Hamming numbers: Difference between revisions

From Rosetta Code
Content added Content deleted
Line 256: Line 256:
//
//
fun
fun
loop{k,k2:pos | k >= k2}
loop{k:pos}
(k: int(k), k2: int(k2)) : void =
(k: int(k)) : void =
(
(
//
//
if
if
k2 < n
k < n
then let
then let
val i = min3(A)
val i = min3(A)
val k2 =
val k =
(
(
if A[i] > H[k2-1] then (H[k2] := A[i]; k2+1) else k2
if A[i] > H[k-1] then (H[k] := A[i]; k+1) else k
) : intBtwe(k2, k2+1)
) : intBtwe(k, k+1)
val ii = I[i]
val ii = I[i]
val () = I[i] := ii+1
val () = I[i] := ii+1
Line 275: Line 275:
val () = if i = 2 then A[i] := 5*H[ii]
val () = if i = 2 then A[i] := 5*H[ii]
in
in
loop(k+1, k2)
loop(k)
end // end of [then]
end // end of [then]
else () // end of [else]
else () // end of [else]
Line 282: Line 282:
//
//
in
in
loop (1, 1); H[n-1]
loop (1); H[n-1]
end (* end of [hamming] *)
end (* end of [hamming] *)



Revision as of 21:15, 18 January 2015

Task
Hamming numbers
You are encouraged to solve this task according to the task description, using any language you may know.

Hamming numbers are numbers of the form

.

Hamming numbers are also known as ugly numbers and also 5-smooth numbers   (numbers whose prime divisors are less or equal to 5).

Generate the sequence of Hamming numbers, in increasing order. In particular:

  1. Show the first twenty Hamming numbers.
  2. Show the 1691st Hamming number (the last one below ).
  3. Show the one millionth Hamming number (if the language – or a convenient library – supports arbitrary-precision integers).

References

  1. Hamming numbers
  2. Smooth number
  3. Hamming problem from Dr. Dobb's CodeTalk (dead link as of Sep 2011; parts of the thread here and here).

Ada

Works with: GNAT

GNAT provides the datatypes Integer, Long_Integer and Long_Long_Integer.

Values for GNAT Pro 6.3.1, 64 bit Linux version:

  • Integer covers the range -2**31 .. 2**31-1 (-2147483648 .. 2147483647).
  • Long_Integer and Long_Long_Integer cover the range -2**63 .. 2**63-1 (-9223372036854775808 .. 9223372036854775807).

Using your own modular integer type (for example type My_Unsigned_Integer is mod 2**64;), you can expand the range to 0 .. 18446744073709551615, but this still is not enough for the millionth Hamming number.

For bigger numbers, you have to use an external library, for example Big_Number.

The code for calculating the Hamming numbers is kept generic, to easily expand the range by changing the concrete type. <lang Ada>with Ada.Text_IO; procedure Hamming is

  generic
     type Int_Type is private;
     Zero  : Int_Type;
     One   : Int_Type;
     Two   : Int_Type;
     Three : Int_Type;
     Five  : Int_Type;
     with function "mod" (Left, Right : Int_Type) return Int_Type is <>;
     with function "/"   (Left, Right : Int_Type) return Int_Type is <>;
     with function "+"   (Left, Right : Int_Type) return Int_Type is <>;
  function Get_Hamming (Position : Positive) return Int_Type;
  function Get_Hamming (Position : Positive) return Int_Type is
     function Is_Hamming (Number : Int_Type) return Boolean is
        Temporary : Int_Type := Number;
     begin
        while Temporary mod Two = Zero loop
           Temporary := Temporary / Two;
        end loop;
        while Temporary mod Three = Zero loop
           Temporary := Temporary / Three;
        end loop;
        while Temporary mod Five = Zero loop
           Temporary := Temporary / Five;
        end loop;
        return Temporary = One;
     end Is_Hamming;
     Result   : Int_Type := One;
     Previous : Positive := 1;
  begin
     while Previous /= Position loop
        Result := Result + One;
        if Is_Hamming (Result) then
           Previous := Previous + 1;
        end if;
     end loop;
     return Result;
  end Get_Hamming;
  -- up to 2**32 - 1
  function Integer_Get_Hamming is new Get_Hamming
     (Int_Type => Integer,
      Zero     => 0,
      One      => 1,
      Two      => 2,
      Three    => 3,
      Five     => 5);
  -- up to 2**64 - 1
  function Long_Long_Integer_Get_Hamming is new Get_Hamming
     (Int_Type => Long_Long_Integer,
      Zero     => 0,
      One      => 1,
      Two      => 2,
      Three    => 3,
      Five     => 5);

begin

  Ada.Text_IO.Put ("1) First 20 Hamming numbers: ");
  for I in 1 .. 20 loop
     Ada.Text_IO.Put (Integer'Image (Integer_Get_Hamming (I)));
  end loop;
  Ada.Text_IO.New_Line;
  Ada.Text_IO.Put_Line ("2) 1_691st Hamming number: " &
     Integer'Image (Integer_Get_Hamming (1_691)));
  -- even Long_Long_Integer overflows here
  Ada.Text_IO.Put_Line ("3) 1_000_000st Hamming number: " &
     Long_Long_Integer'Image (Long_Long_Integer_Get_Hamming (1_000_000)));

end Hamming;</lang>

Output:
1) First 20 Hamming numbers:  1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36
2) 1_691 st Hamming number:  2125764000

Execution terminated by unhandled exception
Exception name: CONSTRAINT_ERROR
Message: hamming.adb:34 overflow check failed
Call stack traceback locations:
0x403212 0x402fd7 0x402a87 0x7f8b99517584 0x4026d7

For using Big_Number, you just have to add this to the code (additional to with Big_Number; and with Ada.Strings.Unbounded; in context clause): <lang Ada> type My_Index is mod 2**8;

  package My_Big_Numbers is new Big_Number (Index_type => My_Index, Nb_Item => 64);
  function Int2Big is new My_Big_Numbers.Generic_Conversion.Int_Number2Big_Unsigned (Integer);
  function Big_Get_Hamming is new Get_Hamming
     (Int_Type => My_Big_Numbers.Big_Unsigned,
      Zero     => My_Big_Numbers.Big_Unsigned_Zero,
      One      => My_Big_Numbers.Big_Unsigned_One,
      Two      => My_Big_Numbers.Big_Unsigned_Two,
      Three    => Int2Big(3),
      Five     => Int2Big(5),
      "mod"    => My_Big_Numbers.Unsigned_Number."mod",
      "+"      => My_Big_Numbers.Unsigned_Number."+",
      "/"      => My_Big_Numbers.Unsigned_Number."/");</lang>

and then use it like this: <lang Ada> Ada.Text_IO.Put_Line ("3) 1_000_000st Hamming number: " &

     Ada.Strings.Unbounded.To_String (My_Big_Numbers.String_Conversion.Big_Unsigned2UString (Big_Get_Hamming (1_000_000))));</lang>

AutoHotkey

<lang AutoHotKey>SetBatchLines, -1 Msgbox % hamming(1,20) Msgbox % hamming(1690) return

hamming(first,last=0) { if (first < 1) ans=ERROR

if (last = 0) last := first

i:=0, j:=0, k:=0

num1 := ceil((last * 20)**(1/3)) num2 := ceil(num1 * ln(2)/ln(3)) num3 := ceil(num1 * ln(2)/ln(5))

loop { H := (2**i) * (3**j) * (5**k) if (H > 0) ans = %H%`n%ans% i++ if (i > num1) { i=0 j++ if (j > num2) { j=0 k++ } } if (k > num3) break } Sort ans, N

Loop, parse, ans, `n, `r { if (A_index > last) break if (A_index < first) continue Output = %Output%`n%A_LoopField% }

return Output }</lang>

ALGOL 68

Hamming numbers are generated in a trivial iterative way as in the Python version below. This program keeps the series needed to generate the numbers as short as possible using flexible rows; on the downside, it spends considerable time on garbage collection. <lang algol68>PR precision=100 PR

MODE SERIES = FLEX [1 : 0] UNT, # Initially, no elements #

    UNT = LONG LONG INT; # A 100-digit unsigned integer #

PROC hamming number = (INT n) UNT: # The n-th Hamming number #

    CASE n
    IN 1, 2, 3, 4, 5, 6, 8, 9, 10, 12 # First 10 in a table #
    OUT # Additional operators #
        OP MIN = (INT i, j) INT: (i < j | i | j), MIN = (UNT i, j) UNT: (i < j | i | j);
        PRIO MIN = 9;
        OP LAST = (SERIES h) UNT: h[UPB h]; # Last element of a series #
        OP +:= = (REF SERIES s, UNT elem) VOID:
           # Extend a series by one element, only keep the elements you need #
           (INT lwb = (i MIN j) MIN k, upb = UPB s; 
            REF SERIES new s = HEAP FLEX [lwb : upb + 1] UNT;
            (new s[lwb : upb] := s[lwb : upb], new s[upb + 1] := elem);
            s := new s
           );
        # Determine the n-th hamming number iteratively #
        SERIES h := 1, # Series, initially one element #
        UNT m2 := 2, m3 := 3, m5 := 5, # Multipliers #
        INT i := 1, j := 1, k := 1; # Counters #
        TO n - 1
        DO h +:= (m2 MIN m3) MIN m5;
           (LAST h = m2 | m2 := 2 * h[i +:= 1]);
           (LAST h = m3 | m3 := 3 * h[j +:= 1]);
           (LAST h = m5 | m5 := 5 * h[k +:= 1])
        OD;
        LAST h
    ESAC;

FOR k TO 20 DO print ((whole (hamming number (k), 0), blank)) OD; print ((newline, whole (hamming number (1 691), 0))); print ((newline, whole (hamming number (1 000 000), 0)))</lang>

Output:
1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36 
2125764000
519312780448388736089589843750000000000000000000000000000000000000000000000000000000

ATS

<lang ATS>

  1. include

"share/atspre_staload.hats"

fun min3 (

 A: arrayref(int, 3)

) : natLt(3) = i where {

 var x: int = A[0]
 var i: natLt(3) = 0
 val () = if A[1] < x then (x := A[1]; i := 1)
 val () = if A[2] < x then (x := A[2]; i := 2)

} (* end of [min3] *)

fun hamming {n:pos} (

 n: int(n)

) : int = let // var A = @[int](2, 3, 5) val A = $UNSAFE.cast{arrayref(int, 3)}(addr@A) var I = @[int](1, 1, 1) val I = $UNSAFE.cast{arrayref(int, 3)}(addr@I) val H = arrayref_make_elt<int> (i2sz(succ(n)), 0) val () = H[0] := 1 // fun loop{k:pos}

 (k: int(k)) : void =

( // if k < n then let

 val i = min3(A)
 val k =
 (
   if A[i] > H[k-1] then (H[k] := A[i]; k+1) else k
 ) : intBtwe(k, k+1)
 val ii = I[i]
 val () = I[i] := ii+1
 val ii = $UNSAFE.cast{natLte(n)}(ii)
 val () = if i = 0 then A[i] := 2*H[ii]
 val () = if i = 1 then A[i] := 3*H[ii]
 val () = if i = 2 then A[i] := 5*H[ii]

in

 loop(k)

end // end of [then] else () // end of [else] // ) (* end of [loop] *) // in

 loop (1); H[n-1]

end (* end of [hamming] *)

implement main0 () = { val () = loop(1) where { fun loop {n:pos} (

 n: int(n)

) : void = if n <= 20 then let

 val () =
 println! ("hamming(",n,") = ", hamming(n))

in

 loop(n+1)

end // end of [then] // end of [if] } (* end of [val] *) val n = 1691 val () = println! ("hamming(",n,") = ", hamming(n)) // } (* end of [main0] *) </lang>

Output:
hamming(1) = 1
hamming(2) = 2
hamming(3) = 3
hamming(4) = 4
hamming(5) = 5
hamming(6) = 6
hamming(7) = 8
hamming(8) = 9
hamming(9) = 10
hamming(10) = 12
hamming(11) = 15
hamming(12) = 16
hamming(13) = 18
hamming(14) = 20
hamming(15) = 24
hamming(16) = 25
hamming(17) = 27
hamming(18) = 30
hamming(19) = 32
hamming(20) = 36
hamming(1691) = 2125764000

AWK

<lang AWK>

  1. syntax: GAWK -f HAMMING_NUMBERS.AWK

BEGIN {

   for (i=1; i<=20; i++) {
     printf("%d ",hamming(i))
   }
   printf("\n1691: %d\n",hamming(1691))
   exit(0)

} function hamming(limit, h,i,j,k,n,x2,x3,x5) {

   h[0] = 1
   x2 = 2
   x3 = 3
   x5 = 5
   for (n=1; n<=limit; n++) {
     h[n] = min(x2,min(x3,x5))
     if (h[n] == x2) { x2 = 2 * h[++i] }
     if (h[n] == x3) { x3 = 3 * h[++j] }
     if (h[n] == x5) { x5 = 5 * h[++k] }
   }
   return(h[limit-1])

} function min(x,y) {

   return((x < y) ? x : y)

} </lang>

Output:
1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36
1691: 2125764000

BBC BASIC

<lang bbcbasic> @% = &1010

     FOR h% = 1 TO 20
       PRINT "H("; h% ") = "; FNhamming(h%)
     NEXT
     PRINT "H(1691) = "; FNhamming(1691)
     END
     
     DEF FNhamming(l%)
     LOCAL i%, j%, k%, n%, m, x2, x3, x5, h%()
     DIM h%(l%) : h%(0) = 1
     x2 = 2 : x3 = 3 : x5 = 5
     FOR n% = 1 TO l%-1
       m = x2
       IF m > x3 m = x3
       IF m > x5 m = x5
       h%(n%) = m
       IF m = x2 i% += 1 : x2 = 2 * h%(i%)
       IF m = x3 j% += 1 : x3 = 3 * h%(j%)
       IF m = x5 k% += 1 : x5 = 5 * h%(k%)
     NEXT
     = h%(l%-1)</lang>
Output:
H(1) = 1
H(2) = 2
H(3) = 3
H(4) = 4
H(5) = 5
H(6) = 6
H(7) = 8
H(8) = 9
H(9) = 10
H(10) = 12
H(11) = 15
H(12) = 16
H(13) = 18
H(14) = 20
H(15) = 24
H(16) = 25
H(17) = 27
H(18) = 30
H(19) = 32
H(20) = 36
H(1691) = 2125764000

Bracmat

Translation of: D

<lang bracmat>( ( hamming

 =   x2 x3 x5 n i j k min
   .   tbl$(h,!arg)        { This creates an array. Arrays are always global in Bracmat. }
     & 1:?(0$h)
     & 2:?x2
     & 3:?x3
     & 5:?x5
     & 0:?n:?i:?j:?k
     &   whl
       ' ( !n+1:<!arg:?n
         & !x2:?min
         & (!x3:<!min:?min|)
         & (!x5:<!min:?min|)
         & !min:?(!n$h)               { !n is index into array h }
         & (   !x2:!min
             & 2*!((1+!i:?i)$h):?x2
           |
           )
         & (   !x3:!min
             & 3*!((1+!j:?j)$h):?x3
           |
           )
         & (   !x5:!min
             & 5*!((1+!k:?k)$h):?x5
           |
           )
         )
     & !((!arg+-1)$h) (tbl$(h,0)&)    { We delete the array by setting its size to 0 }
 )

& 0:?I & whl'(!I+1:~>20:?I&put$(hamming$!I " ")) & out$ & out$(hamming$1691) & out$(hamming$1000000) );</lang>

Output:
1  2  3  4  5  6  8  9  10  12  15  16  18  20  24  25  27  30  32  36
2125764000
519312780448388736089589843750000000000000000000000000000000000000000000000000000000

C

Using a min-heap to keep track of numbers. Does not handle big integers. <lang c>#include <stdio.h>

  1. include <stdlib.h>

typedef unsigned long long ham;

size_t alloc = 0, n = 1; ham *q = 0;

void qpush(ham h) { int i, j; if (alloc <= n) { alloc = alloc ? alloc * 2 : 16; q = realloc(q, sizeof(ham) * alloc); }

for (i = n++; (j = i/2) && q[j] > h; q[i] = q[j], i = j); q[i] = h; }

ham qpop() { int i, j; ham r, t; /* outer loop for skipping duplicates */ for (r = q[1]; n > 1 && r == q[1]; q[i] = t) { /* inner loop is the normal down heap routine */ for (i = 1, t = q[--n]; (j = i * 2) < n;) { if (j + 1 < n && q[j] > q[j+1]) j++; if (t <= q[j]) break; q[i] = q[j], i = j; } }

return r; }

int main() { int i; ham h;

for (qpush(i = 1); i <= 1691; i++) { /* takes smallest value, and queue its multiples */ h = qpop(); qpush(h * 2); qpush(h * 3); qpush(h * 5);

if (i <= 20 || i == 1691) printf("%6d: %llu\n", i, h); }

/* free(q); */ return 0; }</lang>

Alternative

Standard algorithm. Numbers are stored as exponents of factors instead of big integers, while GMP is only used for display. It's much more efficient this way. <lang c>#include <stdio.h>

  1. include <stdlib.h>
  2. include <string.h>
  3. include <math.h>
  4. include <gmp.h>

/* number of factors. best be mutually prime -- duh. */

  1. define NK 3
  2. define MAX_HAM (1 << 24)
  3. define MAX_POW 1024

int n_hams = 0, idx[NK] = {0}, fac[] = { 2, 3, 5, 7, 11};

/* k-smooth numbers are stored as their exponents of each factor;

   v is the log of the number, for convenience. */

typedef struct { int e[NK]; double v; } ham_t, *ham;

ham_t *hams, values[NK] = {{{0}, 0}}; double inc[NK][MAX_POW];

/* most of the time v can be just incremented, but eventually

* floating point precision will bite us, so better recalculate */

inline void _setv(ham x) { int i; for (x->v = 0, i = 0; i < NK; i++) x->v += inc[i][x->e[i]]; }

inline int _eq(ham a, ham b) { int i; for (i = 0; i < NK && a->e[i] == b->e[i]; i++);

return i == NK; }

ham get_ham(int n) { int i, ni; ham h;

n--; while (n_hams < n) { for (ni = 0, i = 1; i < NK; i++) if (values[i].v < values[ni].v) ni = i;

*(h = hams + ++n_hams) = values[ni];

for (ni = 0; ni < NK; ni++) { if (! _eq(values + ni, h)) continue; values[ni] = hams[++idx[ni]]; values[ni].e[ni]++; _setv(values + ni); } }

return hams + n; }

void show_ham(ham h) { static mpz_t das_ham, tmp; int i;

	mpz_init_set_ui(das_ham, 1);

mpz_init_set_ui(tmp, 1); for (i = 0; i < NK; i++) { mpz_ui_pow_ui(tmp, fac[i], h->e[i]); mpz_mul(das_ham, das_ham, tmp); } gmp_printf("%Zu\n", das_ham); }

int main() { int i, j; hams = malloc(sizeof(ham_t) * MAX_HAM);

for (i = 0; i < NK; i++) { values[i].e[i] = 1; inc[i][1] = log(fac[i]); _setv(values + i);

for (j = 2; j < MAX_POW; j++) inc[i][j] = j * inc[i][1]; }

printf(" 1,691: "); show_ham(get_ham(1691)); printf(" 1,000,000: "); show_ham(get_ham(1e6)); printf("10,000,000: "); show_ham(get_ham(1e7)); return 0; }</lang>

Output:
     1,691: 2125764000
 1,000,000: 519312780448388736089589843750000000000000000000000000000000000000000000000000000000
10,000,000: 16244105063830431823239 ..<a gadzillion digits>.. 000000000000000000000

C++

C++11 For Each Generator

<lang cpp>

  1. include <iostream>
  2. include <vector>

// Hamming like sequences Generator // // Nigel Galloway. August 13th., 2012 // class Ham { private: std::vector<unsigned int> _H, _hp, _hv, _x; public: bool operator!=(const Ham& other) const {return true;} Ham begin() const {return *this;}

       Ham end() const {return *this;}

unsigned int operator*() const {return _x.back();} Ham(const std::vector<unsigned int> &pfs):_H(pfs),_hp(pfs.size(),0),_hv({pfs}),_x({1}){} const Ham& operator++() { for (int i=0; i<_H.size(); i++) for (;_hv[i]<=_x.back();_hv[i]=_x[++_hp[i]]*_H[i]); _x.push_back(_hv[0]); for (int i=1; i<_H.size(); i++) if (_hv[i]<_x.back()) _x.back()=_hv[i]; return *this; } }; </lang>

5-Smooth

<lang cpp> int main() {

 int count = 1;
 for (unsigned int i : Ham({2,3,5})) {
   if (count <= 62) std::cout << i << ' ';
   if (count++ == 1691) {
     std::cout << "\nThe one thousand six hundred and ninety first Hamming Number is " << i << std::endl;
     break;
   }
 }
 return 0;

