Summarize and say sequence: Difference between revisions

From Rosetta Code
Content added Content deleted
(Add Factor)
Line 1,803: Line 1,803:
19281716151413427110
19281716151413427110
19182716152413228110
19182716152413228110
</pre>

=={{header|Factor}}==
Like the Eiffel example, this program saves time by considering only seed numbers whose digits are in increasing order (zeros are exempt). This ensures that extra permutations of a number are not searched, as they produce equivalent sequences (aside from the first element). For instance, &nbsp; <tt>21</tt> &nbsp; is the first number to be skipped because it's a permutation of &nbsp; <tt>12</tt>.
<lang factor>USING: assocs grouping io kernel math math.combinatorics
math.functions math.ranges math.statistics math.text.utils
prettyprint sequences sets ;
IN: rosetta-code.self-referential-sequence

: next-term ( seq -- seq ) histogram >alist concat ;

! Output the self-referential sequence, given a seed value.
: srs ( seq -- seq n )
V{ } clone [ 2dup member? ] [ 2dup push [ next-term ] dip ]
until nip dup length ;

: digit-before? ( m n -- ? ) dup zero? [ 2drop t ] [ <= ] if ;

! The numbers from 1 to n sans permutations.
: candidates ( n -- seq )
[1,b] [ 1 digit-groups reverse ] map
[ [ digit-before? ] monotonic? ] filter ;

: max-seed ( n -- seq ) candidates [ srs nip ] supremum-by ;

: max-seeds ( n -- seq )
max-seed <permutations> members [ first zero? ] reject ;

: digits>number ( seq -- n ) [ 10 swap ^ * ] map-index sum ;

: >numbers ( seq -- seq ) [ digits>number ] map ;

: main ( -- )
"Seed value(s): " write
1,000,000 max-seeds
[ [ reverse ] map >numbers . ]
[ first srs ] bi
"Iterations: " write .
"Sequence:" print >numbers . ;

MAIN: main</lang>
{{out}}
<pre>
Seed value(s): V{ 9009 9090 9900 }
Iterations: 21
Sequence:
V{
9009
2920
221910
22192110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110
}
</pre>
</pre>



Revision as of 03:52, 21 October 2019

Task
Summarize and say sequence
You are encouraged to solve this task according to the task description, using any language you may know.

There are several ways to generate a self-referential sequence. One very common one (the Look-and-say sequence) is to start with a positive integer, then generate the next term by concatenating enumerated groups of adjacent alike digits:

       0, 10, 1110, 3110, 132110, 1113122110, 311311222110 ...

The terms generated grow in length geometrically and never converge.

Another way to generate a self-referential sequence is to summarize the previous term.

Count how many of each alike digit there is, then concatenate the sum and digit for each of the sorted enumerated digits. Note that the first five terms are the same as for the previous sequence.

       0, 10, 1110, 3110, 132110, 13123110, 23124110 ... 

Sort the digits largest to smallest. Do not include counts of digits that do not appear in the previous term.

Depending on the seed value, series generated this way always either converge to a stable value or to a short cyclical pattern. (For our purposes, I'll use converge to mean an element matches a previously seen element.) The sequence shown, with a seed value of 0, converges to a stable value of 1433223110 after 11 iterations. The seed value that converges most quickly is 22. It goes stable after the first element. (The next element is 22, which has been seen before.)


Task

Find all the positive integer seed values under 1000000, for the above convergent self-referential sequence, that takes the largest number of iterations before converging. Then print out the number of iterations and the sequence they return. Note that different permutations of the digits of the seed will yield the same sequence. For this task, assume leading zeros are not permitted.

Seed Value(s): 9009 9090 9900

Iterations: 21 

Sequence: (same for all three seeds except for first element)
9009
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110
Related tasks


Also see



Ada

<lang Ada>with Ada.Text_IO; use Ada.Text_IO; with Ada.Containers.Vectors; procedure SelfRef is

  subtype Seed is Natural range 0 .. 1_000_000;
  subtype Num is Natural range 0 .. 10;
  type NumList is array (0 .. 10) of Num;
  package IO is new Ada.Text_IO.Integer_IO (Natural);
  package DVect is new Ada.Containers.Vectors (Positive, NumList);
  function Init (innum : Seed) return NumList is
     list : NumList := (others => 0);
     number : Seed := innum;  d : Num;
  begin
     loop
        d := Num (number mod 10);
        list (d) :=  list (d) + 1;
        number := number / 10; exit when number = 0;
     end loop; return list;
  end Init;
  procedure Next (inoutlist : in out NumList) is
     list : NumList := (others => 0);
  begin
     for i in list'Range loop
        if inoutlist (i) /= 0 then
           list (i) := list (i) + 1;
           list (inoutlist (i)) := list (inoutlist (i)) + 1;
        end if;
     end loop; inoutlist := list;
  end Next;
  procedure Show (list : NumList) is begin
     for i in reverse list'Range loop
        if list (i) > 0 then
           IO.Put (list (i), Width => 1); IO.Put (i, Width => 1);
        end if;
     end loop; New_Line;
  end Show;
  function Iterate (theseed : Seed; p : Boolean) return Natural is
     list : NumList := Init (theseed);
     vect : DVect.Vector;
  begin
     vect.Append (list);
     loop
        if p then Show (list); end if;
        Next (list); exit when vect.Contains (list); vect.Append (list);
     end loop;
     return Integer (DVect.Length (vect)) + 1;
  end Iterate;
  mseed : Seed;
  len, maxlen : Natural := 0;

begin

  for i in Seed'Range loop
     len := Iterate (i, False);
     if len > maxlen then mseed := i; maxlen := len; end if;
  end loop;
  IO.Put (maxlen, Width => 1); Put_Line (" Iterations:");
  IO.Put (mseed, Width => 1); New_Line;
  len := Iterate (mseed, True);

end SelfRef;</lang>

Output:
21 Iterations:
9009
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110

Aime

Translation of: C

<lang aime>text next(text s) {

   integer c, e, l;
   index v;
   data d;
   l = ~s;
   while (l) {
       v[-s[l -= 1]] += 1;
   }
   for (c, e in v) {
       b_form(d, "%d%c", e, -c);
   }
   return d;

}

integer depth(text s, integer i, record r) {

   integer d;
   d = 0;
   r_j_integer(d, r, s);
   if (d <= 0) {
       i += 1;
       d += d ? i : -i;
       r[s] = d;
       i = depth(next(s), i, r);
       d = r[s];
       if (d <= 0) {
           r[s] = d = i + 1;
       }
   }
   return d;

}

integer main(void) {

   integer d, e, i;
   record r;
   list l;
   d = 0;
   i = 1000000;
   while (i) {
       i -= 1;
       e = depth(itoa(i), 0, r);
       if (e == d) {
           lb_p_integer(l, i);
       } elif (d < e) {
           d = e;
           l_clear(l);
           lb_p_integer(l, i);
       }
   }
   o_("longest length is ", d, "\n");
   while (l_o_integer(i, l, 0)) {
       text s;
       o_("\n", i, "\n");
       e = d - 1;
       s = itoa(i);
       while (e) {
           o_(s = next(s), "\n");
           e -= 1;
       }
   }
   return 0;

}</lang>

Output:
longest length is 21

9900
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110

9090
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110

9009
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110

AutoHotkey

Not optimized in the slightest. <lang AutoHotkey>

The following directives and commands speed up execution
  1. NoEnv

SetBatchlines -1 ListLines Off Process, Priority,, high

iterations := 0, seed := "Seeds: "

Loop 1000000 If (newIterations := CountSubString(list := ListSequence(A_Index), "`n")) > iterations iterations := newiterations ,final := "`nIterations: " iterations+1 "`nSequence:`n`n" A_Index "`n" list ,seed := A_Index " " else if (newIterations = iterations) seed .= A_Index " " MsgBox % "Seeds: " . seed . final ListSequence(seed){ While !InStr("`n" . out, "`n" (d:=Describe(seed)) "`n") out .= d "`n", seed := d return out }

Describe(n){ Loop 10 If (t:=CountSubString(n, 10-A_Index)) out .= t . (10-A_Index) return out }

CountSubstring(fullstring, substring){

  StringReplace, junk, fullstring, %substring%, , UseErrorLevel
  return errorlevel

} </lang> Output:

Seeds: 9009 9090 9900 
Iterations: 21
Sequence:

9009
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110

BBC BASIC

<lang bbcbasic> *FLOAT64

     DIM list$(30)
     maxiter% = 0
     maxseed% = 0
     FOR seed% = 0 TO 999999
       list$(0) = STR$(seed%)
       iter% = 0
       REPEAT
         list$(iter%+1) = FNseq(list$(iter%))
         IF VALlist$(iter%+1) <= VALlist$(iter%) THEN
           FOR try% = iter% TO 0 STEP -1
             IF list$(iter%+1) = list$(try%) EXIT REPEAT
           NEXT
         ENDIF
         iter% += 1
       UNTIL FALSE
       IF iter% >= maxiter% THEN
         IF iter% > maxiter% CLS
         maxiter% = iter%
         maxseed% = seed%
         PRINT "Seed " ;seed% " has "; iter% " iterations"
       ENDIF
     NEXT
     PRINT '"Sequence:"
     number$ = STR$(maxseed%)
     FOR i% = 1 TO maxiter%
       PRINT number$
       number$ = FNseq(number$)
     NEXT
     END
     
     DEF FNseq(n$)
     LOCAL I%, o$, d%()
     DIM d%(9)
     FOR I% = 1 TO LEN(n$)
       d%(ASCMID$(n$,I%)-&30) += 1
     NEXT
     FOR I% = 9 TO 0 STEP -1
       IF d%(I%) o$ += STR$d%(I%) + STR$I%
     NEXT
     = o$</lang>

Output:

Seed 9009 has 21 iterations
Seed 9090 has 21 iterations
Seed 9900 has 21 iterations

Sequence:
9900
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110

Bracmat

<lang bracmat>( ( self-referential

 =   seq N next
   .   ( next
       =   R S d f
         .   0:?S
           &   whl
             ' (@(!arg:%@?d ?arg)&(.!d)+!S:?S)
           & :?R
           &   whl
             ' ( !S:#?f*(.?d)+?S
               & !f !d !R:?R
               )
           & str$!R
       )
     & 1:?N
     & !arg:?seq
     &   whl
       ' ( next$!arg:?arg
         & ~(!seq:? !arg ?)
         & !arg !seq:?seq
         & 1+!N:?N
         )
     & (!seq.!N)
 )

& ( Perm

 =   permutations S p
   .   :?permutations
     & ( perm
       =   prefix List original A Z p
         .     !arg:(?prefix.)
             & str$!prefix:?p
             & (!S:?+(.!p)+?|(.!p)+!S:?S)
           | !arg:(0 ?.?)&
           |   !arg:(?prefix.?List:?original)
             &   whl
               ' ( @(!List:%?A ?Z)
                 & perm$(!prefix !A.!Z)
                 & str$(!Z !A):~!original:?List
                 )
       )
     & 0:?S
     & perm$(.!arg)
     & :?permutations
     &   whl
       ' ( !S:?*(.?p)+?S
         & !p !permutations:?permutations
         )
     & !permutations
 )

& -1:?i:?max & :?seqs & whl

 ' ( 1+!i:<1000000:?i
   & ( @(!i:? %@?a >%@!a ?)
     |   self-referential$!i
       : ( ?seq
         .   ( >!max:?max&:?seqs
             | !max
             )
           &     ( "Seed Value(s):" Perm$!i
                 .   "Sequence: (same for all three seeds except for first element)

"

                     !seq
                 )
                 !seqs
             : ?seqs
         )
     | 
     )
   )

