Primality by Wilson's theorem: Difference between revisions

From Rosetta Code
Content added Content deleted
m (C++ - simplified code)
m (Minor edit to C++ code)
Line 499: Line 499:


int factorial_mod(int n, int p) {
int factorial_mod(int n, int p) {
unsigned int f = 1;
int f = 1;
for (; n > 0 && f > 0; --n)
for (; n > 0 && f != 0; --n)
f = (f * n) % p;
f = (f * n) % p;
return f;
return f;

Revision as of 14:27, 7 November 2021

Task
Primality by Wilson's theorem
You are encouraged to solve this task according to the task description, using any language you may know.
Task

Write a boolean function that tells whether a given integer is prime using Wilson's theorem.

By Wilson's theorem, a number p is prime if and only if p divides (p - 1)! + 1.

Remember that 1 and all non-positive integers are not prime.


See also



11l

Translation of: Python

<lang 11l>F is_wprime(Int64 n)

  R n > 1 & (n == 2 | (n % 2 & (factorial(n - 1) + 1) % n == 0))

V c = 20 print(‘Primes under #.:’.format(c), end' "\n ") print((0 .< c).filter(n -> is_wprime(n)))</lang>

Output:
Primes under 20:
  [2, 3, 5, 7, 11, 13, 17, 19]

8086 Assembly

<lang asm> cpu 8086 org 100h section .text jmp demo ;;; Wilson primality test of CX. ;;; Zero flag set if CX prime. Destroys AX, BX, DX. wilson: xor ax,ax ; AX will hold intermediate fac-mod value inc ax mov bx,cx ; BX = factorial loop counter dec bx .loop: mul bx ; DX:AX = AX*BX div cx ; modulus goes in DX mov ax,dx dec bx ; Next value jnz .loop ; If not zero yet, go again inc ax ; fac-mod + 1 equal to input? cmp ax,cx ; Set flags according to result ret ;;; Demo: print primes under 256 demo: mov cx,2 .loop: call wilson ; Is it prime? jnz .next ; If not, try next number mov ax,cx call print ; Otherwise, print the number .next: inc cl ; Next number. jnz .loop ; If <256, try next number ret ;;; Print value in AX using DOS syscall print: mov bp,10 ; Divisor mov bx,numbuf ; Pointer to buffer .digit: xor dx,dx div bp ; Divide AX and get digit in DX add dl,'0' ; Make ASCII dec bx ; Store in buffer mov [bx],dl test ax,ax ; Done yet? jnz .digit ; If not, get next digit mov dx,bx ; Print buffer mov ah,9 ; 9 = MS-DOS syscall to print a string int 21h ret section .data db '*****' ; Space to hold ASCII number for output numbuf: db 13,10,'$'</lang>

Output:
2
3
5
7
11
13
17
19
23
29
31
37
41
43
47
53
59
61
67
71
73
79
83
89
97
101
103
107
109
113
127
131
137
139
149
151
157
163
167
173
179
181
191
193
197
199
211
223
227
229
233
239
241
251

Ada

<lang Ada>-- -- Determine primality using Wilon's theorem. -- Uses the approach from Algol W -- allowing large primes without the use of big numbers. -- with Ada.Text_IO; use Ada.Text_IO;

procedure Main is

  type u_64 is mod 2**64;
  package u_64_io is new modular_io (u_64);
  use u_64_io;
  function Is_Prime (n : u_64) return Boolean is
     fact_Mod_n : u_64 := 1;
  begin
     if n < 2 then
        return False;
     end if;
     for i in 2 .. n - 1 loop
        fact_Mod_n := (fact_Mod_n * i) rem n;
     end loop;
     return fact_Mod_n = n - 1;
  end Is_Prime;
  num : u_64 := 1;
  type cols is mod 12;
  count : cols := 0;

begin

  while num < 500 loop
     if Is_Prime (num) then
        if count = 0 then
           New_Line;
        end if;
        Put (Item => num, Width => 6);
        count := count + 1;
     end if;
     num := num + 1;
  end loop;

end Main;

</lang>

Output:
     2     3     5     7    11    13    17    19    23    29    31    37
    41    43    47    53    59    61    67    71    73    79    83    89
    97   101   103   107   109   113   127   131   137   139   149   151
   157   163   167   173   179   181   191   193   197   199   211   223
   227   229   233   239   241   251   257   263   269   271   277   281
   283   293   307   311   313   317   331   337   347   349   353   359
   367   373   379   383   389   397   401   409   419   421   431   433
   439   443   449   457   461   463   467   479   487   491   499

ALGOL 68

Translation of: ALGOL W

As with many samples on this page, applies the modulo operation at each step in calculating the factorial, to avoid needing large integeres. <lang algol68>BEGIN

   # find primes using Wilson's theorem:                               #
   #    p is prime if ( ( p - 1 )! + 1 ) mod p = 0                     #

   # returns true if p is a prime by Wilson's theorem, false otherwise #
   #         computes the factorial mod p at each stage, so as to      #
   #         allow numbers whose factorial won't fit in 32 bits        #
   PROC is wilson prime = ( INT p )BOOL:
       IF p < 2 THEN FALSE
       ELSE
           INT factorial mod p := 1;
           FOR i FROM 2 TO p - 1 DO factorial mod p *:= i MODAB p OD;
           factorial mod p = p - 1
       FI # is wilson prime # ;

   FOR i TO 100 DO IF is wilson prime( i ) THEN print( ( " ", whole( i, 0 ) ) ) FI OD

END</lang>

Output:
 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97

ALGOL W

As with the APL, Tiny BASIC and other samples, this computes the factorials mod p at each multiplication to avoid needing numbers larger than the 32 bit limit. <lang algolw>begin

   % find primes using Wilson's theorem:                               %
   %    p is prime if ( ( p - 1 )! + 1 ) mod p = 0                     %
   % returns true if n is a prime by Wilson's theorem, false otherwise %
   %         computes the factorial mod p at each stage, so as to      %
   %         allow numbers whose factorial won't fit in 32 bits        %
   logical procedure isWilsonPrime ( integer value n ) ;
       if n < 2 then false
       else begin
           integer factorialModN;
           factorialModN := 1;
           for i := 2 until n - 1 do factorialModN := ( factorialModN * i ) rem n;
           factorialModN = n - 1
       end isWilsonPrime ;
   for i := 1 until 100 do if isWilsonPrime( i ) then writeon( i_w := 1, s_w := 0, " ", i );

end.</lang>

Output:
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97

APL

This version avoids huge intermediate values by calculating the modulus after each step of the factorial multiplication. This is necessary for the function to work correctly with more than the first few numbers.

