive integer.


Intrepid and resourceful Rosetta Code userid   Pat Garrett   has found that in a research paper that   Jim Frye   found another solution:

555   +   31835   +   289695   +   852825     =     853595

The paper can be seen at:   A variety of Euler's conjecture.


So this 2nd known set was added to the program below.

So, index solutions are also multiples of the 2nd known set:

     for A,   a multiple of      55
     for B,   a multiple of   3,183      
     for C,   a multiple of  28,969
     for D,   a multiple of  85,282
     for X,   a multiple of  85,359


Execution time for computing/displaying/writing   200   numbers on a slow PC is about   1/16   second.

Execution time on a slow PC for computing (alone)   for   6,000   numbers is less than   one   second.

Execution time on a fast PC for computing (alone)   for   23,686   numbers is exactly   1.00   seconds. <lang rexx>/*REXX program shows unique positive integers for ────────── aⁿ+bⁿ+cⁿ+dⁿ==xⁿ where n=5 */ numeric digits 1000 /*ensure enough decimal digs for powers*/ parse arg N oFID . /*obtain optional arguments from the CL*/ if N== | N=="," then N= 200 /*Not specified? Then use the default.*/ if oFID==|oFID=="," then oFID= 'EULERSUM.OUT' /* " " " " " " */ tell= N>=0 /*if N is ≥ 0, show output to terminal.*/ N= abs(N) /*use the absolute value of N. */

                     a.1=  27  ;   a.2=    55   /*the   A   values for the two sets.   */
                     b.1=  84  ;   b.2=  3183   /* "    B      "    "   "   "    "     */
                     c.1= 110  ;   c.2= 28969   /* "    C      "    "   "   "    "     */
                     d.1= 133  ;   d.2= 85282   /* "    D      "    "   "   "    "     */
                     x.1= 144  ;   x.2= 85359   /* "    X      "    "   "   "    "     */

w= length( commas(N * x.2) ) /*W: used to align displayed numbers. */ $= center(' 'subword( sourceLine(1), 9, 3)" ", 70 +5*w, '─') /*create a title.*/ call show /*show a title (from 1st line of pgm).*/ pad= left(,5) /*used for padding (spacing) the output*/ oo= 1; tt= 1 /*a counter for the A.1 & A.2 sets.*/

  1. = 0 /*count of number of solutions so far. */
      do j=1  until #>N                         /*step through the possible solutions. */
      one= a.1 * oo                             /*calculate the 1st set's  A.1  value. */
      two= a.2 * tt                             /*    "      "  2nd   "    A.2    "    */
      use= min(one, two)                        /*pick which "set" that is to be used. */
      #= # + 1                                  /*bump counter for number of solutions.*/
      if one==use  then do;      mult=oo;      oo= oo + 1;      which= 1;      end
      if two==use  then do;      mult=tt;      tt= tt + 1;      which= 2;      end
      $= pad  'solution'  right(#,length(N))":  "  'a='right( commas(a.which * mult), w),
                                           pad     'b='right( commas(b.which * mult), w),
                                           pad     'c='right( commas(c.which * mult), w),
                                           pad     'd='right( commas(d.which * mult), w),
                                           pad     'x='right( commas(x.which * mult), w)
      call show                                 /*write; maybe show output to terminal.*/
      res= (x.which * mult) **5                 /*compute the sum of the  right  side. */
      sum= (a.which * mult) **5   +   ,         /*   "     "   "   "  "    left    "   */
           (b.which * mult) **5   +   ,
           (c.which * mult) **5   +   ,
           (d.which * mult) **5
      if sum==res  then iterate                 /*All is kosher?   Then keep truckin'. */
      $= "***error*** the left side sum   doesn't   equal the right side result (X**5)."
      tell=1;  call show;  exit 13              /*force telling of error to terminal.  */
      end   /*j*/

tell=1; call show $= pad ' Showed ' commas(N) " solutions, output written to file: " oFID; call show exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ commas: parse arg _; do jc=length(_)-3 to 1 by -3; _=insert(',', _, jc); end; return _ show: if tell then say $; call lineout oFID, $; $=; return /*show and/or write it*/</lang>

output   when using the default input of:     200

(Shown at three-quarter size.)