& out$("Iterations:" !max !seqs) );</lang> Output:

  Iterations:
  21
  ( Seed Value(s): 9900 9090 9009
  .   Sequence: (same for all three seeds except for first element)

      19182716152413228110
      19281716151413427110
      19281716151423228110
      29181716151413328110
      19182716151423129110
      19181716151413327110
      191726151423128110
      191716151413326110
      1916251423127110
      1916151413325110
      19251413226110
      19151423125110
      191433125110
      191413323110
      1923224110
      1923123110
      19323110
      19222110
      192210
      2920
      9900
  )

C

<lang c>#include <stdio.h>

  1. include <stdlib.h>
  2. include <string.h>

typedef struct rec_t rec_t; struct rec_t { int depth; rec_t * p[10]; };

rec_t root = {0, {0}};

  1. define USE_POOL_ALLOC
  2. ifdef USE_POOL_ALLOC /* not all that big a deal */

rec_t *tail = 0, *head = 0;

  1. define POOL_SIZE (1 << 20)

inline rec_t *new_rec() { if (head == tail) { head = calloc(sizeof(rec_t), POOL_SIZE); tail = head + POOL_SIZE; } return head++; }

  1. else
  2. define new_rec() calloc(sizeof(rec_t), 1)
  3. endif

rec_t *find_rec(char *s) { int i; rec_t *r = &root; while (*s) { i = *s++ - '0'; if (!r->p[i]) r->p[i] = new_rec(); r = r->p[i]; } return r; }

/* speed up number to string conversion */ char number[100][4]; void init() { int i; for (i = 0; i < 100; i++) sprintf(number[i], "%d", i); }

void count(char *buf) { int i, c[10] = {0}; char *s;

for (s = buf; *s; c[*s++ - '0']++);

for (i = 9; i >= 0; i--) { if (!c[i]) continue; s = number[c[i]];

*buf++ = s[0]; if ((*buf = s[1])) buf++;

*buf++ = i + '0'; }

*buf = '\0'; }

int depth(char *in, int d) { rec_t *r = find_rec(in);

if (r->depth > 0) return r->depth;

d++; if (!r->depth) r->depth = -d; else r->depth += d;

count(in); d = depth(in, d);

if (r->depth <= 0) r->depth = d + 1; return r->depth; }

int main(void) { char a[100]; int i, d, best_len = 0, n_best = 0; int best_ints[32]; rec_t *r;

init();

for (i = 0; i < 1000000; i++) { sprintf(a, "%d", i); d = depth(a, 0);

if (d < best_len) continue; if (d > best_len) { n_best = 0; best_len = d; } if (d == best_len) best_ints[n_best++] = i; }

printf("longest length: %d\n", best_len); for (i = 0; i < n_best; i++) { printf("%d\n", best_ints[i]); sprintf(a, "%d", best_ints[i]); for (d = 0; d <= best_len; d++) { r = find_rec(a); printf("%3d: %s\n", r->depth, a); count(a); } putchar('\n'); }

return 0; }</lang>

Output:
longest length: 21
9009
 21: 9009
 20: 2920
 19: 192210
 18: 19222110
 17: 19323110
 16: 1923123110
 15: 1923224110
 14: 191413323110
 13: 191433125110
 12: 19151423125110
 11: 19251413226110
 10: 1916151413325110
  9: 1916251423127110
  8: 191716151413326110
  7: 191726151423128110
  6: 19181716151413327110
  5: 19182716151423129110
  4: 29181716151413328110
  3: 19281716151423228110
  2: 19281716151413427110
  2: 19182716152413228110
  2: 19281716151413427110

9090
 21: 9090
 20: 2920
 19: 192210
 18: 19222110
 17: 19323110
 16: 1923123110
 15: 1923224110
 14: 191413323110
 13: 191433125110
 12: 19151423125110
 11: 19251413226110
 10: 1916151413325110
  9: 1916251423127110
  8: 191716151413326110
  7: 191726151423128110
  6: 19181716151413327110
  5: 19182716151423129110
  4: 29181716151413328110
  3: 19281716151423228110
  2: 19281716151413427110
  2: 19182716152413228110
  2: 19281716151413427110

9900
 21: 9900
 20: 2920
 19: 192210
 18: 19222110
 17: 19323110
 16: 1923123110
 15: 1923224110
 14: 191413323110
 13: 191433125110
 12: 19151423125110
 11: 19251413226110
 10: 1916151413325110
  9: 1916251423127110
  8: 191716151413326110
  7: 191726151423128110
  6: 19181716151413327110
  5: 19182716151423129110
  4: 29181716151413328110
  3: 19281716151423228110
  2: 19281716151413427110
  2: 19182716152413228110
  2: 19281716151413427110

C++

<lang cpp>

  1. include <iostream>
  2. include <string>
  3. include <map>
  4. include <vector>
  5. include <algorithm>

std::map<char, int> _map; std::vector<std::string> _result; size_t longest = 0;

void make_sequence( std::string n ) {

   _map.clear();
   for( std::string::iterator i = n.begin(); i != n.end(); i++ )
       _map.insert( std::make_pair( *i, _map[*i]++ ) );
   std::string z;
   for( std::map<char, int>::reverse_iterator i = _map.rbegin(); i != _map.rend(); i++ ) {
       char c = ( *i ).second + 48;
       z.append( 1, c );
       z.append( 1, i->first );
   }
   if( longest <= z.length() ) {
       longest = z.length();
       if( std::find( _result.begin(), _result.end(), z ) == _result.end() ) {
           _result.push_back( z );
           make_sequence( z );
       }
   }

} int main( int argc, char* argv[] ) {

   std::vector<std::string> tests;
   tests.push_back( "9900" ); tests.push_back( "9090" ); tests.push_back( "9009" );
   for( std::vector<std::string>::iterator i = tests.begin(); i != tests.end(); i++ ) {
       make_sequence( *i );
       std::cout  << "[" << *i << "] Iterations: " << _result.size() + 1 << "\n";
       for( std::vector<std::string>::iterator j = _result.begin(); j != _result.end(); j++ ) {
           std::cout << *j << "\n";
       }
       std::cout << "\n\n";
   }
   return 0;

} </lang>

Output:
[9900] Iterations: 21
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110

[9090] Iterations: 21
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110

[9009] Iterations: 21
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110


CoffeeScript

This example is incomplete. This code only produces one of the seeds, not all of them. Please ensure that it meets all task requirements and remove this message.

This takes less than a second to run, even though the only real optimization is to exclude integers that don't have their digits descending.

<lang coffeescript> sequence = (n) ->

 cnts = {}
 for c in n.toString()
   d = parseInt(c)
   incr cnts, d
 seq = []
 while true
   s = 
   for i in [9..0]
     s += "#{cnts[i]}#{i}" if cnts[i]
   if s in seq
     break
   seq.push s
 
   new_cnts = {}
   for digit, cnt of cnts
     incr new_cnts, cnt
     incr new_cnts, digit
   cnts = new_cnts
 seq

incr = (h, k) ->

 h[k] ?= 0
 h[k] += 1
 

descending = (n) ->

 return true if n < 10
 tens = n / 10
 return false if n % 10 > tens % 10
 descending(tens)
 

max_len = 0 for i in [1..1000000]

 if descending(i)
   seq = sequence(i)
   if seq.length > max_len
     max_len = seq.length
     max_seq = seq
     max_i = i

console.log max_i, max_seq

</lang>

 9900 ["2920", "192210", "19222110", "19323110", "1923123110", "1923224110", "191413323110", 
"191433125110", "19151423125110", "19251413226110", "1916151413325110", "1916251423127110", "1
91716151413326110", "191726151423128110", "19181716151413327110", "19182716151423129110", 
"29181716151413328110", "19281716151423228110", "19281716151413427110", "19182716152413228110"]

Clojure

<lang clojure>(defmacro reduce-with

 "simplifies form of reduce calls"
 [bindings & body]
 (assert (and (vector? bindings) (= 4 (count bindings))))
 (let [[acc init, item sequence] bindings]
   `(reduce (fn [~acc ~item] ~@body) ~init ~sequence)))

(defn digits

 "maps e.g. 2345 => [2 3 4 5]"
 [n] (->> n str seq (map #(- (int %) (int \0))) vec))

(defn dcount

 "handles case (probably impossible in this range) of digit count > 9"
 [ds] (let [c (count ds)] (if (< c 10) c (digits c))))

(defn summarize-prev

 "produces the summary sequence for a digit sequence"
 [ds]
 (->> ds (sort >) (partition-by identity) (map (juxt dcount first)) flatten vec)

(defn convergent-sequence

 "iterates summarize-prev until a duplicate is found; returns summary step sequence"
 [ds]
 (reduce-with [cur-seq [], ds (iterate summarize-prev ds)]
   (if (some #{ds} cur-seq)
     (reduced cur-seq)
     (conj cur-seq ds))))

(defn candidate-seq

 "only try an already sorted digit sequence, so we only try equivalent seeds once; 
  e.g. 23 => []; 32 => (convergent-sequence [3 2])"
 [n]
 (let [ds (digits n)]
   (if (apply >= ds) (convergent-sequence ds) [])))

(defn find-longest

 "the meat of the task; returns summary step sequence(s) of max length within the range"
 [limit]
 (reduce-with [max-seqs [[]], new-seq (map candidate-seq (range 1 limit))]
   (let [cmp (compare (-> max-seqs first count) (count new-seq))]
     (cond
       (pos? cmp) max-seqs
       (neg? cmp) [new-seq]
       (zero? cmp) (conj max-seqs new-seq)))))

(def results (find-longest 1000000))</lang>

The above code saves a lot of time by only calculating summary step sequences for one of a set of equivalent seeds: e.g. it only calculates for 4321, not for all 24 digit permutations 1234, 1243, 1324,.... So for output this creates a some extra work to reconstitute the permuted digit sequences for the result seed(s). Clojure doesn't have a standard permutations function (though there's one in the contributed library clojure.math.combinations), but the one here will serve.

