Canonicalize CIDR: Difference between revisions

From Rosetta Code
Content added Content deleted
m (Fixed typos.)
Line 401: Line 401:
var zbits = 32 - nbits # Number of bits to reset.
var zbits = 32 - nbits # Number of bits to reset.


# We process byte by byte wich avoids endianness issues.
# We process byte by byte which avoids byte order issues.
for idx in countdown(address.address_v4.high, address.address_v4.low):
for idx in countdown(address.address_v4.high, address.address_v4.low):
if zbits == 0:
if zbits == 0:
Line 446: Line 446:
quit(QuitFailure)
quit(QuitFailure)


# Canonicalize the adress and display the result.
# Canonicalize the address and display the result.
ipAddress.canonicalize(nbits)
ipAddress.canonicalize(nbits)
echo &"{address:<18} ⇢ {ipAddress}/{nbits}"</lang>
echo &"{address:<18} ⇢ {ipAddress}/{nbits}"</lang>

Revision as of 09:32, 30 October 2020

Task
Canonicalize CIDR
You are encouraged to solve this task according to the task description, using any language you may know.
Task

Implement a function or program that, given a range of IPv4 addresses in CIDR notation (dotted-decimal/network-bits), will return/output the same range in canonical form.

That is, the IP address portion of the output CIDR block must not contain any set (1) bits in the host part of the address.


Example

Given   87.70.141.1/22,   your code should output   87.70.140.0/22


Explanation

An Internet Protocol version 4 address is a 32-bit value, conventionally represented as a number in base 256 using dotted-decimal notation, where each base-256 "digit" is represented by the digit value in decimal and the digits are separated by periods. Logically, this 32-bit value represents two components: the leftmost (most-significant) bits determine the "network" portion of the address, while the rightmost (least-significant) bits determine the "host" portion. Classless Internet Domain Routing block notation indicates where the boundary between these two components is for a given address by adding a slash followed by the number of bits in the network portion.

In general, CIDR blocks stand in for the entire set of IP addresses sharing the same "network" component; it's common to see access control lists specify a single IP address using CIDR with /32 to indicate that only the one address is included. Often, the tools using this notation expect the address to be entered in canonical form, in which the "host" bits are all zeroes in the binary representation. But careless network admins may provide CIDR blocks without canonicalizing them first. This task handles the canonicalization.

The example address, 87.70.141.1, translates into 01010111010001101000110100000001 in binary notation zero-padded to 32 bits. The /22 means that the first 22 of those bits determine the match; the final 10 bits should be 0. But they instead include two 1 bits: 0100000001. So to canonicalize the address, change those 1's to 0's to yield 01010111010001101000110000000000, which in dotted-decimal is 87.70.140.0.


More examples for testing
        36.18.154.103/12    →  36.16.0.0/12
        62.62.197.11/29     →  62.62.197.8/29
        67.137.119.181/4    →  64.0.0.0/4
        161.214.74.21/24    →  161.214.74.0/24
        184.232.176.184/18  →  184.232.128.0/18



C

This solution uses only the standard library. On POSIX platforms one can use the functions inet_pton/inet_ntop to parse/format IPv4 addresses. <lang c>#include <stdbool.h>

  1. include <stdio.h>
  2. include <stdint.h>

typedef struct cidr_tag {

   uint32_t address;
   unsigned int mask_length;

} cidr_t;

// Convert a string in CIDR format to an IPv4 address and netmask, // if possible. Also performs CIDR canonicalization. bool cidr_parse(const char* str, cidr_t* cidr) {

   int a, b, c, d, m;
   if (sscanf(str, "%d.%d.%d.%d/%d", &a, &b, &c, &d, &m) != 5)
       return false;
   if (m < 1 || m > 32
       || a < 0 || a > UINT8_MAX
       || b < 0 || b > UINT8_MAX
       || c < 0 || c > UINT8_MAX
       || d < 0 || d > UINT8_MAX)
       return false;
   uint32_t mask = ~((1 << (32 - m)) - 1);
   uint32_t address = (a << 24) + (b << 16) + (c << 8) + d;
   address &= mask;
   cidr->address = address;
   cidr->mask_length = m;
   return true;