<lang APL>wilson ← {⍵<2:0 ⋄ (⍵-1)=(⍵|×)/⍳⍵-1}</lang>

Output:
      wilson {(⍺⍺¨⍵)/⍵} ⍳200
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163
      167 173 179 181 191 193 197 199

The naive version (using APL's built-in factorial) looks like this:

<lang APL>naiveWilson ← {⍵<2:0 ⋄ 0=⍵|1+!⍵-1}</lang>

But due to loss of precision with large floating-point values, it only works correctly up to number 19 even with ⎕CT set to zero:

Output:
      ⎕CT←0 ⋄ naiveWilson {(⍺⍺¨⍵)/⍵} ⍳20
2 3 5 7 11 13 17 19 20

AppleScript

Nominally, the AppleScript solution would be as follows, the 'mod n' at every stage of the factorial being to keep the numbers within the range the language can handle:

<lang applescript>on isPrime(n)

   if (n < 2) then return false
   set f to n - 1
   repeat with i from (n - 2) to 2 by -1
       set f to f * i mod n
   end repeat
   
   return ((f + 1) mod n = 0)

end isPrime

local output, n set output to {} repeat with n from 0 to 500

   if (isPrime(n)) then set end of output to n

end repeat output</lang>

Output:

<lang applescript>{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499}</lang>

In fact, though, the modding by n after every multiplication means there are only three possibilities for the final value of f: n - 1 (if n's a prime), 2 (if n's 4), or 0 (if n's any other non-prime). So the test at the end of the handler could be simplified. Another thing is that if f becomes 0 at some point in the repeat, it obviously stays that way for the remaining iterations, so quite a bit of time can be saved by testing for it and returning false immediately if it occurs. And if 2 and its multiples are caught before the repeat, any other non-prime will guarantee a jump out of the handler. Simply reaching the end will mean n's a prime.

It turns out too that false results only occur when multiplying numbers between √n and n - √n and that only multiplying numbers in this range still leads to the correct outcomes. And if this isn't abusing Wilson's theorem enough, multiples of 2 and 3 can be prechecked and omitted from the "factorial" process altogether, much as they can be skipped in tests for primality by trial division:

<lang applescript>on isPrime(n)

   -- Check for numbers < 2 and 2 & 3 and their multiples.
   if (n < 4) then return (n > 1)
   if ((n mod 2 = 0) or (n mod 3 = 0)) then return false
   -- Only multiply numbers in the range √n -> n - √n that are 1 less and 1 more than multiples of 6,
   -- starting with a number that's 1 less than a multiple of 6 and as close as practical to √n.
   tell (n ^ 0.5 div 1) to set f to it - (it - 2) mod 6 + 3
   repeat with i from f to (n - f - 6) by 6
       set f to f * i mod n * (i + 2) mod n
       if (f = 0) then return false
   end repeat
   
   return true

end isPrime</lang>

Arturo

<lang rebol>factorial: function [x]-> product 1..x

wprime?: function [n][

   if n < 2 -> return false
   zero? mod add factorial sub n 1 1 n

]

print "Primes below 20 via Wilson's theorem:" print select 1..20 => wprime?</lang>

Output:
Primes below 20 via Wilson's theorem:
2 3 5 7 11 13 17 19

C

<lang c>#include <stdbool.h>

  1. include <stdint.h>
  2. include <stdio.h>

uint64_t factorial(uint64_t n) {

   uint64_t product = 1;
   if (n < 2) {
       return 1;
   }
   for (; n > 0; n--) {
       uint64_t prev = product;
       product *= n;
       if (product < prev) {
           fprintf(stderr, "Overflowed\n");
           return product;
       }
   }
   return product;

}

// uses wilson's theorem bool isPrime(uint64_t n) {

   uint64_t large = factorial(n - 1) + 1;
   return (large % n) == 0;

}

int main() {

   uint64_t n;
   // Can check up to 21, more will require a big integer library
   for (n = 2; n < 22; n++) {
       printf("Is %llu prime: %d\n", n, isPrime(n));
   }
   return 0;

}</lang>

Output:
Is 2 prime: 1
Is 3 prime: 1
Is 4 prime: 0
Is 5 prime: 1
Is 6 prime: 0
Is 7 prime: 1
Is 8 prime: 0
Is 9 prime: 0
Is 10 prime: 0
Is 11 prime: 1
Is 12 prime: 0
Is 13 prime: 1
Is 14 prime: 0
Is 15 prime: 0
Is 16 prime: 0
Is 17 prime: 1
Is 18 prime: 0
Is 19 prime: 1
Is 20 prime: 0
Is 21 prime: 0

C#

Performance comparison to Sieve of Eratosthenes. <lang csharp>using System; using System.Linq; using System.Collections; using static System.Console; using System.Collections.Generic; using BI = System.Numerics.BigInteger;

class Program {

 // initialization
   const int fst = 120, skp = 1000, max = 1015; static double et1, et2; static DateTime st;
   static string ms1 = "Wilson's theorem method", ms2 = "Sieve of Eratosthenes method", 
      fmt = "--- {0} ---\n\nThe first {1} primes are:", fm2 = "{0} prime thru the {1} prime:";
   static List<int> lst = new List<int>();
 // dumps a chunk of the prime list (lst)
   static void Dump(int s, int t, string f) {
       foreach (var item in lst.Skip(s).Take(t)) Write(f, item); WriteLine("\n"); }
 // returns the ordinal string representation of a number
   static string Ord(int x, string fmt = "{0:n0}") {
     var y = x % 10; if ((x % 100) / 10 == 10 || y > 3) y = 0;
     return string.Format(fmt, x) + "thstndrd".Substring(y << 1, 2); }
 // shows the results of one type of prime tabulation
   static void ShowOne(string title, ref double et) {
       WriteLine(fmt, title, fst); Dump(0, fst, "{0,-3} ");
       WriteLine(fm2, Ord(skp), Ord(max)); Dump(skp - 1, max - skp + 1, "{0,4} ");
       WriteLine("Time taken: {0}ms\n", et = (DateTime.Now - st).TotalMilliseconds); }
 // for stand-alone computation
   static BI factorial(int n) { BI res = 1; if (n < 2) return res;
       while (n > 0) res *= n--; return res; }
   static bool WTisPrimeSA(int n) { return ((factorial(n - 1) + 1) % n) == 0; }
   static BI[] facts;
   static void initFacts(int n) {
       facts = new BI[n]; facts[0] = facts[1] = 1;
       for (int i = 1, j = 2; j < n; i = j++)
           facts[j] = facts[i] * j; }
   static bool WTisPrime(int n) { return ((facts[n - 1] + 1) % n) == 0; }
 // end stand-alone
   static void Main(string[] args) { st = DateTime.Now;
       BI f = 1; for (int n = 2; lst.Count < max; f *= n++) if ((f + 1) % n == 0) lst.Add(n);
       ShowOne(ms1, ref et1);
       st = DateTime.Now; int lmt = lst.Last(); lst.Clear(); BitArray flags = new BitArray(lmt + 1);
       for (int n = 2; n <= lmt; n+=n==2?1:2) if (!flags[n]) {
               lst.Add(n); for (int k = n * n, n2=n<<1; k <= lmt; k += n2) flags[k] = true; }
       ShowOne(ms2, ref et2);
       WriteLine("{0} was {1:0.0} times slower than the {2}.", ms1, et1 / et2, ms2);
     // stand-alone computation
       WriteLine("\n" + ms1 + " stand-alone computation:");
       WriteLine("factorial computed for each item");
       st = DateTime.Now;
       for (int x = lst[skp - 1]; x <= lst[max - 1]; x++) if (WTisPrimeSA(x)) Write("{0,4} ", x);
       WriteLine(); WriteLine("\nTime taken: {0}ms\n", (DateTime.Now - st).TotalMilliseconds);
       WriteLine("factorials precomputed up to highest item");
       st = DateTime.Now; initFacts(lst[max - 1]);
       for (int x = lst[skp - 1]; x <= lst[max - 1]; x++) if (WTisPrime(x)) Write("{0,4} ", x);
       WriteLine(); WriteLine("\nTime taken: {0}ms\n", (DateTime.Now - st).TotalMilliseconds);
   }

