Sturmian word: Difference between revisions

From Rosetta Code
Content added Content deleted
m (it's the inverse golder ratio)
(julia example)
Line 24: Line 24:


In summary, <math>floor(k\sqrt a) = floor(mk/n)</math> where <math>m/n</math> is the first continued fraction approximant to <math>\sqrt a</math> with a denominator <math>n \geq k</math>
In summary, <math>floor(k\sqrt a) = floor(mk/n)</math> where <math>m/n</math> is the first continued fraction approximant to <math>\sqrt a</math> with a denominator <math>n \geq k</math>


=={{header|Julia}}==
{{trans|Phix}}
<syntaxhighlight lang="julia">function sturmian_word(m, n)
m > n && return replace(sturmian_word(n, m), '0' => '1', '1' => '0')
res = ""
k, prev = 1, 0
while rem(k * m, n) > 0
curr = (k * m) ÷ n
res *= prev == curr ? "0" : "10"
prev = curr
k += 1
end
return res
end

function fibWord(n)
Sn_1, Sn, tmp = "0", "01", ""
for _ in 2:n
tmp = Sn
Sn *= Sn_1
Sn_1 = tmp
end
return Sn
end

const fib = fibWord(7)
const sturmian = sturmian_word(13, 21)
@assert fib[begin:length(sturmian)] == sturmian
println(" $sturmian <== 13/21")

""" return the kth convergent """
function cfck(a, b, m, n, k)
p = [0, 1]
q = [1, 0]
r = (sqrt(a) * b + m) / n
for _ in 1:k
whole = Int(trunc(r))
pn = whole * p[end] + p[end-1]
qn = whole * q[end] + q[end-1]
push!(p, pn)
push!(q, qn)
r = 1/(r - whole)
end
return [p[end], q[end]]
end

println(" $(sturmian_word(cfck(5, 1, -1, 2, 8)...)) <== 1/phi (8th convergent golden ratio)")
</syntaxhighlight>{{out}}
<pre>
01001010010010100101001001010010 <== 13/21
01001010010010100101001001010010 <== 1/phi (8th convergent golden ratio)
</pre>





Revision as of 06:22, 9 February 2024

Sturmian word is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

A Sturmian word is a binary sequence, finite or infinite, that makes up the cutting sequence for a positive real number x, as shown in the picture.

Example Sturmian word when x = 0.618..., the golden ratio.

The Sturmian word can be computed thus as an algorithm:

  • If , then it is the inverse of the Sturmian word for . So we have reduced to the case of .
  • Iterate over
  • If is an integer, then the program terminates. Else, if , then the program outputs 0, else, it outputs 10.

The problem:

  • Given a positive rational number , specified by two positive integers , output its entire Sturmian word.
  • Given a quadratic real number , specified by integers , where is not a perfect square, output the first letters of Sturmian words when given a positive number .

(If the programming language can represent infinite data structures, then that works too.)

A simple check is to do this for the inverse golden ratio , that is, , which would just output the Fibonacci word.

Stretch goal: calculate the Sturmian word for other kinds of definable real numbers, such as cubic roots.

The key difficulty is accurately calculating for large . Floating point arithmetic would lose precision. One can either do this simply by directly searching for some integer such that , or by more trickly methods, such as the continued fraction approach.

First calculate the continued fraction convergents to . Let be a convergent to , such that , then since the convergent sequence is the best rational approximant for denominators up to that point, we know for sure that, if we write out , the sequence would stride right across the gap . Thus, we can take the largest such that , and we would know for sure that .

In summary, where is the first continued fraction approximant to with a denominator


Julia

Translation of: Phix
function sturmian_word(m, n)
    m > n && return replace(sturmian_word(n, m), '0' => '1', '1' => '0')
    res = ""
    k, prev = 1, 0
    while rem(k * m, n) > 0
        curr = (k * m) ÷ n
        res *= prev == curr ? "0" : "10"
        prev = curr
        k += 1
    end
    return res
end

function fibWord(n)
    Sn_1, Sn, tmp = "0", "01", ""
    for _ in 2:n 
        tmp = Sn
        Sn *= Sn_1
        Sn_1 = tmp
    end
    return Sn
end

const fib = fibWord(7)
const sturmian = sturmian_word(13, 21)
@assert fib[begin:length(sturmian)] == sturmian
println(" $sturmian <== 13/21")

""" return the kth convergent """
function cfck(a, b, m, n, k)
    p = [0, 1]
    q = [1, 0]
    r = (sqrt(a) * b + m) / n
    for _ in 1:k
        whole = Int(trunc(r))
        pn = whole * p[end] + p[end-1]
        qn = whole * q[end] + q[end-1]
        push!(p, pn)
        push!(q, qn)
        r = 1/(r - whole)
    end
    return [p[end], q[end]]
end

println(" $(sturmian_word(cfck(5, 1, -1, 2, 8)...)) <== 1/phi (8th convergent golden ratio)")
Output:
 01001010010010100101001001010010 <== 13/21
 01001010010010100101001001010010 <== 1/phi (8th convergent golden ratio)