} </lang> Produces:

1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36 40 45 48 50 54 60 64 72 75 80 81 90 96 100 108 120 125 128 135 144 150 160 162 180 192 200 216 225 240 243 250 256 270 288 300 320 324 360 375 384 400 405
The one thousand six hundred and ninety first Hamming Number is 2125764000

7-Smooth

<lang cpp> int main() {

 int count = 1;
 for (unsigned int i : Ham({2,3,5,7})) {
   std::cout << i << ' ';
   if (count++ == 64) break;
 }
 std::cout << std::endl;
 return 0;

} </lang> Produces:

1 2 3 4 5 6 7 8 9 10 12 14 15 16 18 20 21 24 25 27 28 30 32 35 36 40 42 45 48 49 50 54 56 60 63 64 70 72 75 80 81 84 90 96 98 100 105 108 112 120 125 126 128 135 140 144 147 150 160 162 168 175 180 189

C#

Translation of: D

<lang csharp>using System; using System.Numerics; using System.Linq;

namespace Hamming {

   class MainClass {
       public static BigInteger Hamming(int n) {
           BigInteger two = 2, three = 3, five = 5;
           var h = new BigInteger[n];
           h[0] = 1;
           BigInteger x2 = 2, x3 = 3, x5 = 5;
           int i = 0, j = 0, k = 0;
           
           for (int index = 1; index < n; index++) {
               h[index] = BigInteger.Min(x2, BigInteger.Min(x3, x5));
               if (h[index] == x2) x2 = two * h[++i];
               if (h[index] == x3) x3 = three * h[++j];
               if (h[index] == x5) x5 = five * h[++k];
           }
           return h[n - 1];
       }
       public static void Main(string[] args) {
           Console.WriteLine(string.Join(" ", Enumerable.Range(1, 20).ToList().Select(x => Hamming(x))));
           Console.WriteLine(Hamming(1691));
           Console.WriteLine(Hamming(1000000));
       }
   }

}</lang>

Output:
1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36
2125764000
519312780448388736089589843750000000000000000000000000000000000000000000000000000000

Generic version for any set of numbers

The algorithm is similar to the one above. <lang csharp>using System; using System.Numerics; using System.Linq;

namespace Hamming {

   class MainClass {
       public static BigInteger[] Hamming(int n, int[] a) {
           var primes = a.Select(x => (BigInteger)x).ToArray();
           var values = a.Select(x => (BigInteger)x).ToArray();
           var indexes = new int[a.Length];
           var results = new BigInteger[n];
           results[0] = 1;
           for (int iter = 1; iter < n; iter++) {
               results[iter] = values[0];
               for (int p = 1; p < primes.Length; p++)
                   if (results[iter] > values[p])
                       results[iter] = values[p];
               for (int p = 0; p < primes.Length; p++)
                   if (results[iter] == values[p])
                       values[p] = primes[p] * results[++indexes[p]];
           }
           return results;
       }
       
       public static void Main(string[] args) {
           foreach (int[] primes in new int[][] { new int[] {2,3,5}, new int[] {2,3,5,7} }) {
               Console.WriteLine("{0}-Smooth:", primes.Last());
               Console.WriteLine(string.Join(" ", Hamming(20, primes)));
               Console.WriteLine(Hamming(1691, primes).Last());
               Console.WriteLine(Hamming(1000000, primes).Last());
               Console.WriteLine();
           }
       }
   }

}</lang>

Output:
5-Smooth:
1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36
2125764000
519312780448388736089589843750000000000000000000000000000000000000000000000000000000

7-Smooth:
1 2 3 4 5 6 7 8 9 10 12 14 15 16 18 20 21 24 25 27
3317760
4157409948433216829957008507500000000

Fast version

Like some of the other implementations on this page, this version represents each number as a list of exponents which would be applied to each prime number. So the number 60 would be represented as int[3] { 2, 1, 1 } which is interpreted as 2^2 * 3^1 * 5^1.

As often happens, optimizing for speed caused a marked increase in code size and complexity. Clearly the versions I wrote above are easier to read & understand. They were also much quicker to write. But the generic version above runs in 3+ seconds for the 1000000th 5-smooth number whereas this version does it in 0.35 seconds, 8-10 times faster.

I've tried to comment it as best I could, without bloating the code too much.

--Mike Lorenz

<lang csharp>using System; using System.Linq; using System.Numerics;

namespace HammingFast {

   class MainClass {
       private static int[] _primes = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };
       public static BigInteger Big(int[] exponents) {
           BigInteger val = 1;
           for (int i = 0; i < exponents.Length; i++)
               for (int e = 0; e < exponents[i]; e++)
                   val = val * _primes[i];
           return val;
       }
       public static int[] Hamming(int n, int nprimes) {
           var hammings  = new int[n, nprimes];                    // array of hamming #s we generate
           var hammlogs  = new double[n];                          // log values for above
           var primelogs = new double[nprimes];                    // pre-calculated prime log values
           var indexes   = new int[nprimes];                       // intermediate hamming values as indexes into hammings
           var listheads = new int[nprimes, nprimes];              // intermediate hamming list heads
           var listlogs  = new double[nprimes];                    // log values of list heads
           for (int p = 0; p < nprimes; p++) {
               listheads[p, p] = 1;                                // init list heads to prime values
               primelogs[p]    = Math.Log(_primes[p]);             // pre-calc prime log values
               listlogs[p]     = Math.Log(_primes[p]);             // init list head log values
           }
           for (int iter = 1; iter < n; iter++) {
               int min = 0;                                        // find index of min item in list heads
               for (int p = 1; p < nprimes; p++)
                   if (listlogs[p] < listlogs[min])
                       min = p;
               hammlogs[iter] = listlogs[min];                     // that's the next hamming number
               for (int i = 0; i < nprimes; i++)
                   hammings[iter, i] = listheads[min, i];
               for (int p = 0; p < nprimes; p++) {                 // update each list head if it matches new value
                   bool equal = true;                              // test each exponent to see if number matches
                   for (int i = 0; i < nprimes; i++) {
                       if (hammings[iter, i] != listheads[p, i]) {
                           equal = false;
                           break;
                       }
                   }
                   if (equal) {                                    // if it matches...
                       int x = ++indexes[p];                       // set index to next hamming number
                       for (int i = 0; i < nprimes; i++)           // copy each hamming exponent
                           listheads[p, i] = hammings[x, i];
                       listheads[p, p] += 1;                       // increment exponent = mult by prime
                       listlogs[p] = hammlogs[x] + primelogs[p];   // add log(prime) to log(value) = mult by prime
                   }
               }
           }
           var result = new int[nprimes];
           for (int i = 0; i < nprimes; i++)
               result[i] = hammings[n - 1, i];
           return result;
       }
       public static void Main(string[] args) {
           foreach (int np in new int[] { 3, 4, 5 }) {
               Console.WriteLine("{0}-Smooth:", _primes[np - 1]);
               Console.WriteLine(string.Join(" ", Enumerable.Range(1, 20).Select(x => Big(Hamming(x, np)))));
               Console.WriteLine(Big(Hamming(1691, np)));
               Console.WriteLine(Big(Hamming(1000000, np)));
               Console.WriteLine();
           }
       }
   }

}</lang>

Output:
5-Smooth:
1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36
2125764000
519312780448388736089589843750000000000000000000000000000000000000000000000000000000

7-Smooth:
1 2 3 4 5 6 7 8 9 10 12 14 15 16 18 20 21 24 25 27
3317760
4157409948433216829957008507500000000

11-Smooth:
1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 18 20 21 22 24
296352
561912530929780078125000

C# Enumerator Version

I wanted to fix the enumerator (old) version, as it wasn't working. It became a bit of an obsession... after a few iterations I came up with the following, which is the fastest C# version on my computer - your mileage may vary. It combines the speed of the Log method; Log(2)+Log(3)=Log(2*3) to help determine which is the next one to use. Then I have added some logic (using the series property) to ensure that exponent sets are never duplicated - which speeds the calculations up a bit.... Adding this trick to the Fast Version will probably result in the fastest version, but I'll leave that to someone else to implement. Finally it's all enumerated through a crazy one-way-linked-list-type-structure that only exists as long as the enumerator and is left up to the garbage collector to remove the bits no longer needed... I hope it's commented enough... follow it if you dare!

<lang csharp>using System; using System.Collections.Generic; using System.Linq; using System.Numerics;

namespace HammingTest {

   class HammingNode
   {
       public double log;
       public int[] exponents;
       public HammingNode next;
       public int series;
   }
   
   class HammingListEnumerator : IEnumerable<BigInteger>
   {
       private int[] primes;
       private double[] primelogs;
       private HammingNode next;
       private HammingNode[] values;
       private HammingNode[] indexes;
       public HammingListEnumerator(IEnumerable<int> seeds)
       {
           // Ensure our seeds are properly ordered, and generate their log values
           primes = seeds.OrderBy(x => x).ToArray();
           primelogs = primes.Select(x => Math.Log10(x)).ToArray();
           // Start at 1 (log(1)=0, exponents are all 0, series = none)
           next = new HammingNode { log = 0, exponents = new int[primes.Length], series = primes.Length };
           // Set all exponent sequences to the start, and calculate the first value for each exponent
           indexes = new HammingNode[primes.Length];
           values = new HammingNode[primes.Length];
           for(int i = 0; i < primes.Length; ++i)
           {
               indexes[i] = next;
               values[i] = AddExponent(next, i);
           }
       }
       // Make a copy of a node, and increment the specified exponent value
       private HammingNode AddExponent(HammingNode node, int i)
       {
           HammingNode ret = new HammingNode { log = node.log + primelogs[i], exponents = (int[])node.exponents.Clone(), series = i };
           ++ret.exponents[i];
           return ret;
       }
       private void GetNext()
       {
           // Find which exponent value is the lowest
           int min = 0;
           for(int i = 1; i < values.Length; ++i)
               if(values[i].log < values[min].log)
                   min = i;
           
           // Add it to the end of the 'list', and move to it
           next.next = values[min];
           next = values[min];
           // Find the next node in an allowed sequence (skip those that would be duplicates) 
           HammingNode val = indexes[min].next;
           while(val.series < min)
               val = val.next;
           // Keep the current index, and calculate the next value in the series for that exponent
           indexes[min] = val;
           values[min] = AddExponent(val, min);
       }
       // Skip values without having to calculate the BigInteger value from the exponents
       public HammingListEnumerator Skip(int count)
       {
           for(int i = count; i > 0; --i)
               GetNext();
           return this;
       }
       // Calculate the BigInteger value from the exponents
       internal BigInteger ValueOf(HammingNode n)
       {
           BigInteger val = 1;
           for(int i = 0; i < n.exponents.Length; ++i)
               for(int e = 0; e < n.exponents[i]; e++)
                   val = val * primes[i];
           return val;
       }
       public IEnumerator<BigInteger> GetEnumerator()
       {
           while(true)
           {
               yield return ValueOf(next);
               GetNext();
           }
       }
       System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
       {
           return this.GetEnumerator();
       }
   }
   class Program
   {
       static void Main(string[] args)
       {
           foreach(int[] primes in new int[][] { 
               new int[] { 2, 3, 5 },
               new int[] { 2, 3, 5, 7 },
               new int[] { 2, 3, 5, 7, 9}})
           {
               HammingListEnumerator hammings = new HammingListEnumerator(primes);
               System.Diagnostics.Debug.WriteLine("{0}-Smooth:", primes.Last());
               System.Diagnostics.Debug.WriteLine(String.Join(" ", hammings.Take(20).ToArray()));
               System.Diagnostics.Debug.WriteLine(hammings.Skip(1691 - 20).First());
               System.Diagnostics.Debug.WriteLine(hammings.Skip(1000000 - 1691).First());
               System.Diagnostics.Debug.WriteLine("");
           }
       }
   }

} </lang>

Output:
5-Smooth:
1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36
2125764000
519312780448388736089589843750000000000000000000000000000000000000000000000000000000

7-Smooth:
1 2 3 4 5 6 7 8 9 10 12 14 15 16 18 20 21 24 25 27
3317760
4157409948433216829957008507500000000

11-Smooth:
1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 18 20 21 22 24
296352
561912530929780078125000

Clojure

This version implements Dijkstra's merge solution, so is closely related to the Haskell version. <lang clojure>(defn smerge [xs ys]

 (lazy-seq
   (let [x (first xs),
         y (first ys),
         [z xs* ys*]
         (cond
           (< x y) [x (rest xs) ys]
           (> x y) [y xs (rest ys)]
           :else   [x (rest xs) (rest ys)])]
     (cons z (smerge xs* ys*)))))

(def hamming

 (lazy-seq
   (->> (map #(*' 5 %) hamming)
        (smerge (map #(*' 3 %) hamming))
        (smerge (map #(*' 2 %) hamming))
        (cons 1))))</lang>

Note that this version uses a lot of space and time after calculating a few hundred thousand elements of the sequence. This is no doubt due to its "holding on to the head": it maintains the entire generated sequence in memory.

CoffeeScript

<lang coffeescript># Generate hamming numbers in order. Hamming numbers have the

  1. property that they don't evenly divide any prime numbers outside
  2. a given set, such as [2, 3, 5].

generate_hamming_sequence = (primes, max_n) ->

 # We use a lazy algorithm, only ever keeping N candidates
 # in play, one for each of our seed primes.  Let's say
 # primes is [2,3,5].  Our virtual streams are these:
 #
 # hammings:    1,2,3,4,5,6,8,10,12,15,16,18,20,...
 # hammings*2:  2,4,6,9.10,12,16,20,24,30,32,36,40...
 # hammings*3:  3,6,9,12,15,18,24,30,36,45,...
 # hammings*5:  5,10,15,20,25,30,40,50,...
 #
 # After encountering 40 for the last time, our candidates 
 # will be
 #   50 = 2 * 25
 #   45 = 3 * 15
 #   50 = 5 * 10
 # Then, after 45
 #   50 = 2 * 25
 #   48 = 3 * 16 <= new
 #   50 = 5 * 10 
 hamming_numbers = [1]
 candidates = ([p, p, 1] for p in primes)
 last_number = 1
 while hamming_numbers.length < max_n
   # Get the next candidate Hamming Number tuple.
   i = min_idx(candidates)
   candidate = candidates[i]
   [n, p, seq_idx] = candidate
   
   # Add to sequence unless it's a duplicate.
   if n > last_number
     hamming_numbers.push n
     last_number = n
   # Replace the candidate with its successor (based on
   # p = 2, 3, or 5).
   #
   # This is the heart of the algorithm.  Let's say, over the 
   # primes [2,3,5], we encounter the hamming number 32 based on it being 
   # 2 * 16, where 16 is the 12th number in the sequence.
   # We'll be passed in [32, 2, 12] as candidate, and
   # hamming_numbers will be [1,2,3,4,5,6,8,9,10,12,16,18,...]
   # by now.  The next candidate we need to enqueue is
   # [36, 2, 13], where the numbers mean this:
   #
   #    36 - next multiple of 2 of a Hamming number
   #     2 - prime number
   #    13 - 1-based index of 18 in the sequence
   # 
   # When we encounter [36, 2, 13], we will then enqueue
   # [40, 2, 14], based on 20 being the 14th hamming number.
   q = hamming_numbers[seq_idx]
   candidates[i] = [p*q, p, seq_idx+1]
   
 hamming_numbers

min_idx = (arr) ->

 # Don't waste your time reading this--it just returns
 # the index of the smallest tuple in an array, respecting that
 # the tuples may contain integers. (CS compiles to JS, which is
 # kind of stupid about sorting.  There are libraries to work around
 # the limitation, but I wanted this code to be standalone.)
 less_than = (tup1, tup2) ->
   i = 0
   while i < tup2.length
     return true if tup1[i] <= tup2[i]
     return false if tup1[i] > tup2[i]
     i += 1
 min_i = 0
 for i in [1...arr.length]
   if less_than arr[i], arr[min_i]
     min_i = i
 return min_i

primes = [2, 3, 5] numbers = generate_hamming_sequence(primes, 10000) console.log numbers[1690] console.log numbers[9999]</lang>

Common Lisp

Maintaining three queues, popping the smallest value every time. <lang lisp>(defun next-hamm (factors seqs)

 (let ((x (apply #'min (map 'list #'first seqs))))
   (loop for s in seqs

for f in factors for i from 0 with add = t do (if (= x (first s)) (pop s))  ;; prevent a value from being added to multiple lists (when add (setf (elt seqs i) (nconc s (list (* x f)))) (if (zerop (mod x f)) (setf add nil)))

   finally (return x))))

(loop with factors = '(2 3 5)

     with seqs    = (loop for i in factors collect '(1))
     for n from 1 to 1000001 do
     (let ((x (next-hamm factors seqs)))

(if (or (< n 21) (= n 1691) (= n 1000000)) (format t "~d: ~d~%" n x))))</lang> A much faster method: <lang lisp>(defun hamming (n)

 (let ((fac '(2 3 5))

(idx (make-array 3 :initial-element 0)) (h (make-array (1+ n) :initial-element 1 :element-type 'integer)))

   (loop for i from 1 to n

with e with x = '(1 1 1) do (setf e (setf (aref h i) (apply #'min x)) x (loop for y in x for f in fac for j from 0 collect (if (= e y) (* f (aref h (incf (aref idx j)))) y))))

   (aref h n)))

(loop for i from 1 to 20 do

     (format t "~2d: ~d~%" i (hamming i)))

(loop for i in '(1691 1000000) do

     (format t "~d: ~d~%" i (hamming i)))</lang>
Output:
 1: 1
 2: 2
 3: 3
 4: 4
 5: 5
 6: 6
 7: 8
 8: 9
 9: 10
10: 12
11: 15
12: 16
13: 18
14: 20
15: 24
16: 25
17: 27
18: 30
19: 32
20: 36
1691: 2125764000
1000000: 519312780448388736089589843750000000000000000000000000000000000000000000000000000000

D

Basic Version

This version keeps all numbers in memory, computing all the Hamming numbers up to the needed one. Performs constant number of operations per Hamming number produced. <lang d>import std.stdio, std.bigint, std.algorithm, std.range, core.memory;

auto hamming(in uint n) pure nothrow /*@safe*/ {

   immutable BigInt two = 2, three = 3, five = 5;
   auto h = new BigInt[n];
   h[0] = 1;
   BigInt x2 = 2, x3 = 3, x5 = 5;
   size_t i, j, k;
   foreach (ref el; h.dropOne) {
       el = min(x2, x3, x5);
       if (el == x2) x2 = two   * h[++i];
       if (el == x3) x3 = three * h[++j];
       if (el == x5) x5 = five  * h[++k];
   }
   return h.back;

}

void main() {

   GC.disable;
   iota(1, 21).map!hamming.writeln;
   1_691.hamming.writeln;
   1_000_000.hamming.writeln;

}</lang>

Output:
[1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36]
2125764000
519312780448388736089589843750000000000000000000000000000000000000000000000000000000

Runtime is about 1.6 seconds with LDC2.

Alternative Version 1

This keeps numbers in memory, but over-computes a sequence by a factor of about , calculating extra multiples past that as well. Incurs an extra factor of operations per each number produced (reinserting its multiples into a tree). Doesn't stop when the target number is reached, instead continuing until it is no longer needed:

Translation of: Java

<lang d>import std.stdio, std.bigint, std.container, std.algorithm, std.range,

      core.memory;

BigInt hamming(in int n) in {

  assert(n > 0);

} body {

   auto frontier = redBlackTree(2.BigInt, 3.BigInt, 5.BigInt);
   auto lowest = 1.BigInt;
   foreach (immutable _; 1 .. n) {
       lowest = frontier.front;
       frontier.removeFront;
       frontier.insert(lowest * 2);
       frontier.insert(lowest * 3);
       frontier.insert(lowest * 5);
   }
   return lowest;

}

void main() {

   GC.disable;
   writeln("First 20 Hamming numbers: ", iota(1, 21).map!hamming);
   writeln("hamming(1691) = ", 1691.hamming);
   writeln("hamming(1_000_000) = ", 1_000_000.hamming);

}</lang>

Output:
First 20 Hamming numbers: [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36]
hamming(1691) = 2125764000
hamming(1_000_000) = 519312780448388736089589843750000000000000000000000000000000000000000000000000000000

About 3.2 seconds run time with LDC2.

Alternative Version 2

Does exactly what the first version does, creating an array and filling it with Hamming numbers, keeping the three back pointers into the sequence for next multiples calculations, except that it represents the numbers as their coefficients triples and their logarithm values (for comparisons), thus saving on BigInt calculations.