}</lang>

Output @ Tio.run:
--- Wilson's theorem method ---

The first 120 primes are:
2   3   5   7   11  13  17  19  23  29  31  37  41  43  47  53  59  61  67  71  73  79  83  89  97  101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541 547 557 563 569 571 577 587 593 599 601 607 613 617 619 631 641 643 647 653 659 

1,000th prime thru the 1,015th prime:
7919 7927 7933 7937 7949 7951 7963 7993 8009 8011 8017 8039 8053 8059 8069 8081 

Time taken: 340.901ms

--- Sieve of Eratosthenes method ---

The first 120 primes are:
2   3   5   7   11  13  17  19  23  29  31  37  41  43  47  53  59  61  67  71  73  79  83  89  97  101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541 547 557 563 569 571 577 587 593 599 601 607 613 617 619 631 641 643 647 653 659 

1,000th prime thru the 1,015th prime:
7919 7927 7933 7937 7949 7951 7963 7993 8009 8011 8017 8039 8053 8059 8069 8081 

Time taken: 2.118ms

Wilson's theorem method was 161.0 times slower than the Sieve of Eratosthenes method.

Wilson's theorem method stand-alone computation:
factorial computed for each item
7919 7927 7933 7937 7949 7951 7963 7993 8009 8011 8017 8039 8053 8059 8069 8081 

Time taken: 11265.2768ms

factorials precomputed up to highest item
7919 7927 7933 7937 7949 7951 7963 7993 8009 8011 8017 8039 8053 8059 8069 8081 

Time taken: 177.7401ms

The "slow" factor may be different on different processors and programming environments. For example, on Tio.run, the "slow" factor is anywhere between 120 and 180 times slower. Slowness most likely caused by the sluggish BigInteger library usage. The SoE method, although quicker, does consume some memory (due to the flags BitArray). The Wilson's theorem method may consume considerable memory due to the large factorials (the f variable) when computing larger primes.

The Wilson's theorem method is better suited for computing single primes, as the SoE method causes one to compute all the primes up to the desired item. In this C# implementation, a running factorial is maintained to help the Wilson's theorem method be a little more efficient. The stand-alone results show that when having to compute a BigInteger factorial for every primality test, the performance drops off considerably more. The last performance figure illustrates that memoizing the factorials can help when calculating nearby prime numbers.

C++

<lang cpp>#include <iomanip>

  1. include <iostream>

int factorial_mod(int n, int p) {

   int f = 1;
   for (; n > 0 && f != 0; --n)
       f = (f * n) % p;
   return f;

}

bool is_prime(int p) {

   return p > 1 && factorial_mod(p - 1, p) == p - 1;

}

int main() {

   std::cout << "  n | prime?\n------------\n";
   std::cout << std::boolalpha;
   for (int p : {2, 3, 9, 15, 29, 37, 47, 57, 67, 77, 87, 97, 237, 409, 659})
       std::cout << std::setw(3) << p << " | " << is_prime(p) << '\n';
   std::cout << "\nFirst 120 primes by Wilson's theorem:\n";
   int n = 0, p = 1;
   for (; n < 120; ++p) {
       if (is_prime(p))
           std::cout << std::setw(3) << p << (++n % 20 == 0 ? '\n' : ' ');
   }
   std::cout << "\n1000th through 1015th primes:\n";
   for (int i = 0; n < 1015; ++p) {
       if (is_prime(p)) {
           if (++n >= 1000)
               std::cout << std::setw(4) << p << (++i % 16 == 0 ? '\n' : ' ');
       }
   }

}</lang>

Output:
  n | prime?
------------
  2 | true
  3 | true
  9 | false
 15 | false
 29 | true
 37 | true
 47 | true
 57 | false
 67 | true
 77 | false
 87 | false
 97 | true
237 | false
409 | true
659 | true

First 120 primes by Wilson's theorem:
  2   3   5   7  11  13  17  19  23  29  31  37  41  43  47  53  59  61  67  71
 73  79  83  89  97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409
419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541
547 557 563 569 571 577 587 593 599 601 607 613 617 619 631 641 643 647 653 659

1000th through 1015th primes:
7919 7927 7933 7937 7949 7951 7963 7993 8009 8011 8017 8039 8053 8059 8069 8081

Common Lisp

<lang Lisp> (defun factorial (n)

 (if (< n 2) 1 (* n (factorial (1- n)))) )


(defun primep (n)

"Primality test using Wilson's Theorem"
 (unless (zerop n)
   (zerop (mod (1+ (factorial (1- n))) n)) ))

</lang>

Output:
;; Primes under 20:
(dotimes (i 20) (when (primep i) (print i)))

1 
2 
3 
5 
7 
11 
13 
17 
19 


Cowgol

<lang cowgol>include "cowgol.coh";

  1. Wilson primality test

sub wilson(n: uint32): (out: uint8) is

   out := 0;
   if n >= 2 then
       var facmod: uint32 := 1;
       var ct := n - 1;
       while ct > 0 loop
           facmod := (facmod * ct) % n;
           ct := ct - 1;
       end loop;
       if facmod + 1 == n then
           out := 1;
       end if;
   end if;

end sub;

  1. Print primes up to 100 according to Wilson

var i: uint32 := 1; while i < 100 loop

   if wilson(i) == 1 then
       print_i32(i);
       print_char(' ');
   end if;
   i := i + 1;

end loop; print_nl();</lang>

Output:
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97

D

Translation of: Java

<lang d>import std.bigint; import std.stdio;

BigInt fact(long n) {

   BigInt f = 1;
   for (int i = 2; i <= n; i++) {
       f *= i;
   }
   return f;

}

bool isPrime(long p) {

   if (p <= 1) {
       return false;
   }
   return (fact(p - 1) + 1) % p == 0;

}

void main() {

   writeln("Primes less than 100 testing by Wilson's Theorem");
   foreach (i; 0 .. 101) {
       if (isPrime(i)) {
           write(i, ' ');
       }
   }
   writeln;

}</lang>

Output:
Primes less than 100 testing by Wilson's Theorem
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97

Erlang

<lang Erlang>

  1. ! /usr/bin/escript

isprime(N) when N < 2 -> false; isprime(N) when N band 1 =:= 0 -> N =:= 2; isprime(N) -> fac_mod(N - 1, N) =:= N - 1.

fac_mod(N, M) -> fac_mod(N, M, 1). fac_mod(1, _, A) -> A; fac_mod(N, M, A) -> fac_mod(N - 1, M, A*N rem M).

main(_) ->

   io:format("The first few primes (via Wilson's theorem) are: ~n~p~n", 
             | K <- lists:seq(1, 128), isprime(K)).