<lang clojure>(defn perms

 "produce all the permutations of a finite sequence"
 [ds]
 (if (empty? ds)
   []
   (let [rotseq (for [n (range (count ds))] (concat (drop n ds) (take n ds)))]
     (reduce-with [rs [], d & ds rotseq]
       (concat rs (if (empty? ds) d (map #(cons d %) (perms ds))))))))

(doseq [result results]

 (let [seed (first result)
       seeds (->> seed perms (map vec) set sort (remove (comp zero? first)))]
   (apply println "Seed value(s):" (map #(apply str %) seeds)))))
 (println)
 (println "Iterations:" (count result))
 (println)
 (println "Sequence:")
 (doseq [ds result]
   (println (apply str ds))))</lang>

Common Lisp

Doesn't do cache, and takes forever. <lang lisp>(defun count-and-say (str)

  (let* ((s (sort (map 'list #'identity str) #'char>))

(out (list (first s) 0)))

    (loop for x in s do

(if (char= x (first out)) (incf (second out)) (setf out (nconc (list x 1) out))))

    (format nil "~{~a~^~}" (nreverse out))))

(defun ref-seq-len (n &optional doprint)

 (let ((s (format nil "~d" n)) hist)
   (loop (push s hist)

(if doprint (format t "~a~%" s)) (setf s (count-and-say s)) (loop for item in hist for i from 0 to 2 do (if (string= s item) (return-from ref-seq-len (length hist)))))))

(defun find-longest (top)

 (let (nums (len 0))
 (dotimes (x top)
   (let ((l (ref-seq-len x)))
     (if (> l len) (setf len l nums nil))
     (if (= l len) (push x nums))))
 (list nums len)))

(let ((r (find-longest 1000000)))

 (format t "Longest: ~a~%" r)
 (ref-seq-len (first (first r)) t))</lang>output<lang>Longest: ((9900 9090 9009) 21)

9900 2920 192210 19222110 19323110 1923123110 1923224110 191413323110 191433125110 19151423125110 19251413226110 1916151413325110 1916251423127110 191716151413326110 191726151423128110 19181716151413327110 19182716151423129110 29181716151413328110 19281716151423228110 19281716151413427110 19182716152413228110</lang>

D

Slow High-level Version

Translation of: Ruby

<lang d>import std.stdio, std.algorithm, std.conv;

string[] selfReferentialSeq(string n, string[] seen=[]) nothrow {

   __gshared static string[][string] cache;
   if (n in cache)
       return cache[n];
   if (seen.canFind(n))
       return [];
   int[10] digit_count;
   foreach (immutable d; n)
       digit_count[d - '0']++;
   string term;
   foreach_reverse (immutable d; 0 .. 10)
       if (digit_count[d] > 0)
           term ~= text(digit_count[d], d);
   return cache[n] = [n] ~ selfReferentialSeq(term, [n] ~ seen);

}

void main() {

   enum int limit = 1_000_000;
   int max_len;
   int[] max_vals;
   foreach (immutable n; 1 .. limit) {
       const seq = n.text().selfReferentialSeq();
       if (seq.length > max_len) {
           max_len = seq.length;
           max_vals = [n];
       } else if (seq.length == max_len)
           max_vals ~= n;
   }
   writeln("values: ", max_vals);
   writeln("iterations: ", max_len);
   writeln("sequence:");
   foreach (const idx, const val; max_vals[0].text.selfReferentialSeq)
       writefln("%2d %s", idx + 1, val);

}</lang>

Output:
values: [9009, 9090, 9900]
iterations: 21
sequence:
 1 9009
 2 2920
 3 192210
 4 19222110
 5 19323110
 6 1923123110
 7 1923224110
 8 191413323110
 9 191433125110
10 19151423125110
11 19251413226110
12 1916151413325110
13 1916251423127110
14 191716151413326110
15 191726151423128110
16 19181716151413327110
17 19182716151423129110
18 29181716151413328110
19 19281716151423228110
20 19281716151413427110
21 19182716152413228110

More Efficient Version

Translation of: Python

<lang d>import std.range, std.algorithm;

struct Permutations(bool doCopy=true, T) {

   T[] items;
   int r;
   bool stopped;
   int[] indices, cycles;
   static if (!doCopy)
       T[] result;
   this(T)(T[] items, int r=-1) pure nothrow @safe {
       this.items = items;
       immutable int n = items.length;
       if (r < 0)
           r = n;
       this.r = r;
       immutable n_minus_r = n - r;
       if (n_minus_r < 0) {
           this.stopped = true;
       } else {
           this.stopped = false;
           this.indices = n.iota.array;
           //this.cycles = iota(n, n_minus_r, -1).array; // Not nothrow.
           this.cycles = iota(n_minus_r + 1, n + 1).retro.array;
       }
       static if (!doCopy)
           result = new T[r];
   }
   @property bool empty() const pure nothrow @safe @nogc {
       return this.stopped;
   }
   static if (doCopy) {
       @property T[] front() const pure nothrow @safe {
           assert(!this.stopped);
           auto result = new T[r];
           foreach (immutable i, ref re; result)
               re = items[indices[i]];
           return result;
       }
   } else {
       @property T[] front() pure nothrow @safe @nogc {
           assert(!this.stopped);
           foreach (immutable i, ref re; this.result)
               re = items[indices[i]];
           return this.result;
       }
   }
   void popFront() pure nothrow /*@safe*/ @nogc {
       assert(!this.stopped);
       int i = r - 1;
       while (i >= 0) {
           immutable int j = cycles[i] - 1;
           if (j > 0) {
               cycles[i] = j;
               indices[i].swap(indices[$ - j]);
               return;
           }
           cycles[i] = indices.length - i;
           immutable int n1 = indices.length - 1;
           assert(n1 >= 0);
           immutable int num = indices[i];
           // copy isn't @safe.
           indices[i + 1 .. n1 + 1].copy(indices[i .. n1]);
           indices[n1] = num;
           i--;
       }
       this.stopped = true;
   }

}

Permutations!(doCopy, T) permutations(bool doCopy=true, T)

                                    (T[] items, int r=-1)

pure nothrow @safe {

   return Permutations!(doCopy, T)(items, r);

}

// ---------------------------------

import std.stdio, std.typecons, std.conv, std.algorithm, std.array,

      std.exception, std.string;

enum maxIters = 1_000_000;

string A036058(in string ns) pure nothrow @safe {

   return ns.representation.group.map!(t => t[1].text ~ char(t[0])).join;

}

int A036058_length(bool doPrint=false)(string numberString="0") {

   int iterations = 1;
   int queueIndex;
   string[3] lastThree;
   while (true) {
       static if (doPrint)
           writefln("  %2d %s", iterations, numberString);
       numberString = numberString
                      .dup
                      .representation
                      .sort()
                      .release
                      .assumeUTF;
       if (lastThree[].canFind(numberString))
           break;
       assert(iterations < maxIters);
       lastThree[queueIndex] = numberString;
       numberString = numberString.A036058;
       iterations++;
       queueIndex++;
       queueIndex %= 3;
   }
   return iterations;

}

Tuple!(int,int[]) max_A036058_length(R)(R startRange = 11.iota) {

   bool[string] alreadyDone;
   auto max_len = tuple(-1, (int[]).init);
   foreach (n; startRange) {
       immutable sns = n
                       .to!(char[])
                       .representation
                       .sort()
                       .release
                       .assumeUTF;
       if (sns !in alreadyDone) {
           alreadyDone[sns] = true;
           const size = sns.A036058_length;
           if (size > max_len[0])
               max_len = tuple(size, [n]);
           else if (size == max_len[0])
               max_len[1] ~= n;
       }
   }
   return max_len;

}

void main() {

   //const (lenMax, starts) = maxIters.iota.max_A036058_length;
   const lenMax_starts = maxIters.iota.max_A036058_length;
   immutable lenMax = lenMax_starts[0];
   const starts = lenMax_starts[1];
   // Expand:
   int[] allStarts;
   foreach (immutable n; starts) {
       bool[string] set;
       foreach (const k; permutations!false(n.to!(char[]), 4))
           if (k[0] != '0')
               set[k.idup] = true;
       //allStarts ~= set.byKey.to!(int[]);
       allStarts ~= set.byKey.map!(to!int).array;
   }
   allStarts = allStarts.sort().filter!(x => x < maxIters).array;
   writefln("The longest length, followed by the number(s) with the

longest sequence length for starting sequence numbers below maxIters are: Iterations = %d and sequence-starts = %s.", lenMax, allStarts);

   writeln("Note that only the first of any sequences with the same

digits is printed below. (The others will differ only in their first term).");

   foreach (immutable n; starts) {
       writeln;
       A036058_length!true(n.text);
   }

}</lang> The output is similar to the Python entry.

Faster Low-level Version

Translation of: C

From the C version, with a memory pool for a faster tree allocation. <lang d>import core.stdc.stdio, core.stdc.stdlib;

struct MemoryPool(T, int MAX_BLOCK_BYTES = 1 << 17) {

   static assert(!is(T == class),
                 "MemoryPool is designed for native data.");
   static assert(MAX_BLOCK_BYTES >= 1,
                 "MemoryPool: MAX_BLOCK_BYTES must be >= 1 bytes.");
   static assert(MAX_BLOCK_BYTES >= T.sizeof,
                 "MemoryPool: MAX_BLOCK_BYTES must be" ~
                 " bigger than a T.");
   static if (T.sizeof * 5 > MAX_BLOCK_BYTES)
       pragma(msg, "MemoryPool: Block is very small.");
   alias Block = T[MAX_BLOCK_BYTES / T.sizeof];
   static __gshared Block*[] blocks;
   static __gshared T* nextFree, lastFree;
   static T* newItem() nothrow {
       if (nextFree >= lastFree) {
           blocks ~= cast(Block*)calloc(1, Block.sizeof);
           if (blocks[$ - 1] == null)
               exit(1);
           nextFree = blocks[$ - 1].ptr;
           lastFree = nextFree + Block.length;
       }
       return nextFree++;
   }

// static void freeAll() nothrow { // foreach (blockPtr; blocks) // free(blockPtr); // blocks.length = 0; // nextFree = null; // lastFree = null; // } }

struct Rec { // Tree node

   int length;
   Rec*[10] p;

}

__gshared int nNodes; __gshared Rec* rec_root; __gshared MemoryPool!Rec recPool;

Rec* findRec(char* s, Rec* root) nothrow {

   int c;
   Rec* next;
   while (true) {
       c = *s;
       s++;
       if (!c)
           break;
       c -= '0';
       next = root.p[c];
       if (!next) {
           nNodes++;
           next = recPool.newItem;
           root.p[c] = next;
       }
       root = next;
   }
   return root;

}

void nextNum(char* s) nothrow @nogc {

   int[10] cnt;
   for (int i = 0; s[i]; i++)
       cnt[s[i] - '0']++;
   foreach_reverse (i; 0 .. 10) {
       if (!cnt[i])
           continue;
       s += sprintf(s, "%d%c", cnt[i], i + '0');
   }

}

int getLen(char* s, int depth) nothrow {

   auto r = findRec(s, rec_root);
   if (r.length > 0)
       return r.length;
   depth++;
   if (!r.length)
       r.length = -depth;
   else
       r.length += depth;
   nextNum(s);
   depth = 1 + getLen(s, depth);
   if (r.length <= 0)
       r.length = depth;
   return r.length;

}

void main() nothrow {

   enum MAXN = 1_000_000;
   int[100] longest;
   int nLongest, ml;
   char[32] buf;
   rec_root = recPool.newItem();
   foreach (immutable i; 0 .. MAXN) {
       sprintf(buf.ptr, "%d", i);
       int l = getLen(buf.ptr, 0);
       if (l < ml)
           continue;
       if (l > ml) {
           nLongest = 0;
           ml = l;
       }
       longest[nLongest] = i;
       nLongest++;
   }
   printf("seq leng: %d\n\n", ml);
   foreach (immutable i; 0 .. nLongest) {
       sprintf(buf.ptr, "%d", longest[i]);
       // print len+1 so we know repeating starts from when
       foreach (immutable l; 0 .. ml + 1) {
           printf("%2d: %s\n", getLen(buf.ptr, 0), buf.ptr);
           nextNum(buf.ptr);
       }
       printf("\n");
   }
   printf("Allocated %d Rec tree nodes.\n", nNodes);
   //recPool.freeAll;

}</lang> Faster than the C entry, run-time is about 1.16 seconds using the dmd compiler (about 1.5 without memory pool). Same output as the C entry.

EchoLisp

Extra credit: searching up to 1e+10 does not find a longer sequence.