────────────────────────────────────────────── aⁿ+bⁿ+cⁿ+dⁿ==xⁿ  where n=5 ──────────────────────────────────────────────
      solution   1:   a=        27       b=        84       c=       110       d=       133       x=       144
      solution   2:   a=        54       b=       168       c=       220       d=       266       x=       288
      solution   3:   a=        55       b=     3,183       c=    28,969       d=    85,282       x=    85,359
      solution   4:   a=        81       b=       252       c=       330       d=       399       x=       432
      solution   5:   a=       108       b=       336       c=       440       d=       532       x=       576
      solution   6:   a=       110       b=     6,366       c=    57,938       d=   170,564       x=   170,718
      solution   7:   a=       135       b=       420       c=       550       d=       665       x=       720
      solution   8:   a=       162       b=       504       c=       660       d=       798       x=       864
      solution   9:   a=       165       b=     9,549       c=    86,907       d=   255,846       x=   256,077
      solution  10:   a=       189       b=       588       c=       770       d=       931       x=     1,008
      solution  11:   a=       216       b=       672       c=       880       d=     1,064       x=     1,152
      solution  12:   a=       220       b=    12,732       c=   115,876       d=   341,128       x=   341,436
      solution  13:   a=       243       b=       756       c=       990       d=     1,197       x=     1,296
      solution  14:   a=       270       b=       840       c=     1,100       d=     1,330       x=     1,440
      solution  15:   a=       275       b=    15,915       c=   144,845       d=   426,410       x=   426,795
      solution  16:   a=       297       b=       924       c=     1,210       d=     1,463       x=     1,584
      solution  17:   a=       324       b=     1,008       c=     1,320       d=     1,596       x=     1,728
      solution  18:   a=       330       b=    19,098       c=   173,814       d=   511,692       x=   512,154
      solution  19:   a=       351       b=     1,092       c=     1,430       d=     1,729       x=     1,872
      solution  20:   a=       378       b=     1,176       c=     1,540       d=     1,862       x=     2,016
      solution  21:   a=       385       b=    22,281       c=   202,783       d=   596,974       x=   597,513
      solution  22:   a=       405       b=     1,260       c=     1,650       d=     1,995       x=     2,160
      solution  23:   a=       432       b=     1,344       c=     1,760       d=     2,128       x=     2,304
      solution  24:   a=       440       b=    25,464       c=   231,752       d=   682,256       x=   682,872
      solution  25:   a=       459       b=     1,428       c=     1,870       d=     2,261       x=     2,448
      solution  26:   a=       486       b=     1,512       c=     1,980       d=     2,394       x=     2,592
      solution  27:   a=       495       b=    28,647       c=   260,721       d=   767,538       x=   768,231
      solution  28:   a=       513       b=     1,596       c=     2,090       d=     2,527       x=     2,736
      solution  29:   a=       540       b=     1,680       c=     2,200       d=     2,660       x=     2,880
      solution  30:   a=       550       b=    31,830       c=   289,690       d=   852,820       x=   853,590
      solution  31:   a=       567       b=     1,764       c=     2,310       d=     2,793       x=     3,024
      solution  32:   a=       594       b=     1,848       c=     2,420       d=     2,926       x=     3,168
      solution  33:   a=       605       b=    35,013       c=   318,659       d=   938,102       x=   938,949
      solution  34:   a=       621       b=     1,932       c=     2,530       d=     3,059       x=     3,312
      solution  35:   a=       648       b=     2,016       c=     2,640       d=     3,192       x=     3,456
      solution  36:   a=       660       b=    38,196       c=   347,628       d= 1,023,384       x= 1,024,308
      solution  37:   a=       675       b=     2,100       c=     2,750       d=     3,325       x=     3,600
      solution  38:   a=       702       b=     2,184       c=     2,860       d=     3,458       x=     3,744
      solution  39:   a=       715       b=    41,379       c=   376,597       d= 1,108,666       x= 1,109,667
      solution  40:   a=       729       b=     2,268       c=     2,970       d=     3,591       x=     3,888
      solution  41:   a=       756       b=     2,352       c=     3,080       d=     3,724       x=     4,032
      solution  42:   a=       770       b=    44,562       c=   405,566       d= 1,193,948       x= 1,195,026
      solution  43:   a=       783       b=     2,436       c=     3,190       d=     3,857       x=     4,176
      solution  44:   a=       810       b=     2,520       c=     3,300       d=     3,990       x=     4,320
      solution  45:   a=       825       b=    47,745       c=   434,535       d= 1,279,230       x= 1,280,385
      solution  46:   a=       837       b=     2,604       c=     3,410       d=     4,123       x=     4,464
      solution  47:   a=       864       b=     2,688       c=     3,520       d=     4,256       x=     4,608
      solution  48:   a=       880       b=    50,928       c=   463,504       d= 1,364,512       x= 1,365,744
      solution  49:   a=       891       b=     2,772       c=     3,630       d=     4,389       x=     4,752
      solution  50:   a=       918       b=     2,856       c=     3,740       d=     4,522       x=     4,896
      solution  51:   a=       935       b=    54,111       c=   492,473       d= 1,449,794       x= 1,451,103
      solution  52:   a=       945       b=     2,940       c=     3,850       d=     4,655       x=     5,040
      solution  53:   a=       972       b=     3,024       c=     3,960       d=     4,788       x=     5,184
      solution  54:   a=       990       b=    57,294       c=   521,442       d= 1,535,076       x= 1,536,462
      solution  55:   a=       999       b=     3,108       c=     4,070       d=     4,921       x=     5,328
      solution  56:   a=     1,026       b=     3,192       c=     4,180       d=     5,054       x=     5,472
      solution  57:   a=     1,045       b=    60,477       c=   550,411       d= 1,620,358       x= 1,621,821
      solution  58:   a=     1,053       b=     3,276       c=     4,290       d=     5,187       x=     5,616
      solution  59:   a=     1,080       b=     3,360       c=     4,400       d=     5,320       x=     5,760
      solution  60:   a=     1,100       b=    63,660       c=   579,380       d= 1,705,640       x= 1,707,180
      solution  61:   a=     1,107       b=     3,444       c=     4,510       d=     5,453       x=     5,904
      solution  62:   a=     1,134       b=     3,528       c=     4,620       d=     5,586       x=     6,048
      solution  63:   a=     1,155       b=    66,843       c=   608,349       d= 1,790,922       x= 1,792,539
      solution  64:   a=     1,161       b=     3,612       c=     4,730       d=     5,719       x=     6,192
      solution  65:   a=     1,188       b=     3,696       c=     4,840       d=     5,852       x=     6,336
      solution  66:   a=     1,210       b=    70,026       c=   637,318       d= 1,876,204       x= 1,877,898
      solution  67:   a=     1,215       b=     3,780       c=     4,950       d=     5,985       x=     6,480
      solution  68:   a=     1,242       b=     3,864       c=     5,060       d=     6,118       x=     6,624
      solution  69:   a=     1,265       b=    73,209       c=   666,287       d= 1,961,486       x= 1,963,257
      solution  70:   a=     1,269       b=     3,948       c=     5,170       d=     6,251       x=     6,768
      solution  71:   a=     1,296       b=     4,032       c=     5,280       d=     6,384       x=     6,912
      solution  72:   a=     1,320       b=    76,392       c=   695,256       d= 2,046,768       x= 2,048,616
      solution  73:   a=     1,323       b=     4,116       c=     5,390       d=     6,517       x=     7,056
      solution  74:   a=     1,350       b=     4,200       c=     5,500       d=     6,650       x=     7,200
      solution  75:   a=     1,375       b=    79,575       c=   724,225       d= 2,132,050       x= 2,133,975
      solution  76:   a=     1,377       b=     4,284       c=     5,610       d=     6,783       x=     7,344
      solution  77:   a=     1,404       b=     4,368       c=     5,720       d=     6,916       x=     7,488
      solution  78:   a=     1,430       b=    82,758       c=   753,194       d= 2,217,332       x= 2,219,334
      solution  79:   a=     1,431       b=     4,452       c=     5,830       d=     7,049       x=     7,632
      solution  80:   a=     1,458       b=     4,536       c=     5,940       d=     7,182       x=     7,776
      solution  81:   a=     1,485       b=    85,941       c=   782,163       d= 2,302,614       x= 2,304,693
      solution  82:   a=     1,512       b=     4,704       c=     6,160       d=     7,448       x=     8,064
      solution  83:   a=     1,539       b=     4,788       c=     6,270       d=     7,581       x=     8,208
      solution  84:   a=     1,540       b=    89,124       c=   811,132       d= 2,387,896       x= 2,390,052
      solution  85:   a=     1,566       b=     4,872       c=     6,380       d=     7,714       x=     8,352
      solution  86:   a=     1,593       b=     4,956       c=     6,490       d=     7,847       x=     8,496
      solution  87:   a=     1,595       b=    92,307       c=   840,101       d= 2,473,178       x= 2,475,411
      solution  88:   a=     1,620       b=     5,040       c=     6,600       d=     7,980       x=     8,640
      solution  89:   a=     1,647       b=     5,124       c=     6,710       d=     8,113       x=     8,784
      solution  90:   a=     1,650       b=    95,490       c=   869,070       d= 2,558,460       x= 2,560,770
      solution  91:   a=     1,674       b=     5,208       c=     6,820       d=     8,246       x=     8,928
      solution  92:   a=     1,701       b=     5,292       c=     6,930       d=     8,379       x=     9,072
      solution  93:   a=     1,705       b=    98,673       c=   898,039       d= 2,643,742       x= 2,646,129
      solution  94:   a=     1,728       b=     5,376       c=     7,040       d=     8,512       x=     9,216
      solution  95:   a=     1,755       b=     5,460       c=     7,150       d=     8,645       x=     9,360
      solution  96:   a=     1,760       b=   101,856       c=   927,008       d= 2,729,024       x= 2,731,488
      solution  97:   a=     1,782       b=     5,544       c=     7,260       d=     8,778       x=     9,504
      solution  98:   a=     1,809       b=     5,628       c=     7,370       d=     8,911       x=     9,648
      solution  99:   a=     1,815       b=   105,039       c=   955,977       d= 2,814,306       x= 2,816,847