Translation of: C

<lang d>import std.stdio: writefln; import std.bigint: BigInt; import std.conv: text; import std.numeric: gcd; import std.algorithm: copy, map; import std.array: array; import core.stdc.stdlib: calloc; import std.math: log; // ^^

// Number of factors. enum NK = 3;

enum MAX_HAM = 10_000_000; static assert(gcd(NK, MAX_HAM) == 1);

enum int[NK] factors = [2, 3, 5];


/// K-smooth numbers (stored as their exponents of each factor). struct Hamming {

   double v; // Log of the number, for convenience.
   ushort[NK] e; // Exponents of each factor.
   public static __gshared immutable double[factors.length] inc =
       factors[].map!log.array;
   bool opEquals(in ref Hamming y) const pure nothrow @nogc {
       //return this.e == y.e; // Too much slow.
       foreach (immutable i; 0 .. this.e.length)
           if (this.e[i] != y.e[i])
               return false;
       return true;
   }
   void update() pure nothrow @nogc {
       //this.v = dotProduct(inc, this.e); // Too much slow.
       this.v = 0.0;
       foreach (immutable i; 0 .. this.e.length)
           this.v += inc[i] * this.e[i];
   }
   string toString() const {
       BigInt result = 1;
       foreach (immutable i, immutable f; factors)
           result *= f.BigInt ^^ this.e[i];
       return result.text;
   }

}

// Global variables. __gshared Hamming[] hams; __gshared Hamming[NK] values;

nothrow @nogc static this() {

   // Slower than calloc if you don't use all the MAX_HAM items.
   //hams = new Hamming[MAX_HAM];
   auto ptr = cast(Hamming*)calloc(MAX_HAM, Hamming.sizeof);
   static const err = new Error("Not enough memory.");
   if (!ptr)
       throw err;
   hams = ptr[0 .. MAX_HAM];
   foreach (immutable i, ref v; values) {
       v.e[i] = 1;
       v.v = Hamming.inc[i];
   }

}


ref Hamming getHam(in size_t n) nothrow @nogc in {

   assert(n <= MAX_HAM);

} body {

   // Most of the time v can be just incremented, but eventually
   // floating point precision will bite us, so better recalculate.
   __gshared static size_t[NK] idx;
   __gshared static int n_hams;
   for (; n_hams < n; n_hams++) {
       {
           // Find the index of the minimum v.
           size_t ni = 0;
           foreach (immutable i; 1 .. NK)
               if (values[i].v < values[ni].v)
                   ni = i;
           hams[n_hams] = values[ni];
           hams[n_hams].update;
       }
       foreach (immutable i; 0 .. NK)
           if (values[i] == hams[n_hams]) {
               values[i] = hams[idx[i]];
               idx[i]++;
               values[i].e[i]++;
               values[i].update;
           }
   }
   return hams[n - 2];

}


void main() {

   foreach (immutable n; [1691, 10 ^^ 6, MAX_HAM])
       writefln("%8d: %s", n, n.getHam);

}</lang> The output is similar to the second C version. Runtime is about 0.11 seconds if MAX_HAM = 1_000_000 (as the task requires), and 0.90 seconds if MAX_HAM = 10_000_000.

Alternative Version 3

This version is similar to the precedent, but frees unused values. It's a little slower than the precedent version, but it uses much less RAM, so it allows to compute the result for larger n. <lang d>import std.stdio: writefln; import std.bigint: BigInt; import std.conv: text; import std.algorithm: map; import std.array: array; import core.stdc.stdlib: malloc, calloc, free; import std.math: log; // ^^

// Number of factors. enum NK = 3;

__gshared immutable int[NK] primes = [2, 3, 5]; __gshared immutable double[NK] lnPrimes = primes[].map!log.array;

/// K-smooth numbers (stored as their exponents of each factor).

struct Hamming {

   double ln; // Log of the number.
   ushort[NK] e; // Exponents of each factor.
   Hamming* next;
   size_t n;
   // Recompute the logarithm from the exponents.
   void recalculate() pure nothrow @safe @nogc {
       this.ln = 0.0;
       foreach (immutable i, immutable ei; this.e)
           this.ln += lnPrimes[i] * ei;
   }
   string toString() const {
       BigInt result = 1;
       foreach (immutable i, immutable f; primes)
           result *= f.BigInt ^^ this.e[i];
       return result.text;
   }

}

Hamming getHam(in size_t n) nothrow @nogc in {

   assert(n && n != size_t.max);

} body {

   static struct Candidate {
       typeof(Hamming.ln) ln;
       typeof(Hamming.e) e;
       void increment(in size_t n) pure nothrow @safe @nogc {
           e[n] += 1;
           ln += lnPrimes[n];
       }
       bool opEquals(T)(in ref T y) const pure nothrow @safe @nogc {
           // return this.e == y.e; // Slow.
           return !((this.e[0] ^ y.e[0]) |
                    (this.e[1] ^ y.e[1]) |
                    (this.e[2] ^ y.e[2]));
       }
       int opCmp(T)(in ref T y) const pure nothrow @safe @nogc {
           return (ln > y.ln) ? 1 : (ln < y.ln ? -1 : 0);
       }
   }
   static struct HammingIterator { // Not a Range.
       Candidate cand;
       Hamming* base;
       size_t primeIdx;
       this(in size_t i, Hamming* b) pure nothrow @safe @nogc {
           primeIdx = i;
           base = b;
           cand.e = base.e;
           cand.ln = base.ln;
           cand.increment(primeIdx);
       }
       void next() pure nothrow @safe @nogc {
           base = base.next;
           cand.e = base.e;
           cand.ln = base.ln;
           cand.increment(primeIdx);
       }
   }
   HammingIterator[NK] its;
   Hamming* head = cast(Hamming*)calloc(Hamming.sizeof, 1);
   Hamming* freeList, cur = head;
   Candidate next;
   foreach (immutable i, ref it; its)
       it = HammingIterator(i, cur);
   for (size_t i = cur.n = 1; i < n; ) {
       auto leastReferenced = size_t.max;
       next.ln = double.max;
       foreach (ref it; its) {
           if (it.cand == *cur)
               it.next;
           if (it.base.n < leastReferenced)
               leastReferenced = it.base.n;
           if (it.cand < next)
               next = it.cand;
       }
       // Collect unferenced numbers.
       while (head.n < leastReferenced) {
           auto tmp = head;
           head = head.next;
           tmp.next = freeList;
           freeList = tmp;
       }
       if (!freeList) {
           cur.next = cast(Hamming*)malloc(Hamming.sizeof);
       } else {
           cur.next = freeList;
           freeList = freeList.next;
       }
       cur = cur.next;
       version (fastmath) {
           cur.ln = next.ln;
           cur.e = next.e;
       } else {
           cur.e = next.e;
           cur.recalculate; // Prevent FP error accumulation.
       }
       cur.n = i++;
       cur.next = null;
   }
   auto result = *cur;
   version (leak) {}
   else {
       while (head) {
           auto tmp = head;
           head = head.next;
           tmp.free;
       }
       while (freeList) {
           auto tmp = freeList;
           freeList = freeList.next;
           tmp.free;
       }
   }
   return result;

}

void main() {

   foreach (immutable n; [1691, 10 ^^ 6, 10_000_000])
       writefln("%8d: %s", n, n.getHam);

}</lang> The output is the same as the second alternative version.

Eiffel

<lang Eiffel> note description  : "Initial part, in order, of the sequence of Hamming numbers" math  : "[ Hamming numbers, also known as regular numbers and 5-smooth numbers, are natural integers that have 2, 3 and 5 as their only prime factors. ]" computer_arithmetic : "[ This version avoids integer overflow and stops at the last representable number in the sequence. ]" output  : "[

   			   Per requirements of the RosettaCode example, execution will produce items of indexes 1 to 20 and 1691.
   			   The algorithm (procedure `hamming') is more general and will produce the first `n' Hamming numbers
   			   for any `n'.
   			  ]"

source  : "This problem was posed in Edsger W. Dijkstra, A Discipline of Programming, Prentice Hall, 1978" date  : "8 August 2012" authors  : "Bertrand Meyer", "Emmanuel Stapf" revision  : "1.0" libraries  : "Relies on SORTED_TWO_WAY_LIST from EiffelBase" implementation : "[ Using SORTED_TWO_WAY_LIST provides an elegant illustration of how to implement a lazy scheme in Eiffel through the use of object-oriented data structures. ]" warning  : "[ The formatting (<lang>) specifications for Eiffel in RosettaCode are slightly obsolete: `note' and other newer keywords not supported, red color for manifest strings. This should be fixed soon. ]"

class APPLICATION

create make

feature {NONE} -- Initialization

make -- Print first 20 Hamming numbers, in order, and the 1691-st one. local Hammings: like hamming -- List of Hamming numbers, up to 1691-st one. do Hammings := hamming (1691) across 1 |..| 20 as i loop io.put_natural (Hammings.i_th (i.item)); io.put_string (" ") end io.put_new_line; io.put_natural (Hammings.i_th (1691)); io.put_new_line end

feature -- Basic operations

hamming (n: INTEGER): ARRAYED_LIST [NATURAL] -- First `n' elements (in order) of the Hamming sequence, -- or as many of them as will not produce overflow. local sl: SORTED_TWO_WAY_LIST [NATURAL] overflow: BOOLEAN first, next: NATURAL do create Result.make (n); create sl.make sl.extend (1); sl.start across 1 |..| n as i invariant -- "The numbers output so far are the first `i' - 1 Hamming numbers, in order". -- "Result.first is the `i'-th Hamming number." until sl.is_empty loop first := sl.first; sl.start Result.extend (first); sl.remove across << 2, 3, 5 >> as multiplier loop next := multiplier.item * first overflow := overflow or next <= first if not overflow and then not sl.has (next) then sl.extend (next) end end end end end </lang>

Output:
1
1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36
2125764000

Factor

Translation of: Scala

<lang factor>USING: accessors deques dlists fry kernel make math math.order

IN: rosetta.hamming

TUPLE: hamming-iterator 2s 3s 5s ;

<hamming-iterator> ( -- hamming-iterator )
   hamming-iterator new
       1 1dlist >>2s
       1 1dlist >>3s
       1 1dlist >>5s ;
enqueue ( n hamming-iterator -- )
   [ [ 2 * ] [ 2s>> ] bi* push-back ]
   [ [ 3 * ] [ 3s>> ] bi* push-back ]
   [ [ 5 * ] [ 5s>> ] bi* push-back ] 2tri ;
next ( hamming-iterator -- n )
   dup [ 2s>> ] [ 3s>> ] [ 5s>> ] tri
   3dup [ peek-front ] tri@ min min
   [
       '[
           dup peek-front _ =
           [ pop-front* ] [ drop ] if
       ] tri@
   ] [ swap enqueue ] [ ] tri ;
next-n ( hamming-iterator n -- seq )
   swap '[ _ [ _ next , ] times ] { } make ;
nth-from-now ( hamming-iterator n -- m )
   1 - over '[ _ next drop ] times next ;</lang>
 <hamming-iterator> 20 next-n .
 <hamming-iterator> 1691 nth-from-now .
 <hamming-iterator> 1000000 nth-from-now .
Translation of: Haskell

Lazy lists aren quite slow in Factor, but still. <lang factor>USING: combinators fry kernel lists lists.lazy locals math ; IN: rosetta.hamming-lazy

sort-merge ( xs ys -- result )
   xs car :> x
   ys car :> y
   {
       { [ x y < ] [ [ x ] [ xs cdr ys sort-merge ] lazy-cons ] }
       { [ x y > ] [ [ y ] [ ys cdr xs sort-merge ] lazy-cons ] }
       [ [ x ] [ xs cdr ys cdr sort-merge ] lazy-cons ]
   } cond ;
hamming ( -- hamming )
   f :> h!
   [ 1 ] [
       h 2 3 5 [ '[ _ * ] lazy-map ] tri-curry@ tri
       sort-merge sort-merge
   ] lazy-cons h! h ;</lang>
 20 hamming ltake list>array .
 1690 hamming lnth .
 999999 hamming lnth .

Forth

Works with: Gforth version 0.7.0

This version uses a compact representation of Hamming numbers: each 64-bit cell represents a number 2^l*3^m*5^n, where l, n, and m are bitfields in the cell (20 bits for now). It also uses a fixed-point logarithm to compare the Hamming numbers and prints them in factored form. This code has been tested up to the 10^9th Hamming number. <lang Forth>\ manipulating and computing with Hamming numbers:

extract2 ( h -- l )
   40 rshift ;
extract3 ( h -- m )
   20 rshift $fffff and ;
extract5 ( h -- n )
   $fffff and ;

' + alias h* ( h1 h2 -- h )

h. { h -- }
   ." 2^"  h extract2 0 .r
   ." *3^" h extract3 0 .r
   ." *5^" h extract5 . ;

\ the following numbers have been produced with bc -l as follows 1 62 lshift constant ldscale2

7309349404307464679 constant ldscale3 \ 2^62*l(3)/l(2) (rounded up)

10708003330985790206 constant ldscale5 \ 2^62*l(5)/l(2) (rounded down)

hld { h -- ud }
   \ ud is a scaled fixed-point representation of the logarithm dualis of h
   h extract2 ldscale2 um*
   h extract3 ldscale3 um* d+
   h extract5 ldscale5 um* d+ ;
h<= ( h1 h2 -- f )
   2dup = if
       2drop true exit
   then
   hld rot hld assert( 2over 2over d<> )
   du>= ;
hmin ( h1 h2 -- h )
   2dup h<= if
       drop
   else
       nip
   then ;

\ actual algorithm

0 value seq variable seqlast 0 seqlast !

lastseq ( -- u )
   \ last stored number in the sequence 
   seq seqlast @ th @ ;
genseq ( h1 "name" -- )
   \ h1 is the factor for the sequence
   create , 0 , \ factor and index of element used for last return
 does> ( -- u2 )
   \ u2 is the next number resulting from multiplying h1 with numbers
   \ in the sequence that is larger than the last number in the
   \ sequence
   dup @ lastseq { h1 l } cell+ dup @ begin ( index-addr index )
       seq over th @ h1 h* dup l h<= while
           drop 1+ repeat
   >r swap ! r> ;

$10000000000 genseq s2 $00000100000 genseq s3 $00000000001 genseq s5

nextseq ( -- )
   s2 s3 hmin s5 hmin , 1 seqlast +! ;
nthseq ( u1 -- h )
   \ the u1 th element in the sequence
   dup seqlast @ u+do
       nextseq
   loop
   1- 0 max cells seq + @ ;
.nseq ( u1 -- )
   dup seqlast @ u+do
       nextseq
   loop
   0 u+do
       seq i th @ h.
   loop ;

here to seq 0 , \ that's 1

20 .nseq cr 1691 nthseq h. cr 1000000 nthseq h.</lang>

Output:
2^0*3^0*5^0 2^1*3^0*5^0 2^0*3^1*5^0 2^2*3^0*5^0 2^0*3^0*5^1 2^1*3^1*5^0 2^3*3^0*5^0 2^0*3^2*5^0 2^1*3^0*5^1 2^2*3^1*5^0 2^0*3^1*5^1 2^4*3^0*5^0 2^1*3^2*5^0 2^2*3^0*5^1 2^3*3^1*5^0 2^0*3^0*5^2 2^0*3^3*5^0 2^1*3^1*5^1 2^5*3^0*5^0 2^2*3^2*5^0 
2^5*3^12*5^3 
2^55*3^47*5^64

A smaller, less capable solution is presented here. It solves two out of three requirements and is ANS-Forth compliant. <lang Forth>2000 cells constant /hamming create hamming /hamming allot

                  ( n1 n2 n3 n4 n5 n6 n7 -- n3 n4 n5 n6 n1 n2 n8)
min? >r dup r> min >r 2rot r> ;
hit? ( n1 n2 n3 n4 n5 n6 n7 n8 -- n3 n4 n9 n10 n1 n2 n7)
 >r 2dup =        \ compare number with found minimum
 if -rot drop 1+ hamming over cells + @ r@ * rot then
 r> drop >r 2rot r>
\ if so, increment and rotate
hamming# ( n1 -- n2)
 1 hamming ! >r   \ set first cell and initialize parms
 0 5 over 3 over 2
 r@ 1 ?do         \ determine minimum and set cell
    dup min? min? min? dup hamming i cells + !
    2 hit? 5 hit? 3 hit? drop
 loop             \ find if minimum equals value
 2drop 2drop 2drop hamming r> 1- cells + @
\ clean up stack and fetch hamming number
test
 cr 21 1 ?do i . i hamming# . cr loop
 1691 hamming# . cr
</lang>

Fortran

Works with: Fortran version 90 and later

Using big_integer_module from here [1] <lang fortran>program Hamming_Test

 use big_integer_module
 implicit none
 
 call Hamming(1,20)
 write(*,*)
 call Hamming(1691)
 write(*,*)
 call Hamming(1000000)
  

contains

subroutine Hamming(first, last)

 integer, intent(in) :: first
 integer, intent(in), optional :: last
 integer :: i, n, i2, i3, i5, lim
 type(big_integer), allocatable :: hnums(:)
 if(present(last)) then
   lim = last
 else
   lim = first
 end if
 if(first < 1 .or. lim > 2500000 ) then
   write(*,*) "Invalid input"
   return
 end if
 
 allocate(hnums(lim))
 
 i2 = 1 ;  i3 = 1 ; i5 = 1  
 hnums(1) = 1
 n = 1
 do while(n < lim)
   n = n + 1
   hnums(n) = mini(2*hnums(i2), 3*hnums(i3), 5*hnums(i5))
   if(2*hnums(i2) == hnums(n)) i2 = i2 + 1
   if(3*hnums(i3) == hnums(n)) i3 = i3 + 1
   if(5*hnums(i5) == hnums(n)) i5 = i5 + 1
 end do
 
 if(present(last)) then
   do i = first, last
     call print_big(hnums(i))
     write(*, "(a)", advance="no") " "
   end do
 else
   call print_big(hnums(first))
 end if
 
 deallocate(hnums)

end subroutine

function mini(a, b, c)

 type(big_integer) :: mini
 type(big_integer), intent(in) :: a, b, c
  
 if(a < b ) then 
   if(a < c) then
     mini = a
   else
     mini = c
   end if
 else if(b < c) then
   mini = b
 else
   mini = c
 end if 

end function mini end program</lang>

Output:
1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36 
2125764000
519312780448388736089589843750000000000000000000000000000000000000000000000000000000

F#

This example does not show the output mentioned in the task description on this page (or a page linked to from here). Please ensure that it meets all task requirements and remove this message.
Note that phrases in task descriptions such as "print and display" and "print and show" for example, indicate that (reasonable length) output be a part of a language's solution.