<lang scheme> (lib 'hash) (lib 'list) ;; permutations

(define H (make-hash))

G R A P H
generate 'normalized' starter vectors D[i] = number of digits 'i' (0 <=i < 10)
reduce graph size
9009, 9900 .. will be generated once : vector #(2 0 0 0 0 0 0 0 0 2)

(define (generate D dstart ndigits (sd 0)) (when (> ndigits 0) (set! sd (vector-ref D dstart)) ;; save before recurse (for ((i (in-range 0 (1+ ndigits)))) #:continue (and ( = i 0) (> dstart 0)) (vector-set! D dstart i) (sequence D) ;; sequence length from D (for ((j (in-range (1+ dstart) 10))) (generate D j (- ndigits i)))) (vector-set! D dstart sd))) ;; restore


compute follower of D (at most 99 same digits)

(define (dnext D (dd 0)) (define N (make-vector 10)) (for ((d D) (i 10)) #:continue (zero? d) (vector-set! N i (1+ (vector-ref N i))) (if (< d 10) (vector-set! N d (1+ (vector-ref N d))) ;; d < 9 (begin (set! dd (modulo d 10)) (vector-set! N dd (1+ (vector-ref N dd))) (set! dd (quotient d 10)) (vector-set! N dd (1+ (vector-ref N dd)))))) N)


update all nodes in same sequence
seq-length (next D) = 1 - seq-length(D)

(define (sequence D) (define (dists D d) (unless (hash-ref H D) (hash-set H D d) (dists (dnext D ) (1- d))))

(unless (hash-ref H D) (dists D (sequence-length D))))

sequence length from D
stops on loop found (node N)

(define (sequence-length D ) (define (looper N looplg depth) ;; looper 2 : a b a (when ( > depth 0) (hash-set H N looplg) (looper (dnext N) looplg (1- depth))))

(define followers (make-hash)) (define N (dnext D)) (define seqlg 0) (define looplg 0)

(hash-set followers D 0)

(set! seqlg (for ((lg (in-naturals 1 ))) #:break (hash-ref H N) => (+ lg (hash-ref H N)) ;; already known #:break (hash-ref followers N) => lg ;; loop found (hash-set followers N lg) (set! N (dnext N))))

update nodes in loop
same seq-length

(when (hash-ref followers N) ;; loop found (set! looplg ( - seqlg (hash-ref followers N))) (looper N looplg looplg))

seqlg )

O U T P U T
backwards from D - normalized vector - to numbers (as strings)

(define (starters D) (define (not-leading-zero list) (!zero? (first list))) (map list->string (filter not-leading-zero (make-set (permutations (for/fold (acc null) ((d D) (i 10)) #:continue (zero? d) (append acc (for/list ((j d)) i))))))))


printing one node

(define (D-print D) (set! D (reverse (vector->list D))) (for/string ( (d D) (i (in-range 9 -1 -1))) #:continue (zero? d) (string-append d i)))

print graph contents

(define (print-sequence D) (writeln 1 (starters D)) (writeln 2 (D-print D )) (for ((i (in-range 1 (hash-ref H D)))) (writeln (+ i 2) (D-print (setv! D (dnext D))))))


TA S K

(define (task (n 6) (verbose #t)) (generate (make-vector 10) 0 n) (define seqmax (apply max (hash-values H))) (when verbose (for ((kv H)) #:continue (!= (rest kv ) seqmax) (print-sequence (first kv))))

(writeln (expt 10 n) '--> 'max-sequence= (1+ seqmax) 'nodes= (length (hash-values H))))

</lang>

Output:

<lang scheme> (task 6) 1 (9009 9090 9900) 2 2920 3 192210 4 19222110 5 19323110 6 1923123110 7 1923224110 8 191413323110 9 191433125110 10 19151423125110 11 19251413226110 12 1916151413325110 13 1916251423127110 14 191716151413326110 15 191726151423128110 16 19181716151413327110 17 19182716151423129110 18 29181716151413328110 19 19281716151423228110 20 19281716151413427110 21 19182716152413228110 1000000 --> max-sequence= 21 nodes= 10926

(task 7 #f) 10000000 --> max-sequence= 21 nodes= 23432 (task 8 #f) 100000000 --> max-sequence= 21 nodes= 47359 (task 9 #f) 1000000000 --> max-sequence= 21 nodes= 97455 (task 10 #f) 10000000000 --> max-sequence= 21 nodes= 188493

</lang>

Eiffel

Only checks numbers where digits are in ascending order. Digits with trailing zeros have to be treated as ascending numbers (special case). Calculates all the permutations in the end. <lang Eiffel> class SELF_REFERENTIAL_SEQUENCE

create make

feature

make local i: INTEGER length, max: INTEGER_64 do create seed_value.make create sequence.make (25) create permuted_values.make from i := 1 until i > 1000000 loop length := check_length (i.out) if length > max then max := length seed_value.wipe_out seed_value.extend (i) elseif length = max then seed_value.extend (i) end sequence.wipe_out i := next_ascending (i).to_integer end io.put_string ("Maximal length: " + max.out) io.put_string ("%NSeed Value: %N") across seed_value as s loop permute (s.item.out, 1) end across permuted_values as p loop io.put_string (p.item + "%N") end io.put_string ("Sequence:%N") max := check_length (seed_value [1].out) across sequence as s loop io.put_string (s.item) io.new_line end end

next_ascending (n: INTEGER_64): STRING -- Next number with ascending digits after 'n'. -- Numbers with trailing zeros are treated as ascending numbers. local st: STRING first, should_be, zero: STRING i: INTEGER do create Result.make_empty create zero.make_empty st := (n + 1).out from until st.count < 2 loop first := st.at (1).out if st [2] ~ '0' then from i := 3 until i > st.count loop zero.append ("0") i := i + 1 end Result.append (first + first + zero) st := "" else should_be := st.at (2).out if first > should_be then should_be := first end st.remove_head (2) st.prepend (should_be) Result.append (first) end end if st.count > 0 then Result.append (st [st.count].out) end end

feature {NONE}

seed_value: SORTED_TWO_WAY_LIST [INTEGER]

permuted_values: SORTED_TWO_WAY_LIST [STRING]

sequence: ARRAYED_LIST [STRING]

permute (a: STRING; k: INTEGER) -- All permutations of 'a'. require count_positive: a.count > 0 k_valid_index: k > 0 local t: CHARACTER b: STRING found: BOOLEAN do across permuted_values as p loop if p.item ~ a then found := True end end if k = a.count and a [1] /= '0' and not found then create b.make_empty b.deep_copy (a) permuted_values.extend (b) else across k |..| a.count as c loop t := a [k] a [k] := a [c.item] a [c.item] := t permute (a, k + 1) t := a [k] a [k] := a [c.item] a [c.item] := t end end end

check_length (i: STRING): INTEGER_64 -- Length of the self referential sequence starting with 'i'. local found: BOOLEAN j: INTEGER s: STRING do create s.make_from_string (i) from until found loop sequence.extend (s) s := next (s) from j := sequence.count - 1 until j < 1 loop if sequence [j] ~ s then found := True end j := j - 1 end end Result := sequence.count end

next (n: STRING): STRING -- Next item after 'n' in a self referential sequence. local i, count: INTEGER counter: ARRAY [INTEGER] do create counter.make_filled (0, 0, 9) create Result.make_empty from i := 1 until i > n.count loop count := n [i].out.to_integer counter [count] := counter [count] + 1 i := i + 1 end from i := 9 until i < 0 loop if counter [i] > 0 then Result.append (counter [i].out + i.out) end i := i - 1 end end

end </lang>

Output:
Maximal length: 21
Seed Value:
9009
9090
9900 
Sequence:
9009
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110

Factor

Like the Eiffel example, this program saves time by considering only seed numbers whose digits are in increasing order (zeros are exempt). This ensures that extra permutations of a number are not searched, as they produce equivalent sequences (aside from the first element). For instance,   21   is the first number to be skipped because it's a permutation of   12. <lang factor>USING: assocs grouping io kernel math math.combinatorics math.functions math.ranges math.statistics math.text.utils prettyprint sequences sets ; IN: rosetta-code.self-referential-sequence

next-term ( seq -- seq ) histogram >alist concat ;

! Output the self-referential sequence, given a seed value.

srs ( seq -- seq n )
   V{ } clone [ 2dup member? ] [ 2dup push [ next-term ] dip ]
   until nip dup length ;
digit-before? ( m n -- ? ) dup zero? [ 2drop t ] [ <= ] if ;

! The numbers from 1 to n sans permutations.

candidates ( n -- seq )
   [1,b] [ 1 digit-groups reverse ] map
   [ [ digit-before? ] monotonic? ] filter ;
max-seed ( n -- seq ) candidates [ srs nip ] supremum-by ;
max-seeds ( n -- seq )
   max-seed <permutations> members [ first zero? ] reject ;
digits>number ( seq -- n ) [ 10 swap ^ * ] map-index sum ;
>numbers ( seq -- seq ) [ digits>number ] map ;
main ( -- )
   "Seed value(s): " write
   1,000,000 max-seeds
   [ [ reverse ] map >numbers . ]
   [ first srs ] bi
   "Iterations: " write .
   "Sequence:" print >numbers . ;

MAIN: main</lang>

Output:
Seed value(s): V{ 9009 9090 9900 }
Iterations: 21
Sequence:
V{
    9009
    2920
    221910
    22192110
    19323110
    1923123110
    1923224110
    191413323110
    191433125110
    19151423125110
    19251413226110
    1916151413325110
    1916251423127110
    191716151413326110
    191726151423128110
    19181716151413327110
    19182716151423129110
    29181716151413328110
    19281716151423228110
    19281716151413427110
    19182716152413228110
}

Go

Brute force <lang go>package main

import (

   "fmt"
   "strconv"

)

func main() {

   var maxLen int
   var seqMaxLen [][]string
   for n := 1; n < 1e6; n++ {
       switch s := seq(n); {
       case len(s) == maxLen:
           seqMaxLen = append(seqMaxLen, s)
       case len(s) > maxLen:
           maxLen = len(s)
           seqMaxLen = [][]string{s}
       }
   }
   fmt.Println("Max sequence length:", maxLen)
   fmt.Println("Sequences:", len(seqMaxLen))
   for _, seq := range seqMaxLen {
       fmt.Println("Sequence:")
       for _, t := range seq {
           fmt.Println(t)
       }
   }

}

func seq(n int) []string {

   s := strconv.Itoa(n)
   ss := []string{s}
   for {
       dSeq := sortD(s)
       d := dSeq[0]
       nd := 1
       s = ""
       for i := 1; ; i++ {
           if i == len(dSeq) {
               s = fmt.Sprintf("%s%d%c", s, nd, d)
               break
           }
           if dSeq[i] == d {
               nd++
           } else {
               s = fmt.Sprintf("%s%d%c", s, nd, d)
               d = dSeq[i]
               nd = 1
           }
       }
       for _, s0 := range ss {
           if s == s0 {
               return ss
           }
       }
       ss = append(ss, s)
   }
   panic("unreachable")

}

func sortD(s string) []rune {

   r := make([]rune, len(s))
   for i, d := range s {
       j := 0
       for ; j < i; j++ {
           if d > r[j] {
               copy(r[j+1:], r[j:i])
               break
           }
       }
       r[j] = d
   }
   return r

}</lang> Output:

Max sequence length: 21
Sequences: 3
Sequence:
9009
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110
Sequence:
9090
2920
...
19182716152413228110
Sequence:
9900
2920
...
19182716152413228110

Groovy

Solution: <lang groovy>Number.metaClass.getSelfReferentialSequence = {

 def number = delegate as String; def sequence = []
 while (!sequence.contains(number)) {
   sequence << number
   def encoded = new StringBuilder()
   ((number as List).sort().join().reverse() =~ /(([0-9])\2*)/).each { matcher, text, digit ->
     encoded.append(text.size()).append(digit)
   }
   number = encoded.toString()
 }
 sequence

}

def maxSeqSize = { List values ->

 values.inject([seqSize: 0, seeds: []]) { max, n ->
   if (n % 100000 == 99999) println 'HT'
   else if (n % 10000 == 9999) print '.'
   def seqSize = n.selfReferentialSequence.size()
   switch (seqSize) {
     case max.seqSize: max.seeds << n
     case { it < max.seqSize }: return max
     default: return [seqSize: seqSize, seeds: [n]]
   }
 }