      solution 100:   a=     1,836       b=     5,712       c=     7,480       d=     9,044       x=     9,792
      solution 101:   a=     1,863       b=     5,796       c=     7,590       d=     9,177       x=     9,936
      solution 102:   a=     1,870       b=   108,222       c=   984,946       d= 2,899,588       x= 2,902,206
      solution 103:   a=     1,890       b=     5,880       c=     7,700       d=     9,310       x=    10,080
      solution 104:   a=     1,917       b=     5,964       c=     7,810       d=     9,443       x=    10,224
      solution 105:   a=     1,925       b=   111,405       c= 1,013,915       d= 2,984,870       x= 2,987,565
      solution 106:   a=     1,944       b=     6,048       c=     7,920       d=     9,576       x=    10,368
      solution 107:   a=     1,971       b=     6,132       c=     8,030       d=     9,709       x=    10,512
      solution 108:   a=     1,980       b=   114,588       c= 1,042,884       d= 3,070,152       x= 3,072,924
      solution 109:   a=     1,998       b=     6,216       c=     8,140       d=     9,842       x=    10,656
      solution 110:   a=     2,025       b=     6,300       c=     8,250       d=     9,975       x=    10,800
      solution 111:   a=     2,035       b=   117,771       c= 1,071,853       d= 3,155,434       x= 3,158,283
      solution 112:   a=     2,052       b=     6,384       c=     8,360       d=    10,108       x=    10,944
      solution 113:   a=     2,079       b=     6,468       c=     8,470       d=    10,241       x=    11,088
      solution 114:   a=     2,090       b=   120,954       c= 1,100,822       d= 3,240,716       x= 3,243,642
      solution 115:   a=     2,106       b=     6,552       c=     8,580       d=    10,374       x=    11,232
      solution 116:   a=     2,133       b=     6,636       c=     8,690       d=    10,507       x=    11,376
      solution 117:   a=     2,145       b=   124,137       c= 1,129,791       d= 3,325,998       x= 3,329,001
      solution 118:   a=     2,160       b=     6,720       c=     8,800       d=    10,640       x=    11,520
      solution 119:   a=     2,187       b=     6,804       c=     8,910       d=    10,773       x=    11,664
      solution 120:   a=     2,200       b=   127,320       c= 1,158,760       d= 3,411,280       x= 3,414,360
      solution 121:   a=     2,214       b=     6,888       c=     9,020       d=    10,906       x=    11,808
      solution 122:   a=     2,241       b=     6,972       c=     9,130       d=    11,039       x=    11,952
      solution 123:   a=     2,255       b=   130,503       c= 1,187,729       d= 3,496,562       x= 3,499,719
      solution 124:   a=     2,268       b=     7,056       c=     9,240       d=    11,172       x=    12,096
      solution 125:   a=     2,295       b=     7,140       c=     9,350       d=    11,305       x=    12,240
      solution 126:   a=     2,310       b=   133,686       c= 1,216,698       d= 3,581,844       x= 3,585,078
      solution 127:   a=     2,322       b=     7,224       c=     9,460       d=    11,438       x=    12,384
      solution 128:   a=     2,349       b=     7,308       c=     9,570       d=    11,571       x=    12,528
      solution 129:   a=     2,365       b=   136,869       c= 1,245,667       d= 3,667,126       x= 3,670,437
      solution 130:   a=     2,376       b=     7,392       c=     9,680       d=    11,704       x=    12,672
      solution 131:   a=     2,403       b=     7,476       c=     9,790       d=    11,837       x=    12,816
      solution 132:   a=     2,420       b=   140,052       c= 1,274,636       d= 3,752,408       x= 3,755,796
      solution 133:   a=     2,430       b=     7,560       c=     9,900       d=    11,970       x=    12,960
      solution 134:   a=     2,457       b=     7,644       c=    10,010       d=    12,103       x=    13,104
      solution 135:   a=     2,475       b=   143,235       c= 1,303,605       d= 3,837,690       x= 3,841,155
      solution 136:   a=     2,484       b=     7,728       c=    10,120       d=    12,236       x=    13,248
      solution 137:   a=     2,511       b=     7,812       c=    10,230       d=    12,369       x=    13,392
      solution 138:   a=     2,530       b=   146,418       c= 1,332,574       d= 3,922,972       x= 3,926,514
      solution 139:   a=     2,538       b=     7,896       c=    10,340       d=    12,502       x=    13,536
      solution 140:   a=     2,565       b=     7,980       c=    10,450       d=    12,635       x=    13,680
      solution 141:   a=     2,585       b=   149,601       c= 1,361,543       d= 4,008,254       x= 4,011,873
      solution 142:   a=     2,592       b=     8,064       c=    10,560       d=    12,768       x=    13,824
      solution 143:   a=     2,619       b=     8,148       c=    10,670       d=    12,901       x=    13,968
      solution 144:   a=     2,640       b=   152,784       c= 1,390,512       d= 4,093,536       x= 4,097,232
      solution 145:   a=     2,646       b=     8,232       c=    10,780       d=    13,034       x=    14,112
      solution 146:   a=     2,673       b=     8,316       c=    10,890       d=    13,167       x=    14,256
      solution 147:   a=     2,695       b=   155,967       c= 1,419,481       d= 4,178,818       x= 4,182,591
      solution 148:   a=     2,700       b=     8,400       c=    11,000       d=    13,300       x=    14,400
      solution 149:   a=     2,727       b=     8,484       c=    11,110       d=    13,433       x=    14,544
      solution 150:   a=     2,750       b=   159,150       c= 1,448,450       d= 4,264,100       x= 4,267,950
      solution 151:   a=     2,754       b=     8,568       c=    11,220       d=    13,566       x=    14,688
      solution 152:   a=     2,781       b=     8,652       c=    11,330       d=    13,699       x=    14,832
      solution 153:   a=     2,805       b=   162,333       c= 1,477,419       d= 4,349,382       x= 4,353,309
      solution 154:   a=     2,808       b=     8,736       c=    11,440       d=    13,832       x=    14,976
      solution 155:   a=     2,835       b=     8,820       c=    11,550       d=    13,965       x=    15,120
      solution 156:   a=     2,860       b=   165,516       c= 1,506,388       d= 4,434,664       x= 4,438,668
      solution 157:   a=     2,862       b=     8,904       c=    11,660       d=    14,098       x=    15,264
      solution 158:   a=     2,889       b=     8,988       c=    11,770       d=    14,231       x=    15,408
      solution 159:   a=     2,915       b=   168,699       c= 1,535,357       d= 4,519,946       x= 4,524,027
      solution 160:   a=     2,916       b=     9,072       c=    11,880       d=    14,364       x=    15,552
      solution 161:   a=     2,943       b=     9,156       c=    11,990       d=    14,497       x=    15,696
      solution 162:   a=     2,970       b=   171,882       c= 1,564,326       d= 4,605,228       x= 4,609,386
      solution 163:   a=     2,997       b=     9,324       c=    12,210       d=    14,763       x=    15,984
      solution 164:   a=     3,024       b=     9,408       c=    12,320       d=    14,896       x=    16,128
      solution 165:   a=     3,025       b=   175,065       c= 1,593,295       d= 4,690,510       x= 4,694,745
      solution 166:   a=     3,051       b=     9,492       c=    12,430       d=    15,029       x=    16,272
      solution 167:   a=     3,078       b=     9,576       c=    12,540       d=    15,162       x=    16,416
      solution 168:   a=     3,080       b=   178,248       c= 1,622,264       d= 4,775,792       x= 4,780,104
      solution 169:   a=     3,105       b=     9,660       c=    12,650       d=    15,295       x=    16,560
      solution 170:   a=     3,132       b=     9,744       c=    12,760       d=    15,428       x=    16,704
      solution 171:   a=     3,135       b=   181,431       c= 1,651,233       d= 4,861,074       x= 4,865,463
      solution 172:   a=     3,159       b=     9,828       c=    12,870       d=    15,561       x=    16,848
      solution 173:   a=     3,186       b=     9,912       c=    12,980       d=    15,694       x=    16,992
      solution 174:   a=     3,190       b=   184,614       c= 1,680,202       d= 4,946,356       x= 4,950,822
      solution 175:   a=     3,213       b=     9,996       c=    13,090       d=    15,827       x=    17,136
      solution 176:   a=     3,240       b=    10,080       c=    13,200       d=    15,960       x=    17,280
      solution 177:   a=     3,245       b=   187,797       c= 1,709,171       d= 5,031,638       x= 5,036,181
      solution 178:   a=     3,267       b=    10,164       c=    13,310       d=    16,093       x=    17,424
      solution 179:   a=     3,294       b=    10,248       c=    13,420       d=    16,226       x=    17,568
      solution 180:   a=     3,300       b=   190,980       c= 1,738,140       d= 5,116,920       x= 5,121,540
      solution 181:   a=     3,321       b=    10,332       c=    13,530       d=    16,359       x=    17,712
      solution 182:   a=     3,348       b=    10,416       c=    13,640       d=    16,492       x=    17,856
      solution 183:   a=     3,355       b=   194,163       c= 1,767,109       d= 5,202,202       x= 5,206,899
      solution 184:   a=     3,375       b=    10,500       c=    13,750       d=    16,625       x=    18,000
      solution 185:   a=     3,402       b=    10,584       c=    13,860       d=    16,758       x=    18,144
      solution 186:   a=     3,410       b=   197,346       c= 1,796,078       d= 5,287,484       x= 5,292,258
      solution 187:   a=     3,429       b=    10,668       c=    13,970       d=    16,891       x=    18,288
      solution 188:   a=     3,456       b=    10,752       c=    14,080       d=    17,024       x=    18,432
      solution 189:   a=     3,465       b=   200,529       c= 1,825,047       d= 5,372,766       x= 5,377,617
      solution 190:   a=     3,483       b=    10,836       c=    14,190       d=    17,157       x=    18,576
      solution 191:   a=     3,510       b=    10,920       c=    14,300       d=    17,290       x=    18,720
      solution 192:   a=     3,520       b=   203,712       c= 1,854,016       d= 5,458,048       x= 5,462,976
      solution 193:   a=     3,537       b=    11,004       c=    14,410       d=    17,423       x=    18,864
      solution 194:   a=     3,564       b=    11,088       c=    14,520       d=    17,556       x=    19,008
      solution 195:   a=     3,575       b=   206,895       c= 1,882,985       d= 5,543,330       x= 5,548,335
      solution 196:   a=     3,591       b=    11,172       c=    14,630       d=    17,689       x=    19,152
      solution 197:   a=     3,618       b=    11,256       c=    14,740       d=    17,822       x=    19,296
      solution 198:   a=     3,630       b=   210,078       c= 1,911,954       d= 5,628,612       x= 5,633,694
      solution 199:   a=     3,645       b=    11,340       c=    14,850       d=    17,955       x=    19,440
      solution 200:   a=     3,672       b=    11,424       c=    14,960       d=    18,088       x=    19,584