}

// Write a string in CIDR notation into the supplied buffer. void cidr_format(const cidr_t* cidr, char* str, size_t size) {

   uint32_t address = cidr->address;
   unsigned int d = address & UINT8_MAX;
   address >>= 8;
   unsigned int c = address & UINT8_MAX;
   address >>= 8;
   unsigned int b = address & UINT8_MAX;
   address >>= 8;
   unsigned int a = address & UINT8_MAX;
   snprintf(str, size, "%u.%u.%u.%u/%u", a, b, c, d,
            cidr->mask_length);

}

int main(int argc, char** argv) {

   const char* tests[] = {
       "87.70.141.1/22",
       "36.18.154.103/12",
       "62.62.197.11/29",
       "67.137.119.181/4",
       "161.214.74.21/24",
       "184.232.176.184/18"
   };
   for (int i = 0; i < sizeof(tests)/sizeof(tests[0]); ++i) {
       cidr_t cidr;
       if (cidr_parse(tests[i], &cidr)) {
           char out[32];
           cidr_format(&cidr, out, sizeof(out));
           printf("%-18s -> %s\n", tests[i], out);
       } else {
           fprintf(stderr, "%s: invalid CIDR\n", tests[i]);
       }
   }
   return 0;

}</lang>

Output:
87.70.141.1/22     -> 87.70.140.0/22
36.18.154.103/12   -> 36.16.0.0/12
62.62.197.11/29    -> 62.62.197.8/29
67.137.119.181/4   -> 64.0.0.0/4
161.214.74.21/24   -> 161.214.74.0/24
184.232.176.184/18 -> 184.232.128.0/18

C++

<lang cpp>#include <cstdint>

  1. include <iomanip>
  2. include <iostream>
  3. include <sstream>

// Class representing an IPv4 address + netmask length class ipv4_cidr { public:

   ipv4_cidr() {}
   ipv4_cidr(std::uint32_t address, unsigned int mask_length)
       : address_(address), mask_length_(mask_length) {}
   std::uint32_t address() const {
       return address_;
   }
   unsigned int mask_length() const {
       return mask_length_;
   }
   friend std::istream& operator>>(std::istream&, ipv4_cidr&);

private:

   std::uint32_t address_ = 0;
   unsigned int mask_length_ = 0;

};

// Stream extraction operator, also performs canonicalization std::istream& operator>>(std::istream& in, ipv4_cidr& cidr) {

   int a, b, c, d, m;
   char ch;
   if (!(in >> a >> ch) || a < 0 || a > UINT8_MAX || ch != '.'
       || !(in >> b >> ch) || b < 0 || b > UINT8_MAX || ch != '.'
       || !(in >> c >> ch) || c < 0 || c > UINT8_MAX || ch != '.'
       || !(in >> d >> ch) || d < 0 || d > UINT8_MAX || ch != '/'
       || !(in >> m) || m < 1 || m > 32) {
       in.setstate(std::ios_base::failbit);
       return in;
   }
   uint32_t mask = ~((1 << (32 - m)) - 1);
   uint32_t address = (a << 24) + (b << 16) + (c << 8) + d;
   address &= mask;
   cidr.address_ = address;
   cidr.mask_length_ = m;
   return in;

}

// Stream insertion operator std::ostream& operator<<(std::ostream& out, const ipv4_cidr& cidr) {

   uint32_t address = cidr.address();
   unsigned int d = address & UINT8_MAX;
   address >>= 8;
   unsigned int c = address & UINT8_MAX;
   address >>= 8;
   unsigned int b = address & UINT8_MAX;
   address >>= 8;
   unsigned int a = address & UINT8_MAX;
   out << a << '.' << b << '.' << c << '.' << d << '/'
       << cidr.mask_length();
   return out;