}</lang> Test: <lang groovy>def max = maxSeqSize(0..<1000000)

println "\nLargest sequence size among seeds < 1,000,000\n" println "Seeds: ${max.seeds}\n" println "Size: ${max.seqSize}\n" println "Sample sequence:" max.seeds[0].selfReferentialSequence.each { println it }</lang> Output:

Largest sequence size among seeds < 1,000,000

Seeds: [9009, 9090, 9900]

Size: 21

Sample sequence:
9009
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110

Haskell

Brute force and quite slow: <lang haskell>import Data.Set (Set, member, insert, empty) import Data.List (group, sort)

step :: String -> String step = concatMap (\list -> show (length list) ++ [head list]) . group . sort

findCycle :: (Ord a) => [a] -> [a] findCycle = aux empty where aux set (x : xs) | x `member` set = [] | otherwise = x : aux (insert x set) xs

select :: a -> a select = snd . foldl (\(len, acc) xs -> case len `compare` length xs of LT -> (length xs, [xs]) EQ -> (len, xs : acc) GT -> (len, acc)) (0, [])

main :: IO () main = mapM_ (mapM_ print) $ -- Print out all the numbers select $ -- find the longest ones map findCycle $ -- run the sequences until there is a repeat map (iterate step) $ -- produce the sequence map show -- turn the numbers into digits [1..1000000] -- The input seeds </lang>

Icon and Unicon

<lang Icon>link printf

procedure main() every L := !longestselfrefseq(1000000) do

  every printf(" %i : %i\n",i := 1 to *L,L[i])

end


procedure longestselfrefseq(N) #: find longest sequences from 1 to N

mlen := 0 every L := selfrefseq(n := 1 to N) do {

  if mlen <:= *L then 
     ML := [L] 
  else if mlen = *L then 
     put(ML,L)
  }

return ML end

procedure selfrefseq(n) #: return list of sequence oeis:A036058 for seed n S := set() L := [] every p := seq(1) do

  if member(S,n) then return L   # ends at a repeat 
  else {
     insert(S,n)
     put(L,n)
     n := nextselfrefseq(n)
     }

end

procedure nextselfrefseq(n) #: return next element of sequence oeis:A036058 every (Counts := table(0))[integer(!n)] +:= 1 # count digits every (n := "") ||:= (0 < Counts[i := 9 to 0 by -1]) || i # assemble counts return integer(n) end</lang>

printf.icn provides printf, sprintf, fprintf, etc.

Sample of Output:

 1 : 9009
 2 : 2920
 3 : 192210
 4 : 19222110
 5 : 19323110
 6 : 1923123110
 7 : 1923224110
 8 : 191413323110
 9 : 191433125110
 10 : 19151423125110
 11 : 19251413226110
 12 : 1916151413325110
 13 : 1916251423127110
 14 : 191716151413326110
 15 : 191726151423128110
 16 : 19181716151413327110
 17 : 19182716151423129110
 18 : 29181716151413328110
 19 : 19281716151423228110
 20 : 19281716151413427110
 21 : 19182716152413228110
 1 : 9090
 2 : 2920
 ... (manually removed, same as above)
 21 : 19182716152413228110
 1 : 9900
 2 : 2920
 ... (manually removed, same as above)
 21 : 19182716152413228110

The following (admittedly overdense) version produces output matching the problem statement and avoids repeating sequences that arise from 'similar' seeds. It does not assume that only one equivalence class of similar seeds exists at the maximum sequence length. As with the first example, it works in both Icon and Unicon. <lang Unicon> link strings # to get csort()

procedure main(A)

   limit := A[1] | 1000000             # Allow alternate limit
   mSq := 0
   # May have multiple 'unique' sequence sets (unrelated seeds) so use table
   every s := [n := 1 to limit, sequence(n)] do {
       if mSq <:= *s[2] then mT := table()   # new max, start over
       if mSq  == *s[2] then insert((/mT[n := csort(n)] := set()) | mT[n],s)
       }
   dumpSequences(mT)

end

procedure sequence(n) # produce sequence of SDS with seed n

   every (repeats := [], iter := seq(), put(repeats, n)) do
       if (n := nElem(n)) == !repeats then return repeats   # Converged

end

procedure nElem(n) # given n, produce its self-description

   every (n1 := "", c := !cset(n)) do 
       (every (d := 0) +:= (upto(c, n),1)) | (n1 := d||c||n1)
   return n1

end

procedure dumpSequences(seqTab) # Show each 'unique' sequence in table

   every writes("Seeds:" | (!!seqTab)[1], " ")
   write("\n\nIterations: ",*(!!seqTab)[2])
   every s := !seqTab do (write() & every write(!(!s\1)[2]))

end </lang> Output with limit = 1000000:

Seeds: 9009 9090 9900 

Iterations: 21

9009
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110

J

Given: <lang j>require'stats' digits=: 10&#.inv"0 :. ([: ".@; (<'x'),~":&.>) summar=: (#/.~ ,@,. ~.)@\:~&.digits sequen=: ~.@(, summar@{:)^:_ values=: ~. \:~&.digits i.1e6 allvar=: [:(#~(=&<.&(10&^.) >./))@~.({~ perm@#)&.(digits"1) </lang>

The values with the longest sequence are:

<lang j> ;allvar&.> values #~ (= >./) #@sequen"0 values 9900 9090 9009

  # sequen 9900

21

  ,.sequen 9900
               9900
               2920
             192210
           19222110
           19323110
         1923123110
         1923224110
       191413323110
       191433125110
     19151423125110
     19251413226110
   1916151413325110
   1916251423127110
 191716151413326110
 191726151423128110

19181716151413327110 19182716151423129110 29181716151413328110 19281716151423228110 19281716151413427110 19182716152413228110</lang>

Notes:

digits is an invertible function that maps from a number to a sequence of digits and back where the inverse transform converts numbers to strings, concatenates them, and then back to a number.

<lang j> digits 321 3 2 1

  digits inv 34 5

345</lang>

summar computes the summary successor.

<lang j> summar 0 1 2 10 11 12</lang>

sequen computes the complete non-repeating sequence of summary successors

The computation for values could have been made much more efficient. Instead, though, all one million integers have their digits sorted in decreasing order, and then the unique set of them is found.

Finally, allvar finds all variations of a number which would have the same summary sequence based on the permutations of that number's digits.

Java

Works with: Java version 8

<lang java>import java.util.*; import java.util.concurrent.ConcurrentHashMap; import java.util.stream.IntStream;

public class SelfReferentialSequence {

   static Map<String, Integer> cache = new ConcurrentHashMap<>(10_000);
   public static void main(String[] args) {
       Seeds res = IntStream.range(0, 1000_000)
               .parallel()
               .mapToObj(n -> summarize(n, false))
               .collect(Seeds::new, Seeds::accept, Seeds::combine);
       System.out.println("Seeds:");
       res.seeds.forEach(e -> System.out.println(Arrays.toString(e)));
       System.out.println("\nSequence:");
       summarize(res.seeds.get(0)[0], true);
   }
   static int[] summarize(int seed, boolean display) {
       String n = String.valueOf(seed);
       String k = Arrays.toString(n.chars().sorted().toArray());
       if (!display && cache.get(k) != null)
           return new int[]{seed, cache.get(k)};
       Set<String> seen = new HashSet<>();
       StringBuilder sb = new StringBuilder();
       int[] freq = new int[10];
       while (!seen.contains(n)) {
           seen.add(n);
           int len = n.length();
           for (int i = 0; i < len; i++)
               freq[n.charAt(i) - '0']++;
           sb.setLength(0);
           for (int i = 9; i >= 0; i--) {
               if (freq[i] != 0) {
                   sb.append(freq[i]).append(i);
                   freq[i] = 0;
               }
           }
           if (display)
               System.out.println(n);
           n = sb.toString();
       }
       cache.put(k, seen.size());
       return new int[]{seed, seen.size()};
   }
   static class Seeds {
       int largest = Integer.MIN_VALUE;
       List<int[]> seeds = new ArrayList<>();
       void accept(int[] s) {
           int size = s[1];
           if (size >= largest) {
               if (size > largest) {
                   largest = size;
                   seeds.clear();
               }
               seeds.add(s);
           }
       }
       void combine(Seeds acc) {
           acc.seeds.forEach(this::accept);
       }
   }

}</lang>

Seeds:
[9009, 21]
[9090, 21]
[9900, 21]

Sequence:
9009
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110

jq

<lang jq># Given any array, produce an array of [item, count] pairs for each run. def runs:

 reduce .[] as $item
   ( [];
     if . == [] then [ [ $item, 1] ] 
     else  .[length-1] as $last
           | if $last[0] == $item
             then (.[0:length-1] + [ [$item, $last[1] + 1] ] )
             else . + $item, 1
             end
     end ) ;
  1. string to string

def next_self_referential:

 def runs2integer: # input is an array as produced by runs, 
   # i.e. an array of [count, n] pairs, where count is an int,
   # and n is an "exploded" digit
   reduce .[] as $pair
     (""; . + ($pair[1] | tostring) + ([$pair[0]]|implode) ) ;
   
 explode | sort | reverse | runs | runs2integer;
  1. Given an integer as a string,
  2. compute the entire sequence (of strings) to convergence:

def sequence_of_self_referentials:

 def seq:
    . as $ary
    | (.[length-1] | next_self_referential) as $next
    | if ($ary|index($next)) then $ary
      else $ary + [$next] | seq
      end;
 [.] | seq;

def maximals(n):

 def interesting:
   tostring | (. == (explode | sort | reverse | implode));
 
 reduce range(0;n) as $i
   ([[], 0];  # maximalseeds, length
     if ($i | interesting) then
       ($i|tostring|sequence_of_self_referentials|length) as $length
       | if .[1] == $length then [ .[0] + [$i], $length]
         elif .[1] < $length then [ [$i], $length]
         else .
         end
     else .
     end );

def task(n):

 maximals(n) as $answer
 | "The maximal length to convergence for seeds up to \(n) is \($answer[1]).",
   "The corresponding seeds are the allowed permutations",
   "of the representative number(s): \($answer[0][])",
   "For each representative seed, the self-referential sequence is as follows:",
   ($answer[0][] | tostring
    | ("Representative: \(.)",
       "Self-referential sequence:",

(sequence_of_self_referentials | map(tonumber))))

   ;

task(1000000)</lang>

Output:

<lang sh>$ jq -n -r -f Self_referential_sequence.jq The maximal length to convergence for seeds up to 1000000 is 21. The corresponding seeds are the allowed permutations of the representative number(s): 9900 For each representative seed, the self-referential sequence is as follows: Representative: 9900 Self-referential sequence: [

 9900,
 2920,
 192210,
 19222110,
 19323110,
 1923123110,
 1923224110,
 191413323110,
 191433125110,
 19151423125110,
 19251413226110,
 1916151413325110,
 1916251423127110,
 191716151413326100,
 191726151423128100,
 19181716151413326000,
 19182716151423128000,
 29181716151413330000,
 19281716151423230000,
 19281716151413430000,
 19182716152413230000
]</lang>

Julia

<lang julia>const seen = Dict{Vector{Char}, Vector{Char}}()

function findnextterm(prevterm)

   counts = Dict{Char, Int}()
   reversed = Vector{Char}()
   for c in prevterm
       if !haskey(counts, c)
           counts[c] = 0
       end
       counts[c] += 1
   end
   for c in sort(collect(keys(counts)))
       if counts[c] > 0
           push!(reversed, c)
           if counts[c] == 10
               push!(reversed, '0'); push!(reversed, '1')
           else
               push!(reversed, Char(UInt8(counts[c]) + UInt8('0')))
           end 
       end
   end
   reverse(reversed)

end

function findsequence(seedterm)

   term = seedterm
   sequence = Vector{Vector{Char}}()
   while !(term in sequence)
       push!(sequence, term)
       if !haskey(seen, term)
           nextterm = findnextterm(term)
           seen[term] = nextterm
       end
       term = seen[term]
   end
   return sequence

end

function selfseq(maxseed)

   maxseqlen = -1
   maxsequences = Vector{Pair{Int, Vector{Char}}}()
   for i in 1:maxseed
       seq = findsequence([s[1] for s in split(string(i), "")])
       seqlen = length(seq)
       if seqlen > maxseqlen
           maxsequences = [Pair(i, seq)]
           maxseqlen = seqlen
       elseif seqlen == maxseqlen
           push!(maxsequences, Pair(i, seq))
       end
   end
   println("The longest sequence length is $maxseqlen.")
   for p in maxsequences
       println("\n Seed: $(p[1])")
       for seq in p[2]
           println("     ", join(seq, ""))
       end
   end

end

selfseq(1000000)

</lang>

Output:

The longest sequence length is 21.