       Showed  200  solutions,  output written to file:  EULERSUM.OUT

Ring

<lang ring>

  1. Project : Euler's sum of powers conjecture

max=250 for w = 1 to max

    for x = 1 to w
         for y = 1 to x
              for z = 1 to y
                   sum = pow(w,5) + pow(x,5) + pow(y,5) + pow(z,5)
                   s1  = floor(pow(sum,0.2))
                   if sum = pow(s1,5) 
                      see "" + w + "^5 + " + x + "^5 + " + y + "^5 + " + z + "^5 = " + s1 + "^5" 
                   ok
              next 
         next
    next 

next </lang> Output:

133^5 + 110^5 + 84^5 + 27^5 = 144^5

Ruby

Brute force: <lang ruby>power5 = (1..250).each_with_object({}){|i,h| h[i**5]=i} result = power5.keys.repeated_combination(4).select{|a| power5[a.inject(:+)]} puts result.map{|a| a.map{|i| "#{power5[i]}**5"}.join(' + ') + " = #{power5[a.inject(:+)]}**5"}</lang>

Output:
27**5 + 84**5 + 110**5 + 133**5 = 144**5

Faster version:

Translation of: Python

<lang ruby>p5, sum2, max = {}, {}, 250 (1..max).each do |i|

 p5[i**5] = i
 (i..max).each{|j| sum2[i**5 + j**5] = [i,j]}

end

result = {} sk = sum2.keys.sort p5.keys.sort.each do |p|

 sk.each do |s|
   break if p <= s
   result[(sum2[s] + sum2[p-s]).sort] = p5[p]  if sum2[p - s]
 end

end result.each{|k,v| puts k.map{|i| "#{i}**5"}.join(' + ') + " = #{v}**5"}</lang> The output is the same above.

Run BASIC

<lang runbasic> max=250 FOR w = 1 TO max

 FOR x = 1 TO w
   FOR y = 1 TO x
     FOR z = 1 TO y
     sum = w^5 + x^5 + y^5 + z^5
     s1  = INT(sum^0.2)
     IF sum=s1^5 THEN 
       PRINT w;"^5 + ";x;"^5 + ";y;"^5 + ";z;"^5 = ";s1;"^5" 
       end
     end if
     NEXT z
   NEXT y
 NEXT x

NEXT w</lang>

133^5 + 110^5 + 84^5 + 27^5 = 144^5

Rust

<lang rust>const MAX_N : u64 = 250;

fn eulers_sum_of_powers() -> (usize, usize, usize, usize, usize) {

   let pow5: Vec<u64> = (0..MAX_N).map(|i| i.pow(5)).collect();
   let pow5_to_n = |pow| pow5.binary_search(&pow);
   for x0 in 1..MAX_N as usize {
       for x1 in 1..x0 {
           for x2 in 1..x1 {
               for x3 in 1..x2 {
                   let pow_sum = pow5[x0] + pow5[x1] + pow5[x2] + pow5[x3];
                   if let Ok(n) = pow5_to_n(pow_sum) {
                       return (x0, x1, x2, x3, n)
                   }
               }
           }
       }
   }
   panic!();

}

fn main() { let (x0, x1, x2, x3, y) = eulers_sum_of_powers(); println!("{}^5 + {}^5 + {}^5 + {}^5 == {}^5", x0, x1, x2, x3, y) }</lang>

Output:
133^5 + 110^5 + 84^5 + 27^5 == 144^5

Scala

Functional programming

<lang Scala>import scala.collection.Searching.{Found, search}

object EulerSopConjecture extends App {

 val (maxNumber, fifth) = (250, (1 to 250).map { i => math.pow(i, 5).toLong })
 def binSearch(fact: Int*) = fifth.search(fact.map(f => fifth(f)).sum)
 def sop = (0 until maxNumber)
   .flatMap(a => (a until maxNumber)
     .flatMap(b => (b until maxNumber)
       .flatMap(c => (c until maxNumber)
         .map { case x$1@d => (binSearch(a, b, c, d), x$1) }
         .withFilter { case (f, _) => f.isInstanceOf[Found] }
         .map { case (f, d) => (a + 1, b + 1, c + 1, d + 1, f.insertionPoint + 1) }))).take(1)
   .map { case (a, b, c, d, f) => s"$a⁵ + $b⁵ + $c⁵ + $d⁵ = $f⁵" }
 println(sop)

}</lang>

Output:

Vector(27⁵ + 84⁵ + 110⁵ + 133⁵ = 144⁵)

Seed7

<lang seed7>$ include "seed7_05.s7i";

const func integer: binarySearch (in array integer: arr, in integer: aKey) is func

 result
   var integer: index is 0;
 local
   var integer: low is 1;
   var integer: high is 0;
   var integer: middle is 0;
 begin
   high := length(arr);
   while index = 0 and low <= high do
     middle := (low + high) div 2;
     if aKey < arr[middle] then
       high := pred(middle);
     elsif aKey > arr[middle] then
       low := succ(middle);
     else
       index := middle;
     end if;
   end while;
 end func;

const proc: main is func

 local
   var array integer: p5 is 249 times 0;
   var integer: i is 0;
   var integer: x0 is 0;
   var integer: x1 is 0;
   var integer: x2 is 0;
   var integer: x3 is 0;
   var integer: sum is 0;
   var integer: y is 0;
   var boolean: found is FALSE;
 begin
   for i range 1 to 249 do
     p5[i] := i ** 5;
   end for;
   for x0 range 1 to 249 until found do
     for x1 range 1 to pred(x0) until found do
       for x2 range 1 to pred(x1) until found do
         for x3 range 1 to pred(x2) until found do
           sum := p5[x0] + p5[x1] + p5[x2] + p5[x3];
           y := binarySearch(p5, sum);
           if y > 0 then
             writeln(x0 <& "**5 + " <& x1 <& "**5 + " <& x2 <& "**5 + " <& x3 <& "**5 = " <& y <& "**5");
             found := TRUE;
           end if;
         end for;
       end for;
     end for;
   end for;
   if not found then
     writeln("No solution was found");
   end if;
 end func;</lang>
Output:
133**5 + 110**5 + 84**5 + 27**5 = 144**5