}

int main(int argc, char** argv) {

   const char* tests[] = {
       "87.70.141.1/22",
       "36.18.154.103/12",
       "62.62.197.11/29",
       "67.137.119.181/4",
       "161.214.74.21/24",
       "184.232.176.184/18"
   };
   for (auto test : tests) {
       std::istringstream in(test);
       ipv4_cidr cidr;
       if (in >> cidr)
           std::cout << std::setw(18) << std::left << test << " -> "
               << cidr << '\n';
       else
           std::cerr << test << ": invalid CIDR\n";
   }
   return 0;

}</lang>

Output:
87.70.141.1/22     -> 87.70.140.0/22
36.18.154.103/12   -> 36.16.0.0/12
62.62.197.11/29    -> 62.62.197.8/29
67.137.119.181/4   -> 64.0.0.0/4
161.214.74.21/24   -> 161.214.74.0/24
184.232.176.184/18 -> 184.232.128.0/18

Factor

Translation of: Ruby
Works with: Factor version 0.99 2020-07-03

<lang factor>USING: command-line formatting grouping io kernel math.parser namespaces prettyprint sequences splitting ; IN: rosetta-code.canonicalize-cidr

! canonicalize a CIDR block: make sure none of the host bits are set command-line get [ lines ] when-empty [

   ! ( CIDR-IP -- bits-in-network-part dotted-decimal )
   "/" split first2 string>number swap
   ! get IP as binary string
   "." split [ string>number "%08b" sprintf ] map "" join
   ! replace the host part with all zeros
   over cut length [ CHAR: 0 ] "" replicate-as append
   ! convert back to dotted-decimal
   8 group [ bin> number>string ] map "." join swap
   ! and output
   "%s/%d\n" printf

] each</lang>

Output:
$ canonicalize-cidr.factor 87.70.141.1/22
87.70.140.0/22

Go

Translation of: Ruby

<lang go>package main

import (

   "fmt"
   "log"
   "strconv"
   "strings"

)

func check(err error) {

   if err != nil {
       log.Fatal(err)
   }

}

// canonicalize a CIDR block: make sure none of the host bits are set func canonicalize(cidr string) string {

   // dotted-decimal / bits in network part
   split := strings.Split(cidr, "/")
   dotted := split[0]
   size, err := strconv.Atoi(split[1])
   check(err)
   // get IP as binary string
   var bin []string
   for _, n := range strings.Split(dotted, ".") {
       i, err := strconv.Atoi(n)
       check(err)
       bin = append(bin, fmt.Sprintf("%08b", i))
   }
   binary := strings.Join(bin, "")
   // replace the host part with all zeros
   binary = binary[0:size] + strings.Repeat("0", 32-size)
   // convert back to dotted-decimal
   var canon []string
   for i := 0; i < len(binary); i += 8 {
       num, err := strconv.ParseInt(binary[i:i+8], 2, 64)
       check(err)
       canon = append(canon, fmt.Sprintf("%d", num))
   }
   // and return
   return strings.Join(canon, ".") + "/" + split[1]

}

func main() {

   tests := []string{
       "87.70.141.1/22",
       "36.18.154.103/12",
       "62.62.197.11/29",
       "67.137.119.181/4",
       "161.214.74.21/24",
       "184.232.176.184/18",
   }
   for _, test := range tests {
       fmt.Printf("%-18s -> %s\n", test, canonicalize(test))
   }

}</lang>

Output:
87.70.141.1/22     -> 87.70.140.0/22
36.18.154.103/12   -> 36.16.0.0/12
62.62.197.11/29    -> 62.62.197.8/29
67.137.119.181/4   -> 64.0.0.0/4
161.214.74.21/24   -> 161.214.74.0/24
184.232.176.184/18 -> 184.232.128.0/18