<lang fsharp> type LazyList<'a> = Cons of 'a * Lazy<LazyList<'a>>

let rec inf_map f = function

   | Cons(x, g) -> Cons(f x, lazy(inf_map f (g.Force())))

let rec (-|-) (Cons(x, f) as xs) (Cons(y, g) as ys) =

   if x < y then Cons(x, lazy(f.Force() -|- ys))
   elif x > y then Cons(y, lazy(xs -|- g.Force()))
   else Cons(x, lazy(f.Force() -|- g.Force()))

let rec hamming =

   Cons(1, lazy(let x = inf_map ((*) 2) hamming
                let y = inf_map ((*) 3) hamming
                let z = inf_map ((*) 5) hamming
                x -|- y -|- z))
   

[<EntryPoint>] let main args =

   let a = ref hamming
   let i = ref 0
   while !i < 100 do
       match !a with
       | Cons (x, f) ->
           printf "%d, " x
           a := f.Force()
           i := !i + 1
   0

</lang>

FunL

Translation of: Scala

<lang funl>native scala.collection.mutable.Queue

val hamming =

 q2 = Queue()
 q3 = Queue()
 q5 = Queue()
 
 def enqueue( n ) =
   q2.enqueue( n*2 )
   q3.enqueue( n*3 )
   q5.enqueue( n*5 )
 def stream =
   val n = min( min(q2.head(), q3.head()), q5.head() )
   
   if q2.head() == n then q2.dequeue()
   if q3.head() == n then q3.dequeue()
   if q5.head() == n then q5.dequeue()
   
   enqueue( n )
   n # stream()
   
 for q <- [q2, q3, q5] do q.enqueue( 1 )
 
 stream()</lang>
Translation of: Haskell

<lang funl>val hamming = 1 # merge( map((2*), hamming), merge(map((3*), hamming), map((5*), hamming)) )

def

 merge( inx@x:_, iny@y:_ )
   | x < y     = x # merge( inx.tail(), iny )
   | x > y     = y # merge( inx, iny.tail() )
   | otherwise = merge( inx, iny.tail() )

println( hamming.take(20) ) println( hamming(1690) ) println( hamming(2000) )</lang>

Output:
[1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36]
2125764000
8100000000

Go

Concise version using dynamic-programming

<lang go>package main

import (

   "fmt"
   "math/big"

)

func min(a, b *big.Int) *big.Int {

   if a.Cmp(b) < 0 {
       return a
   }
   return b

}

func hamming(n int) []*big.Int {

   h := make([]*big.Int, n)
   h[0] = big.NewInt(1)
   two, three, five    := big.NewInt(2), big.NewInt(3), big.NewInt(5)
   next2, next3, next5 := big.NewInt(2), big.NewInt(3), big.NewInt(5)
   i, j, k := 0, 0, 0
   for m := 1; m < len(h); m++ {
       h[m] = new(big.Int).Set(min(next2, min(next3, next5)))
       if h[m].Cmp(next2) == 0 { i++; next2.Mul(  two, h[i]) } 
       if h[m].Cmp(next3) == 0 { j++; next3.Mul(three, h[j]) } 
       if h[m].Cmp(next5) == 0 { k++; next5.Mul( five, h[k]) } 
   }
   return h

}

func main() {

   h := hamming(1e6)
   fmt.Println(h[:20])
   fmt.Println(h[1691-1])
   fmt.Println(h[len(h)-1])

}</lang>

Output:
[1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36]
2125764000
519312780448388736089589843750000000000000000000000000000000000000000000000000000000

Longer version using dynamic-programming and logarithms

More than 10 times faster. <lang go>package main

import ( "flag" "fmt" "log" "math" "math/big" "os" )

var ( // print the whole sequence or just one element?

seqMode = flag.Bool("s", false, "sequence mode") // precomputed base-2 logarithms for 3 and 5 lg3, lg5 float64 = math.Log2(3), math.Log2(5)

// state of the three multiplied sequences front = [3]cursor{ {0, 0, 1}, // 2 {1, 0, lg3}, // 3 {2, 0, lg5}, // 5 }

// table for dynamic-programming stored results table [][3]int16 )

type cursor struct { f int // index (0, 1, 2) corresponding to factor (2, 3, 5) i int // index into table for the entry being multiplied lg float64 // base-2 logarithm of the multiple (for ordering) }

func (c *cursor) val() [3]int16 { x := table[c.i] x[c.f]++ // multiply by incrementing the exponent return x }

func (c *cursor) advance() { c.i++ // skip entries that would produce duplicates for (c.f < 2 && table[c.i][2] > 0) || (c.f < 1 && table[c.i][1] > 0) { c.i++ } x := c.val() c.lg = float64(x[0]) + lg3*float64(x[1]) + lg5*float64(x[2]) }

func step() { table = append(table, front[0].val()) front[0].advance() // re-establish sorted order if front[0].lg > front[1].lg { front[0], front[1] = front[1], front[0] if front[1].lg > front[2].lg { front[1], front[2] = front[2], front[1] } } } func show(elem [3]int16) { z := big.NewInt(1) for i, base := range []int64{2, 3, 5} { b := big.NewInt(base) x := big.NewInt(int64(elem[i])) z.Mul(z, b.Exp(b, x, nil)) } fmt.Println(z) }

func main() { log.SetPrefix(os.Args[0] + ": ") log.SetOutput(os.Stderr) flag.Parse() if flag.NArg() != 1 { log.Fatalln("need one positive integer argument") } var ordinal int // ordinal of last sequence element to compute _, err := fmt.Sscan(flag.Arg(0), &ordinal) if err != nil || ordinal <= 0 { log.Fatalln("argument must be a positive integer") } table = make([][3]int16, 1, ordinal) for i, n := 1, ordinal; i < n; i++ { if *seqMode { show(table[i-1]) } step() } show(table[ordinal-1]) }</lang>

Output:
$ ./hamming -s 20 | xargs
1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36
$ time ./hamming 1000000
519312780448388736089589843750000000000000000000000000000000000000000000000000000000

real	0m0.110s
user	0m0.090s
sys	0m0.020s
$ uname -a
Linux lance 3.0-ARCH #1 SMP PREEMPT Sat Aug 6 16:18:35 CEST 2011 x86_64 Intel(R) Core(TM)2 Duo CPU P8400 @ 2.26GHz GenuineIntel GNU/Linux

Haskell

The classic version

<lang haskell>hamming = 1 : map (2*) hamming `union` map (3*) hamming `union` map (5*) hamming

union a@(x:xs) b@(y:ys) = case compare x y of

           LT -> x : union  xs  b
           EQ -> x : union  xs  ys
           GT -> y : union  a   ys

main = do

   print $ take 20 hamming
   print  (hamming !! (1691-1), hamming !! (1692-1))
   print $ hamming !! (1000000-1)

-- Output: -- [1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,25,27,30,32,36] -- (2125764000,2147483648) -- 519312780448388736089589843750000000000000000000000000000000000000000000000000000000</lang> Runs in about a second on Ideone.com. The nested unions' effect is to produce the minimal value at each step, with duplicates removed. As Haskell evaluation model is on-demand, the three map expressions are in effect iterators, maintaining hidden pointers back into the shared named storage with which they were each created (a name is a pointer/handle in Haskell; to name is to point at, to refer to, to take a handle on).

The amount of operations is constant for each number produced, so the time complexity should be . Empirically, it is slightly above that and worsening, suggestive of extra cost of bignum arithmetics. Using triples representation with logarithm values for comparisons amends that problem, but runs ~ 1.5x slower for 1,000,000.

This is what that DDJ blog "pseudo-C" code was transcribing, mentioned at the Python entry that started this task ( curiously, it is in almost word-for-word correspondence with Edsger Dijkstra's code from his book A Discipline of Programming, p. 132 ). D, Go, PARI/GP, Prolog all implement the same idea of back-pointers into shared storage. A Haskell run-time system can actually free up the storage automatically at the start of the shared list and only keep the needed portion of it, from the (5*) back-pointer, – which is about in length – behind the scenes, as long as there's no re-use evident in the code.

Avoiding generation of duplicates

The classic version can be sped up quite a bit (above twice, and with better orders of growth, even closer to 1.0) by avoiding generation of duplicate values: <lang haskell>hamming = 1:foldl u [] [5,3,2] where u s n = ar where ar = merge s (n:map (n*) ar) merge [] b = b merge a@(x:xs) b@(y:ys) | x < y = x:merge xs b | otherwise = y:merge a ys

main = do print $ take 20 hamming print $ hamming !! 1690 print $ hamming !! (1000000-1)</lang>

Explicit multiples reinserting

This is a common approach which explicitly maintains an internal buffer of elements, removing the numbers from its front and reinserting their 2- 3- and 5-multiples in order. It overproduces the sequence, stopping when the n-th number is no longer needed instead of when it's first found. Also overworks by maintaining this buffer in total order where just heap would be sufficient. Worse, this particular version uses a sequential list for its buffer. That means operations for each number, instead of of the above version. Translation of Java (which does use priority queue though, so should have O‍ ‍(n‍ ‍logn) operations overall). Uses union from the "classic" version above: <lang Haskell>hamm n = drop n $ iterate (\(_,(a:t))-> (a,union t [2*a,3*a,5*a])) (0,[1])</lang>

Output:

<lang Haskell>*Main> map fst $ take 20 $ hamm 1 [1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,25,27,30,32,36]

  • Main> map fst $ take 2 $ hamm 1691

[2125764000,2147483648]

  • Main> mapM_ print $ take 10 $ hamm 1

(1,[2,3,5]) (2,[3,4,5,6,10]) (3,[4,5,6,9,10,15]) (4,[5,6,8,9,10,12,15,20]) (5,[6,8,9,10,12,15,20,25]) (6,[8,9,10,12,15,18,20,25,30]) (8,[9,10,12,15,16,18,20,24,25,30,40]) (9,[10,12,15,16,18,20,24,25,27,30,40,45]) (10,[12,15,16,18,20,24,25,27,30,40,45,50]) (12,[15,16,18,20,24,25,27,30,36,40,45,50,60])

  • Main> map (length.snd.head.hamm) [2000,4000,8000,16000]

[402,638,1007,1596]</lang> Runs too slowly to reach 1,000,000, with orders of growth above ~‍ ‍(n‍ ‍1.7‍ ‍) and worsening. Last two lines show the internal buffer's length for several sample n‍ ‍s.

Direct calculation through triples enumeration

It is also possible to more or less directly calculate the n-th Hamming number by enumerating (and counting) all the (i,j,k) triples below its estimated value – with ordering according to their exponents, i*ln2 + j*ln3 + k*ln5 – while storing only the "band" of topmost triples close enough to the target value (more in the original post on DDJ).

The total count of the enumerated triples is then the band's topmost value's position in the Hamming sequence, 1-based. The nth number is then found by a simple lookup in the sorted band, if it was wide enough. This produces the 1,000,000-th value in a few hundredths of a second on Ideone.com, running at about empirical time and space complexity: <lang haskell>-- directly find n-th Hamming number, in ~ O(n^{2/3}) time -- by Will Ness, based on "top band" idea by Louis Klauder, from DDJ discussion -- http://drdobbs.com/blogs/architecture-and-design/228700538

{-# OPTIONS -O2 -XBangPatterns #-} import Data.List (sortBy) import Data.Function (on)

main = let (r,t) = nthHam 1000000 in print t >> print (trival t)

lg3 = logBase 2 3; lg5 = logBase 2 5 logval (i,j,k) = fromIntegral i + fromIntegral j*lg3 + fromIntegral k*lg5 trival (i,j,k) = 2^i * 3^j * 5^k estval n = (6*lg3*lg5* fromIntegral n)**(1/3) -- estimated logval, base 2 rngval n

   | n > 500000  = (2.4496 , 0.0076 )                  -- empirical estimation 
   | n > 50000   = (2.4424 , 0.0146 )                  --   correction, base 2
   | n > 500     = (2.3948 , 0.0723 )                  --     (dist,width)
   | n > 1       = (2.2506 , 0.2887 )                  -- around (log $ sqrt 30), 
   | otherwise   = (2.2506 , 0.5771 )                  --   says WP

nthHam :: Int -> (Double, (Int, Int, Int)) nthHam n -- n: 1-based: 1,2,3...

 | w >= 1    = error $ "Breach of contract: (w < 1):  " ++ show w
 | m <  0    = error $ "Not enough triples generated: " ++ show (c,n)
 | m >= nb   = error $ "Generated band is too narrow: " ++ show (m,nb)
 | otherwise = res
where
 (d,w)   = rngval n                                     -- correction dist, width
 hi      = estval n - d                                 --   hi > logval > hi-w
 (m,nb)  = ( fromIntegral $ c - n, length b )           -- m 0-based from top, |band|
 (s,res) = ( sortBy (flip compare `on` fst) b, s!!m )   -- sorted decreasing, result
 (c,b)   = f 0                                          -- total count, the band
             [ ( i+1,                                   -- total triples w/ this (j,k)
                 [ (r,(i,j,k)) | frac < w ] )           -- store it, if inside band
               | k <- [ 0 .. floor ( hi   /lg5) ],  let p = fromIntegral k*lg5,
                 j <- [ 0 .. floor ((hi-p)/lg3) ],  let q = fromIntegral j*lg3 + p,
                 let (i,frac) = pr  (hi-q) ;            r = hi-frac ] -- r = i + q
        -- f 0 z == (sum $ map fst z, concat $ map snd z)
   where pr = properFraction
         f !c []          = (c,[])                      -- code as a loop 
         f !c ((c1,b1):r) = let (cr,br) = f (c+c1) r    --   to prevent space leak
                            in case b1 of { [v] -> (cr,v:br) 
                                          ;  _  -> (cr, br) }</lang>
Output:
-- time: 0.01s    memory: 3688 kB
(55,47,64)
519312780448388736089589843750000000000000000000000000000000000000000000000000000000

Icon and Unicon

This solution uses Unicon's object oriented extensions. An Icon only version has not been provided.

Lazy evaluation is used to improve performance. <lang Unicon># Lazily generate the three Hamming numbers that can be derived directly

  1. from a known Hamming number h

class Triplet : Class (cv, ce)

   method nextVal()
       suspend cv := @ce
   end
   initially (baseNum)
       cv := 2*baseNum
       ce := create (3|5)*baseNum

end

  1. Generate Hamming numbers, in order. Default is first 30
  2. But an optional argument can be used to generate more (or less)
  3. e.g. hamming 5000 generates the first 5000.

procedure main(args)

   limit := integer(args[1]) | 30
   every write("\t", generateHamming() \ limit)

end

  1. Do the work. Start with known Hamming number 1 and maintain
  2. a set of triplet Hamming numbers as they get derived from that
  3. one. Most of the code here is to figure out which Hamming
  4. number is next in sequence (while removing duplicates)

procedure generateHamming()

   triplers := set()
   insert(triplers, Triplet(1))
   suspend 1
   repeat {
       # Pick a Hamming triplet that *may* have the next smallest number
       t1 := !triplers         # any will do to start
       every t1 ~=== (t2 := !triplers) do {
           if t1.cv > t2.cv then {
              # oops we were wrong, switch assumption
              t1 := t2
              }
           else if t1.cv = t2.cv then {
              # t2's value is a duplicate, so
              # advance triplet t2, if none left in t2, remove it
              t2.nextVal() | delete(triplers, t2)
              }
          }
       # Ok, t1 has the next Hamming number, grab it
       suspend t1.cv
       insert(triplers, Triplet(t1.cv)) 
       # Advance triplet t1, if none left in t1, remove it
       t1.nextVal() | delete(triplers, t1)
       }

end</lang>

J

Solution:
A concise tacit expression using a (right) fold: <lang j>hamming=: {. (/:~@~.@] , 2 3 5 * {)/@(1x ,~ i.@-)</lang> Example usage: <lang j> hamming 20 1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36

  {: hamming 1691

2125764000</lang> For the millionth (and billionth (1e9)) Hamming number see the nh verb from Hamming Number essay on the J wiki.

Explanation:
I'll explain this J-sentence by dividing it in three parts from left to right omitting the leftmost {.:

  • sort and remove duplicates

<lang j> /:~@~.@]</lang>

  • produce (the next) 3 elements by selection and multiplication:

<lang j> 2 3 5 * {</lang> or <lang j> 2 3 5 * LHA { RHA</lang>

  • the RH part forms an array of descending indices and the initial Hamming number 1

<lang j> (1x ,~ i.@-)</lang> e.g. if we want the first 5 Hamming numbers, it produces the array:

4 3 2 1 0 1

in other words, we compute a sequence which begins with the desired hamming sequence and then take the first n elements (which will be our desired hamming sequence) <lang j> ({. (/:~@~.@] , 2 3 5 * {)/@(1x ,~ i.@-)) 7 1 2 3 4 5 6 8</lang> This starts using a descending sequence with 1 appended: <lang j> (1x ,~ i.@-) 7 6 5 4 3 2 1 0 1</lang> and then the fold expression is inserted between these list elements and the result computed: <lang j> 6(/:~@~.@] , 2 3 5 * {) 5(/:~@~.@] , 2 3 5 * {) 4(/:~@~.@] , 2 3 5 * {) 3(/:~@~.@] , 2 3 5 * {) 2(/:~@~.@] , 2 3 5 * {) 1(/:~@~.@] , 2 3 5 * {) 0(/:~@~.@] , 2 3 5 * {) 1 1 2 3 4 5 6 8 9 10 12 15 18 20 25 30 16 24 40</lang> (Note: A train of verbs in J is evaluated by supplying arguments to the every other verb (counting from the right) and the combining these results with the remaining verbs. Also: { has been implemented so that an index of 0 will select the only item from an array with no dimensions.)

Java

Works with: Java version 1.5+

Has a common shortcoming of overproducing the sequence by about entries, until the n-th number is no longer needed, instead of stopping as soon as it is reached. See Haskell for an illustration.

Inserting the top number's three multiples deep into the priority queue as it does, incurs extra cost for each number produced. To not worsen the expected algorithm complexity, the priority queue should have (amortized) implementation for both insertion and deletion operations but it looks like it's in Java. <lang java5>import java.math.BigInteger; import java.util.PriorityQueue;

final class Hamming {

   private static BigInteger THREE = BigInteger.valueOf(3);
   private static BigInteger FIVE = BigInteger.valueOf(5);
   private static void updateFrontier(BigInteger x,
                                      PriorityQueue<BigInteger> pq) {
       pq.offer(x.shiftLeft(1));
       pq.offer(x.multiply(THREE));
       pq.offer(x.multiply(FIVE));
   }
   public static BigInteger hamming(int n) {
       if (n <= 0)
           throw new IllegalArgumentException("Invalid parameter");
       PriorityQueue<BigInteger> frontier = new PriorityQueue<BigInteger>();
       updateFrontier(BigInteger.ONE, frontier);
       BigInteger lowest = BigInteger.ONE;
       for (int i = 1; i < n; i++) {
           lowest = frontier.poll();
           while (frontier.peek().equals(lowest))
               frontier.poll();
           updateFrontier(lowest, frontier);
       }
       return lowest;
   }
   public static void main(String[] args) {
       System.out.print("Hamming(1 .. 20) =");
       for (int i = 1; i < 21; i++)
            System.out.print(" " + hamming(i));
       System.out.println("\nHamming(1691) = " + hamming(1691));
       System.out.println("Hamming(1000000) = " + hamming(1000000));
   }

}</lang>

Output:
Hamming(1 .. 20) = 1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36
Hamming(1691) = 2125764000
Hamming(1000000) = 519312780448388736089589843750000000000000000000000000000000000000000000000000000000

Another possibility is to realize that Hamming numbers can be represented and stored as triples of nonnegative integers which are the powers of 2, 3 and 5, and do all operations needed by the algorithms directly on these triples without converting to , which saves tremendous memory and time. Also, the search frontier through this three-dimensional grid can be generated in an order that never reaches the same state twice, so we don't need to keep track which states have already been encountered, saving even more memory. The objects of encode Hamming numbers in three fields , and . Multiplying by 2, 3 and 5 can now be done just by incrementing that field. The order comparison of triples needed by the priority queue is implemented with simple logarithm formulas of multiplication and addition, resorting to conversion to only in the rare cases that the floating point arithmetic produces too close results.

<lang java5> import java.math.BigInteger; import java.util.*;

// ilkka.kokkarinen@gmail.com

public class HammingTriple implements Comparable<HammingTriple> {

   // Precompute a couple of constants that we need all the time
   private static final BigInteger two = BigInteger.valueOf(2);
   private static final BigInteger three = BigInteger.valueOf(3);
   private static final BigInteger five = BigInteger.valueOf(5);
   private static final double logOf2 = Math.log(2);
   private static final double logOf3 = Math.log(3);
   private static final double logOf5 = Math.log(5);
       
   // The powers of this triple
   private int a, b, c;
     
   public HammingTriple(int a, int b, int c) {
       this.a = a; this.b = b; this.c = c;
   }
   
   public String toString() {
       return "[" + a + ", " + b + ", " + c + "]";
   }
   
   public BigInteger getValue() {
       return two.pow(a).multiply(three.pow(b)).multiply(five.pow(c));
   }
   
   public boolean equals(Object other) {
       if(other instanceof HammingTriple) {
           HammingTriple h = (HammingTriple) other;
           return this.a == h.a && this.b == h.b && this.c == h.c;
       }
       else { return false; }
   }
   
   // Return 0 if this == other, +1 if this > other, and -1 if this < other
   public int compareTo(HammingTriple other) {
       // equality
       if(this.a == other.a && this.b == other.b && this.c == other.c) {
           return 0;
       }
       // this dominates
       if(this.a >= other.a && this.b >= other.b && this.c >= other.c) {
           return +1;
       }
       // other dominates
       if(this.a <= other.a && this.b <= other.b && this.c <= other.c) {
           return -1;
       }
      
       // take the logarithms for comparison
       double log1 = this.a * logOf2 + this.b * logOf3 + this.c * logOf5;
       double log2 = other.a * logOf2 + other.b * logOf3 + other.c * logOf5;
       
       // are these different enough to be reliable?
       if(Math.abs(log1 - log2) > 0.0000001) {
           return (log1 < log2) ? -1: +1;
       }
       
       // oh well, looks like we have to do this the hard way
       return this.getValue().compareTo(other.getValue());
       // (getting this far should be pretty rare, though)
   }
   
   public static BigInteger computeHamming(int n, boolean verbose) {
       if(verbose) {
           System.out.println("Hamming number #" + n);
       }
       long startTime = System.currentTimeMillis();
       
       // The elements of the search frontier
       PriorityQueue<HammingTriple> frontierQ = new PriorityQueue<HammingTriple>();
       int maxFrontierSize = 1;
       
       // Initialize the frontier
       frontierQ.offer(new HammingTriple(0, 0, 0)); // 1
       
       while(true) {
           if(frontierQ.size() > maxFrontierSize) {
               maxFrontierSize = frontierQ.size();
           }
           // Pop out the next Hamming number from the frontier
           HammingTriple curr = frontierQ.poll();
           
           if(--n == 0) {
               if(verbose) {
                   System.out.println("Time: " + (System.currentTimeMillis() - startTime) + " ms");
                   System.out.println("Frontier max size: " + maxFrontierSize);
                   System.out.println("As powers: " + curr.toString());
                   System.out.println("As value: " + curr.getValue());
               }
               return curr.getValue();
           }
           
           // Current times five, if at origin in (a,b) plane
           if(curr.a == 0 && curr.b == 0) {
               frontierQ.offer(new HammingTriple(curr.a, curr.b, curr.c + 1));
           }
           // Current times three, if at line a == 0
           if(curr.a == 0) {
               frontierQ.offer(new HammingTriple(curr.a, curr.b + 1, curr.c));
           }
           // Current times two, unconditionally
           curr.a++;
           frontierQ.offer(curr); // reuse the current HammingTriple object
       }
   }

} </lang>

Hamming number #1000000
Time: 650 ms
Frontier max size: 10777
As powers: [55, 47, 64]
As value: 519312780448388736089589843750000000000000000000000000000000000000000000000000000000

Hamming number #1000000000
Time: 1763306 ms
Frontier max size: 1070167
As powers: [1334, 335, 404]
As value: 62160757555652448616308163328720720039470565190896527065916324096423370220027531418244175407
772567327803701726166152919355404186200255249167295000868314547113136940786355040041603128729517887
0364794838245609107270160079056207179759030665476588225699039176388785014115448224991592743918456282
8227449023750262318234797192076792208033475638322151983772515798004125909334741121595323950448656375
1044570269974247729669174417794061727369755885568000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000

Alternative

This uses memoized streams - similar in principle to the classic lazy-evaluated sequence, but with a java flavor. Hope you like this recipe!