SenseTalk

<lang sensetalk>findEulerSumOfPowers to findEulerSumOfPowers

   set MAX_NUMBER to 250
   set possibleValues to 1..MAX_NUMBER
   set possible5thPowers to each item of possibleValues to the power of 5
   repeat for x0 in 1..250
       repeat for x1 in 1..x0
           repeat for x2 in 1..x1
               repeat for x3 in 1..x2
                   set possibleSum to item x0 of possible5thPowers \
                           plus item x1 of possible5thPowers \
                           plus item x2 of possible5thPowers \
                           plus item x3 of possible5thPowers
                   if possibleSum is in possible5thPowers
                       put x0 & "^5 + " & x1 & "^5 + " & x2 & "^5 + " & x3 & "^5 = " & the item number of possibleSum within possible5thPowers & "^5"
                       return
                   end if
               end repeat
           end repeat
       end repeat
   end repeat

end findEulerSumOfPowers</lang>

Sidef

Translation of: Raku

<lang ruby>define range = (1 ..^ 250)

var p5 = Hash() var sum2 = Hash()

for i in (range) {

   p5{i**5} = i
   for j in (range) {
       sum2{i**5 + j**5} = [i, j]
   }

}

var sk = sum2.keys.map{ Num(_) }.sort

for p in (p5.keys.map{ Num(_) }.sort) {

   var s = sk.first {|s|
       p > s && sum2.exists(p-s)
   } \\ next
   var t = (sum2{s} + sum2{p-s} -> map{|n| "#{n}⁵" }.join(' + '))
   say "#{t} = #{p5{p}}⁵"
   break

}</lang>

Output:
84⁵ + 27⁵ + 133⁵ + 110⁵ =  144⁵

Swift

Translation of: Rust

<lang swift>extension BinaryInteger {

 @inlinable
 public func power(_ n: Self) -> Self {
   return stride(from: 0, to: n, by: 1).lazy.map({_ in self }).reduce(1, *)
 }

}

func sumOfPowers(maxN: Int = 250) -> (Int, Int, Int, Int, Int) {

 let pow5 = (0..<maxN).map({ $0.power(5) })
 let pow5ToN = {n in pow5.firstIndex(of: n)}
 for x0 in 1..<maxN {
   for x1 in 1..<x0 {
     for x2 in 1..<x1 {
       for x3 in 1..<x2 {
         let powSum = pow5[x0] + pow5[x1] + pow5[x2] + pow5[x3]
         if let idx = pow5ToN(powSum) {
           return (x0, x1, x2, x3, idx)
         }
       }
     }
   }
 }
 fatalError("Did not find solution")

}

let (x0, x1, x2, x3, y) = sumOfPowers()

print("\(x0)^5 + \(x1)^5 + \(x2)^5 \(x3)^5 = \(y)^5")</lang>

Output:
133^5 + 110^5 + 84^5 + 27^5 = 144^5

Tcl

<lang Tcl>proc doit {{badx 250} {complete 0}} {

   ## NB: $badx is exclusive upper limit, and also limits y!
   for {set y 1} {$y < $badx} {incr y} {
       set s [expr {$y ** 5}]
       set r5($s) $y           ;# fifth roots of valid sums
   }
   for {set a 1} {$a < $badx} {incr a} {
       set suma [expr {$a ** 5}]
       for {set b 1} {$b <= $a} {incr b} {
           set sumb [expr {$suma + ($b ** 5)}]
           for {set c 1} {$c <= $b} {incr c} {
               set sumc [expr {$sumb + ($c ** 5)}]
               for {set d 1} {$d <= $c} {incr d} {
                   set sumd [expr {$sumc + ($d ** 5)}]
                   if {[info exists r5($sumd)]} {
                       set e $r5($sumd)
                       puts "$e^5 = $a^5 + $b^5 + $c^5 + $d^5"
                       if {!$complete} {
                           return
                       }
                   }
               }
           }
       }
   }
   puts "search complete (x < $badx)"

} doit</lang>

Output:
144^5 = 133^5 + 110^5 + 84^5 + 27^5

real 0m2.387s

UNIX Shell

Works with: Bourne Again SHell
Works with: Korn Shell
Works with: Zsh

Shell is not the go-to language for number-crunching, but if you're going to use a shell, it looks like ksh is the fastest option, at about 8x faster than bash and 2x faster than zsh.

<lang bash>MAX=250 pow5=() for (( i=1; i<MAX; ++i )); do

 pow5[i]=$(( i*i*i*i*i ))

done for (( a=1; a<MAX; ++a )); do

 for (( b=a+1; b<MAX; ++b )); do
   for (( c=b+1; c<MAX; ++c )); do
     for (( d=c+1; d<MAX; ++d )); do
       (( sum=pow5[a]+pow5[b]+pow5[c]+pow5[d] ))
       (( low=d+3 ))
       (( high=MAX ))
       while (( low <= high )); do
         (( guess=(low+high)/2 ))
         if (( pow5[guess]  == sum )); then
           printf 'Found example: %d⁵+%d⁵+%d⁵+%d⁵=%d⁵\n' "$a" "$b" "$c" "$d" "$guess"
           exit 0
         elif (( pow5[guess] < sum )); then
           (( low=guess+1 ))
         else
           (( high=guess-1 ))
         fi
       done
     done
   done
 done

done printf 'No examples found.\n' exit 1</lang>

Output:
$ time bash esop.sh
Found example: 27⁵+84⁵+110⁵+133⁵=144⁵
bash esop.sh  6953.75s user 37.53s system 99% cpu 1:57:02.41 total
$ time ksh esop.sh
Found example: 27⁵+84⁵+110⁵+133⁵=144⁵
ksh esop.sh  855.66s user 5.30s system 99% cpu 14:26.78 total
$ time zsh esop.sh
Found example: 27⁵+84⁵+110⁵+133⁵=144⁵
zsh esop.sh  1969.48s user 250.82s system 99% cpu 37:11.62 total

VBA

Translation of: AWK

<lang vb>Public Declare Function GetTickCount Lib "kernel32.dll" () As Long

Public Sub begin()

   start_int = GetTickCount()
   main
   Debug.Print (GetTickCount() - start_int) / 1000 & " seconds"

End Sub Private Function pow(x, y) As Variant

   pow = CDec(Application.WorksheetFunction.Power(x, y))

End Function Private Sub main()

   For x0 = 1 To 250
       For x1 = 1 To x0
           For x2 = 1 To x1
               For x3 = 1 To x2
                   sum = CDec(pow(x0, 5) + pow(x1, 5) + pow(x2, 5) + pow(x3, 5))
                   s1 = Int(pow(sum, 0.2))
                   If sum = pow(s1, 5) Then
                       Debug.Print x0 & "^5 + " & x1 & "^5 + " & x2 & "^5 + " & x3 & "^5 = " & s1
                       Exit Sub
                   End If
               Next x3
           Next x2
       Next x1
   Next x0

End Sub</lang>

Output:
33^5 + 110^5 + 84^5 + 27^5 = 144
160,187 seconds

VBScript

Translation of: ERRE

<lang vb>Max=250

For X0=1 To Max For X1=1 To X0 For X2=1 To X1 For X3=1 To X2 Sum=fnP5(X0)+fnP5(X1)+fnP5(X2)+fnP5(X3) S1=Int(Sum^0.2) If Sum=fnP5(S1) Then WScript.StdOut.Write X0 & " " & X1 & " " & X2 & " " & X3 & " " & S1 WScript.Quit End If Next Next Next Next