</lang>

Output:
The first few primes (via Wilson's theorem) are: 
[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,
 103,107,109,113,127]

F#

<lang fsharp> // Wilsons theorem. Nigel Galloway: August 11th., 2020 let wP(n,g)=(n+1I)%g=0I let fN=Seq.unfold(fun(n,g)->Some((n,g),((n*g),(g+1I))))(1I,2I)|>Seq.filter wP fN|>Seq.take 120|>Seq.iter(fun(_,n)->printf "%A " n);printfn "\n" fN|>Seq.skip 999|>Seq.take 15|>Seq.iter(fun(_,n)->printf "%A " n);printfn ""</lang>

Output:
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541 547 557 563 569 571 577 587 593 599 601 607 613 617 619 631 641 643 647 653 659

7919 7927 7933 7937 7949 7951 7963 7993 8009 8011 8017 8039 8053 8059 8069

Factor

Works with: Factor version 0.99 2020-08-14

<lang factor>USING: formatting grouping io kernel lists lists.lazy math math.factorials math.functions prettyprint sequences ;

wilson ( n -- ? ) [ 1 - factorial 1 + ] [ divisor? ] bi ;
prime? ( n -- ? ) dup 2 < [ drop f ] [ wilson ] if ;
primes ( -- list ) 1 lfrom [ prime? ] lfilter ;

"n prime?\n--- -----" print { 2 3 9 15 29 37 47 57 67 77 87 97 237 409 659 } [ dup prime? "%-3d %u\n" printf ] each nl

"First 120 primes via Wilson's theorem:" print 120 primes ltake list>array 20 group simple-table. nl

"1000th through 1015th primes:" print 16 primes 999 [ cdr ] times ltake list>array [ pprint bl ] each nl</lang>

Output:
n    prime?
---  -----
2    t
3    t
9    f
15   f
29   t
37   t
47   t
57   f
67   t
77   f
87   f
97   t
237  f
409  t
659  t

First 120 primes via Wilson's theorem:
2   3   5   7   11  13  17  19  23  29  31  37  41  43  47  53  59  61  67  71
73  79  83  89  97  101 103 107 109 113 127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409
419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541
547 557 563 569 571 577 587 593 599 601 607 613 617 619 631 641 643 647 653 659

1000th through 1015th primes:
7919 7927 7933 7937 7949 7951 7963 7993 8009 8011 8017 8039 8053 8059 8069 8081

Fermat

<lang fermat>Func Wilson(n) = if ((n-1)!+1)|n = 0 then 1 else 0 fi.;</lang>

Forth

<lang Forth>

fac-mod ( n m -- r )
   >r 1 swap
   begin dup 0> while
       dup rot * r@ mod  swap 1-
   repeat drop rdrop ;
?prime ( n -- f )
   dup 1- tuck swap fac-mod = ;
.primes ( n -- )
   cr 2 ?do i ?prime if i . then loop ;

</lang>

Output:
128 .primes 
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127  ok

FreeBASIC

<lang freebasic>function wilson_prime( n as uinteger ) as boolean

   dim as uinteger fct=1, i
   for i = 2 to n-1
       'because   (a mod n)*b = (ab mod n)
       'it is not necessary to calculate the entire factorial
       fct = (fct * i) mod n
   next i
   if fct = n-1 then return true else return false

end function

for i as uinteger = 2 to 100

   if wilson_prime(i) then print i,

next i</lang>

Output:

Primes below 100

2             3             5             7             11
13            17            19            23            29
31            37            41            43            47
53            59            61            67            71
73            79            83            89            97

Fōrmulæ

Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for storage and transfer purposes more than visualization and edition.

Programs in Fōrmulæ are created/edited online in its website, However they run on execution servers. By default remote servers are used, but they are limited in memory and processing power, since they are intended for demonstration and casual use. A local server can be downloaded and installed, it has no limitations (it runs in your own computer). Because of that, example programs can be fully visualized and edited, but some of them will not run if they require a moderate or heavy computation/memory resources, and no local server is being used.

In this page you can see the program(s) related to this task and their results.

Go

Needless to say, Wilson's theorem is an extremely inefficient way of testing for primalty with 'big integer' arithmetic being needed to compute factorials greater than 20.

Presumably we're not allowed to make any trial divisions here except by the number two where all even positive integers, except two itself, are obviously composite. <lang go>package main

import (

   "fmt"
   "math/big"

)

var (

   zero = big.NewInt(0)
   one  = big.NewInt(1)
   prev = big.NewInt(factorial(20))

)

// Only usable for n <= 20. func factorial(n int64) int64 {

   res := int64(1)
   for k := n; k > 1; k-- {
       res *= k
   }
   return res

}

// If memo == true, stores previous sequential // factorial calculation for odd n > 21. func wilson(n int64, memo bool) bool {

   if n <= 1 || (n%2 == 0 && n != 2) {
       return false
   }
   if n <= 21 {
       return (factorial(n-1)+1)%n == 0
   }
   b := big.NewInt(n)
   r := big.NewInt(0)
   z := big.NewInt(0)
   if !memo {
       z.MulRange(2, n-1) // computes factorial from scratch
   } else {
       prev.Mul(prev, r.MulRange(n-2, n-1)) // uses previous calculation
       z.Set(prev)
   }
   z.Add(z, one)
   return r.Rem(z, b).Cmp(zero) == 0    

}

func main() {

   numbers := []int64{2, 3, 9, 15, 29, 37, 47, 57, 67, 77, 87, 97, 237, 409, 659}
   fmt.Println("  n  prime")
   fmt.Println("---  -----")
   for _, n := range numbers {
       fmt.Printf("%3d  %t\n", n, wilson(n, false))
   }
   // sequential memoized calculation
   fmt.Println("\nThe first 120 prime numbers are:")
   for i, count := int64(2), 0; count < 1015; i += 2 {
       if wilson(i, true) {
           count++
           if count <= 120 {
               fmt.Printf("%3d ", i)
               if count%20 == 0 {
                   fmt.Println()
               }
           } else if count >= 1000 {
               if count == 1000 {
                   fmt.Println("\nThe 1,000th to 1,015th prime numbers are:") 
               }
               fmt.Printf("%4d ", i)
           }            
       }
       if i == 2 {
           i--
       }
   }
   fmt.Println()    