Phix

Rational part translated from Python, quadratic part a modified copy of the Continued fraction convergents task.

with javascript_semantics
function sturmian_word(integer m, n)
    if m > n then
        return sq_sub('0'+'1',sturmian_word(n,m))
    end if
    string res = ""
    integer k = 1, prev = 0
    while remainder(k*m,n) do
        integer curr = floor(k*m/n)
        res &= iff(prev=curr?"0":"10")
        prev = curr
        k += 1
    end while
    return res
end function

function fibWord(integer n)
    string Sn_1 = "0",
             Sn = "01",
            tmp = ""
    for i=2 to n do
        tmp = Sn
        Sn &= Sn_1
        Sn_1 = tmp
    end for
    return Sn
end function

string fib = fibWord(7),
  sturmian = sturmian_word(13, 21)
assert(fib[1..length(sturmian)] == sturmian)
printf(1," %s <== 13/21\n",sturmian)

function cfck(integer a, b, m, n, k)
    -- return the kth convergent
    sequence p = {0, 1},
             q = {1, 0}
    atom rem = (sqrt(a)*b + m) / n
    for i=1 to k do
        integer whole = trunc(rem),
                pn = whole * p[-1] + p[-2],
                qn = whole * q[-1] + q[-2]
        p &= pn
        q &= qn
        rem = 1/(rem-whole)
    end for
    return {p[$],q[$]}
end function

integer {m,n} = cfck(5, 1, -1, 2, 8) -- (inverse golden ratio)
printf(1," %s <== 1/phi (8th convergent)\n",sturmian_word(m,n))
Output:
 01001010010010100101001001010010 <== 13/21
 01001010010010100101001001010010 <== 1/phi (8th convergent)

Python

For rational numbers:

def sturmian_word(m, n):
    sturmian = ""
    def invert(string):
      return ''.join(list(map(lambda b: {"0":"1", "1":"0"}[b], string)))
    if m > n:
      return invert(sturmian_word(n, m))

    k = 1
    while True:
        current_floor = int(k * m / n)
        previous_floor = int((k - 1) * m / n)
        if k * m % n == 0:
            break
        if previous_floor == current_floor:
            sturmian += "0"
        else:
            sturmian += "10"
        k += 1
    return sturmian

Checking that it works on the finite Fibonacci word:

def fibWord(n):
    Sn_1 = "0"
    Sn = "01"
    tmp = ""
    for i in range(2, n + 1):
        tmp = Sn
        Sn += Sn_1
        Sn_1 = tmp
    return Sn

fib = fibWord(10)
sturmian = sturmian_word(13, 21)
assert fib[:len(sturmian)] == sturmian
print(sturmian)

# Output:
# 01001010010010100101001001010010

Wren

Library: Wren-assert

The 'rational number' function is a translation of the Python entry.

The 'quadratic number' function is a modified version of the one used in the Continued fraction convergents task.

import "./assert" for Assert

var SturmianWordRat = Fn.new { |m, n|
    if (m > n) return SturmianWordRat.call(n, m).reduce("") { |acc, c| 
        return acc + (c == "0" ? "1" : "0") 
    }
    var sturmian = ""
    var k = 1
    while (k * m % n != 0) {
        var currFloor = (k * m / n).floor
        var prevFloor = ((k - 1) * m / n).floor
        sturmian = sturmian + (prevFloor == currFloor ? "0" : "10")
        k  = k + 1
    }
    return sturmian
}

var SturmianWordQuad = Fn.new { |a, b, m, n, k|
    var p = [0, 1]
    var q = [1, 0]
    var rem = (a.sqrt * b + m) / n
    for (i in 1..k) {
        var whole = rem.truncate
        var frac  = rem.fraction
        var pn = whole * p[-1] + p[-2]
        var qn = whole * q[-1] + q[-2]
        p.add(pn)
        q.add(qn)
        rem = 1 / frac
    }
    return SturmianWordRat.call(p[-1], q[-1])
}

var fibWord = Fn.new { |n|
    var sn1 = "0"
    var sn  = "01"
    for (i in 2..n) {
        var tmp = sn
        sn = sn + sn1
        sn1 = tmp
    }
    return sn
}

var fib = fibWord.call(10)
var sturmian = SturmianWordRat.call(13, 21)
Assert.equal(fib[0...sturmian.count], sturmian)
System.print("%(sturmian) from rational number 13/21")
var sturmian2 = SturmianWordQuad.call(5, 1, -1, 2, 8)
Assert.equal(sturmian, sturmian2)
System.print("%(sturmian2) from quadratic number (√5 - 1)/2 (k = 8)")
Output:
01001010010010100101001001010010 from rational number 13/21
01001010010010100101001001010010 from quadratic number (√5 - 1)/2 (k = 8)