Function fnP5(n) fnP5 = n ^ 5 End Function</lang>

Output:
133 110 84 27 144

Visual Basic .NET

Paired Powers Algorithm

Translation of: Python

<lang vbnet>Module Module1

   Structure Pair
       Dim a, b As Integer
       Sub New(x as integer, y as integer)
           a = x : b = y
       End Sub
   End Structure
   Dim max As Integer = 250
   Dim p5() As Long,
       sum2 As SortedDictionary(Of Long, Pair) = New SortedDictionary(Of Long, Pair)
   Function Fmt(p As Pair) As String
       Return String.Format("{0}^5 + {1}^5", p.a, p.b)
   End Function
   Sub Init()
       p5(0) = 0 : p5(1) = 1 : For i As Integer = 1 To max - 1
           For j As Integer = i + 1 To max
               p5(j) = CLng(j) * j : p5(j) *= p5(j) * j
               sum2.Add(p5(i) + p5(j), New Pair(i, j))
           Next
       Next
   End Sub
   Sub Calc(Optional findLowest As Boolean = True)
       For i As Integer = 1 To max : Dim p As Long = p5(i)
           For Each s In sum2.Keys
               Dim t As Long = p - s : If t <= 0 Then Exit For
               If sum2.Keys.Contains(t) AndAlso sum2.Item(t).a > sum2.Item(s).b Then
                   Console.WriteLine("  {1} + {2} = {0}^5", i, Fmt(sum2.Item(s)), Fmt(sum2.Item(t)))
                   If findLowest Then Exit Sub
               End If
           Next : Next
   End Sub
   Sub Main(args As String())
       If args.Count > 0 Then
           Dim t As Integer = 0 : Integer.TryParse(args(0), t)
           If t > 0 AndAlso t < 5405 Then max = t
       End If
       Console.WriteLine("Checking from 1 to {0}...", max)
       For i As Integer = 0 To 1
           ReDim p5(max) : sum2.Clear()
           Dim st As DateTime = DateTime.Now
           Init() : Calc(i = 0)
           Console.WriteLine("{0}  Computation time to {2} was {1} seconds{0}", vbLf,
               (DateTime.Now - st).TotalSeconds, If(i = 0, "find lowest one", "check entire space"))
       Next
       If Diagnostics.Debugger.IsAttached Then Console.ReadKey()
   End Sub

End Module</lang>

Output:

(No command line arguments)

Checking from 1 to 250...
  27^5 + 84^5 + 110^5 + 133^5 = 144^5
  
  Computation time to find lowest one was 0.0807819 seconds
  
  27^5 + 84^5 + 110^5 + 133^5 = 144^5
  
  Computation time to check entire space was 0.3830103 seconds

Command line argument = "1000"

Checking from 1 to 1000...
  27^5 + 84^5 + 110^5 + 133^5 = 144^5

  Computation time to find lowest one was 0.3112007 seconds

  27^5 + 84^5 + 110^5 + 133^5 = 144^5
  54^5 + 168^5 + 220^5 + 266^5 = 288^5
  81^5 + 252^5 + 330^5 + 399^5 = 432^5
  108^5 + 336^5 + 440^5 + 532^5 = 576^5
  135^5 + 420^5 + 550^5 + 665^5 = 720^5
  162^5 + 504^5 + 660^5 + 798^5 = 864^5

  Computation time to check entire space was 28.8847393 seconds

Paired Powers w/ Mod 30 Shortcut and Threading

If one divides the searched array of powers (sum2m()) into 30 pieces, the search time can be reduced by only searching the appropriate one (determined by the Mod 30 value of the value being sought). Once broken down by this, it is now easier to use threading to further reduce the computation time.
The following compares the plain paired powers algorithm to the plain powers plus the mod 30 shortcut algorithm, without and with threading. <lang vbnet>Module Module1

   Structure Pair
       Dim a, b As Integer
       Sub New(x As Integer, y As Integer)
           a = x : b = y
       End Sub
   End Structure
   Dim min As Integer = 1, max As Integer = 250
   Dim p5() As Long,
       sum2 As SortedDictionary(Of Long, Pair) = New SortedDictionary(Of Long, Pair),
       sum2m(29) As SortedDictionary(Of Long, Pair)
   Function Fmt(p As Pair) As String
       Return String.Format("{0}^5 + {1}^5", p.a, p.b)
   End Function
   Sub Init()
       p5(0) = 0 : p5(min) = CLng(min) * min : p5(min) *= p5(min) * min
       For i As Integer = min To max - 1
           For j As Integer = i + 1 To max
               p5(j) = CLng(j) * j : p5(j) *= p5(j) * j
               If j = max Then Continue For
               sum2.Add(p5(i) + p5(j), New Pair(i, j))
           Next
       Next
   End Sub
   Sub InitM()
       For i As Integer = 0 To 29 : sum2m(i) = New SortedDictionary(Of Long, Pair) : Next
       p5(0) = 0 : p5(min) = CLng(min) * min : p5(min) *= p5(min) * min
       For i As Integer = min To max - 1
           For j As Integer = i + 1 To max
               p5(j) = CLng(j) * j : p5(j) *= p5(j) * j
               If j = max Then Continue For
               Dim x As Long = p5(i) + p5(j)
               sum2m(x Mod 30).Add(x, New Pair(i, j))
           Next
       Next
   End Sub
   Sub Calc(Optional findLowest As Boolean = True)
       For i As Integer = min To max : Dim p As Long = p5(i)
           For Each s In sum2.Keys
               Dim t As Long = p - s : If t <= 0 Then Exit For
               If sum2.Keys.Contains(t) AndAlso sum2.Item(t).a > sum2.Item(s).b Then
                   Console.WriteLine("  {1} + {2} = {0}^5", i, 
                       Fmt(sum2.Item(s)), Fmt(sum2.Item(t)))
                   If findLowest Then Exit Sub
               End If
           Next : Next
   End Sub
   Function CalcM(m As Integer) As List(Of String)
       Dim res As New List(Of String)
       For i As Integer = min To max
           Dim pm As Integer = i Mod 30,
               mp As Integer = (pm - m + 30) Mod 30
           For Each s In sum2m(m).Keys
               Dim t As Long = p5(i) - s : If t <= 0 Then Exit For
               If sum2m(mp).Keys.Contains(t) AndAlso
                 sum2m(mp).Item(t).a > sum2m(m).Item(s).b Then
                   res.Add(String.Format("  {1} + {2} = {0}^5",
                       i, Fmt(sum2m(m).Item(s)), Fmt(sum2m(mp).Item(t))))
               End If
           Next : Next
       Return res
   End Function
   Function Snip(s As String) As Integer
       Dim p As Integer = s.IndexOf("=") + 1
       Return s.Substring(p, s.IndexOf("^", p) - p)
   End Function
   Function CompareRes(ByVal x As String, ByVal y As String) As Integer
       CompareRes = Snip(x).CompareTo(Snip(y))
       If CompareRes = 0 Then CompareRes = x.CompareTo(y)
   End Function
   Function Validify(def As Integer, s As String) As Integer
       Validify = def : Dim t As Integer = 0 : Integer.TryParse(s, t)
       If t >= 1 AndAlso Math.Pow(t, 5) < (Long.MaxValue >> 1) Then Validify = t
   End Function
   Sub Switch(ByRef a As Integer, ByRef b As Integer)
       Dim t As Integer = a : a = b : b = t
   End Sub
   Sub Main(args As String())
       Select Case args.Count
           Case 1 : max = Validify(max, args(0))
           Case > 1
               min = Validify(min, args(0))
               max = Validify(max, args(1))
               If max < min Then Switch(max, min)
       End Select
       Console.WriteLine("Paired powers, checking from {0} to {1}...", min, max)
       For i As Integer = 0 To 1
           ReDim p5(max) : sum2.Clear()
           Dim st As DateTime = DateTime.Now
           Init() : Calc(i = 0)
           Console.WriteLine("{0}  Computation time to {2} was {1} seconds{0}", vbLf,
               (DateTime.Now - st).TotalSeconds, If(i = 0, "find lowest one", "check entire space"))
       Next
       For i As Integer = 0 To 1
           Console.WriteLine("Paired powers with Mod 30 shortcut (entire space) {2}, checking from {0} to {1}...",
               min, max, If(i = 0, "sequential", "parallel"))
           ReDim p5(max)
           Dim res As List(Of String) = New List(Of String)
           Dim st As DateTime = DateTime.Now
           Dim taskList As New List(Of Task(Of List(Of String)))
           InitM()
           Select Case i
               Case 0
                   For j As Integer = 0 To 29
                       res.AddRange(CalcM(j))
                   Next
               Case 1
                   For j As Integer = 0 To 29 : Dim jj = j
                       taskList.Add(Task.Run(Function() CalcM(jj)))
                   Next
                   Task.WhenAll(taskList)
                   For Each item In taskList.Select(Function(t) t.Result)
                       res.AddRange(item) : Next
           End Select
           res.Sort(AddressOf CompareRes)
           For Each item In res
               Console.WriteLine(item) : Next
           Console.WriteLine("{0}  Computation time was {1} seconds{0}", vbLf, (DateTime.Now - st).TotalSeconds)
       Next
       If Diagnostics.Debugger.IsAttached Then Console.ReadKey()
   End Sub