}</lang>

Output:
  n  prime
---  -----
  2  true
  3  true
  9  false
 15  false
 29  true
 37  true
 47  true
 57  false
 67  true
 77  false
 87  false
 97  true
237  false
409  true
659  true

The first 120 prime numbers are:
  2   3   5   7  11  13  17  19  23  29  31  37  41  43  47  53  59  61  67  71 
 73  79  83  89  97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 
179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 
283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 
419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541 
547 557 563 569 571 577 587 593 599 601 607 613 617 619 631 641 643 647 653 659

The 1,000th to 1,015th prime numbers are:
7919 7927 7933 7937 7949 7951 7963 7993 8009 8011 8017 8039 8053 8059 8069 8081 

Haskell

<lang Haskell>import qualified Data.Text as T import Data.List

main = do

   putStrLn $ showTable True ' ' '-' ' ' $ ["p","isPrime"]:map (\p -> [show p, show $ isPrime p]) numbers
   putStrLn $ "The first 120 prime numbers are:"
   putStrLn $ see 20 $ take 120 primes
   putStrLn "The 1,000th to 1,015th prime numbers are:"
   putStrLn $ see 16.take 16 $ drop 999 primes


numbers = [2,3,9,15,29,37,47,57,67,77,87,97,237,409,659]

primes = [p | p <- 2:[3,5..], isPrime p]

isPrime :: Integer -> Bool isPrime p = if p < 2 then False else 0 == mod (succ $ product [1..pred p]) p

bagOf :: Int -> [a] -> a bagOf _ [] = [] bagOf n xs = let (us,vs) = splitAt n xs in us : bagOf n vs

see :: Show a => Int -> [a] -> String see n = unlines.map unwords.bagOf n.map (T.unpack.T.justifyRight 3 ' '.T.pack.show)

showTable::Bool -> Char -> Char -> Char -> String -> String showTable _ _ _ _ [] = [] showTable header ver hor sep contents = unlines $ hr:(if header then z:hr:zs else intersperse hr zss) ++ [hr]

  where
  vss = map (map length) $ contents
  ms = map maximum $ transpose vss ::[Int]
  hr = concatMap (\ n -> sep : replicate n hor) ms ++ [sep]
  top = replicate (length hr) hor
  bss = map (\ps -> map (flip replicate ' ') $ zipWith (-) ms ps) $ vss
  zss@(z:zs) = zipWith (\us bs -> (concat $ zipWith (\x y -> (ver:x) ++ y) us bs) ++ [ver]) contents bss</lang>
Output:
 --- ------- 
 p   isPrime 
 --- ------- 
 2   True    
 3   True    
 9   False   
 15  False   
 29  True    
 37  True    
 47  True    
 57  False   
 67  True    
 77  False   
 87  False   
 97  True    
 237 False   
 409 True    
 659 True    
 --- ------- 

The first 120 prime numbers are:
  2   3   5   7  11  13  17  19  23  29  31  37  41  43  47  53  59  61  67  71
 73  79  83  89  97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409
419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541
547 557 563 569 571 577 587 593 599 601 607 613 617 619 631 641 643 647 653 659

The 1,000th to 1,015th prime numbers are:
7919 7927 7933 7937 7949 7951 7963 7993 8009 8011 8017 8039 8053 8059 8069 8081

J

<lang J>

  wilson=: 0 = (| !&.:<:)
  (#~ wilson) x: 2 + i. 30

2 3 5 7 11 13 17 19 23 29 31 </lang>

Java

Wilson's theorem is an extremely inefficient way of testing for primality. As a result, optimizations such as caching factorials not performed. <lang java> import java.math.BigInteger;

public class PrimaltyByWilsonsTheorem {

   public static void main(String[] args) {
       System.out.printf("Primes less than 100 testing by Wilson's Theorem%n");
       for ( int i = 0 ; i <= 100 ; i++ ) {
           if ( isPrime(i) ) {
               System.out.printf("%d ", i);
           }
       }
   }
   
   
   private static boolean isPrime(long p) {
       if ( p <= 1) {
           return false;
       }
       return fact(p-1).add(BigInteger.ONE).mod(BigInteger.valueOf(p)).compareTo(BigInteger.ZERO) == 0;
   }
   
   private static BigInteger fact(long n) {
       BigInteger fact = BigInteger.ONE;
       for ( int i = 2 ; i <= n ; i++ ) {
           fact = fact.multiply(BigInteger.valueOf(i));
       }
       return fact;
   }

} </lang>

Output:
Primes less than 100 testing by Wilson's Theorem
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 

jq

Works with jq, subject to the limitations of IEEE 754 64-bit arithmetic.

Works with gojq, which supports unlimited-precision integer arithmetic.

'Adapted from Julia and Nim' <lang jq>## Compute (n - 1)! mod m. def facmod($n; $m):

 reduce range(2; $n+1) as $k (1; (. * $k) % $m);

def isPrime: .>1 and (facmod(. - 1; .) + 1) % . == 0;

"Prime numbers between 2 and 100:", [range(2;101) | select (isPrime)],

  1. Notice that `infinite` can be used as the second argument of `range`:

"First 10 primes after 7900:", [limit(10; range(7900; infinite) | select(isPrime))]</lang>

Output:

<lang sh> Prime numbers between 2 and 100: [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97] First 10 primes after 7900: [7901,7907,7919,7927,7933,7937,7949,7951,7963,7993]</lang>

Julia

<lang julia>iswilsonprime(p) = (p < 2 || (p > 2 && iseven(p))) ? false : foldr((x, y) -> (x * y) % p, 1:p - 1) == p - 1

wilsonprimesbetween(n, m) = [i for i in n:m if iswilsonprime(i)]

println("First 120 Wilson primes: ", wilsonprimesbetween(1, 1000)[1:120]) println("\nThe first 40 Wilson primes above 7900 are: ", wilsonprimesbetween(7900, 9000)[1:40])

</lang>

Output:
First 120 Wilson primes: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659]

The first 40 Wilson primes above 7900 are: [7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123, 8147, 8161, 8167, 8171, 8179, 8191, 8209, 8219, 8221, 8231, 8233, 8237, 8243, 8263, 8269]