<lang java> import java.math.BigInteger;

public class Hamming {

   public static void main(String args[])
   {
       Stream hamming = makeHamming();
       System.out.print("H[1..20] ");
       for (int i=0; i<20; i++) {
           System.out.print(hamming.value());
           System.out.print(" ");
           hamming = hamming.advance();
       }
       System.out.println();
       System.out.print("H[1691] ");
       hamming = makeHamming();
       for (int i=1; i<1691; i++) {
           hamming = hamming.advance();
       }
       System.out.println(hamming.value());
       hamming = makeHamming();
       System.out.print("H[10^6] ");
       for (int i=1; i<1000000; i++) {
           hamming = hamming.advance();
       }
       System.out.println(hamming.value());
   }
   public interface Stream
   {
       BigInteger value();
       Stream advance();
   }
   public static class MultStream implements Stream
   {
       MultStream(int mult)
       { m_mult = BigInteger.valueOf(mult); }
       MultStream setBase(Stream s)
       { m_base = s; return this; }
       public BigInteger value()
       { return m_mult.multiply(m_base.value()); }
       public Stream advance()
       { return setBase(m_base.advance()); }
       private final BigInteger m_mult;
       private Stream m_base;
   }
   private final static class RegularStream implements Stream
   {
       RegularStream(Stream[] streams, BigInteger val)
       {
           m_streams = streams;
           m_val = val;
       }
       public BigInteger value()
       { return m_val; }
       public Stream advance()
       {
           // memoized value for the next stream instance.
           if (m_advance != null) { return m_advance; }
           int minidx = 0 ;
           BigInteger next = nextStreamValue(0);
           for (int i=1; i<m_streams.length; i++) {
               BigInteger v = nextStreamValue(i);
               if (v.compareTo(next) < 0) {
                   next = v;
                   minidx = i;
               }
           }
           RegularStream ret = new RegularStream(m_streams, next);
           // memoize the value!
           m_advance = ret;
           m_streams[minidx].advance();
           return ret;
       }
       private BigInteger nextStreamValue(int streamidx)
       {
           // skip past duplicates in the streams we're merging.
           BigInteger ret = m_streams[streamidx].value();
           while (ret.equals(m_val)) {
               m_streams[streamidx] = m_streams[streamidx].advance();
               ret = m_streams[streamidx].value();
           }
           return ret;
       }
       private final Stream[] m_streams;
       private final BigInteger m_val;
       private RegularStream m_advance = null;
   }
   private final static Stream makeHamming()
   {
       MultStream nums[] = new MultStream[] {
           new MultStream(2),
           new MultStream(3),
           new MultStream(5)
       };
       Stream ret = new RegularStream(nums, BigInteger.ONE);
       for (int i=0; i<nums.length; i++) {
           nums[i].setBase(ret);
       }
       return ret;
   }

} </lang>

$ java Hamming 
H[1..20] 1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36 
H[1691] 2125764000
H[10^6] 519312780448388736089589843750000000000000000000000000000000000000000000000000000000
$ 

JavaScript

Works with: JavaScript version 1.7
Works with: Firefox version 2
Translation of: Ruby

This does not calculate the 1,000,000th Hamming number.

Note the use of for (x in obj) to iterate over the properties of an object, versus for each (y in obj) to iterate over the values of the properties of an object. <lang javascript>function hamming() {

   var queues = {2: [], 3: [], 5: []};
   var base;
   var next_ham = 1;
   while (true) {
       yield next_ham;
       for (base in queues) {queues[base].push(next_ham * base)}
       next_ham = [ queue[0] for each (queue in queues) ].reduce(function(min, val) {
           return Math.min(min,val)
       });
       for (base in queues) {if (queues[base][0] == next_ham) queues[base].shift()}
   }

}

var ham = hamming(); var first20=[], i=1;

for (; i <= 20; i++)

   first20.push(ham.next());

print(first20.join(', ')); print('...'); for (; i <= 1690; i++)

   ham.next();

print(i + " => " + ham.next());</lang>

Output:
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36
...
1691 => 2125764000 

Fast & complete version

Translation of: C#

A translation of my fast C# version. I was curious to see how much slower JavaScript is. The result: it runs about 5x times slower than C#, though YMMV. You can try it yourself here: http://jsfiddle.net/N7AFN/

--Mike Lorenz

<lang javascript><html> <head></head> <body>

</body> <script src="http://code.jquery.com/jquery-latest.min.js"></script> <script src="http://peterolson.github.com/BigInteger.js/BigInteger.min.js"></script> <script type="text/javascript">

   var _primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37];
   function log(text) {
       $('#main').append(text + "\n");
   }
   function big(exponents) {
       var i, e, val = bigInt.one;
       for (i = 0; i < exponents.length; i++)
           for (e = 0; e < exponents[i]; e++)
               val = val.times(_primes[i]);
       return val.toString();
   }
   function hamming(n, nprimes) {
       var i, iter, p, q, min, equal, x;
       var hammings = new Array(n);                            // array of hamming #s we generate
       hammings[0] = new Array(nprimes);
       for (p = 0; p < nprimes; p++) {
           hammings[0][p] = 0;
       }
       var hammlogs = new Array(n);                            // log values for above
       hammlogs[0] = 0;
       var primelogs = new Array(nprimes);                     // pre-calculated prime log values
       var listlogs  = new Array(nprimes);                     // log values of list heads
       for (p = 0; p < nprimes; p++) {
           primelogs[p] = listlogs[p] = Math.log(_primes[p]);
       }
       var indexes = new Array(nprimes);                       // intermediate hamming values as indexes into hammings
       for (p = 0; p < nprimes; p++) {
           indexes[p] = 0;
       }
       var listheads = new Array(nprimes);                     // intermediate hamming list heads
       for (p = 0; p < nprimes; p++) {
           listheads[p] = new Array(nprimes);
           for (q = 0; q < nprimes; q++) {
               listheads[p][q] = 0;
           }
           listheads[p][p] = 1;
       }
       for (iter = 1; iter < n; iter++) {
           min = 0;
           for (p = 1; p < nprimes; p++)
               if (listlogs[p] < listlogs[min])
                   min = p;
           hammlogs[iter] = listlogs[min];                     // that's the next hamming number
           hammings[iter] = listheads[min].slice();
           for (p = 0; p < nprimes; p++) {                     // update each list head if it matches new value
               equal = true;                                   // test each exponent to see if number matches
               for (i = 0; i < nprimes; i++) {
                   if (hammings[iter][i] != listheads[p][i]) {
                       equal = false;
                       break;
                   }
               }
               if (equal) {                                    // if it matches...
                   x = ++indexes[p];                           // set index to next hamming number
                   listheads[p] = hammings[x].slice();         // copy hamming number
                   listheads[p][p] += 1;                       // increment exponent = mult by prime
                   listlogs[p] = hammlogs[x] + primelogs[p];   // add log(prime) to log(value) = mult by prime
               }
           }
       }
       return hammings[n - 1];
   }
   $(document).ready(function() {
       var i, nprimes;
       var t = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1691,1000000];
       for (nprimes = 3; nprimes <= 4; nprimes++) {
           var start = new Date();

log('

' + _primes[nprimes - 1] + '-Smooth:' + '

'); log('

'); for (i = 0; i < t.length; i++) log('' + '');
           var end = new Date();
log('' + ''); log('
' + t[i] + ':' + '' + big(hamming(t[i], nprimes)) + '
' + 'Elapsed time:' + '' + (end-start)/1000 + ' seconds' + '

');

       }
   });

</script> </html></lang>

Output:
5-Smooth:

1:		1
2:		2
3:		3
4:		4
5:		5
6:		6
7:		8
8:		9
9:		10
10:		12
11:		15
12:		16
13:		18
14:		20
15:		24
16:		25
17:		27
18:		30
19:		32
20:		36
1691:		2125764000
1000000:	519312780448388736089589843750000000000000000000000000000000000000000000000000000000
Elapsed time:	1.73 seconds

7-Smooth:

1:		1
2:		2
3:		3
4:		4
5:		5
6:		6
7:		7
8:		8
9:		9
10:		10
11:		12
12:		14
13:		15
14:		16
15:		18
16:		20
17:		21
18:		24
19:		25
20:		27
1691:		3317760
1000000:	4157409948433216829957008507500000000
Elapsed time:	1.989 seconds

jq

Works with: jq version 1.4

We take the primary challenge here to be to write a Hamming number generator that can generate a given number of Hamming numbers, or the n-th Hamming number, without storing previously generated numbers.

To motivate a more complex version, in Part 1 of this section hamming(n) is defined as a generator of Hamming numbers, as numbers. This function uses an efficient algorithm and can run indefinitely, but it has one disadvantage: currently, jq converts large integers to floating point approximations, and thus precision is lost. For example, it reports the millionth Hamming number as 1.926511252902403e+44.

In Part 2, the algorithm in the first part is modified to use the [p,q,r] representation of Hamming numbers, where p, q, and r are the relevant exponents respectively of 2, 3, and 5.

The task description focuses on finding the n-th element of an infinite sequence and so it should be mentioned that using jq versions greater than 1.4, it would be possible to simply the generator so that is always unbounded, and then harness it with new builtins such as "limit" and "nth".

Hamming number generator

<lang jq># Return the index in the input array of the min_by(f) value def index_min_by(f):

 . as $in
 | if length == 0 then null
   else .[0] as $first
   | reduce range(0; length) as $i 
       ([0, $first, ($first|f)];   # state: [ix; min; f|min]
        ($in[$i]|f) as $v
        | if $v < .[2] then [ $i, $in[$i], $v ] else . end) 
   | .[0]
   end;
  1. Emit n Hamming numbers if n>0; the nth if n<0

def hamming(n):

 # input: [twos, threes, fives] of which at least one is assumed to be non-empty
 # output: the index of the array holding the min of the firsts
 def next: map( .[0] ) | index_min_by(.);
 # input: [value, [twos, threes, fives] ....]
 # ix is the index in [twos, threes, fives] of the array to be popped
 # output: [popped, updated_arrays ...]
 def pop(ix):
   .[1] as $triple
   | setpath([0];    $triple[ix][0])
   | setpath([1,ix]; $triple[ix][1:]);
 # input: [x, [twos, threes, fives], count]
 # push value*2 to twos, value*3 to threes, value*5 to fives and increment count
 def push(v):
   [.[0], [.[1][0] + [2*v], .[1][1] + [3*v], .[1][2] + [5*v]], .[2] + 1];
 # _hamming is the workhorse
 # input: [previous, [twos, threes, fives], count]
 def _hamming:
   .[0] as $previous
   | if (n > 0 and .[2] == n) or (n<0 and .[2] == -n) then $previous
     else (.[1]|next) as $ix     # $ix cannot be null
     | pop($ix)
     | .[0] as $next
     | (if $next == $previous then empty elif n>=0 then $previous else empty end), 
       (if $next == $previous then . else push($next) end | _hamming) 
     end;
 [1, [[2],[3],[5]], 1] | _hamming;

. as $n | hamming($n)</lang> Examples: <lang jq># First twenty: hamming(20)

  1. See elsewhere for output
  1. 1691st Hamming number:

hamming(-1691)

  1. => 2125764000
  1. Millionth:

hamming(-1000000)

  1. => 1.926511252902403e+44

</lang>

Hamming numbers as triples

In this section, Hamming numbers are represented as triples, [p,q,r], where p, q and r are the relevant powers of 2, 3, and 5 respectively. We therefore begin with some functions for managing Hamming numbers represented in this manner: <lang jq># The log (base e) of a Hamming triple: def ln_hamming:

 if length != 3 then error("ln_hamming: \(.)") else . end
 | (.[0] * (2|log)) + (.[1] * (3|log)) + (.[2] * (5|log));
  1. The numeric value of a Hamming triple:

def hamming_tof: ln_hamming | exp;

def hamming_toi:

 def pow(n): . as $in | reduce range(0;n) as $i (1; . * $in);
 . as $in | (2|pow($in[0])) * (3|pow($in[1])) * (5|pow($in[2]));
  1. Return the index in the input array of the min_by(f) value

def index_min_by(f):

 . as $in
 | if length == 0 then null
   else .[0] as $first
   | reduce range(0; length) as $i 
       ([0, $first, ($first|f)];   # state: [ix; min; f|min]
        ($in[$i]|f) as $v
        | if $v < .[2] then [ $i, $in[$i], $v ] else . end) 
   | .[0]
   end;
  1. Emit n Hamming numbers (as triples) if n>0; the nth if n<0; otherwise indefinitely.

def hamming(n):

 # n must be 2, 3 or 5
 def hamming_times(n): n as $n
   | if $n==2 then .[0] += 1 elif $n==3 then .[1] += 1 else .[2] += 1 end;
 # input: [twos, threes, fives] of which at least one is assumed to be non-empty
 # output: the index of the array holding the min of the firsts
 def next: map( .[0] ) | index_min_by( ln_hamming );
 # input: [value, [twos, threes, fives] ....]
 # ix is the index in [twos, threes, fives] of the array to be popped
 # output: [popped, updated_arrays ...]
 def pop(ix):
   .[1] as $triple
   | setpath([0];    $triple[ix][0])
   | setpath([1,ix]; $triple[ix][1:]);
 # input: [x, [twos, threes, fives], count]
 # push value*2 to twos, value*3 to threes, value*5 to fives and increment count
 def push(v):
   [.[0], [.[1][0] + [v|hamming_times(2)], .[1][1] + [v|hamming_times(3)],
           .[1][2] + [v|hamming_times(5)]], .[2] + 1];
 # _hamming is the workhorse
 # input: [previous, [twos, threes, fives], count]
 def _hamming:
   .[0] as $previous
   | if (n > 0 and .[2] == n) or (n<0 and .[2] == -n) then $previous
     else (.[1]|next) as $ix     # $ix cannot be null
     | pop($ix)
     | .[0] as $next
     | (if $next == $previous then empty elif n>=0 then $previous else empty end), 
       (if $next == $previous then . else push($next) end | _hamming) 
     end;
 [[0,0,0], [ 1,0,0 ,0,1,0, 0,0,1 ], 1] | _hamming;

</lang> Examples <lang jq># The first twenty Hamming numbers as integers: hamming(-20) | hamming_toi

  1. => (see elsewhere)
  1. 1691st as a Hamming triple:

hamming(-1691)

  1. => [5,12,3]
  1. The millionth:

hamming(-1000000)

  1. => [55,47,64]</lang>

Julia

The n parameter was chosen by trial and error. You have to pick an n large enough that the powers of 2, 3 and 5 will all be greater than n at the 1691st Hamming number.

<lang julia>n = 40

powers_2 = 2.^[0:n-1] powers_3 = 3.^[0:n-1] powers_5 = 5.^[0:n-1]

matrix = powers_2 * powers_3' powers_23 = sort(reshape(matrix,length(matrix),1),1)

matrix = powers_23 * powers_5' powers_235 = sort(reshape(matrix,length(matrix),1),1)

  1. Remove the integer overflow values.

powers_235 = powers_235[powers_235 .> 0]

println(powers_235[1:20]) println(powers_235[1691])</lang>

Kotlin

Translation of: Java

<lang kotlin>import java.math.BigInteger; import java.util.PriorityQueue;

val Three = BigInteger.valueOf(3) val Five = BigInteger.valueOf(5)

fun updateFrontier(x : BigInteger, pq : PriorityQueue<BigInteger>) {

   pq add(x shiftLeft(1))
   pq add(x multiply(Three))
   pq add(x multiply(Five))

}

fun hamming(n : Int) : BigInteger {

   val frontier = PriorityQueue<BigInteger>()
   updateFrontier(BigInteger.ONE, frontier)
   var lowest = BigInteger.ONE
   for (i in 1 .. n-1) {
       lowest = frontier.poll() ?: lowest
       while (frontier.peek() equals(lowest))
           frontier.poll()
       updateFrontier(lowest, frontier)
   }
   return lowest

}

fun main(args : Array<String>) {

   System.out print("Hamming(1 .. 20) =")
   for (i in 1 .. 20)
       System.out print(" ${hamming(i)}")
   System.out println("\nHamming(1691) = ${hamming(1691)}")
   System.out println("Hamming(1000000) = ${hamming(1000000)}")

}</lang>

Output:
Hamming(1 .. 20) = 1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36
Hamming(1691) = 2125764000
Hamming(1000000) = 519312780448388736089589843750000000000000000000000000000000000000000000000000000000

Liberty BASIC

LB has unlimited precision integers. <lang lb> dim h( 1000000)

for i =1 to 20

   print hamming( i); " ";

next i

print print "H( 1691)", hamming( 1691) print "H( 1000000)", hamming( 1000000)

end

function hamming( limit)

   h( 0) =1
   x2 =2: x3 =3: x5 =5
   i  =0: j  =0: k  =0
   for n =1 to limit
       h( n) = min( x2, min( x3, x5))
       if x2 = h( n) then i = i +1: x2 =2 *h( i)
       if x3 = h( n) then j = j +1: x3 =3 *h( j)
       if x5 = h( n) then k = k +1: x5 =5 *h( k)
   next n
   hamming =h( limit -1)

end function</lang>

1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36
H( 1691)
2125764000
H( 1000000) 519312780448388736089589843750000000000000000000000000000000000000000000000000000000

<lang logo>to init.ham

 ; queues
 make "twos   [1]
 make "threes [1]
 make "fives  [1]

end to next.ham

                         localmake "ham first :twos
 if less? first :threes :ham [make "ham first :threes]
 if less? first :fives  :ham [make "ham first :fives]
 if equal? :ham first :twos   [ignore dequeue "twos]
 if equal? :ham first :threes [ignore dequeue "threes]
 if equal? :ham first :fives  [ignore dequeue "fives]
 queue "twos   :ham * 2
 queue "threes :ham * 3
 queue "fives  :ham * 5
 output :ham

end

init.ham repeat 20 [print next.ham] repeat 1690-20 [ignore next.ham] print next.ham</lang>

Lua

<lang lua>function hiter()

 hammings = {1}
 prev, vals = {1, 1, 1}
 index = 1
 local function nextv()
   local n, v = 1, hammings[prev[1]]*2

if hammings[prev[2]]*3 < v then n, v = 2, hammings[prev[2]]*3 end if hammings[prev[3]]*5 < v then n, v = 3, hammings[prev[3]]*5 end prev[n] = prev[n] + 1 if hammings[index] == v then return nextv() end index = index + 1 hammings[index] = v return v

 end
 return nextv

end

j = hiter() for i = 1, 20 do

 print(j())

end n, l = 0, 0 while n < 2^31 do n, l = j(), n end print(l)</lang>

Mathematica

<lang mathematica>HammingList[N_] := Module[{A, B, C}, {A, B, C} = (N^(1/3))*{2.8054745679851933, 1.7700573778298891, 1.2082521307023026} - {1, 1, 1};

Take[ Sort@Flatten@Table[ 2^x * 3^y * 5^z , 

{x, 0, A}, {y, 0, (-B/A)*x + B}, {z, 0, C - (C/A)*x - (C/B)*y}], N]];</lang>

HammingList[20]
-> {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36}
HammingList[1691] // Last
-> 2125764000
HammingList[1000000] // Last
->519312780448388736089589843750000000000000000000000000000000000000000000000000000000

MATLAB / Octave

Translation of: Julia

The n parameter was chosen by trial and error. You have to pick an n large enough that the powers of 2, 3 and 5 will all be greater than n at the 1691st Hamming number.