End Module</lang>

Output:

(No command line arguments)

Paired powers, checking from 1 to 250...

27^5 + 84^5 + 110^5 + 133^5 = 144^5

Computation time to find lowest one was 0.0781252 seconds

27^5 + 84^5 + 110^5 + 133^5 = 144^5

Computation time to check entire space was 0.3280574 seconds

Paired powers with Mod 30 shortcut (entire space) sequential, checking from 1 to 250... 27^5 + 84^5 + 110^5 + 133^5 = 144^5

Computation time was 0.2655529 seconds

Paired powers with Mod 30 shortcut (entire space) parallel, checking from 1 to 250... 27^5 + 84^5 + 110^5 + 133^5 = 144^5

Computation time was 0.0624651 seconds

(command line argument = "1000")

Paired powers, checking from 1 to 1000...
  27^5 + 84^5 + 110^5 + 133^5 = 144^5

  Computation time to find lowest one was 0.2499343 seconds

  27^5 + 84^5 + 110^5 + 133^5 = 144^5
  54^5 + 168^5 + 220^5 + 266^5 = 288^5
  81^5 + 252^5 + 330^5 + 399^5 = 432^5
  108^5 + 336^5 + 440^5 + 532^5 = 576^5
  135^5 + 420^5 + 550^5 + 665^5 = 720^5
  162^5 + 504^5 + 660^5 + 798^5 = 864^5

  Computation time to check entire space was 27.805961 seconds

Paired powers with Mod 30 shortcut (entire space) sequential, checking from 1 to 1000...
  27^5 + 84^5 + 110^5 + 133^5 = 144^5
  54^5 + 168^5 + 220^5 + 266^5 = 288^5
  81^5 + 252^5 + 330^5 + 399^5 = 432^5
  108^5 + 336^5 + 440^5 + 532^5 = 576^5
  135^5 + 420^5 + 550^5 + 665^5 = 720^5
  162^5 + 504^5 + 660^5 + 798^5 = 864^5

  Computation time was 23.8068928 seconds

Paired powers with Mod 30 shortcut (entire space) parallel, checking from 1 to 1000...
  27^5 + 84^5 + 110^5 + 133^5 = 144^5
  54^5 + 168^5 + 220^5 + 266^5 = 288^5
  81^5 + 252^5 + 330^5 + 399^5 = 432^5
  108^5 + 336^5 + 440^5 + 532^5 = 576^5
  135^5 + 420^5 + 550^5 + 665^5 = 720^5
  162^5 + 504^5 + 660^5 + 798^5 = 864^5

  Computation time was 5.4205943 seconds

(command line arguments = "27 864")

Paired powers, checking from 27 to 864...
  27^5 + 84^5 + 110^5 + 133^5 = 144^5

  Computation time to find lowest one was 0.1562309 seconds

  27^5 + 84^5 + 110^5 + 133^5 = 144^5
  54^5 + 168^5 + 220^5 + 266^5 = 288^5
  81^5 + 252^5 + 330^5 + 399^5 = 432^5
  108^5 + 336^5 + 440^5 + 532^5 = 576^5
  135^5 + 420^5 + 550^5 + 665^5 = 720^5
  162^5 + 504^5 + 660^5 + 798^5 = 864^5

  Computation time to check entire space was 15.8243802 seconds

Paired powers with Mod 30 shortcut (entire space) sequential, checking from 27 to 864...
  27^5 + 84^5 + 110^5 + 133^5 = 144^5
  54^5 + 168^5 + 220^5 + 266^5 = 288^5
  81^5 + 252^5 + 330^5 + 399^5 = 432^5
  108^5 + 336^5 + 440^5 + 532^5 = 576^5
  135^5 + 420^5 + 550^5 + 665^5 = 720^5
  162^5 + 504^5 + 660^5 + 798^5 = 864^5

  Computation time was 13.0438215 seconds

Paired powers with Mod 30 shortcut (entire space) parallel, checking from 27 to 864...
  27^5 + 84^5 + 110^5 + 133^5 = 144^5
  54^5 + 168^5 + 220^5 + 266^5 = 288^5
  81^5 + 252^5 + 330^5 + 399^5 = 432^5
  108^5 + 336^5 + 440^5 + 532^5 = 576^5
  135^5 + 420^5 + 550^5 + 665^5 = 720^5
  162^5 + 504^5 + 660^5 + 798^5 = 864^5

  Computation time was 3.0305365 seconds

(command line arguments = "189 1008")

Paired powers, checking from 189 to 1008...
  189^5 + 588^5 + 770^5 + 931^5 = 1008^5
  
  Computation time to find lowest one was 14.6840411 seconds
  
  189^5 + 588^5 + 770^5 + 931^5 = 1008^5
  
  Computation time to check entire space was 14.7777685 seconds
  
Paired powers with Mod 30 shortcut (entire space) sequential, checking from 189 to 1008...
  189^5 + 588^5 + 770^5 + 931^5 = 1008^5
  
  Computation time was 12.4814705 seconds
  
Paired powers with Mod 30 shortcut (entire space) parallel, checking from 189 to 1008...
  189^5 + 588^5 + 770^5 + 931^5 = 1008^5
  
  Computation time was 2.7180777 seconds

Wren

Translation of: C

<lang ecmascript>var start = System.clock var n = 250 var m = 30

var p5 = List.filled(n+m+1, 0) var s = 0 while (s < n) {

   var sq = s * s
   p5[s] = sq * sq * s
   s = s + 1

} var max = p5[n-1] while (s < p5.count) {

   p5[s] = max + 1
   s = s + 1

} for (a in 1...n-3) {

   for (b in a + 1...n-2) {
       for (c in b + 1...n-1) {
           var d = c + 1
           var t = p5[a] + p5[b] + p5[c]
           var e = d + (t % m)
           s = t + p5[d]
           while (s <= max) {
               e = e - m
               while (p5[e+m] <= s) e = e + m 
               if (p5[e] == s) {
                   System.print("%(a)⁵ + %(b)⁵ + %(c)⁵ + %(d)⁵ = %(e)⁵")
                   System.print("Took %(System.clock - start) seconds")
                   return
               }
               d = d + 1
               e = e + 1
               s = t + p5[d]
           }
       }
   }

}</lang>

Output:

Timing is for an Intel Core i7-8565U machine running Wren 0.2.0 on Ubuntu 18.04.