Lua

<lang lua>-- primality by Wilson's theorem

function isWilsonPrime( n )

   local fmodp = 1
   for i = 1, n - 1 do
       fmodp = fmodp * i
       fmodp = fmodp % n
   end
   return (fmodp + 1 ) % n == 0

end

for n = 2, 100 do

   if isWilsonPrime( n ) then
      io.write( " " .. n )
   end

end</lang>

Output:
 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97

Mathematica/Wolfram Language

<lang Mathematica>ClearAll[WilsonPrimeQ] WilsonPrimeQ[1] = False; WilsonPrimeQ[p_Integer] := Divisible[(p - 1)! + 1, p] Select[Range[100], WilsonPrimeQ]</lang>

Output:

Prime factors up to a 100:

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}

Nim

<lang Nim>import strutils, sugar

proc facmod(n, m: int): int =

 ## Compute (n - 1)! mod m.
 result = 1
 for k in 2..n:
   result = (result * k) mod m

func isPrime(n: int): bool = (facmod(n - 1, n) + 1) mod n == 0

let primes = collect(newSeq):

              for n in 2..100:
                if n.isPrime: n

echo "Prime numbers between 2 and 100:" echo primes.join(" ")</lang>

Output:
Prime numbers between 2 and 100:
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97

PARI/GP

<lang parigp>Wilson(n) = prod(i=1,n-1,Mod(i,n))==-1 </lang>

Perl

Library: ntheory

<lang perl>use strict; use warnings; use feature 'say'; use ntheory qw(factorial);

my($ends_in_7, $ends_in_3);

sub is_wilson_prime {

   my($n) = @_;
   $n > 1 or return 0;
   (factorial($n-1) % $n) == ($n-1) ? 1 : 0;

}

for (0..50) {

   my $m = 3 + 10 * $_;
   $ends_in_3 .= "$m " if is_wilson_prime($m);
   my $n = 7 + 10 * $_;
   $ends_in_7 .= "$n " if is_wilson_prime($n);

}

say $ends_in_3; say $ends_in_7;</lang>

Output:
3 13 23 43 53 73 83 103 113 163 173 193 223 233 263 283 293 313 353 373 383 433 443 463 503
7 17 37 47 67 97 107 127 137 157 167 197 227 257 277 307 317 337 347 367 397 457 467 487

Phix

Uses the modulus method to avoid needing gmp, which was in fact about 7 times slower (when calculating the full factorials).

function wilson(integer n)
    integer facmod = 1
    for i=2 to n-1 do
        facmod = remainder(facmod*i,n)
    end for
    return facmod+1=n
end function
 
atom t0 = time()
sequence primes = {}
integer p = 2 
while length(primes)<1015 do
    if wilson(p) then
        primes &= p
    end if
    p += 1
end while
printf(1,"The first 25 primes: %V\n",{primes[1..25]})
printf(1,"          builtin: %V\n",{get_primes(-25)})
printf(1,"primes[1000..1015]: %V\n",{primes[1000..1015]})
printf(1,"         builtin: %V\n",{get_primes(-1015)[1000..1015]})
?elapsed(time()-t0)
Output:
The first 25 primes: {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97}
         '' builtin: {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97}
primes[1000..1015]: {7919,7927,7933,7937,7949,7951,7963,7993,8009,8011,8017,8039,8053,8059,8069,8081}
        '' builtin: {7919,7927,7933,7937,7949,7951,7963,7993,8009,8011,8017,8039,8053,8059,8069,8081}
"0.5s"

Plain English

<lang plainenglish>To run: Start up. Show some primes (via Wilson's theorem). Wait for the escape key. Shut down.

The maximum representable factorial is a number equal to 12. \32-bit signed

To show some primes (via Wilson's theorem): If a counter is past the maximum representable factorial, exit. If the counter is prime (via Wilson's theorem), write "" then the counter then " " on the console without advancing. Repeat.

A prime is a number.

A factorial is a number.

To find a factorial of a number: Put 1 into the factorial. Loop. If a counter is past the number, exit. Multiply the factorial by the counter. Repeat.

To decide if a number is prime (via Wilson's theorem): If the number is less than 1, say no. Find a factorial of the number minus 1. Bump the factorial. If the factorial is evenly divisible by the number, say yes. Say no.</lang>

Output:
1 2 3 5 7 11

PL/I

<lang pli>/* primality by Wilson's theorem */ wilson: procedure options( main );

  declare n binary(15)fixed;
  isWilsonPrime: procedure( n )returns( bit(1) );
     declare n            binary(15)fixed;
     declare ( fmodp, i ) binary(15)fixed;
     fmodp = 1;
     do i = 1 to n - 1;
        fmodp = mod( fmodp * i, n );
     end;
     return ( mod( fmodp + 1, n ) = 0 );
  end isWilsonPrime ;

  do n = 2 to 100;
     if isWilsonPrime( n ) then do;
        put edit( n ) ( f(3) );
     end;
  end;

end wilson ;</lang>

Output:
  2  3  5  7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97

PL/M

Works with the original 8080 PL/M compiler and CP/M (or an emulator)}} <lang pli>100H: /* FIND PRIMES USING WILSON'S THEOREM: */

     /*      P IS PRIME IF ( ( P - 1 )! + 1 ) MOD P = 0                    */
  DECLARE FALSE LITERALLY '0';
  BDOS: PROCEDURE( FN, ARG ); /* CP/M BDOS SYSTEM CALL */
     DECLARE FN BYTE, ARG ADDRESS;
     GOTO 5;
  END BDOS;
  PRINT$CHAR:   PROCEDURE( C ); DECLARE C BYTE;    CALL BDOS( 2, C ); END;
  PRINT$STRING: PROCEDURE( S ); DECLARE S ADDRESS; CALL BDOS( 9, S ); END;
  PRINT$NUMBER: PROCEDURE( N );
     DECLARE N ADDRESS;
     DECLARE V ADDRESS, N$STR( 6 ) BYTE, W BYTE;
     V = N;
     W = LAST( N$STR );
     N$STR( W ) = '$';
     N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
     DO WHILE( ( V := V / 10 ) > 0 );
        N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
     END;
     CALL PRINT$STRING( .N$STR( W ) );
  END PRINT$NUMBER;
  /* RETURNS TRUE IF P IS PRIME BY WILSON'S THEOREM, FALSE OTHERWISE       */
  /*         COMPUTES THE FACTORIAL MOD P AT EACH STAGE, SO AS TO ALLOW    */
  /*         FOR NUMBERS WHOSE FACTORIAL WON'T FIT IN 16 BITS              */
  IS$WILSON$PRIME: PROCEDURE( P )BYTE;
     DECLARE P ADDRESS;
     IF P < 2 THEN RETURN FALSE;
     ELSE DO;
        DECLARE ( I, FACTORIAL$MOD$P ) ADDRESS;
        FACTORIAL$MOD$P = 1;
        DO I = 2 TO P - 1;
           FACTORIAL$MOD$P = ( FACTORIAL$MOD$P * I ) MOD P;
        END;
        RETURN FACTORIAL$MOD$P = P - 1;
     END;
  END IS$WILSON$PRIME;
  DECLARE I ADDRESS;
  DO I = 1 TO 100;
     IF IS$WILSON$PRIME( I ) THEN DO;
        CALL PRINT$CHAR( ' ' );
        CALL PRINT$NUMBER( I );
     END;
  END;