<lang Matlab>n = 40;

powers_2 = 2.^[0:n-1]; powers_3 = 3.^[0:n-1]; powers_5 = 5.^[0:n-1];

matrix = powers_2' * powers_3; powers_23 = sort(reshape(matrix,n*n,1));


matrix = powers_23 * powers_5; powers_235 = sort(reshape(matrix,n*n*n,1));

% % Remove the integer overflow values. % powers_235 = powers_235(powers_235 > 0);

disp(powers_235(1:20)) disp(powers_235(1691))</lang>

MUMPS

<lang MUMPS>Hamming(n) New count,ok,next,number,which For which=2,3,5 Set number=1 For count=1:1:n Do . Set ok=0 Set:count<21 ok=1 Set:count=1691 ok=1 Set:count=n ok=1 . Write:ok !,$Justify(count,5),": ",number . For which=2,3,5 Set next(number*which)=which . Set number=$Order(next("")) . Kill next(number) . Quit Quit Do Hamming(2000)

   1: 1
   2: 2
   3: 3
   4: 4
   5: 5
   6: 6
   7: 8
   8: 9
   9: 10
  10: 12
  11: 15
  12: 16
  13: 18
  14: 20
  15: 24
  16: 25
  17: 27
  18: 30
  19: 32
  20: 36
1691: 2125764000
2000: 8062156800</lang>

Nim

Library: bigints

<lang nim>import bigints, math

proc hamming(limit): BigInt =

 var
   h = newSeq[BigInt](limit)
   x2 = initBigInt(2)
   x3 = initBigInt(3)
   x5 = initBigInt(5)
   i, j, k = 0
 for i in 0..h.high: h[i] = initBigInt(1)
 for n in 1 .. < limit:
   h[n] = min(x2, x3, x5)
   if x2 == h[n]:
     inc i
     x2 = h[i] * 2
   if x3 == h[n]:
     inc j
     x3 = h[j] * 3
   if x5 == h[n]:
     inc k
     x5 = h[k] * 5
 result = h[h.high]

for i in 1 .. 20:

 echo hamming(i)

echo hamming(1691) echo hamming(1_000_000)</lang>

Output:
1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36 2125764000
519312780448388736089589843750000000000000000000000000000000000000000000000000000000

Oz

Lazy Version

Translation of: Haskell

<lang oz>declare

 fun lazy {HammingFun}
    1|{FoldL1 [{MultHamming 2} {MultHamming 3} {MultHamming 5}] LMerge}
 end
 Hamming = {HammingFun}
 fun {MultHamming N}
    {LMap Hamming fun {$ X} N*X end}
 end
 fun lazy {LMap Xs F}
    case Xs
    of nil  then nil
    [] X|Xr then {F X}|{LMap Xr F}
    end
 end
 fun lazy {LMerge Xs=X|Xr Ys=Y|Yr}
    if     X < Y then X|{LMerge Xr Ys}
    elseif X > Y then Y|{LMerge Xs Yr}
    else              X|{LMerge Xr Yr}
    end
 end
 fun {FoldL1 X|Xr F}
    {FoldL Xr F X}
 end

in

 {ForAll {List.take Hamming 20} System.showInfo}
 {System.showInfo {Nth Hamming 1690}}
 {System.showInfo {Nth Hamming 1000000}}</lang>


Strict Version

The strict version uses iterators and a priority queue. Note that it can calculate other variations of the hamming numbers too. By changing K, it will calculate the p(K)-smooth numbers. (E.g. K = 3, it will use the first three primes 2,3 and 5, thus resulting in the 5-smooth numbers, see [2]) <lang oz> functor import Application System define

class Multiplier attr lst factor current

meth init(Factor Lst) lst := Lst factor := Factor {self next} end meth next local A AS in A|AS = @lst current := A*@factor lst := AS end end meth peek(?X) X = @current end

meth dump {System.showInfo "DUMP"} {System.showInfo "Factor: "#@factor} {System.showInfo "current: "#@current} end end

% a priority queue of multipliers. The one which currently holds the smallest value is put on front class PriorityQueue attr mults current % for duplicate detection

meth init(Mults) mults := Mults current := 0 end

meth insert(Mult) local fun {Insert M Lst} local Av Mv in case Lst of nil then M|Lst [] A|AS then {A peek(Av)} {M peek(Mv)} if Av < Mv then A|{Insert M AS} else M|A|AS end end end end in mults := {Insert Mult @mults} end end

meth next(Tail NextTail) local M Ms X Curr in M|Ms = @mults {M peek(X)} % gets value of lowest iterator Curr = @current if Curr == X then skip else Tail = X|NextTail % if we found a new value: append end {M next} mults := Ms {self insert(M)} if Curr == X then {self next(Tail NextTail)} else current := X end end end

end


local

% Sieve of erasthothenes, adapted from http://rosettacode.org/wiki/Sieve_of_Eratosthenes#Oz fun {Sieve N} S = {Array.new 2 N true} M = {Float.toInt {Sqrt {Int.toFloat N}}} in for I in 2..M do if S.I then for J in I*I..N;I do S.J := false end end end S end

fun {Primes N} S = {Sieve N} in for I in 2..N collect:C do if S.I then {C I} end end end


% help method to extract args proc {GetNK ArgList N K} case ArgList of A|B|_ then N={StringToInt A} K={StringToInt B} end end


proc {Generate N PriorQ Tail} local NewTail in if N == 0 then Tail = nil else {PriorQ next(Tail NewTail)} {Generate (N-1) PriorQ NewTail} end end end

K = 3 PrimeFactors Lst Tail in ArgList = {Application.getArgs plain} Lst = 1|Tail PrimeFactors = {List.take {Primes K*K} K} Mults = {List.map PrimeFactors fun {$ A} {New Multiplier init(A Lst) } end} PriorQ = {New PriorityQueue init(Mults)} {Generate 20 PriorQ Tail} {ForAll Lst System.showInfo} {Application.exit 0} end end </lang> Strict version made by pietervdvn; do what you want with the code.

PARI/GP

This is a basic implementation; finding the millionth term requires 3 seconds and 54 MB. Much better algorithms exist. <lang parigp>Hupto(n)={

 my(v=vector(n),x2=2,x3=3,x5=5,i=1,j=1,k=1,t);
 v[1]=1;
 for(m=2,n,
   v[m]=t=min(x2,min(x3,x5));
   if(x2 == t, x2 = v[i++] << 1);
   if(x3 == t, x3 = 3 * v[j++]);
   if(x5 == t, x5 = 5 * v[k++]);
 );
 v

}; H(n)=Hupto(n)[n];

Hupto(20) H(1691) H(10^6)</lang>

Output:
%1 = [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36]
%2 = 2125764000
%3 = 519312780448388736089589843750000000000000000000000000000000000000000000000000000000

Pascal

Simple brute force til 2^32-1.I was astonished by the speed.The inner loop is taken 2^32 -1 times.DIV by constant is optimized to Mul and shift. Using FPC_64 3.1.1, i4330 3.5 Ghz <lang pascal> program HammNumb; {$IFDEF FPC}

 {$MODE DELPHI}
 {$OPTIMIZATION ON}

{$ELSE}

 {$APPTYPE CONSOLE}

{$ENDIF} { type

 NativeUInt = longWord;

} var

 pot   : array[0..2] of NativeUInt;

function NextHammNumb(n:NativeUInt):NativeUInt; var

 q,p,nr : NativeUInt;

begin

 repeat
   nr := n+1;
   n := nr;
   p := 0;
   while NOT(ODD(nr)) do
   begin
     inc(p);
     nr := nr div 2;
   end;
   Pot[0]:= p;
   p := 0;
   q := nr div 3;
   while q*3=nr do
   Begin
     inc(P);
     nr := q;
     q := nr div 3;
   end;
   Pot[1] := p;
   p := 0;
   q := nr div 5;
   while q*5=nr do
   Begin
     inc(P);
     nr := q;
     q := nr div 5;
   end;
   Pot[2] := p;
 until nr = 1;
 result:= n;

end;

procedure Check; var

 i,n: NativeUint;

begin

 n := 1;
 for i := 1 to 20 do
 begin
   n := NextHammNumb(n);
   write(n,' ');
 end;
 writeln;
 writeln;
 n := 1;
 for i := 1 to 1690 do
   n := NextHammNumb(n);
 writeln('No ',i:4,' | ',n,' = 2^',Pot[0],' 3^',Pot[1],' 5^',Pot[2]);

end;

Begin

 Check;

End.</lang> Output

2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36 40 

No 1690 | 2125764000 = 2^5 3^12 5^3

real    0m17.328s
user    0m17.310s

fast alternative

The Haskell-Version is faster. Someone stated 0.35 s, this needs 0.078 s. Still iterating through all Hamming numbers up to the limit. So runtime is about ~ 2*n.

I collect only the factors between p^n and p^(n+1), so for 1E6.th hamming number the storage is strongly reduced. 2 elemcount 10725,3 elemcount 121,5 elemcount 1 the updating of the lists was little bit tricky, because the pointer pElem could have been changed, after extending the array.

<lang pascal>program hammNumb; {$IFDEF FPC}

  {$MODE DELPHI}
  {$OPTIMIZATION ON,ASMCSE,CSE,PEEPHOLE}
  {$ALIGN 16}

{$ELSE}

 {$APPTYPE CONSOLE}

{$ENDIF} uses

 sysutils;

const

 MAXCOUNT= 1*1000*1000;
 maxPrimFakCnt = 3;
 minElemCnt = 10;

type

 tPrimList = array of NativeUint;
 tnumber = double;
 tpNumber= ^tnumber;
 tElem = record
            n   : tnumber;//ln(prime[0]^Pots[0]*...
            Pots: array[0..maxPrimFakCnt] of word;
          end;
 tpElem  = ^tElem;
 tElems  = array of tElem;
 tElemArr  = array [0..0] of tElem;
 tpElemArr  = ^tElemArr;
 tpFaktorRec = ^tFaktorRec;
 tFaktorRec = record
                frElems  : tElems;
                frpElems : tpElemArr;
                frAktIdx : NativeUint;
                frMaxIdx : NativeUint;
                frPotNo  : NativeUint;
                frActPot : NativeUint;
                frNextFr : tpFaktorRec;
                frActNumb: tElem;
                frLnPrime: tnumber;
              end;
 tArrFR = array of tFaktorRec;

var

 Pl : tPrimList;

procedure PlInit(n: integer); const

cPl : array[0..maxPrimFakCnt] of byte=(2,3,5,7);//,11,13,17,19,23,29,31,37);

var

 i : integer;

Begin

 IF n>High(cPl)+1 then
    n := High(cPl)
 else
     IF n < 0 then
        n := 1;
 setlength(Pl,n);
 dec(n);
 For i := 0 to n do
   Pl[i] := cPl[i];
 For i := n+1 to maxPrimFakCnt do
   Pl[i] := 0;

end;

procedure AusgabeElem(pElem: tElem); var

 i : integer;

Begin

 with pElem do
 Begin
   IF n < 23 then
     write(round(exp(n)):16)
   else
     write('ln ',n:13:7);
   For i := 0 to maxPrimFakCnt do
     write(' ',PL[i]:2,'^',Pots[i]);
 end;
 writeln

end;

//LoE == List of Elements function LoEGetNextNumber(pFR :tpFaktorRec):tElem;forward;

procedure LoECreate(const Pl: tPrimList;var FA:tArrFR); var

 i : integer;

Begin

 setlength(FA,Length(PL));
 For i := 0 to High(PL) do
   with FA[i] do
   Begin
     //automatic zeroing
     setlength(frElems,minElemCnt);
     frpElems := @frElems[0];
     frPotNo  := i;
     frLnPrime:= ln(PL[i]);
     frMaxIdx := 0;
     frAktIdx := 0;
     frActPot := 1;
     With frElems[0] do
     Begin
       n := frLnPrime;
       Pots[i]:= 1;
     end;
     frActNumb := frElems[0];
     IF i < High(PL) then
       frNextFr := @FA[i+1]
     else
       frNextFr := NIL;
 end;

end;


procedure LoEFree(var FA:tArrFR); var

 i : integer;

Begin

 For i := High(FA) downto Low(FA) do
   setlength(FA[i].frElems,0);
 setLength(FA,0);

end; function LoEGetActElem(F:tpFaktorRec):tElem; Begin

 with f^ do
   result := frpElems^[frAktIdx];

end;

function LoEGetActLstNumber(F:tpFaktorRec):tpNumber; Begin

 with f^ do
   result := @frpElems^[frAktIdx].n;

end;

function LoEIncreaseElems(pFr:tpFaktorRec):tpElemArr; Begin

 with pFR^ do
 begin
   setlength(frElems,frMaxIdx*3 div 2+1);
   result := @frElems[0];
   frpElems := result;
 end;

end;

procedure LoENextList(pFr:tpFaktorRec); var

 j : integer;
 pNum : tpNumber;
 pElems : tpElemArr;

begin

 with pFR^ do
 begin
   IF frNextFr <> NIL then
   Begin
     pElems := @frElems[0];
     for j := frMaxIdx Downto 0 do
       with pElems^[j] do
       Begin
         n := n+frLnPrime;
         inc(Pots[frPotNo]);
       end;
      j := frActPot+1;
      with frActNumb do
      begin
        n:= j*frLnPrime;
        Pots[frPotNo]:= j;
      end;
      frActPot := j;
      pNum := LoEGetActLstNumber(frNextFr);
      while frActNumb.n > pNum^ do
      Begin
        //Insert
        j := frMaxIdx+1;
        IF j > High(frElems) then
          pElems := LoEIncreaseElems(pFr);
        repeat
          dec(j);
        until  (j<0) OR (pElems^[j].n < pNum^);
        inc(j);
        IF j<= frMaxIdx then
          move(pElems^[j],pElems^[j+1],SizeOf(pElems^[0])*(frMaxIdx-j+1));
        pElems^[j] := LoEGetNextNumber(frNextFr);
        frMaxIdx:=frMaxIdx+1;
        pNum := LoEGetActLstNumber(frNextFr);
      end;
   end
   else
   Begin
     with frpElems^[0] do
     Begin
       n := n+frLnPrime;
       inc(Pots[frPotNo]);
     end;
     j := frActPot+1;
     with frActNumb do
     begin
       n:= j*frLnPrime;
       Pots[frPotNo]:= j;
     end;
     frActPot := j;
   end;
   frAktIdx := 0;
 end;

end;

function LoEGetNextNumber(pFR :tpFaktorRec):tElem; Begin

 with pFr^ do
 Begin
   result := frpElems^[frAktIdx];
   inc(frAktIdx);
   IF frMaxIdx < frAktIdx then
     LoENextList(pFr);
 end;

end;

var

 T1,T0: tDateTime;
 FA: tArrFR;
 i : integer;

Begin

 PlInit(3);
 LoECreate(Pl,FA);
 i := 1;
 i := 1;
 For i := 1 to 20 do
   AusgabeElem(LoEGetNextNumber(@FA[0]));
 For i := 21 to 1689 do
   LoEGetNextNumber(@FA[0]);
 AusgabeElem(LoEGetNextNumber(@FA[0]));
 T0 := time;
 For i := 1692 to maxcount-1 do
   LoEGetNextNumber(@FA[0]);
 T1 := time;
 Writeln(FormatDateTime('HH:NN:SS.ZZZ',T1-T0));
 Writeln('max Count ',MaxCount);
 AusgabeElem(LoEGetNextNumber(@FA[0]));
 For i := 0 to High(FA) do
   writeln(pL[i],
    ' elemcount  ',FA[i].frMaxIdx+1:6,' out of',length(FA[i].frElems):7);
 LoEFree(FA);
 readln;

End. {

192.7618988940 2^55 3^47 5^64 0^0 div (2*5)^55

                   0    47     9

51931278044838873608958984375 0000000000000000000000000000000000000000000000000000000

00:00:01.721 max Count 10000000

 417.2530468166  2^80  3^92  5^162  0^0

2 elemcount 49557 out of 61448 3 elemcount 260 out of 317 5 elemcount 1 out of 10 Windows Calc 1,624410506383043182323921531176e+181

00:00:37.316 max Count 100000000

 900.9063136125  2^2  3^454  5^249  0^0

2 elemcount 230300 out of 311074 3 elemcount 561 out of 712 5 elemcount 1 out of 10

}</lang> Output

2  2^1  3^0  5^0  0^0
3  2^0  3^1  5^0  0^0
4  2^2  3^0  5^0  0^0
5  2^0  3^0  5^1  0^0
6  2^1  3^1  5^0  0^0
8  2^3  3^0  5^0  0^0
9  2^0  3^2  5^0  0^0
10  2^1  3^0  5^1  0^0
12  2^2  3^1  5^0  0^0
15  2^0  3^1  5^1  0^0
16  2^4  3^0  5^0  0^0
18  2^1  3^2  5^0  0^0
20  2^2  3^0  5^1  0^0
24  2^3  3^1  5^0  0^0
25  2^0  3^0  5^2  0^0
27  2^0  3^3  5^0  0^0
30  2^1  3^1  5^1  0^0
32  2^5  3^0  5^0  0^0
36  2^2  3^2  5^0  0^0
40  2^3  3^0  5^1  0^0

2125764000  2^5  3^12  5^3  0^0

00:00:00.078
max Count 1000000 = 1E6
ln   192.7618989  2^55  3^47  5^64  0^0
2 elemcount   10725 out of  12139
3 elemcount     121 out of    142
5 elemcount       1 out of     10
...
00:00:01.721
max Count 10000000 = 1E7
  417.2530468166  2^80  3^92  5^162  0^0
2 elemcount   49557 out of  61448
3 elemcount     260 out of    317
5 elemcount       1 out of     10
Windows Calc
1,624410506383043182323921531176e+181

00:00:37.316
max Count 100000000= 1E8
  900.9063136125  2^2  3^454  5^249  0^0
2 elemcount  230300 out of 311074
3 elemcount     561 out of    712
5 elemcount       1 out of     10

Perl

<lang perl>use List::Util 'min';

  1. If you want the large output, uncomment either the one line
  2. marked (1) or the two lines marked (2)
  3. use Math::GMP qw/:constant/; # (1) uncomment this to use Math::GMP
  4. use Math::GMPz; # (2) uncomment this plus later line for Math::GMPz

sub ham_gen { my @s = ([1], [1], [1]); my @m = (2, 3, 5); #@m = map { Math::GMPz->new($_) } @m; # (2) uncomment for Math::GMPz

return sub { my $n = min($s[0][0], $s[1][0], $s[2][0]); for (0 .. 2) { shift @{$s[$_]} if $s[$_][0] == $n; push @{$s[$_]}, $n * $m[$_] }

return $n } }

my ($h, $i) = ham_gen;

++$i, print $h->(), " " until $i > 20; print "...\n";

++$i, $h->() until $i == 1690; print ++$i, "-th: ", $h->(), "\n";

  1. You will need to pick one of the bigint choices
  2. ++$i, $h->() until $i == 999999;
  3. print ++$i, "-th: ", $h->(), "\n";

</lang>

Output:
1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36 40 ...
1691-th: 2125764000
1000000-th: 519312780448388736089589843750000000000000000000000000000000000000000000000000000000

The core module bigint (Math::BigInt) is very slow, even with the GMP backend. There are some common alternatives. Math::GMP is handy and takes about 15 seconds. Math::GMPz takes slightly more work but finishes in about 5 seconds.