27⁵ + 84⁵ + 110⁵ + 133⁵ = 144⁵
Took 6.836934 seconds

Zig

Translation of: Go

<lang Zig> const std = @import("std"); const stdout = std.io.getStdOut().outStream();

pub fn main() !void {

   var pow5: [250]i64 = undefined;
   for (pow5) |*e, i| {
       const n = @intCast(i64, i);
       e.* = n * n * n * n * n;
   }
   var x0: u16 = 4;
   while (x0 < pow5.len) : (x0 += 1) {
       var x1: u16 = 3;
       while (x1 < x0) : (x1 += 1) {
           var x2: u16 = 2;
           while (x2 < x1) : (x2 += 1) {
               var x3: u16 = 1;
               while (x3 < x2) : (x3 += 1) {
                   const sum = pow5[x0] + pow5[x1] + pow5[x2] + pow5[x3];
                   var y: u16 = x0 + 1;
                   while (y < pow5.len) : (y += 1) if (sum == pow5[y]) {
                       try stdout.print("{}⁵ + {}⁵ + {}⁵ + {}⁵ = {}⁵\n", .{ x0, x1, x2, x3, y });
                       return;
                   };
               }
           }
       }
   }
   try stdout.print("Sorry, no solution found.\n", .{});

} </lang>

Output:
133⁵ + 110⁵ + 84⁵ + 27⁵ = 144⁵

zkl

Uses two look up tables for efficiency. Counts from 0 for ease of coding. <lang zkl>pow5s:=[1..249].apply("pow",5); // (1^5, 2^5, 3^5 .. 249^5) pow5r:=pow5s.enumerate().apply("reverse").toDictionary(); // [144^5:144, ...] foreach x0,x1,x2,x3 in (249,x0,x1,x2){

  sum:=pow5s[x0] + pow5s[x1] + pow5s[x2] + pow5s[x3];
  if(pow5r.holds(sum))
     println("%d^5 + %d^5 + %d^5 + %d^5 = %d^5"
         .fmt(x3+1,x2+1,x1+1,x0+1,pow5r[sum]+1));
     break(4);  // the foreach is actually four loops

}</lang>

Output:
27^5 + 84^5 + 110^5 + 133^5 = 144^5

Using the Python technique of caching double sums results in a 5x speed up [to the first/only solution]; actually the speed up is close to 25x but creating the caches dominates the runtime to the first solution.

Translation of: Python

<lang zkl>p5,sum2:=Dictionary(),Dictionary(); foreach i in ([1..249]){

  p5[i.pow(5)]=i;
  foreach j in ([i..249]){ sum2[i.pow(5) + j.pow(5)]=T(i,j) } // 31,125 keys

}

sk:=sum2.keys.apply("toInt").copy().sort(); // RW list sorts faster than a RO one foreach p,s in (p5.keys.apply("toInt"),sk){

  if(p<=s) break;
  if(sum2.holds(p - s)){
     println("%d^5 + %d^5 + %d^5 + %d^5 = %d^5"
         .fmt(sum2[s].xplode(),sum2[p - s].xplode(),p5[p]));
     break(2);  // or get permutations
  }

}</lang> Note: dictionary keys are always strings and copying a read only list creates a read write list.

Output:
27^5 + 84^5 + 110^5 + 133^5 = 144^5

ZX Spectrum Basic

This "abacus revision" reverts back to an earlier one, i.e. the "slide rule" one calculating the logarithmic 'percentage' for each of 4 summands. It also calculates their ones' digits as if on a base m abacus, that complements the other base m digits embedded in their percentages via a check sum of the ones' digits when the percentages add up to 1. Because any other argument is less than m, there is sufficient additional precision so as to not find false solutions while seeking the first primitive solution. 1 is excluded a priori for (e.g.) w, since it is well-known that the only integral points on 1=m^5-x^5-y^5-z^5 are the obvious ones (that aren't distinct\all >0). Nonetheless, 1 (as the zeroeth 'prime' Po) can be the first of 3 factors (one of the others being a power of the first 4 primes) for specifying a LHS argument. Given 4 LHS arguments each raised to a 5th power as is the RHS for which m<=ΣΠPi<2^(3+5), i=0 to 4, the LHS solution (if one exists) will consist of 4 elements of a factorial domain that are each a triplet (a prime\Po * a prime^1st\2nd power * a prime^1st\4th power) multiple having a distinct pair of the first 4 primes present & absent. Such potential solutions are generated by aiming for simplicity rather than efficiency (e.g. not generating potential solutions where each multiple is even). Two theorems' consequences intended for an even earlier revision are also applied: Fermat's Little Theorem (as proven later by Euler) whereby Xi^5 mod P = Xi mod P for the first 3 primes; and the Chinese Remainder Theorem in reverse whereby m= k- i*2*3*5, such that k is chosen to be the highest allowed m congruent mod 30 to the sum of the LHS arguments of a potential solution. Although still slow, this revision performs the given task on any ZX Spectrum, despite being limited to 32-bit precision.

<lang zxbasic> 2 CLS 5 DIM k(29): DIM q(249) 10 FOR i=4 TO 249: LET q(i)=LN i : NEXT i 11 REM enhancements for the much expanded Spectrum Next: DIM p(249,249) 12 REM FOR j=4 TO 249: FOR i=4 TO 249: LET p(j,i)=EXP((q(j)-q(i))*5): NEXT i: NEXT j 14 PRINT "slide rule ready" 15 FOR i=0 TO 9: LET k(i)=240+ i : NEXT i 17 FOR i=10 TO 29: LET k(i)=210+ i : NEXT i 20 FOR w=6 TO 246 STEP 3 21 LET o=w 22 FOR x=4 TO 248 STEP 2 23 IF o<x THEN LET o=x 24 FOR y=10 TO 245 STEP 5 25 IF o<y THEN LET o=y 26 FOR z=14 TO 245 STEP 7 27 IF o<z THEN LET o=z 30 LET o=o+1 : LET m=k(FN f((w+x+y+z),30)) 34 IF m<o THEN GO TO 90 40 REM LET s=p(w,m)+p(x,m)+p(y,m)+p(z,m) instead of: 42 LET s=EXP((q(w)-q(m))*5) 43 LET s=EXP((q(x)-q(m))*5)+ s 45 LET s=EXP((q(y)-q(m))*5)+ s 47 LET s=EXP((q(z)-q(m))*5)+ s 50 IF s<>1 THEN GO TO 80 52 LET a=FN f(w*w,m) : LET a=FN f(a*a,m) : LET a=FN f(a*w,m) 53 LET b=FN f(x*x,m) : LET b=FN f(b*b,m) : LET b=FN f(b*x,m) 55 LET c=FN f(y*y,m) : LET c=FN f(c*c,m) : LET c=FN f(c*y,m) 57 LET d=FN f(z*z,m) : LET d=FN f(d*d,m) : LET d=FN f(d*z,m) 60 LET u=FN f((a+b+c+d),m) 65 IF u THEN GO TO 80 73 PRINT w;"^5+";x;"^5+";y;"^5+";z;"^5=";m;"^5": STOP 80 IF s<1 THEN m=m-30 : GO TO 34 90 NEXT z: NEXT y: NEXT x: NEXT w 100 DEF FN f(e,n)=e- INT(e/n)*n </lang>

Output:
slide rule ready
27^5+84^5+110^5+133^5=144^5