EOF</lang>

Output:
 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97

Python

No attempt is made to optimise this as this method is a very poor primality test. <lang python>from math import factorial

def is_wprime(n):

   return n > 1 and bool(n == 2 or
                         (n % 2 and (factorial(n - 1) + 1) % n == 0))

if __name__ == '__main__':

   c = 100
   print(f"Primes under {c}:", end='\n  ')
   print([n for n in range(c) if is_wprime(n)])</lang>
Output:
Primes under 100:
  [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]

Quackery

<lang Quackery> [ 1 swap times [ i 1+ * ] ] is ! ( n --> n )

[ dup 2 < iff
    [ drop false ] done 
  dup 1 - ! 1+
  swap mod 0 = ]            is prime ( n --> b )
say "Primes less than 500: "
500 times 
  [ i^ prime if 
      [ i^ echo sp ] ]</lang>
Output:
Primes less than 500: 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 

Raku

(formerly Perl 6)

Works with: Rakudo version 2019.11

Not a particularly recommended way to test for primality, especially for larger numbers. It works, but is slow and memory intensive.

<lang perl6>sub postfix:<!> (Int $n) { (constant f = 1, |[\*] 1..*)[$n] }

sub is-wilson-prime (Int $p where * > 1) { (($p - 1)! + 1) %% $p }

  1. Pre initialize factorial routine (not thread safe)

9000!;

  1. Testing

put ' p prime?'; printf("%4d %s\n", $_, .&is-wilson-prime) for 2, 3, 9, 15, 29, 37, 47, 57, 67, 77, 87, 97, 237, 409, 659;

my $wilsons = (2,3,*+2…*).hyper.grep: &is-wilson-prime;

put "\nFirst 120 primes:"; put $wilsons[^120].rotor(20)».fmt('%3d').join: "\n";

put "\n1000th through 1015th primes:"; put $wilsons[999..1014];</lang>

Output:
   p  prime?
   2  True
   3  True
   9  False
  15  False
  29  True
  37  True
  47  True
  57  False
  67  True
  77  False
  87  False
  97  True
 237  False
 409  True
 659  True

First 120 primes:
  2   3   5   7  11  13  17  19  23  29  31  37  41  43  47  53  59  61  67  71
 73  79  83  89  97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409
419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541
547 557 563 569 571 577 587 593 599 601 607 613 617 619 631 641 643 647 653 659

1000th through 1015th primes:
7919 7927 7933 7937 7949 7951 7963 7993 8009 8011 8017 8039 8053 8059 8069 8081

REXX

Some effort was made to optimize the factorial computation by using memoization and also minimize the size of the
decimal digit precision     (NUMERIC DIGITS expression).

Also, a "pretty print" was used to align the displaying of a list. <lang rexx>/*REXX pgm tests for primality via Wilson's theorem: a # is prime if p divides (p-1)! +1*/ parse arg LO zz /*obtain optional arguments from the CL*/ if LO== | LO=="," then LO= 120 /*Not specified? Then use the default.*/ if zz = | zz ="," then zz=2 3 9 15 29 37 47 57 67 77 87 97 237 409 659 /*use default?*/ sw= linesize() - 1; if sw<1 then sw= 79 /*obtain the terminal's screen width. */ digs = digits() /*the current number of decimal digits.*/

  1. = 0 /*number of (LO) primes found so far.*/

!.= 1 /*placeholder for factorial memoization*/ $= /* " to hold a list of primes.*/

   do p=1  until #=LO;         oDigs= digs      /*remember the number of decimal digits*/
   ?= isPrimeW(p)                               /*test primality using Wilson's theorem*/
   if digs>Odigs  then numeric digits digs      /*use larger number for decimal digits?*/
   if \?  then iterate                          /*if not prime, then ignore this number*/
   #= # + 1;                   $= $ p           /*bump prime counter; add prime to list*/
   end   /*p*/

call show 'The first ' LO " prime numbers are:" w= max( length(LO), length(word(reverse(zz),1))) /*used to align the number being tested*/ @is.0= " isn't"; @is.1= 'is' /*2 literals used for display: is/ain't*/ say

   do z=1  for words(zz);      oDigs= digs      /*remember the number of decimal digits*/
   p= word(zz, z)                               /*get a number from user─supplied list.*/
   ?= isPrimeW(p)                               /*test primality using Wilson's theorem*/
   if digs>Odigs  then numeric digits digs      /*use larger number for decimal digits?*/
   say right(p, max(w,length(p) ) )       @is.?      "prime."
   end   /*z*/

exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ isPrimeW: procedure expose !. digs; parse arg x -1 last;  != 1; xm= x - 1

         if x<2                   then return 0 /*is the number too small to be prime? */
         if x==2 | x==5           then return 1 /*is the number a two or a five?       */
         if last//2==0 | last==5  then return 0 /*is the last decimal digit even or 5? */
         if !.xm\==1  then != !.xm              /*has the factorial been pre─computed? */
                      else do;  if xm>!.0  then do; base= !.0+1; _= !.0;  != !._; end
                                           else     base= 2        /* [↑] use shortcut.*/
                                     do j=!.0+1  to xm;  != ! * j  /*compute factorial.*/
                                     if pos(., !)\==0  then do;  parse var !  'E'  expon
                                                                 numeric digits expon +99
                                                                 digs = digits()
                                                            end    /* [↑] has exponent,*/
                                     end   /*j*/                   /*bump numeric digs.*/
                           if xm<999  then do; !.xm=!; !.0=xm; end /*assign factorial. */
                           end                                     /*only save small #s*/
         if (!+1)//x==0  then return 1                             /*X  is     a prime.*/
                              return 0                             /*"  isn't  "   "   */

/*──────────────────────────────────────────────────────────────────────────────────────*/ show: parse arg header,oo; say header /*display header for the first N primes*/

     w= length( word($, LO) )                   /*used to align prime numbers in $ list*/
       do k=1  for LO; _= right( word($, k), w) /*build list for displaying the primes.*/
       if length(oo _)>sw  then do;  say substr(oo,2);  oo=;  end  /*a line overflowed?*/
       oo= oo _                                                    /*display a line.   */
       end   /*k*/                                                 /*does pretty print.*/
     if oo\=  then say substr(oo, 2);  return /*display residual (if any overflowed).*/</lang>

Programming note:   This REXX program makes use of   LINESIZE   REXX program   (or BIF)   which is used to determine the screen width
(or linesize)   of the terminal (console).   Some REXXes don't have this BIF.