Seed: 9009
    9009
    2920
    192210
    19222110
    19323110
    1923123110
    1923224110
    191413323110
    191433125110
    19151423125110
    19251413226110
    1916151413325110
    1916251423127110
    191716151413326110
    191726151423128110
    19181716151413327110
    19182716151423129110
    29181716151413328110
    19281716151423228110
    19281716151413427110
    19182716152413228110
Seed: 9090
    9090
    2920
    192210
    19222110
    19323110
    1923123110
    1923224110
    191413323110
    191433125110
    19151423125110
    19251413226110
    1916151413325110
    1916251423127110
    191716151413326110
    191726151423128110
    19181716151413327110
    19182716151423129110
    29181716151413328110
    19281716151423228110
    19281716151413427110
    19182716152413228110
Seed: 9900
    9900
    2920
    192210
    19222110
    19323110
    1923123110
    1923224110
    191413323110
    191433125110
    19151423125110
    19251413226110
    1916151413325110
    1916251423127110
    191716151413326110
    191726151423128110
    19181716151413327110
    19182716151423129110
    29181716151413328110
    19281716151423228110
    19281716151413427110
    19182716152413228110

Kotlin

<lang scala>// version 1.1.2

const val LIMIT = 1_000_000

val sb = StringBuilder()

fun selfRefSeq(s: String): String {

   sb.setLength(0)  // faster than using a local StringBuilder object
   for (d in '9' downTo '0') {
       if (d !in s) continue
       val count = s.count { it == d }      
       sb.append("$count$d")
   } 
   return sb.toString()

}

fun permute(input: List<Char>): List<List<Char>> {

   if (input.size == 1) return listOf(input)
   val perms = mutableListOf<List<Char>>()
   val toInsert = input[0]
   for (perm in permute(input.drop(1))) {
       for (i in 0..perm.size) {
           val newPerm = perm.toMutableList()
           newPerm.add(i, toInsert)
           perms.add(newPerm)
       }
   }
   return perms

}

fun main(args: Array<String>) {

   val sieve = IntArray(LIMIT) // all zero by default
   val elements = mutableListOf<String>()
   for (n in 1 until LIMIT) {
       if (sieve[n] > 0) continue
       elements.clear()  
       var next = n.toString()
       elements.add(next)
       while (true) {
           next = selfRefSeq(next)
           if (next in elements) {
               val size = elements.size
               sieve[n] = size
               if (n > 9) {
                   val perms = permute(n.toString().toList()).distinct()
                   for (perm in perms) {
                       if (perm[0] == '0') continue
                       val k = perm.joinToString("").toInt()
                       sieve[k] = size
                   }
               }    
               break
           }
           elements.add(next)
       }
   }
   val maxIterations = sieve.max()!!
   for (n in 1 until LIMIT) {
       if (sieve[n] < maxIterations) continue
       println("$n -> Iterations = $maxIterations")
       var next = n.toString()
       for (i in 1..maxIterations) {
           println(next)
           next = selfRefSeq(next)
       }
       println()
   } 

}</lang>

Output:
9009 -> Iterations = 21
9009
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110

9090 -> Iterations = 21
9090
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110

9900 -> Iterations = 21
9900
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110

Lua

Runs in about nine seconds under LuaJIT. Uses memoisation via the global table 'nextTerm'. <lang lua>-- Return the next term in the self-referential sequence function findNext (nStr)

   local nTab, outStr, pos, count = {}, "", 1, 1
   for i = 1, #nStr do nTab[i] = nStr:sub(i, i) end
   table.sort(nTab, function (a, b) return a > b end)
   while pos <= #nTab do
       if nTab[pos] == nTab[pos + 1] then
           count = count + 1
       else
           outStr = outStr .. count .. nTab[pos]
           count = 1
       end
       pos = pos + 1
   end
   return outStr

end

-- Return boolean indicating whether table t contains string s function contains (t, s)

   for k, v in pairs(t) do
       if v == s then return true end
   end
   return false

end

-- Return the sequence generated by the given seed term function buildSeq (term)

   local sequence = {}
   repeat
       table.insert(sequence, term)
       if not nextTerm[term] then nextTerm[term] = findNext(term) end
       term = nextTerm[term]
   until contains(sequence, term)
   return sequence

end

-- Main procedure nextTerm = {} local highest, seq, hiSeq = 0 for i = 1, 10^6 do

   seq = buildSeq(tostring(i))
   if #seq > highest then
       highest = #seq
       hiSeq = {seq}
   elseif #seq == highest then
       table.insert(hiSeq, seq)
   end

end io.write("Seed values: ") for _, v in pairs(hiSeq) do io.write(v[1] .. " ") end print("\n\nIterations: " .. highest) print("\nSample sequence:") for _, v in pairs(hiSeq[1]) do print(v) end</lang>

Output:
Seed values: 9009 9090 9900

Iterations: 21

Sample sequence:
9009
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110

Mathematica

<lang Mathematica>selfRefSequence[ x_ ] := FromDigits@Flatten@Reverse@Cases[Transpose@{RotateRight[DigitCount@x,1], Range[0,9]},Except[{0,_}]] DisplaySequence[ x_ ] := NestWhileList[selfRefSequence,x,UnsameQ[##]&,4] data= {#, Length@DisplaySequence[#]}&/@Range[1000000]; Print["Values: ", Select[data ,#2 == Max@data;;,2&]1,;;] Print["Iterations: ", Length@DisplaySequence[#]&/@Select[data ,#2 == Max@data;;,2&]1,;;] DisplaySequence@Select[data, #2 == Max@data;;,2&]1//Column</lang>

Values: {9009, 9090, 9900}
Iterations: 21
9009
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110
19281716151413427110

Perl

<lang perl>sub next_num { my @a; $a[$_]++ for split , shift; join(, map(exists $a[$_] ? $a[$_].$_ : "", reverse 0 .. 9)); }

my %cache; sub seq { my $a = shift; my (%seen, @s); until ($seen{$a}) { $seen{$a} = 1; push(@s, $a); last if !wantarray && $cache{$a}; $a = next_num($a); } return (@s) if wantarray;

my $l = $cache{$a}; if ($l) { $cache{$s[$_]} = $#s - $_ + $l for (0 .. $#s); } else { $l++ while ($s[-$l] != $a); $cache{pop @s} = $l for (1 .. $l); $cache{pop @s} = ++$l while @s; } $cache{$s[0]} }

my (@mlist, $mlen); for (1 .. 100_000) { # 1_000_000 takes very, very long my $l = seq($_); next if $l < $mlen;

if ($l > $mlen) { $mlen = $l; @mlist = (); } push @mlist, $_; }

print "longest ($mlen): @mlist\n"; print join("\n", seq($_)), "\n\n" for @mlist;</lang>

Perl 6

Works with: rakudo version 2018.03

<lang perl6>my @list; my $longest = 0; my %seen;

for 1 .. 1000000 -> $m {

   next unless $m ~~ /0/;         # seed must have a zero
   my $j = join , $m.comb.sort;
   next if %seen{$j}:exists;      # already tested a permutation
   %seen{$j} = ;
   my @seq = converging($m);
   my %elems;
   my $count;
   for @seq[] -> $value { last if ++%elems{$value} == 2; $count++; };
   if $longest == $count {
       @list.push($m);
   }
   elsif $longest < $count {
       $longest = $count;
       @list = $m;
       print "\b" x 20, "$count, $m"; # monitor progress
   }

};

for @list -> $m {

   say "\nSeed Value(s): ", my $seeds = ~permutations($m).unique.grep( { .substr(0,1) != 0 } );
   my @seq = converging($m);
   my %elems;
   my $count;
   for @seq[] -> $value { last if ++%elems{$value} == 2; $count++; };
   say "\nIterations: ", $count;
   say "\nSequence: (Only one shown per permutation group.)";
  .say for |@seq[^$count], "\n";

}

sub converging ($seed) { return $seed, -> $l { join , map { $_.value.elems~$_.key }, $l.comb.classify({$^b}).sort: {-$^c.key} } ... * }

sub permutations ($string, $sofar? = ) {

   return $sofar unless $string.chars;
   my @perms;
   for ^$string.chars -> $idx {
       my $this = $string.substr(0,$idx)~$string.substr($idx+1);
       my $char = substr($string, $idx,1);
       @perms.push( |permutations( $this, join , $sofar, $char ) );
   }
   return @perms;

}</lang>

Output:
Seed Value(s): 9009 9090 9900

Iterations: 21

Sequence: (Only one shown per permutation group.)
9009
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110

Phix

Optimisation idea taken from CoffeeScript, completes in under a second. <lang Phix>string n = "000000"

function incn()

   for i=length(n) to 1 by -1 do
       if n[i]='9' then
           if i=1 then return false end if
           n[i]='0'
       else
           n[i] += 1
           exit
       end if
   end for
   return true

end function

sequence res = {}, bestseen integer maxcycle = 0

procedure srs() sequence seen, this = n integer cycle = 1

   while length(this)>1 and this[1]='0' do
       this = this[2..$]
   end while
   integer ch = this[1]
   for i=2 to length(this) do
       if this[i]>ch then return end if
       ch = this[i]
   end for
   seen = {this}
   while 1 do
       sequence digits = repeat(0,10)
       for i=1 to length(this) do
           digits[this[i]-'0'+1] += 1
       end for
       string next = ""
       for i=length(digits) to 1 by -1 do
           if digits[i]!=0 then
               next &= sprint(digits[i])
               next &= i+'0'-1
           end if
       end for
       if find(next,seen) then exit end if
       seen = append(seen,next)
       this = next             
       cycle += 1
   end while
   if cycle>maxcycle then
       res = {seen[1]}
       maxcycle = cycle
       bestseen = seen
   elsif cycle=maxcycle then
       res = append(res,seen[1])
   end if

end procedure

while 1 do

   srs()
   if not incn() then exit end if

end while

-- add non-leading-0 perms: for i=length(res) to 1 by -1 do

   string ri = res[i]
   for p=1 to factorial(length(ri)) do
       string pri = permute(p,ri)
       if pri[1]!='0' and not find(pri,res) then
           res = append(res,pri)
       end if
   end for

end for ?res puts(1,"cycle length is ") ?maxcycle pp(bestseen,{pp_Nest,1})</lang>

{"9900","9009","9090"}
cycle length is 21
{"9900",
 "2920",
 "192210",
 "19222110",
 "19323110",
 "1923123110",
 "1923224110",
 "191413323110",
 "191433125110",
 "19151423125110",
 "19251413226110",
 "1916151413325110",
 "1916251423127110",
 "191716151413326110",
 "191726151423128110",
 "19181716151413327110",
 "19182716151423129110",
 "29181716151413328110",
 "19281716151423228110",
 "19281716151413427110",
 "19182716152413228110"}

PicoLisp

Using 'las' from Look-and-say sequence#PicoLisp: <lang PicoLisp>(de selfRefSequence (Seed)

  (let L (mapcar format (chop Seed))
     (make
        (for (Cache NIL  (not (idx 'Cache L T)))
           (setq L
              (las (flip (sort (copy (link L))))) ) ) ) ) )

(let Res NIL

  (for Seed 1000000
     (let N (length (selfRefSequence Seed))
        (cond
           ((> N (car Res)) (setq Res (list N Seed)))
           ((= N (car Res)) (queue 'Res Seed)) ) ) )
  (println 'Values: (cdr Res))
  (println 'Iterations: (car Res))
  (mapc prinl (selfRefSequence (cadr Res))) )</lang>

Output:

Values: (9009 9090 9900)
Iterations: 21
9009
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110

Python

The number generation function follows that of Look-and-say with a sort. only the first of any set of numbers with the same digits has the length of its sequence calculated in function max_A036058_length, although no timings were taken to check if the optimisation was of value.

