Factor-perfect numbers: Difference between revisions

Content added Content deleted
(new task and julia example)
 
m (spacing)
Line 2: Line 2:
Consider the list of factors (divisors) of an integer, such as 12. The factors of 12 are [1, 2, 3, 4, 6, 12]. Consider all sorted sequences of the factors of n such that each succeeding number in such a sequnce is a multiple of its predecessor. So, for 6,
Consider the list of factors (divisors) of an integer, such as 12. The factors of 12 are [1, 2, 3, 4, 6, 12]. Consider all sorted sequences of the factors of n such that each succeeding number in such a sequnce is a multiple of its predecessor. So, for 6,
we have the factors (divisors) [1, 2, 3, 6]. The 3 unique lists of sequential multiples starting with 1 and ending with 6 that can be derived from these factors are [1, 6], [1, 2, 6], and [1, 3, 6].
we have the factors (divisors) [1, 2, 3, 6]. The 3 unique lists of sequential multiples starting with 1 and ending with 6 that can be derived from these factors are [1, 6], [1, 2, 6], and [1, 3, 6].

<br />
<br />
Another way to see these sequences is as an set of all the ordered factorizations of a number taken so that their product is that number (excluding 1 from the sequence). So, for 6, we would have [6], [2, 3], and [3, 2]. In this description of the sequences, we are looking at the numbers needed to multiply by, in order to generate the next element in the sequences previously listed in our first definition of the sequence type, as we described it in the preceding paragraph, above.
Another way to see these sequences is as an set of all the ordered factorizations of a number taken so that their product is that number (excluding 1 from the sequence). So, for 6, we would have [6], [2, 3], and [3, 2]. In this description of the sequences, we are looking at the numbers needed to multiply by, in order to generate the next element in the sequences previously listed in our first definition of the sequence type, as we described it in the preceding paragraph, above.

<br />
<br />
For example, for the factorization of 6, if the first type of sequence is [1, 6], this is generated by [6] since 1 * 6 = 6. Similarly, the first type of sequence [1, 2, 6] is generated by the second type of sequence [2, 3] because 1 * 2 = 2 and 2 * 3 = 6. Similarly, [1, 3, 6] is generated by [3, 2] because 1 * 3 = 3 and 3 * 2 = 6.
For example, for the factorization of 6, if the first type of sequence is [1, 6], this is generated by [6] since 1 * 6 = 6. Similarly, the first type of sequence [1, 2, 6] is generated by the second type of sequence [2, 3] because 1 * 2 = 2 and 2 * 3 = 6. Similarly, [1, 3, 6] is generated by [3, 2] because 1 * 3 = 3 and 3 * 2 = 6.

<br />
<br />
If we count the number of such sorted sequences of multiples, or ordered factorizations, and using that count find all integers `n` for which the count of such sequences equals `n`, we have re-created the sequence of the "factor-perfect" numbers (OEIS 163272).
If we count the number of such sorted sequences of multiples, or ordered factorizations, and using that count find all integers `n` for which the count of such sequences equals `n`, we have re-created the sequence of the "factor-perfect" numbers (OEIS 163272).

<br />
<br />
By some convention, on its OEIS page, the factor-perfect number sequence starts with 0 rather than 1. As might be expected
By some convention, on its OEIS page, the factor-perfect number sequence starts with 0 rather than 1. As might be expected