The   LINESIZE.REX   REXX program is included here   ───►   LINESIZE.REX.


output   when using the default inputs:
The first  120  prime numbers are:
  2   3   5   7  11  13  17  19  23  29  31  37  41  43  47  53  59  61  67  71  73  79  83  89  97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523 541 547 557 563 569 571 577 587 593 599 601 607 613 617 619 631 641 643 647 653 659

  2 is prime.
  3 is prime.
  9             isn't prime.
 15             isn't prime.
 29 is prime.
 37 is prime.
 47 is prime.
 57             isn't prime.
 67 is prime.
 77             isn't prime.
 87             isn't prime.
 97 is prime.
237             isn't prime.
409 is prime.
659 is prime.

Ring

<lang ring> load "stdlib.ring"

decimals(0) limit = 19

for n = 2 to limit

   fact = factorial(n-1) + 1
   see "Is " + n + " prime: "
   if fact % n = 0
      see "1" + nl
   else
      see "0" + nl
   ok

next </lang> Output:

Is 2 prime: 1
Is 3 prime: 1
Is 4 prime: 0
Is 5 prime: 1
Is 6 prime: 0
Is 7 prime: 1
Is 8 prime: 0
Is 9 prime: 0
Is 10 prime: 0
Is 11 prime: 1
Is 12 prime: 0
Is 13 prime: 1
Is 14 prime: 0
Is 15 prime: 0
Is 16 prime: 0
Is 17 prime: 1
Is 18 prime: 0
Is 19 prime: 1

Ruby

<lang ruby>def w_prime?(i)

 return false if i < 2
 ((1..i-1).inject(&:*) + 1) % i == 0

end

p (1..100).select{|n| w_prime?(n) } </lang>

Output:
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]

Sidef

<lang ruby>func is_wilson_prime_slow(n) {

   n > 1 || return false
   (n-1)! % n == n-1

}

func is_wilson_prime_fast(n) {

   n > 1 || return false
   factorialmod(n-1, n) == n-1

}

say 25.by(is_wilson_prime_slow) #=> [2, 3, 5, ..., 83, 89, 97] say 25.by(is_wilson_prime_fast) #=> [2, 3, 5, ..., 83, 89, 97]

say is_wilson_prime_fast(2**43 - 1) #=> false say is_wilson_prime_fast(2**61 - 1) #=> true</lang>

Swift

Using a BigInt library.

<lang swift>import BigInt

func factorial<T: BinaryInteger>(_ n: T) -> T {

 guard n != 0 else {
   return 1
 }
 return stride(from: n, to: 0, by: -1).reduce(1, *)

}


func isWilsonPrime<T: BinaryInteger>(_ n: T) -> Bool {

 guard n >= 2 else {
   return false
 }
 return (factorial(n - 1) + 1) % n == 0

}

print((1...100).map({ BigInt($0) }).filter(isWilsonPrime))</lang>

Output:
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]

Tiny BASIC

<lang tinybasic> PRINT "Number to test"

   INPUT N
   IF N < 0 THEN LET N = -N
   IF N = 2 THEN GOTO 30
   IF N < 2 THEN GOTO 40 
   LET F = 1
   LET J = 1

10 LET J = J + 1

   REM exploits the fact that (F mod N)*J = (F*J mod N)
   REM to do the factorial without overflowing
   LET F = F * J
   GOSUB 20
   IF J  < N - 1 THEN GOTO 10
   IF F  = N - 1 THEN PRINT "It is prime"
   IF F <> N - 1 THEN PRINT "It is not prime"
   END

20 REM modulo by repeated subtraction

   IF F < N THEN RETURN
   LET F = F - N
   GOTO 20

30 REM special case N=2

   PRINT "It is prime"
   END

40 REM zero and one are nonprimes by definition

   PRINT "It is not prime"
   END</lang>

Wren

Library: Wren-math
Library: Wren-fmt

Due to a limitation in the size of integers which Wren can handle (2^53-1) and lack of big integer support, we can only reliably demonstrate primality using Wilson's theorem for numbers up to 19. <lang ecmascript>import "/math" for Int import "/fmt" for Fmt

var wilson = Fn.new { |p|

   if (p < 2) return false
   return (Int.factorial(p-1) + 1) % p == 0

}

for (p in 1..19) {

   Fmt.print("$2d -> $s", p, wilson.call(p) ? "prime" : "not prime")

}</lang>

Output:
 1 -> not prime
 2 -> prime
 3 -> prime
 4 -> not prime
 5 -> prime
 6 -> not prime
 7 -> prime
 8 -> not prime
 9 -> not prime
10 -> not prime
11 -> prime
12 -> not prime
13 -> prime
14 -> not prime
15 -> not prime
16 -> not prime
17 -> prime
18 -> not prime
19 -> prime

zkl

Library: GMP

GNU Multiple Precision Arithmetic Library and primes

<lang zkl>var [const] BI=Import("zklBigNum"); // libGMP fcn isWilsonPrime(p){

  if(p<=1 or (p%2==0 and p!=2)) return(False);
  BI(p-1).factorial().add(1).mod(p) == 0

} fcn wPrimesW{ [2..].tweak(fcn(n){ isWilsonPrime(n) and n or Void.Skip }) }</lang> <lang zkl>numbers:=T(2, 3, 9, 15, 29, 37, 47, 57, 67, 77, 87, 97, 237, 409, 659); println(" n prime"); println("--- -----"); foreach n in (numbers){ println("%3d %s".fmt(n, isWilsonPrime(n))) }

println("\nFirst 120 primes via Wilson's theorem:"); wPrimesW().walk(120).pump(Void, T(Void.Read,15,False),

 fcn(ns){ vm.arglist.apply("%4d".fmt).concat(" ").println() });

println("\nThe 1,000th to 1,015th prime numbers are:"); wPrimesW().drop(999).walk(15).concat(" ").println();</lang>

Output:
  n  prime
---  -----
  2  True
  3  True
  9  False
 15  False
 29  True
 37  True
 47  True
 57  False
 67  True
 77  False
 87  False
 97  True
237  False
409  True
659  True

First 120 primes via Wilson's theorem:
   2    3    5    7   11   13   17   19   23   29   31   37   41   43   47   53
  59   61   67   71   73   79   83   89   97  101  103  107  109  113  127  131
 137  139  149  151  157  163  167  173  179  181  191  193  197  199  211  223
 227  229  233  239  241  251  257  263  269  271  277  281  283  293  307  311
 313  317  331  337  347  349  353  359  367  373  379  383  389  397  401  409
 419  421  431  433  439  443  449  457  461  463  467  479  487  491  499  503
 509  521  523  541  547  557  563  569  571  577  587  593  599  601  607  613
 617  619  631  641  643  647  653  659

The 1,000th to 1,015th prime numbers are:
7919 7927 7933 7937 7949 7951 7963 7993 8009 8011 8017 8039 8053 8059 8069