<lang python>from itertools import groupby, permutations

def A036058(number):

   return .join( str(len(list(g))) + k
                   for k,g in groupby(sorted(str(number), reverse=True)) )

def A036058_length(numberstring='0', printit=False):

   iterations, last_three, queue_index = 1, ([None] * 3), 0
   def A036058(number):
       # rely on external reverse-sort of digits of number
       return .join( str(len(list(g))) + k
                       for k,g in groupby(number) )
   while True:
       if printit:
           print("  %2i %s" % (iterations, numberstring))
       numberstring = .join(sorted(numberstring, reverse=True))
       if numberstring in last_three:
           break
       assert iterations < 1000000
       last_three[queue_index], numberstring = numberstring, A036058(numberstring)
       iterations += 1
       queue_index +=1
       queue_index %=3
   return iterations
   

def max_A036058_length( start_range=range(11) ):

   already_done = set()
   max_len = (-1, [])
   for n in start_range:
       sn = str(n)
       sns = tuple(sorted(sn, reverse=True))
       if sns not in already_done:
           already_done.add(sns)
           size = A036058_length(sns)
           if size > max_len[0]:
               max_len = (size, [n])
           elif size == max_len[0]:
               max_len[1].append(n)
   return max_len

lenmax, starts = max_A036058_length( range(1000000) )

  1. Expand

allstarts = [] for n in starts:

   allstarts += [int(.join(x))
                 for x in set(k
                              for k in permutations(str(n), 4)
                              if k[0] != '0')]

allstarts = [x for x in sorted(allstarts) if x < 1000000]

print ( \ The longest length, followed by the number(s) with the longest sequence length for starting sequence numbers below 1000000 are:

 Iterations = %i and sequence-starts = %s. % (lenmax, allstarts)   )

print ( Note that only the first of any sequences with the same digits is printed below. (The others will differ only in their first term) )

for n in starts:

   print()
   A036058_length(str(n), printit=True)</lang>
Output
The longest length, followed by the number(s) with the longest sequence length
for starting sequence numbers below 1000000 are:
  Iterations = 21 and sequence-starts = [9009, 9090, 9900].

Note that only the first of any sequences with the same digits is printed below.
(The others will differ only in their first term)

   1 9009
   2 2920
   3 192210
   4 19222110
   5 19323110
   6 1923123110
   7 1923224110
   8 191413323110
   9 191433125110
  10 19151423125110
  11 19251413226110
  12 1916151413325110
  13 1916251423127110
  14 191716151413326110
  15 191726151423128110
  16 19181716151413327110
  17 19182716151423129110
  18 29181716151413328110
  19 19281716151423228110
  20 19281716151413427110
  21 19182716152413228110

Racket

<lang racket>

  1. lang racket

(define (next s)

 (define v (make-vector 10 0))
 (for ([c s])
   (define d (- (char->integer #\9) (char->integer c)))
   (vector-set! v d (add1 (vector-ref v d))))
 (string-append* (for/list ([x v] [i (in-range 9 -1 -1)] #:when (> x 0))
                   (format "~a~a" x i))))

(define (seq-of s)

 (reverse (let loop ([ns (list s)])
            (define n (next (car ns)))
            (if (member n ns) ns (loop (cons n ns))))))

(define (sort-string s)

 (list->string (sort (string->list s) char>?)))

(define-values [len nums seq]

 (for/fold ([*len #f] [*nums #f] [*seq #f])
           ([n (in-range 1000000 -1 -1)]) ; start at the high end
   (define s (number->string n))
   (define sorted (sort-string s))
   (cond [(equal? s sorted)
          (define seq (seq-of s))
          (define len (length seq))
          (cond [(or (not *len) (> len *len)) (values len (list s) seq)]
                [(= len *len) (values len (cons s *nums) seq)]
                [else (values *len *nums *seq)])]
         ;; not sorted: see if it's a permutation of the best
         [else (values
                *len
                (if (and *nums (member sorted *nums)) (cons s *nums) *nums)
                *seq)])))

(printf "Numbers: ~a\nLength: ~a\n" (string-join nums ", ") len) (for ([n seq]) (printf " ~a\n" n)) </lang>

Output:
Numbers: 9009, 9090, 9900
Length: 21
  9900
  2920
  192210
  19222110
  19323110
  1923123110
  1923224110
  191413323110
  191433125110
  19151423125110
  19251413226110
  1916151413325110
  1916251423127110
  191716151413326110
  191726151423128110
  19181716151413327110
  19182716151423129110
  29181716151413328110
  19281716151423228110
  19281716151413427110
  19182716152413228110

REXX

The REXX language supports   sparse   (stemmed) arrays, so this program utilizes REXX's hashing of
array elements to speed up the checking to see if a sequence has been generated before. <lang rexx>/*REXX pgm generates a self─referential sequence and displays sequences with max length.*/ parse arg LO HI . /*obtain optional arguments from the CL*/ if LO== | LO=="," then LO= 1 /*Not specified? Then use the default.*/ if HI== | HI=="," then HI=1000000 - 1 /* " " " " " " */ max$=; seeds=; maxL=0 /*inialize some defaults and counters. */

 do #=LO  to HI;      n=#;     @.=0;     @.#=1  /*loop thru seed; define some defaults.*/
 $=n
     do c=1  until x==n;       x=n              /*generate a self─referential sequence.*/
     n=;           do k=9  by -1  for 10        /*generate a new sequence (downwards). */
                   _=countstr(k, x)             /*obtain the number of sequence counts.*/
                   if _\==0  then n=n || _ || k /*is count > zero?  Then append it to N*/
                   end   /*k*/
     if @.n  then leave                         /*has sequence been generated before ? */
     $=$'-'n;     @.n=1                         /*add the number to sequence and roster*/
     end   /*c*/
 if c==maxL then do;  seeds=seeds #             /*is the sequence equal to max so far ?*/
                      max$=max$   $             /*append this self─referential # to  $ */
                 end
            else if c>maxL  then do;  seeds=#   /*use the new number as the new seed.  */
                                 maxL=c; max$=$ /*also, set the new maximum L; max seq.*/
                                 end            /* [↑]  have we found a new best seq ? */
 end   /*#*/

say ' seeds that had the most iterations: ' seeds say 'the maximum self─referential length: ' maxL

 do j=1  for words(max$) ;      say
 say copies('─',30)  "iteration sequence for: "   word(seeds,j)  '  ('maxL  "iterations)"
 q=translate( word( max$, j), ,'-')
                                    do k=1  for words(q);     say  word(q, k)
                                    end   /*k*/
 end   /*j*/                                    /*stick a fork in it,  we're all done. */</lang>
output   when using the default inputs:


(Shown at five-sixths size.)

 seeds that had the most iterations:  9009 9090 9900
the maximum self─referential length:  21

────────────────────────────── iteration sequence for:  9009   (21 iterations)
9009
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110

────────────────────────────── iteration sequence for:  9090   (21 iterations)
9090
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110

────────────────────────────── iteration sequence for:  9900   (21 iterations)
9900
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110

Ruby

Cached for performance <lang ruby>$cache = {} def selfReferentialSequence_cached(n, seen = [])

 return $cache[n] if $cache.include? n
 return [] if seen.include? n
 digit_count = Array.new(10, 0)
 n.to_s.chars.collect {|char| digit_count[char.to_i] += 1}
 term = 
 9.downto(0).each do |d|
   if digit_count[d] > 0
     term += digit_count[d].to_s + d.to_s
   end
 end
 term = term.to_i
 $cache[n] = [n] + selfReferentialSequence_cached(term, [n] + seen)

end

limit = 1_000_000 max_len = 0 max_vals = []

1.upto(limit - 1) do |n|

 seq = selfReferentialSequence_cached(n)
 if seq.length > max_len
   max_len = seq.length
   max_vals = [n]
 elsif seq.length == max_len
   max_vals << n
 end

end

puts "values: #{max_vals.inspect}" puts "iterations: #{max_len}" puts "sequence:" selfReferentialSequence_cached(max_vals[0]).each_with_index do |val, idx|

 puts "%2d %d" % [idx + 1, val]

end</lang> output

values: [9009, 9090, 9900]
iterations: 21
sequence:
 1 9009
 2 2920
 3 192210
 4 19222110
 5 19323110
 6 1923123110
 7 1923224110
 8 191413323110
 9 191433125110
10 19151423125110
11 19251413226110
12 1916151413325110
13 1916251423127110
14 191716151413326110
15 191726151423128110
16 19181716151413327110
17 19182716151423129110
18 29181716151413328110
19 19281716151423228110
20 19281716151413427110
21 19182716152413228110

Scala

This example creates a ParVector, which is a collection type that inherently uses parallel processing, of all seeds within the range, maps each seed to a tuple containing the seed, the sequence, and the number of iterations, sorts the collection by decreasing sequence length, then shows the relevant information for the maximal sequences at the head of the collection.

<lang scala>import spire.math.SafeLong

import scala.annotation.tailrec import scala.collection.parallel.immutable.ParVector

object SelfReferentialSequence {

 def main(args: Array[String]): Unit = {
   val nums = ParVector.range(1, 1000001).map(SafeLong(_))
   val seqs = nums.map{ n => val seq = genSeq(n); (n, seq, seq.length) }.toVector.sortWith((a, b) => a._3 > b._3)
   val maxes = seqs.takeWhile(t => t._3 == seqs.head._3)
   
   println(s"Seeds: ${maxes.map(_._1).mkString(", ")}\nIterations: ${maxes.head._3}")
   for(e <- maxes.distinctBy(a => nextTerm(a._1.toString))){
     println(s"\nSeed: ${e._1}\n${e._2.mkString("\n")}")
   }
 }
 
 def genSeq(seed: SafeLong): Vector[String] = {
   @tailrec
   def gTrec(seq: Vector[String], n: String): Vector[String] = {
     if(seq.contains(n)) seq
     else gTrec(seq :+ n, nextTerm(n))
   }
   gTrec(Vector[String](), seed.toString)
 }
 
 def nextTerm(num: String): String = {
   @tailrec
   def dTrec(digits: Vector[(Int, Int)], src: String): String = src.headOption match{
     case Some(n) => dTrec(digits :+ ((n.asDigit, src.count(_ == n))), src.filter(_ != n))
     case None => digits.sortWith((a, b) => a._1 > b._1).map(p => p._2.toString + p._1.toString).mkString
   }
   dTrec(Vector[(Int, Int)](), num)
 }

}</lang>

Output:
Seeds: 9009, 9090, 9900
Iterations: 21

Seed: 9009
9009
2920
192210
19222110
19323110
1923123110
1923224110
191413323110
191433125110
19151423125110
19251413226110
1916151413325110
1916251423127110
191716151413326110
191726151423128110
19181716151413327110
19182716151423129110
29181716151413328110
19281716151423228110
19281716151413427110
19182716152413228110

TXR

Translation of: Clojure

This is a close, almost expression-by-expression transliteration of the Clojure version.