Perl 6

Works with: Rakudo version 2012.01

The limit scaling is not required, but it cuts down on a bunch of unnecessary calculation. <lang perl6>my $limit = 32;

sub powers_of ($radix) { 1, [\*] $radix xx * }

my @hammings =

 (   powers_of(2)[^ $limit ]       X*
   ( powers_of(3)[^($limit * 2/3)] X* 
     powers_of(5)[^($limit * 1/2)]
   )
 ).sort;

say ~@hammings[^20]; say @hammings[1690]; # zero indexed</lang>

Output:
1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36
2125764000

PicoLisp

<lang PicoLisp>(de hamming (N)

  (let (L (1)  H)
     (do N
        (for (X L X (cadr X))      # Find smallest result
           (setq H (car X)) )
        (idx 'L H NIL)             # Remove it
        (for I (2 3 5)             # Generate next results
           (idx 'L (* I H) T) ) )
     H ) )

(println (make (for N 20 (link (hamming N))))) (println (hamming 1691)) (println (hamming 1000000))</lang>

Output:
(1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36)
2125764000
519312780448388736089589843750000000000000000000000000000000000000000000000000000000

PL/I

<lang PL/I>(subscriptrange): Hamming: procedure options (main); /* 14 November 2013 */

  declare (H(3000), t) fixed (15);
  declare (i, j, k, m, n) fixed binary;
  declare swaps bit (1);
  on underflow ;
  m = 0; n = 12;
  do k = 0 to n;
     do j = 0 to n;
        do i = 0 to n;
           m = m + 1;
           H(m) = 2**i * 3**j * 5**k;
        end;
     end;
  end;
  /* sort */
  swaps = '1'b;
  do while (swaps); /* Cocktail-shaker sort is adequate, because values are largely sorted */
     swaps = '0'b;
     do i = 1 to m-1, i-1 to 1 by -1;
        if H(i) > H(i+1) then /* swap */
           do; t = H(i); H(i) = H(i+1); H(i+1) = t; swaps = '1'b; end;
     end;
  end;
  do i = 1 to m;
     put skip data (H(i));
  end;
  put skip data (H(1653));

end Hamming;</lang> Results:

H(1)=                 1;
H(2)=                 2;
H(3)=                 3;
H(4)=                 4;
H(5)=                 5;
H(6)=                 6;
H(7)=                 8;
H(8)=                 9;
H(9)=                10;
H(10)=                12;
H(11)=                15;
H(12)=                16;
H(13)=                18;
H(14)=                20;
H(15)=                24;
H(16)=                25;
H(17)=                27;
H(18)=                30;
H(19)=                32;
H(20)=                36;

Prolog

Generator idiom

<lang Prolog>%% collect N elements produced by a generator in a row

take( 0, Next, Z-Z, Next). take( N, Next, [A|B]-Z, NZ):- N>0, !, next(Next,A,Next1),

 N1 is N-1,
 take(N1,Next1,B-Z,NZ).

%% a generator provides specific {next} implementation

next( hamm( A2,B,C3,D,E5,F,[H|G] ), H, hamm(X,U,Y,V,Z,W,G) ):-

 H is min(A2, min(C3,E5)),
 (   A2 =:= H -> B=[N2|U],X is N2*2 ; (X,U)=(A2,B) ),
 (   C3 =:= H -> D=[N3|V],Y is N3*3 ; (Y,V)=(C3,D) ),
 (   E5 =:= H -> F=[N5|W],Z is N5*5 ; (Z,W)=(E5,F) ).

mkHamm( hamm(1,X,1,X,1,X,X) ).  % Hamming numbers generator init state

main(N) :-

   mkHamm(G),take(20,G,A-[],_),           write(A), nl, 
   take(1691-1,G,_,G2),take(2,G2,B-[],_),     write(B), nl,  
   take(  N  -1,G,_,G3),take(2,G3,[C1|_]-_,_),   write(C1), nl.</lang>

SWI Prolog 6.2.6 produces (in about 7 ideone seconds):

 ?- time( main(1000000) ).
 [1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,25,27,30,32,36]
 [2125764000,2147483648]
 519312780448388736089589843750000000000000000000000000000000000000000000000000000000
 % 10,017,142 inferences

Laziness flavor

Works with SWI-Prolog. Laziness is simulate with freeze/2 and ground/2.
Took inspiration from this code : http://chr.informatik.uni-ulm.de/~webchr (click on hamming.pl: Solves Hamming Problem). <lang Prolog>hamming(N) :-

    % to stop cleanly
    nb_setval(go, 1),
    % display list
    (	 N = 20 -> watch_20(20, L); watch(1,N,L)),
    % go
    L=[1|L235],
    multlist(L,2,L2),
    multlist(L,3,L3),
    multlist(L,5,L5),
    merge_(L2,L3,L23),
    merge_(L5,L23,L235).


%% multlist(L,N,LN) %% multiply each element of list L with N, resulting in list LN %% here only do multiplication for 1st element, then use multlist recursively multlist([X|L],N,XLN) :- % the trick to stop nb_getval(go, 1) ->

% laziness flavor when(ground(X), ( XN is X*N, XLN=[XN|LN], multlist(L,N,LN)));

true.

merge_([X|In1],[Y|In2],XYOut) :- % the trick to stop nb_getval(go, 1) ->

% laziness flavor ( X < Y -> XYOut = [X|Out], In11 = In1, In12 = [Y|In2] ; X = Y -> XYOut = [X|Out], In11 = In1, In12 = In2 ; XYOut = [Y|Out], In11 = [X | In1], In12 = In2), freeze(In11,freeze(In12, merge_(In11,In12,Out)));

true.

%% display nth element watch(Max, Max, [X|_]) :- % laziness flavor when(ground(X), (format('~w~n', [X]),

 % the trick to stop nb_linkval(go, 0))).


watch(N, Max, [_X|L]):- N1 is N + 1, watch(N1, Max, L).


%% display nth element watch_20(1, [X|_]) :- % laziness flavor when(ground(X), (format('~w~n', [X]),

 % the trick to stop nb_linkval(go, 0))).


watch_20(N, [X|L]):- % laziness flavor when(ground(X), (format('~w ', [X]), N1 is N - 1, watch_20(N1, L))).</lang>

Output:
?- hamming(20).
1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36
true .

?- hamming(1691).
2125764000
true .

?- hamming(1000000).
519312780448388736089589843750000000000000000000000000000000000000000000000000000000
true .

Python

Version based on example from Dr. Dobb's CodeTalk

<lang python>from itertools import islice

def hamming2():

   \
   This version is based on a snippet from:
       http://dobbscodetalk.com/index.php?option=com_content&task=view&id=913&Itemid=85
       When expressed in some imaginary pseudo-C with automatic
       unlimited storage allocation and BIGNUM arithmetics, it can be
       expressed as:
           hamming = h where
             array h;
             n=0; h[0]=1; i=0; j=0; k=0;
             x2=2*h[ i ]; x3=3*h[j]; x5=5*h[k];
             repeat:
               h[++n] = min(x2,x3,x5);
               if (x2==h[n]) { x2=2*h[++i]; }
               if (x3==h[n]) { x3=3*h[++j]; }
               if (x5==h[n]) { x5=5*h[++k]; } 
   
   h = 1
   _h=[h]    # memoized
   multipliers  = (2, 3, 5)
   multindeces  = [0 for i in multipliers] # index into _h for multipliers
   multvalues   = [x * _h[i] for x,i in zip(multipliers, multindeces)]
   yield h
   while True:
       h = min(multvalues)
       _h.append(h)
       for (n,(v,x,i)) in enumerate(zip(multvalues, multipliers, multindeces)):
           if v == h:
               i += 1
               multindeces[n] = i
               multvalues[n]  = x * _h[i]
       # cap the memoization
       mini = min(multindeces)
       if mini >= 1000:
           del _h[:mini]
           multindeces = [i - mini for i in multindeces]
       #
       yield h</lang>
Output:
>>> list(islice(hamming2(), 20))
[1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36]
>>> list(islice(hamming2(), 1690, 1691))
[2125764000]
>>> list(islice(hamming2(), 999999, 1000000))
[519312780448388736089589843750000000000000000000000000000000000000000000000000000000]

Another implementation of same approach

This version uses a lot of memory, it doesn't try to limit memory usage. <lang python>import psyco

def hamming(limit):

   h = [1] * limit
   x2, x3, x5 = 2, 3, 5
   i = j = k = 0
   for n in xrange(1, limit):
       h[n] = min(x2, x3, x5)
       if x2 == h[n]:
           i += 1
           x2 = 2 * h[i]
       if x3 == h[n]:
           j += 1
           x3 = 3 * h[j]
       if x5 == h[n]:
           k += 1
           x5 = 5 * h[k]
   return h[-1]

psyco.bind(hamming) print [hamming(i) for i in xrange(1, 21)] print hamming(1691) print hamming(1000000)</lang>

"Cyclical Iterators"

The original author is Raymond Hettinger and the code was first published here under the MIT license. Uses iterators dubbed "cyclical" in a sense that they are referring back (explicitly, with p2, p3, p5 iterators) to the previously produced values, same as the above versions (through indecies into shared storage) and the classic Haskell version (implicitly timed by lazy evaluation).

Memory is efficiently maintained automatically by the tee function for each of the three generator expressions, i.e. only that much is maintained as needed to produce the next value (although it looks like the storage is not shared so three copies are maintained implicitly there). <lang python>from itertools import tee, chain, groupby, islice from heapq import merge

def raymonds_hamming():

   # Generate "5-smooth" numbers, also called "Hamming numbers"
   # or "Regular numbers".  See: http://en.wikipedia.org/wiki/Regular_number
   # Finds solutions to 2**i * 3**j * 5**k  for some integers i, j, and k.
   def deferred_output():
       for i in output:
           yield i
   result, p2, p3, p5 = tee(deferred_output(), 4)
   m2 = (2*x for x in p2)                          # multiples of 2
   m3 = (3*x for x in p3)                          # multiples of 3
   m5 = (5*x for x in p5)                          # multiples of 5
   merged = merge(m2, m3, m5)
   combined = chain([1], merged)                   # prepend a starting point
   output = (k for k,g in groupby(combined))       # eliminate duplicates
   return result

print list(islice(raymonds_hamming(), 20)) print islice(raymonds_hamming(), 1689, 1690).next() print islice(raymonds_hamming(), 999999, 1000000).next()</lang> Results are the same as before.

Non-sharing recursive generator

Another formulation along the same lines, but greatly simplified, found here. Lacks data sharing, i.e. calls self recursively thus creating a separate copy of the data stream fed to the tee() call, again and again, instead of using its own output. This gravely impacts the efficiency. Not to be used.

<lang python>from heapq import merge from itertools import tee

def hamming_numbers():

   last = 1
   yield last
   a,b,c = tee(hamming_numbers(), 3)
   for n in merge((2*i for i in a), (3*i for i in b), (5*i for i in c)):
       if n != last:
           yield n
           last = n</lang>

Cyclic generator method #2.

Cyclic generator method #2. Considerably faster due to early elimination (before merge) of duplicates. Currently the faster Python version. Direct copy of Haskell code. <lang python>from itertools import islice, chain, tee

def merge(r, s):

   # This is faster than heapq.merge.
   rr = r.next()
   ss = s.next()
   while True:
       if rr < ss:
           yield rr
           rr = r.next()
       else:
           yield ss
           ss = s.next()

def p(n):

   def gen():
       x = n
       while True:
           yield x
           x *= n
   return gen()

def pp(n, s):

   def gen():
       for x in (merge(s, chain([n], (n * y for y in fb)))):
           yield x
   r, fb = tee(gen())
   return r

def hamming(a, b = None):

   if not b:
       b = a + 1
   seq = (chain([1], pp(5, pp(3, p(2)))))
   return list(islice(seq, a - 1, b - 1))

print hamming(1, 21) print hamming(1691)[0] print hamming(1000000)[0]</lang>

Qi

This example is incomplete. Parts 2 & 3 of task missing. Please ensure that it meets all task requirements and remove this message.
Translation of: Clojure

<lang qi>(define smerge

 [X|Xs] [Y|Ys] -> [X | (freeze (smerge (thaw Xs) [Y|Ys]))] where (< X Y)
 [X|Xs] [Y|Ys] -> [Y | (freeze (smerge [X|Xs] (thaw Ys)))] where (> X Y)
 [X|Xs] [_|Ys] -> [X | (freeze (smerge (thaw Xs) (thaw Ys)))])

(define smerge3

 Xs Ys Zs -> (smerge Xs (smerge Ys Zs)))

(define smap

 F [S|Ss] -> [(F S)|(freeze (smap F (thaw Ss)))])

(set hamming [1 | (freeze (smerge3 (smap (* 2) (value hamming))

                                  (smap (* 3) (value hamming))
                                  (smap (* 5) (value hamming))))])

(define stake

 _      0 -> []
 [S|Ss] N -> [S|(stake (thaw Ss) (1- N))])

(stake (value hamming) 20)</lang>

Output:
[1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36]

R

Recursively find the Hamming numbers below . Shown are results for tasks 1 and 2. Arbitrary precision integers are not supported natively. <lang R>hamming=function(hamms,limit) {

 tmp=hamms
 for(h in c(2,3,5)) {
   tmp=c(tmp,h*hamms)
 }
 tmp=unique(tmp[tmp<=limit])
 if(length(tmp)>length(hamms)) {
   hamms=hamming(tmp,limit)
 }
 hamms

} h <- sort(hamming(1,limit=2^31-1)) print(h[1:20]) print(h[length(h)])</lang>

Output:
[1]  1  2  3  4  5  6  8  9 10 12 15 16 18 20 24 25 27 30 32 36
[1] 2125764000

Racket

<lang racket>

  1. lang racket

(require racket/stream) (define first stream-first) (define rest stream-rest)

(define (merge s1 s2)

 (define x1 (first s1))
 (define x2 (first s2))
 (cond [(= x1 x2) (merge s1 (rest s2))]
       [(< x1 x2) (stream-cons x1 (merge (rest s1) s2))]
       [else      (stream-cons x2 (merge s1 (rest s2)))]))

(define (mult k) (λ(x) (* x k)))

(define hamming

 (stream-cons 
  1 (merge (stream-map (mult 2) hamming)
           (merge (stream-map (mult 3) hamming)
                  (stream-map (mult 5) hamming)))))

(for/list ([i 20] [x hamming]) x) (stream-ref hamming 1690) (stream-ref hamming 999999) </lang>

Output:
'(1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36)
2125764000
519312780448388736089589843750000000000000000000000000000000000000000000000000000000

Raven

Translation of: Liberty Basic

<lang raven>define hamming use $limit

   [ ] as $h
   1 $h 0 set
   2 as $x2   3 as $x3    5 as $x5
   0 as $i    0 as $j     0 as $k
   1 $limit 1 + 1 range each as $n
       $x3 $x5 min $x2 min    $h $n   set
       $h $n get   $x2 =  if
           $i  1 +   as $i
           $h $i get    2 *     as $x2
       $h $n get   $x3 =  if
           $j  1 +   as $j
           $h $j get    3 *     as $x3
       $h $n get   $x5 =  if
           $k  1 +   as $k
           $h $k get    5 *     as $x5
   $h   $limit 1 -   get

1 21 1 range each as $lim

   $lim hamming print " " print

"\n" print

"Hamming(1691) is: " print 1691 hamming print "\n" print

  1. Raven can't handle > 2^31 using integers
  2. "Hamming(1000000) is: " print 1000000 hamming print "\n" print</lang>
Output:
1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36 
Hamming(1691) is: 2125764000

REXX

concise version

This REXX program was a direct translatation from my old REXX subroutine to compute UGLY numbers.
The program computes enough Hamming numbers (just one past the current number). <lang rexx>/*REXX program computes Hamming numbers: 1──►20, #1691, one millionth.*/ numeric digits 100 /*ensure we have enough precision*/ call hamming 1, 20 /*show the first ──► twentieth #s*/ call hamming 1691 /*show the 1,691st Hamming number*/ call hamming 1000000 /*show the one millionth number.*/ exit /*stick a fork in it, we're done.*/ /*──────────────────────────────────HAMMING subroutine──────────────────*/ hamming: procedure; parse arg x,y; if y== then y=x; w=length(y)

         #2=1;     #3=1;     #5=1;     @.=0;    @.1=1
  do n=2  for y-1
  @.n = min(2*@.#2, 3*@.#3, 5*@.#5)   /*pick the minimum of three pigs.*/
  if 2*@.#2 == @.n   then #2 = #2+1   /*# already defined?  Use next #.*/
  if 3*@.#3 == @.n   then #3 = #3+1   /*"    "       "       "    "  " */
  if 5*@.#5 == @.n   then #5 = #5+1   /*"    "       "       "    "  " */
  end   /*n*/
                 do j=x  to y         /*W  is used to align the index. */
                 say 'Hamming('right(j,w)") ="  @.j   /*list 'em, Dano.*/
                 end   /*j*/

say right( 'length of last Hamming number =' length(@.y), 70); say return</lang>

Output:

when using the default input(s)

Hamming( 1) = 1
Hamming( 2) = 2
Hamming( 3) = 3
Hamming( 4) = 4
Hamming( 5) = 5
Hamming( 6) = 6
Hamming( 7) = 8
Hamming( 8) = 9
Hamming( 9) = 10
Hamming(10) = 12
Hamming(11) = 15
Hamming(12) = 16
Hamming(13) = 18
Hamming(14) = 20
Hamming(15) = 24
Hamming(16) = 25
Hamming(17) = 27
Hamming(18) = 30
Hamming(19) = 32
Hamming(20) = 36
                                     length of last Hamming number = 2

Hamming(1691) = 2125764000
                                    length of last Hamming number = 10

Hamming(1000000) = 519312780448388736089589843750000000000000000000000000000000000000000000000000000000
                                    length of last Hamming number = 84

unrolled version

This REXX version is roughly twice as fast as the first version. <lang rexx>/*REXX program computes Hamming numbers: 1──►20, #1691, one millionth.*/ numeric digits 100 /*ensure we have enough precision*/ call hamming 1, 20 /*show the first ──► twentieth #s*/ call hamming 1691 /*show the 1,691st Hamming number*/ call hamming 1000000 /*show the one millionth number.*/ exit /*stick a fork in it, we're done.*/ /*──────────────────────────────────HAMMING subroutine──────────────────*/ hamming: procedure; parse arg x,y; if y== then y=x; w=length(y)

         #2=1;     #3=1;     #5=1;     @.=0;    @.1=1
  do n=2  for y-1
  _2 = @.#2 + @.#2                    /*this is faster than   2 * @.#2 */
  _3 =    3 * @.#3
  _5 =    5 * @.#5
                    m =_2             /*assume a minimum (of the three)*/
  if _3  < m   then m =_3             /*is this less than the minimum? */
  if _5  < m   then m =_5             /* "   "    "    "   "     "     */
     @.n = m                          /*now, assign the next Hamming #.*/
  if _2 == m   then #2 = #2 + 1       /*# already defined?  Use next #.*/
  if _3 == m   then #3 = #3 + 1       /*"    "       "       "    "  " */
  if _5 == m   then #5 = #5 + 1       /*"    "       "       "    "  " */
  end   /*n*/
                 do j=x  to y         /*W  is used to align the index. */
                 say 'Hamming('right(j,w)") ="  @.j   /*list 'em, Dano.*/
                 end   /*j*/

say right( 'length of last Hamming number =' length(@.y), 70); say return</lang> output is identical to the first version.

Ruby

Translation of: Scala
Works with: Ruby version 1.9.3

<lang ruby>hamming = Enumerator.new do |yielder|

 next_ham = 1
 queues = [[ 2, []], [3, []], [5, []] ]
 
 loop do
   yielder << next_ham   # or: yielder.yield(next_ham)
   
   queues.each {|m,queue| queue << next_ham * m}
   next_ham = queues.collect{|m,queue| queue.first}.min
   queues.each {|m,queue| queue.shift if queue.first==next_ham}
 end

end</lang> And the "main" part of the task <lang ruby>start = Time.now

hamming.each.with_index(1) do |ham, idx|

 case idx
 when (1..20), 1691
   puts "#{idx} => #{ham}"
 when 1_000_000
   puts "#{idx} => #{ham}"
   break
 end

end

puts "elapsed: #{Time.now - start} seconds"</lang>

Output:
1 => 1
2 => 2
3 => 3
4 => 4
5 => 5
6 => 6
7 => 8
8 => 9
9 => 10
10 => 12
11 => 15
12 => 16
13 => 18
14 => 20
15 => 24
16 => 25
17 => 27
18 => 30
19 => 32
20 => 36
1691 => 2125764000
[1000000, 519312780448388736089589843750000000000000000000000000000000000000000000000000000000]
elapsed: 6.522811 seconds

Run BASIC

<lang runbasic> dim h(1000000) for i =1 to 20

   print hamming(i);" ";

next i

print print "Hamming List First(1691) =";chr$(9);hamming(1691) print "Hamming List Last(1000000) =";chr$(9);hamming(1000000)

end

function hamming(limit)

   h(0) =1
   x2 = 2: x3 = 3: x5 =5
   i  = 0: j  = 0: k  =0
   for n =1 to limit
       h(n)  = min(x2, min(x3, x5))
       if x2 = h(n) then i = i +1: x2 =2 *h(i)
       if x3 = h(n) then j = j +1: x3 =3 *h(j)
       if x5 = h(n) then k = k +1: x5 =5 *h(k)
   next n
   hamming = h(limit -1)

end function</lang>

1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36 
Hamming List First(1691)   =	2125764000
Hamming List Last(1000000) =	519312780448388736089589843750000000000000000000000000000000000000000000000000000000

Scala

<lang scala>class Hamming extends Iterator[BigInt] {

 import scala.collection.mutable.Queue
 val qs = Seq.fill(3)(new Queue[BigInt])
 def enqueue(n: BigInt) = qs zip Seq(2, 3, 5) foreach { case (q, m) => q enqueue n * m }
 def next = {
   val n = qs map (_.head) min;
   qs foreach { q => if (q.head == n) q.dequeue }
   enqueue(n)
   n
 }
 def hasNext = true
 qs foreach (_ enqueue 1)

}</lang> However, the usage of closures adds a significant amount of time. The code below, though a bit uglier because of the repetitions, is twice as fast: <lang scala>class Hamming extends Iterator[BigInt] {

 import scala.collection.mutable.Queue
 val q2 = new Queue[BigInt]
 val q3 = new Queue[BigInt]
 val q5 = new Queue[BigInt]
 def enqueue(n: BigInt) = {
   q2 enqueue n * 2
   q3 enqueue n * 3
   q5 enqueue n * 5
 }
 def next = {
   val n = q2.head min q3.head min q5.head
   if (q2.head == n) q2.dequeue
   if (q3.head == n) q3.dequeue
   if (q5.head == n) q5.dequeue
   enqueue(n)
   n
 }
 def hasNext = true
 List(q2, q3, q5) foreach (_ enqueue 1)

}</lang> Usage:

scala> new Hamming take 20 toList
res87: List[BigInt] = List(1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36)

scala> new Hamming drop 1690 next
res88: BigInt = 2125764000

scala> new Hamming drop 999999 next
res89: BigInt = 519312780448388736089589843750000000000000000000000000000000000000000000000000000000

There's also a fairly mechanical translation from Haskell using purely functional lazy streams

Translation of: Haskell

<lang scala>val hamming : Stream[BigInt] = {

  def merge(inx : Stream[BigInt], iny : Stream[BigInt]) : Stream[BigInt] = {
     if (inx.head < iny.head) inx.head #:: merge(inx.tail, iny) else 
     if (iny.head < inx.head) iny.head #:: merge(inx, iny.tail) else
     merge(inx, iny.tail)
  }
  1 #:: merge(hamming map (_ * 2), merge(hamming map (_ * 3), hamming map (_ * 5)))

}</lang> Use of "force" ensures that the stream is computed before being printed, otherwise it would just be left suspended and you'd see "Stream(1, ?)"

scala> (hamming take 20).force
res0: scala.collection.immutable.Stream[BigInt] = Stream(1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36)

To get the nth code find the n-1th element because indexes are 0 based

scala> hamming(1690)
res1: BigInt = 2125764000

To calculate the 1000000th code I had to increase the JVM heap from the default

scala> hamming(999999)
res2: BigInt = 519312780448388736089589843750000000000000000000000000000000000000000000000000000000

Scheme

<lang scheme>(define-syntax lons

 (syntax-rules ()
   ((_ lar ldr) (delay (cons lar (delay ldr))))))

(define (lar lons)

 (car (force lons)))

(define (ldr lons)

 (force (cdr (force lons))))

(define (lap proc . llists)

 (lons (apply proc (map lar llists)) (apply lap proc (map ldr llists))))

(define (take n llist)

 (if (zero? n)
     (list)
     (cons (lar llist) (take (- n 1) (ldr llist)))))

(define (llist-ref n llist)

 (if (= n 1)
     (lar llist)
     (llist-ref (- n 1) (ldr llist))))

(define (merge llist-1 . llists)

 (define (merge-2 llist-1 llist-2)
   (cond ((null? llist-1) llist-2)
         ((null? llist-2) llist-1)
         ((< (lar llist-1) (lar llist-2))
          (lons (lar llist-1) (merge-2 (ldr llist-1) llist-2)))
         ((> (lar llist-1) (lar llist-2))
          (lons (lar llist-2) (merge-2 llist-1 (ldr llist-2))))
         (else (lons (lar llist-1) (merge-2 (ldr llist-1) (ldr llist-2))))))
 (if (null? llists)
     llist-1
     (apply merge (cons (merge-2 llist-1 (car llists)) (cdr llists)))))

(define hamming

 (lons 1
       (merge (lap (lambda (x) (* x 2)) hamming)
              (lap (lambda (x) (* x 3)) hamming)
              (lap (lambda (x) (* x 5)) hamming))))

(display (take 20 hamming)) (newline) (display (llist-ref 1691 hamming)) (newline) (display (llist-ref 1000000 hamming)) (newline)</lang>

Output:
(1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36)
2125764000
out of memory

Seed7

<lang seed7>$ include "seed7_05.s7i";

 include "bigint.s7i";

const func bigInteger: min (in bigInteger: a, in bigInteger: b, in bigInteger: c) is func

 result
   var bigInteger: min is 0_;
 begin
   if a < b then
     min := a;
   else
     min := b;
   end if;
   if c < min then
     min := c;
   end if;
 end func;

const func bigInteger: hamming (in integer: n) is func

 result
   var bigInteger: hammingNum is 1_;
 local
   var array bigInteger: hammingNums is 0 times 0_;
   var integer: index is 0;
   var bigInteger: x2 is 2_;
   var bigInteger: x3 is 3_;
   var bigInteger: x5 is 5_;
   var integer: i is 1;
   var integer: j is 1;
   var integer: k is 1;
 begin
   hammingNums := n times 1_;
   for index range 2 to n do
     hammingNum := min(x2, x3, x5);
     hammingNums[index] := hammingNum;
     if x2 = hammingNum then
       incr(i);
       x2 := 2_ * hammingNums[i];
     end if;
     if x3 = hammingNum then
       incr(j);
       x3 := 3_ * hammingNums[j];
     end if;
     if x5 = hammingNum then
       incr(k);
       x5 := 5_ * hammingNums[k];
     end if;
   end for;
 end func;

const proc: main is func

 local
   var integer: n is 0;
 begin
   for n range 1 to 20 do
     write(hamming(n) <& " ");
   end for;
   writeln;
   writeln(hamming(1691));
   writeln(hamming(1000000));
 end func;</lang>
Output:
1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36 
2125764000
519312780448388736089589843750000000000000000000000000000000000000000000000000000000

Smalltalk

Works with: GNU Smalltalk

This is a straightforward implementation of the pseudocode snippet found in the Python section. Smalltalk supports arbitrary-precision integers, but the implementation is too slow to try it with 1 million. <lang smalltalk>Object subclass: Hammer [

 Hammer class >> hammingNumbers: howMany [
   |h i j k x2 x3 x5| 
     h := OrderedCollection new.
     i := 0. j := 0. k := 0.
     h add: 1.
     x2 := 2. x3 := 2. x5 := 5.
     [ ( h size) < howMany ] whileTrue: [
       |m|
       m := { x2. x3. x5 } sort first.
       (( h indexOf: m ) = 0) ifTrue: [ h add: m ].
       ( x2 = (h last) ) ifTrue: [ i := i + 1. x2 := 2 * (h at: i) ].
       ( x3 = (h last) ) ifTrue: [ j := j + 1. x3 := 3 * (h at: j) ].
       ( x5 = (h last) ) ifTrue: [ k := k + 1. x5 := 5 * (h at: k) ]. 
     ].
     ^ h sort
 ]

].

(Hammer hammingNumbers: 20) displayNl. (Hammer hammingNumbers: 1690) last displayNl.</lang>

Tcl

This uses coroutines to simplify the description of what's going on.

Works with: Tcl version 8.6

<lang tcl>package require Tcl 8.6

  1. Simple helper: Tcl-style list "map"

proc map {varName list script} {

   set l {}
   upvar 1 $varName v
   foreach v $list {lappend l [uplevel 1 $script]}
   return $l

}

  1. The core of a coroutine to compute the product of a hamming sequence.
  2. Tricky bit: we don't automatically advance to the next value, and instead
  3. wait to be told that the value has been consumed (i.e., is the result of
  4. the [yield] operation).

proc ham {key multiplier} {

   global hammingCache
   set i 0
   yield [info coroutine]
   # Cannot use [foreach]; that would take a snapshot of the list in
   # the hammingCache variable, so missing updates.
   while 1 {

set n [expr {[lindex $hammingCache($key) $i] * $multiplier}] # If the number selected was ours, we advance to compute the next if {[yield $n] == $n} { incr i }

   }

}

  1. This coroutine computes the hamming sequence given a list of multipliers.
  2. It uses the [ham] helper from above to generate indivdual multiplied
  3. sequences. The key into the cache is the list of multipliers.
  4. Note that it is advisable for the values to be all co-prime wrt each other.

proc hammingCore args {

   global hammingCache
   set hammingCache($args) 1
   set hammers [map x $args {coroutine ham$x,$args ham $args $x}]
   yield
   while 1 {

set n [lindex $hammingCache($args) [incr i]-1] lappend hammingCache($args) \ [tcl::mathfunc::min {*}[map h $hammers {$h $n}]] yield $n

   }

}

  1. Assemble the pieces so as to compute the classic hamming sequence.

coroutine hamming hammingCore 2 3 5

  1. Print the first 20 values of the sequence

for {set i 1} {$i <= 20} {incr i} {

   puts [format "hamming\[%d\] = %d" $i [hamming]]

} for {} {$i <= 1690} {incr i} {set h [hamming]} puts "hamming{1690} = $h" for {} {$i <= 1000000} {incr i} {set h [hamming]} puts "hamming{1000000} = $h"</lang>

Output:
hamming{1} = 1
hamming{2} = 2
hamming{3} = 3
hamming{4} = 4
hamming{5} = 5
hamming{6} = 6
hamming{7} = 8
hamming{8} = 9
hamming{9} = 10
hamming{10} = 12
hamming{11} = 15
hamming{12} = 16
hamming{13} = 18
hamming{14} = 20
hamming{15} = 24
hamming{16} = 25
hamming{17} = 27
hamming{18} = 30
hamming{19} = 32
hamming{20} = 36
hamming{1690} = 2123366400
hamming{1000000} = 519312780448388736089589843750000000000000000000000000000000000000000000000000000000

A faster version can be built that also works on Tcl 8.5 (or earlier, if only small hamming numbers are being computed): <lang tcl>variable hamming 1 hi2 0 hi3 0 hi5 0 proc hamming {n} {

   global hamming hi2 hi3 hi5
   set h2 [expr {[lindex $hamming $hi2]*2}]
   set h3 [expr {[lindex $hamming $hi3]*3}]
   set h5 [expr {[lindex $hamming $hi5]*5}]
   while {[llength $hamming] < $n} {

lappend hamming [set h [expr { $h2<$h3  ? $h2<$h5 ? $h2 : $h5  : $h3<$h5 ? $h3 : $h5 }]] if {$h==$h2} { set h2 [expr {[lindex $hamming [incr hi2]]*2}] } if {$h==$h3} { set h3 [expr {[lindex $hamming [incr hi3]]*3}] } if {$h==$h5} { set h5 [expr {[lindex $hamming [incr hi5]]*5}] }

   }
   return [lindex $hamming [expr {$n - 1}]]

}

  1. Print the first 20 values of the sequence

for {set i 1} {$i <= 20} {incr i} {

   puts [format "hamming\[%d\] = %d" $i [hamming $i]]

} puts "hamming{1690} = [hamming 1690]" puts "hamming{1691} = [hamming 1691]" puts "hamming{1692} = [hamming 1692]" puts "hamming{1693} = [hamming 1693]" puts "hamming{1000000} = [hamming 1000000]"</lang>

uBasic/4tH

uBasic's single array does not have the required size to calculate the 1691st number, let alone the millionth. <lang>For H = 1 To 20

 Print "H("; H; ") = "; Func (_FnHamming(H))

Next

End

_FnHamming Param (1)

 @(0) = 1
 X = 2 : Y = 3 : Z = 5
 I = 0 : J = 0 : K = 0
 For N = 1 To a@ - 1
   M = X
   If M > Y Then M = Y
   If M > Z Then M = Z
   @(N) = M
   If M = X Then I = I + 1 : X = 2 * @(I)
   If M = Y Then J = J + 1 : Y = 3 * @(J)
   If M = Z Then K = K + 1 : Z = 5 * @(K)
 Next

Return (@(a@-1))</lang>

Output:
H(1) = 1
H(2) = 2
H(3) = 3
H(4) = 4
H(5) = 5
H(6) = 6
H(7) = 8
H(8) = 9
H(9) = 10
H(10) = 12
H(11) = 15
H(12) = 16
H(13) = 18
H(14) = 20
H(15) = 24
H(16) = 25
H(17) = 27
H(18) = 30
H(19) = 32
H(20) = 36

0 OK, 0:379

UNIX Shell

Works with: ksh93

Large numbers are not supported. <lang bash>typeset -a hamming=(1) function nextHamming {

   typeset -Sa q2 q3 q5
   integer h=${hamming[${#hamming[@]}-1]}
   q2+=( $(( h*2 )) )
   q3+=( $(( h*3 )) )
   q5+=( $(( h*5 )) )
   h=$( min3 ${q2[0]} ${q3[0]} ${q5[0]} )
   (( ${q2[0]} == h )) && ashift q2 >/dev/null
   (( ${q3[0]} == h )) && ashift q3 >/dev/null
   (( ${q5[0]} == h )) && ashift q5 >/dev/null
   hamming+=($h)

}

function ashift {

   nameref ary=$1
   print -- "${ary[0]}"
   ary=( "${ary[@]:1}" )

}

function min3 {

   if (( $1 < $2 )); then
       (( $1 < $3 )) && print -- $1 || print -- $3
   else
       (( $2 < $3 )) && print -- $2 || print -- $3
   fi

}

for ((i=1; i<=20; i++)); do

   nextHamming
   printf "%d\t%d\n" $i ${hamming[i-1]}

done for ((; i<=1690; i++)); do nextHamming; done nextHamming printf "%d\t%d\n" $i ${hamming[i-1]} print "elapsed: $SECONDS"</lang>

Output:
1	1
2	2
3	3
4	4
5	5
6	6
7	8
8	9
9	10
10	12
11	15
12	16
13	18
14	20
15	24
16	25
17	27
18	30
19	32
20	36
1690	2125764000
elapsed: 0.568

Ursala

Smooth is defined as a second order function taking a list of primes and returning a function that takes a natural number to the -th smooth number with respect to them. An elegant but inefficient formulation based on the J solution is the following. <lang Ursala>#import std

  1. import nat

smooth"p" "n" = ~&z take/"n" nleq-< (rep(length "n") ^Ts/~& product*K0/"p") <1></lang> This test program <lang Ursala>main = smooth<2,3,5>* nrange(1,20)</lang> yields this list of the first 20 Hamming numbers.

<1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,25,27,30,32,36>

Although all calculations are performed using unlimited precision, the version above is impractical for large numbers. A more hardcore approach is the following. <lang Ursala>#import std

  1. import nat

smooth"p" "n" =

~&H\"p" *-<1>; @NiXS ~&/(1,1); ~&ll~="n"->lr -+

  ^\~&rlPrrn2rrm2Zlrrmz3EZYrrm2lNCTrrm2QAX*rhlPNhrnmtPA2XtCD ~&lrPrhl2E?/~&l ^|/successor@l ~&hl,
  ^|/~& nleq-<&l+ * ^\~&r ~&l|| product@rnmhPX+-
  1. cast %nL

main = smooth<2,3,5>* nrange(1,20)--<1691,1000000></lang>

Output:

The great majority of time is spent calculating the millionth Hamming number.

<
   1,
   2,
   3,
   4,
   5,
   6,
   8,
   9,
   10,
   12,
   15,
   16,
   18,
   20,
   24,
   25,
   27,
   30,
   32,
   36,
   2125764000,
   519312780448388736089589843750000000000000000000000000000000000000000000000000000000>

zkl

<lang zkl>var BN=Import("zklBigNum"); // only needed for large N fcn hamming(N){

  h:=List.createLong(N+1); (0).pump(N+1,h.write,Void); // fill list with stuff
  h[0]=1;
  1. if 1 // regular (64 bit) ints
  x2:=2; x3:=3; x5:=5; i:=j:=k:=0;
  1. else // big ints
  x2:=BN(2); x3:=BN(3); x5:=BN(5); i:=j:=k:=0;
  1. endif
  foreach n in ([1..N]){
     z:=(x2<x3) and x2 or x3; z=(z<x5) and z or x5; h[n]=z;
     if (h[n] == x2) { x2 = h[i+=1]*2 }
     if (h[n] == x3) { x3 = h[j+=1]*3 }
     if (h[n] == x5) { x5 = h[k+=1]*5 }
  }
  return(h[N-1])

} [1..20].apply(hamming).println(); hamming(1691).println();</lang>

Output:
L(1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,25,27,30,32,36)
2125764000

While the other algorithms save [lots of] space, run time still sucks when n > 100,000 so memory usage might as well too. Change the #if 0 to 1 and

Output:
hamming(0d1_000_000).println();
519312780448388736089589843750000000000000000000000000000000000000000000000000000000

Direct calculation through triples enumeration

OK, I was wrong, calculating the nth Hamming number can be fast and efficient.

Translation of: Haskell

as direct a translation as I can, except using a nested for loop instead of list comprehension (which makes it easier to keep the count).

<lang zkl>

  1. -- directly find n-th Hamming number, in ~ O(n^{2/3}) time
  2. -- by Will Ness, based on "top band" idea by Louis Klauder, from DDJ discussion
  3. -- http://drdobbs.com/blogs/architecture-and-design/228700538

var BN=Import("zklBigNum"); var lg3 = (3.0).log()/(2.0).log(), lg5 = (5.0).log()/(2.0).log(); fcn logval(i,j,k){ lg5*k + lg3*j + i } fcn trival(i,j,k){ BN(2).pow(i) * BN(3).pow(j) * BN(5).pow(k) } fcn estval(n){ (6.0*lg3*lg5*n).pow(1.0/3) } #-- estimated logval, base 2 fcn rngval(n){

  if(n > 500000) return(2.4496 , 0.0076);	#-- empirical estimation 
  if(n > 50000)  return(2.4424 , 0.0146);	#--   correction, base 2
  if(n > 500)	  return(2.3948 , 0.0723);	#--     (dist,width)
  if(n > 1)	  return(2.2506 , 0.2887);	#-- around (log $ sqrt 30), 

return(2.2506 , 0.5771); #-- says WP }

fcn nthHam(n){ // -> (Double, (Int, Int, Int)) #-- n: 1-based: 1,2,3...

 d,w := rngval(n);				#-- correction dist, width
 hi  := estval(n.toFloat()) - d;		#--   hi > logval > hi-w
 c,b := band(hi,w);				#-- total count, the band
 s   := b.sort(fcn(a,b){ a[0]>b[0] });		#-- sorted decreasing, result
 m   := c - n;					#-- m 0-based from top
 nb  := b.len();				#-- |band|
 res := s[m];					#-- result
 if(w >= 1) throw(Exception.Generic("Breach of contract: (w < 1):  " + w));
 if(m <  0) throw(Exception.Generic("Not enough triples generated: " +c+n));
 if(m >= nb)throw(Exception.Generic("Generated band is too narrow: " +m+nb));
 return(res);

}

fcn band(hi,w){ //--> #-- total count, the band

  b := Sink(List); cnt := 0;
  foreach k in ([0 .. (hi/lg5).floor()]){        p := lg5*k;
     foreach j in ([0 .. ((hi-p)/lg3).floor()]){ q := lg3*j + p;
        i,frac := (hi-q).modf(); r := hi-frac;		#-- r = i + q

cnt+=(i+1); #-- total count if(frac<w) b.write(T(r,T(i,j,k))); #-- store it, if inside band

     }
  }
  return(cnt,b.close());

}</lang> <lang>fcn printHam(n){

  r,t:=nthHam(n); i,j,k:=t; h:=trival(i,j,k);
  println("Hamming(%,d)-->2^%d * 3^%d * 5^%d-->\n%s".fmt(n,i,j,k,h));

}

printHam(1691); //(5,12,3), 10 digits printHam(0d1_000_000); //(55,47,64), 84 digits printHam(0d10_000_000); //(80,92,162), 182 digits, 80 zeros at end printHam(0d1_000_000_000); //(1334,335,404), 845 digits</lang>

Output:
Hamming(1,691)-->2^5 * 3^12 * 5^3-->
2125764000
Hamming(1,000,000)-->2^55 * 3^47 * 5^64-->
519312780448388736089589843750000000000000000000000000000000000000000000000000000000
Hamming(10,000,000)-->2^80 * 3^92 * 5^162-->
162441050638304318232392153117595750351085388205966408633356724833252116013682098127901554107666015625 <80 zeros>
Hamming(1,000,000,000)-->2^1334 * 3^335 * 5^404-->
621607575556524486163081633287207200394705651908965270659163240.......