<lang txrlisp>;; Syntactic sugar for calling reduce-left (defmacro reduce-with ((acc init item sequence) . body)

 ^(reduce-left (lambda (,acc ,item) ,*body) ,sequence ,init))
;; Macro similar to clojure's ->> and ->

(defmacro opchain (val . ops)

 ^[[chain ,*[mapcar [iffi consp (op cons 'op)] ops]] ,val])
Reduce integer to a list of integers representing its decimal digits.

(defun digits (n)

 (if (< n 10)
   (list n)
   (opchain n tostring list-str (mapcar (op - @1 #\0)))))

(defun dcount (ds)

 (digits (length ds)))
Perform a look-say step like (1 2 2) --"one 1, two 2's"-> (1 1 2 2).

(defun summarize-prev (ds)

 (opchain ds copy (sort @1 >) (partition-by identity)
          (mapcar [juxt dcount first]) flatten))
Take a starting digit string and iterate the look-say steps,
to generate the whole sequence, which ends when convergence is reached.

(defun convergent-sequence (ds)

 (reduce-with (cur-seq nil ds [giterate true summarize-prev ds])
   (if (member ds cur-seq)
     (return-from convergent-sequence cur-seq)
     (nconc cur-seq (list ds)))))
A candidate sequence is one which begins with montonically
decreasing digits. We don't bother with (9 0 9 0) or (9 0 0 9);
which yield identical sequences to (9 9 0 0).

(defun candidate-seq (n)

 (let ((ds (digits n)))
   (if [apply >= ds]
     (convergent-sequence ds))))
Discover the set of longest sequences.

(defun find-longest (limit)

 (reduce-with (max-seqs nil new-seq [mapcar candidate-seq (range 1 limit)])
   (let ((cmp (- (opchain max-seqs first length) (length new-seq))))
     (cond ((> cmp 0) max-seqs)
           ((< cmp 0) (list new-seq))
           (t (nconc max-seqs (list new-seq)))))))

(defvar *results* (find-longest 1000000))

(each ((result *results*))

 (flet ((strfy (list) ;; (strfy '((1 2 3 4) (5 6 7 8))) -> ("1234" "5678")
          (mapcar [chain (op mapcar tostring) cat-str] list)))
   (let* ((seed (first result))
          (seeds (opchain seed perm uniq (remove-if zerop @1 first))))
     (put-line `Seed value(s): @(strfy seeds)`)
     (put-line)
     (put-line `Iterations: @(length result)`)
     (put-line)
     (put-line `Sequence: @(strfy result)`))))</lang>
Output:
$ txr self-ref-seq.tl

Seed value(s): 9900 9090 9009

Iterations: 21

Sequence: 9900 2920 192210 19222110 19323110 1923123110 1923224110 191413323110 191433125110 19151423125110 19251413226110 1916151413325110 1916251423127110 191716151413326110 191726151423128110 19181716151413327110 19182716151423129110 29181716151413328110 19281716151423228110 19281716151413427110 19182716152413228110

Translation of: Common Lisp

Mostly the same logic. The count-and-say function is based on the same steps, but stays in the string domain instead of converting the input to a list, and then the output back to a string. It also avoids building the output backwards and reversing it, so out must be accessed on the right side inside the loop. This is easy due to Python-inspired array indexing semantics: -1 means last element, -2 second last and so on.

Like in Common Lisp, TXR's sort is destructive, so we take care to use copy-str.

<lang txrlisp>(defun count-and-say (str)

 (let* ((s [sort (copy-str str) <])
        (out `@[s 0]0`))
   (each ((x s))
     (if (eql x [out -1])
       (inc [out -2])
       (set out `@{out}1@x`)))
   out))

(defun ref-seq-len (n : doprint)

 (let ((s (tostring n)) hist)
   (while t
     (push s hist)
     (if doprint (pprinl s))
     (set s (count-and-say s))
     (each ((item hist)
            (i (range 0 2)))
       (when (equal s item)
         (return-from ref-seq-len (length hist)))))))

(defun find-longest (top)

 (let (nums (len 0))
   (each ((x (range 0 top)))
     (let ((l (ref-seq-len x)))
       (when (> l len) (set len l) (set nums nil))
       (when (= l len) (push x nums))))
   (list nums len)))</lang>
Output:
Longest: ((9900 9090 9009 99) 21)
9900
2029
102219
10212219
10313219
1031122319
1041222319
103132131419
105112331419
10511223141519
10612213142519
1051321314151619
1071122314251619
106132131415161719
108112231415261719
10713213141516171819
10911223141516271819
10813213141516171829
10812223141516172819
10714213141516172819
10812213241516271819

Translation of: Racket

<lang txrlisp>;; Macro very similar to Racket's for/fold (defmacro for-accum (accum-var-inits each-vars . body)

 (let ((accum-vars [mapcar first accum-var-inits])
       (block-sym (gensym))
       (next-args [mapcar (ret (progn @rest (gensym))) accum-var-inits])
       (nvars (length accum-var-inits)))
   ^(let ,accum-var-inits
      (flet ((iter (,*next-args)
               ,*[mapcar (ret ^(set ,@1 ,@2)) accum-vars next-args]))
        (each ,each-vars
          ,*body)
        (list ,*accum-vars)))))

(defun next (s)

 (let ((v (vector 10 0)))
   (each ((c s))
     (inc [v (- #\9 c)]))
   (cat-str
     (collect-each ((x v)
                    (i (range 9 0 -1)))
       (when (> x 0)
         `@x@i`)))))

(defun seq-of (s)

 (for* ((ns ()))
       ((not (member s ns)) (reverse ns))
       ((push s ns) (set s (next s)))))

(defun sort-string (s)

 [sort (copy s) >])

(tree-bind (len nums seq)

 (for-accum ((*len nil) (*nums nil) (*seq nil))
            ((n (range 1000000 0 -1))) ;; start at the high end
   (let* ((s (tostring n))
          (sorted (sort-string s)))
     (if (equal s sorted)
       (let* ((seq (seq-of s))
              (len (length seq)))
         (cond ((or (not *len) (> len *len)) (iter len (list s) seq))
               ((= len *len) (iter len (cons s *nums) seq))))
       (iter *len
             (if (and *nums (member sorted *nums)) (cons s *nums) *nums)
             *seq))))
 (put-line `Numbers: @{nums ", "}\nLength: @len`)
 (each ((n seq)) (put-line `  @n`)))</lang>
Output:
Numbers: 9009, 9090, 9900
Length: 21
  9900
  2920
  192210
  19222110
  19323110
  1923123110
  1923224110
  191413323110
  191433125110
  19151423125110
  19251413226110
  1916151413325110
  1916251423127110
  191716151413326110
  191726151423128110
  19181716151413327110
  19182716151423129110
  29181716151413328110
  19281716151423228110
  19281716151413427110
  19182716152413228110

Tcl

<lang tcl>proc nextterm n {

   foreach c [split $n ""] {incr t($c)}
   foreach c {9 8 7 6 5 4 3 2 1 0} {

if {[info exist t($c)]} {append r $t($c) $c}

   }
   return $r

}

  1. Local context of lambda term is just for speed

apply {limit {

   #  Build a digit cache; this adds quite a bit of speed
   set done [lrepeat [set l2 [expr {$limit * 100}]] 0]
   # Iterate over search space
   set maxlen 0
   set maxes {}
   for {set i 0} {$i < $limit} {incr i} {

if {[lindex $done $i]} continue # Compute the sequence length for this value (with help from cache) set seq {} for {set seed $i} {$seed ni $seq} {set seed [nextterm $seed]} { if {$seed < $l2 && [lindex $done $seed]} { set len [expr {[llength $seq] + [lindex $done $seed]}] break } set len [llength [lappend seq $seed]] } # What are we going to do about it? if {$len > $maxlen} { set maxlen $len set maxes [list $i] } elseif {$len == $maxlen} { lappend maxes $i } # Update the cache with what we have learned foreach n $seq { if {$n < $l2} {lset done $n $len} incr len -1 }

   }
   # Output code
   puts "max length: $maxlen"
   foreach c $maxes {puts $c}
   puts "Sample max-len sequence:"
   set seq {}
   # Rerun the sequence generator for printing; faster for large limits
   for {set seed [lindex $c 0]} {$seed ni $seq} {set seed [nextterm $seed]} {

lappend seq $seed

       puts "\t$seed"
   }

}} 1000000</lang> Output:

max length: 21
9009
9090
9900
Sample max-len sequence:
	9900
	2920
	192210
	19222110
	19323110
	1923123110
	1923224110
	191413323110
	191433125110
	19151423125110
	19251413226110
	1916151413325110
	1916251423127110
	191716151413326110
	191726151423128110
	19181716151413327110
	19182716151423129110
	29181716151413328110
	19281716151423228110
	19281716151413427110
	19182716152413228110

zkl

<lang zkl>N:=0d1_000_001;

fcn lookAndJustSaying(seed){ // numeric String --> numeric String

  "9876543210".pump(String,'wrap(n){
     (s:=seed.inCommon(n)) and String(s.len(),n) or ""
  });

} fcn sequence(seed){ // numeric string --> sequence until it repeats

  seq:=L();
  while(not seq.holds(seed)){ seq.append(seed); seed=lookAndJustSaying(seed); }
  seq

} fcn decending(str) //--> True if digits are in descending (or equal) order

  { (not str.walker().zipWith('<,str[1,*]).filter1()) }

szs:=List.createLong(25); max:=0; foreach seed in (N){

  z:=seed.toString(); 
  if(decending(z)){ // 321 generates same sequence as 312,132,123,213
     len:=sequence(z).len();
     if(len>max) szs.clear();
     if(len>=max){ szs.append(seed.toString()); max=len; }
  }

}

// List permutations of longest seeds // ("9900"-->(((9,0,0,9),...))-->((9,0,0,9),...)-->("9009"...) // -->remove numbers w/leading zeros-->remove dups zs:=szs.apply(Utils.Helpers.permute).flatten().apply("concat")

  .filter(fcn(s){ s[0]!="0" }) : Utils.Helpers.listUnique(_);

println(max," iterations for ",zs.concat(", ")); zs.pump(Console.println,sequence,T("concat",", "));</lang> Ignoring permutations cut run time from 4 min to 9 sec.

Output:
21 iterations for 9900, 9090, 9009
9900, 2920, 192210, 19222110, 19323110, 1923123110, 1923224110, 191413323110, 191433125110, 19151423125110, 19251413226110, 1916151413325110, 1916251423127110, 191716151413326110, 191726151423128110, 19181716151413327110, 19182716151423129110, 29181716151413328110, 19281716151423228110, 19281716151413427110, 19182716152413228110
9090, 2920, 192210, 19222110, 19323110, 1923123110, 1923224110, 191413323110, 191433125110, 19151423125110, 19251413226110, 1916151413325110, 1916251423127110, 191716151413326110, 191726151423128110, 19181716151413327110, 19182716151423129110, 29181716151413328110, 19281716151423228110, 19281716151413427110, 19182716152413228110
9009, 2920, 192210, 19222110, 19323110, 1923123110, 1923224110, 191413323110, 191433125110, 19151423125110, 19251413226110, 1916151413325110, 1916251423127110, 191716151413326110, 191726151423128110, 19181716151413327110, 19182716151423129110, 29181716151413328110, 19281716151423228110, 19281716151413427110, 19182716152413228110