JavaScript

<lang javascript>const chunk = (p, c, i) => (!(i % 8)) ? p.push([c]) && p : p[p.length - 1].push(c) && p; const intToBinStr = i => (i).toString(2).padStart(8, 0); const binStrToInt = s => parseInt(s, 2); const decStrToInt = s => parseInt(s, 10); const concat = (a, b) => a.concat(b); const replace = v => (e, i) => i < v ? e : 0; const join = s => a => a.join(s); const maybePad = arr => (v, i) => arr[i] ? arr[i] : 0;

const canonicalize = str => {

 const [a, c] = str.split('/');
 const cidr = decStrToInt(c || 32);
 const arr = a.split('.');
 return Array(4).fill(0)
     .map(maybePad(arr))
     .map(decStrToInt)
     .map(intToBinStr)
     .reduce(concat).split()
     .map(decStrToInt)
     .map(replace(cidr))
     .reduce(chunk, [])
     .map(join())
     .map(binStrToInt).join('.') + `/${cidr}`;

}

// Test output const test = s => console.log(s, '->', canonicalize(s)); [

 '87.70.141.1/22',
 '36.18.154.103/12',
 '62.62.197.11/29',
 '67.137.119.181/4',
 '161.214.74.21/24',
 '184.232.176.184/18',
 '10.207.219.251/32',
 '10.207.219.251',
 '110.200.21/4',
 '10..55/8',
 '10.../8'

].forEach(test)</lang>

Output:
87.70.141.1/22 -> 87.70.140.0/22
36.18.154.103/12 -> 36.16.0.0/12
62.62.197.11/29 -> 62.62.197.8/29
67.137.119.181/4 -> 64.0.0.0/4
161.214.74.21/24 -> 161.214.74.0/24
184.232.176.184/18 -> 184.232.128.0/18
10.207.219.251/32 -> 10.207.219.251/32
10.207.219.251 -> 10.207.219.251/32
110.200.21/4 -> 96.0.0.0/4
10..55/8 -> 10.0.0.0/8
10.../8 -> 10.0.0.0/8

Julia

Julia has a Sockets library as a builtin, which has the types IPv4 and IPv6 for single IP addresses. <lang julia>using Sockets

function canonCIDR(cidr::String)

   cidr = replace(cidr, r"\.(\.|\/)" => s".0\1") # handle ..
   cidr = replace(cidr, r"\.(\.|\/)" => s".0\1") # handle ...
   ip = split(cidr, "/")
   dig = length(ip) > 1 ? 2^(32 - parse(UInt8, ip[2])) : 1
   ip4 = IPv4(UInt64(IPv4(ip[1])) & (0xffffffff - dig + 1))
   return length(ip) == 1 ? "$ip4/32" : "$ip4/$(ip[2])"

end

println(canonCIDR("87.70.141.1/22")) println(canonCIDR("100.68.0.18/18")) println(canonCIDR("10.4.30.77/30")) println(canonCIDR("10.207.219.251/32")) println(canonCIDR("10.207.219.251")) println(canonCIDR("110.200.21/4")) println(canonCIDR("10..55/8")) println(canonCIDR("10.../8"))

</lang>

Output:
87.70.140.0/22
100.68.0.0/18
10.4.30.76/30
10.207.219.251/32
10.207.219.251/32
96.0.0.0/4
10.0.0.0/8
10.0.0.0/8

Nim

Using the IpAddress type from standard module “net”. <lang Nim>import net import strutils


proc canonicalize*(address: var IpAddress; nbits: Positive) =

 ## Canonicalize an IP address.
 var zbits = 32 - nbits    # Number of bits to reset.
 # We process byte by byte which avoids byte order issues.
 for idx in countdown(address.address_v4.high, address.address_v4.low):
   if zbits == 0:
     # No more bits to reset.
     break
   if zbits >= 8:
     # Reset the current byte and continue with the remaining bits.
     address.address_v4[idx] = 0
     dec zbits, 8
   else:
     # Use a mask to reset the bits.
     address.address_v4[idx] = address.address_v4[idx] and (0xff'u8 shl zbits)
     zbits = 0
  1. ———————————————————————————————————————————————————————————————————————————————————————————————————

when isMainModule:

 import strformat
 var ipAddress: IpAddress
 var nbits: int
 for address in ["87.70.141.1/22", "36.18.154.103/12", "62.62.197.11/29",
                 "67.137.119.181/4", "161.214.74.21/24", "184.232.176.184/18"]:
   # Parse the address.
   let parts = address.split('/')
   try:
     ipAddress = parseIpAddress(parts[0])
     if ipAddress.family == IPV6:
       raise newException(ValueError, "")
   except ValueError:
     echo "Invalid IP V4 address: ", parts[0]
     quit(QuitFailure)
   # Check the number of bits.
   try:
     nbits = parseInt(parts[1])
     if nbits notin 1..32:
       raise newException(ValueError, "")
   except ValueError:
     echo "Invalid number of bits: ", parts[1]
     quit(QuitFailure)
   # Canonicalize the address and display the result.
   ipAddress.canonicalize(nbits)
   echo &"{address:<18}  ⇢  {ipAddress}/{nbits}"</lang>
Output:
87.70.141.1/22      ⇢  87.70.140.0/22
36.18.154.103/12    ⇢  36.16.0.0/12
62.62.197.11/29     ⇢  62.62.197.8/29
67.137.119.181/4    ⇢  64.0.0.0/4
161.214.74.21/24    ⇢  161.214.74.0/24
184.232.176.184/18  ⇢  184.232.128.0/18

Perl

<lang perl>#!/usr/bin/env perl use v5.16; use Socket qw(inet_aton inet_ntoa);

  1. canonicalize a CIDR block: make sure none of the host bits are set

if (!@ARGV) {

  chomp(@ARGV = <>);

}

for (@ARGV) {

 # dotted-decimal / bits in network part
 my ($dotted, $size) = split m#/#;
 # get IP as binary string
 my $binary = sprintf "%032b", unpack('N', inet_aton $dotted);
 # Replace the host part with all zeroes
 substr($binary, $size) = 0 x (32 - $size);
 # Convert back to dotted-decimal
 $dotted = inet_ntoa(pack 'B32', $binary);
 # And output
 say "$dotted/$size";

}</lang>

Output:
$ canonicalize_cidr.pl 87.70.141.1/22
87.70.140.0/22

Phix

<lang Phix>function canonicalize_cidr(string cidr)

   cidr = substitute(cidr,"."," ") -- (else %d eats 0.0 etc)
   if not find('/',cidr) then cidr &= "/32" end if
   sequence res = scanf(cidr,"%d %d %d %d/%d")
   if length(res)=1 then
       integer {a,b,c,d,m} = res[1]
       if  a>=0 and a<=255
       and b>=0 and b<=255
       and c>=0 and c<=255
       and d>=0 and d<=255
       and m>=1 and m<=32 then
           atom mask = power(2,32-m)-1,
                addr = bytes_to_int({d,c,b,a})
           addr -= and_bits(addr,mask)
           {d,c,b,a} = int_to_bytes(addr)
           return sprintf("%d.%d.%d.%d/%d",{a,b,c,d,m})
       end if
   end if
   return "???"

end function

constant tests = {"87.70.141.1/22",

                 "36.18.154.103/12",
                 "62.62.197.11/29",
                 "67.137.119.181/4",
                 "161.214.74.21/24",
                 "184.232.176.184/18"}

for i=1 to length(tests) do

   string ti = tests[i]
   printf(1,"%-18s -> %s\n",{ti,canonicalize_cidr(ti)})

end for</lang>

Output:
87.70.141.1/22     -> 87.70.140.0/22
36.18.154.103/12   -> 36.16.0.0/12
62.62.197.11/29    -> 62.62.197.8/29
67.137.119.181/4   -> 64.0.0.0/4
161.214.74.21/24   -> 161.214.74.0/24
184.232.176.184/18 -> 184.232.128.0/18

Python

Translation of: Perl

<lang python>#!/usr/bin/env python

  1. canonicalize a CIDR block specification:
  2. make sure none of the host bits are set

import sys from socket import inet_aton, inet_ntoa from struct import pack, unpack

args = sys.argv[1:] if len(args) == 0:

   args = sys.stdin.readlines()

for cidr in args:

  # IP in dotted-decimal / bits in network part
  dotted, size_str = cidr.split('/')
  size = int(size_str)
  numeric = unpack('!I', inet_aton(dotted))[0]  # IP as an integer
  binary = f'{numeric:#034b}'                   # then as a padded binary string
  prefix = binary[:size + 2]                    # just the network part
                                                #   (34 and +2 are to account
                                                #    for leading '0b')
  canon_binary = prefix + '0' * (32 - size)     # replace host part with all zeroes
  canon_numeric = int(canon_binary, 2)          # convert back to integer
  canon_dotted = inet_ntoa(pack('!I',
                           (canon_numeric)))    # and then to dotted-decimal
  print(f'{canon_dotted}/{size}')               # output result</lang>
Output:
$ canonicalize_cidr.py 87.70.141.1/22
87.70.140.0/22

Raku

String manipulation

Translation of: Perl

<lang perl6>#!/usr/bin/env raku

  1. canonicalize a CIDR block: make sure none of the host bits are set

if (!@*ARGS) {

  @*ARGS = $*IN.lines;

}

for @*ARGS -> $cidr {

 # dotted-decimal / bits in network part
 my ($dotted, $size) = $cidr.split('/');
 # get IP as binary string
 my $binary = $dotted.split('.').map(*.fmt("%08b")).join;
 # Replace the host part with all zeroes
 $binary.substr-rw($size) = 0 x (32 - $size);
 # Convert back to dotted-decimal
 my $canon = $binary.comb(8).map(*.join.parse-base(2)).join('.');
 # And output
 say "$canon/$size";

}</lang>

Output:
$ canonicalize_cidr.raku 87.70.141.1/22
87.70.140.0/22

Bit mask and shift

<lang perl6># canonicalize a IP4 CIDR block sub CIDR-IP4-canonicalize ($address) {

 constant @mask = 24, 16, 8, 0;

 # dotted-decimal / subnet size
 my ($dotted, $size) = |$address.split('/'), 32;

 # get IP as binary address
 my $binary = sum $dotted.comb(/\d+/) Z+< @mask;

 # mask off subnet
 $binary +&= (2 ** $size - 1) +< (32 - $size);

 # Return dotted-decimal notation
 (@mask.map($binary +> * +& 0xFF).join('.'), $size)

}

my @tests = <

 87.70.141.1/22
 36.18.154.103/12
 62.62.197.11/29
 67.137.119.181/4
 161.214.74.21/24
 184.232.176.184/18
 100.68.0.18/18
 10.4.30.77/30
 10.207.219.251/32
 10.207.219.251
 110.200.21/4
 10.11.12.13/8
 10.../8

>;

printf "CIDR: %18s Routing prefix: %s/%s\n", $_, |.&CIDR-IP4-canonicalize

 for @*ARGS || @tests;</lang>
Output:
CIDR:     87.70.141.1/22  Routing prefix: 87.70.140.0/22
CIDR:   36.18.154.103/12  Routing prefix: 36.16.0.0/12
CIDR:    62.62.197.11/29  Routing prefix: 62.62.197.8/29
CIDR:   67.137.119.181/4  Routing prefix: 64.0.0.0/4
CIDR:   161.214.74.21/24  Routing prefix: 161.214.74.0/24
CIDR: 184.232.176.184/18  Routing prefix: 184.232.128.0/18
CIDR:     100.68.0.18/18  Routing prefix: 100.68.0.0/18
CIDR:      10.4.30.77/30  Routing prefix: 10.4.30.76/30
CIDR:  10.207.219.251/32  Routing prefix: 10.207.219.251/32
CIDR:     10.207.219.251  Routing prefix: 10.207.219.251/32
CIDR:       110.200.21/4  Routing prefix: 96.0.0.0/4
CIDR:      10.11.12.13/8  Routing prefix: 10.0.0.0/8
CIDR:            10.../8  Routing prefix: 10.0.0.0/8

REXX

<lang rexx>/*REXX pgm canonicalizes IPv4 addresses that are in CIDR notation (dotted─dec/network).*/ parse arg a . /*obtain optional argument from the CL.*/ if a== | a=="," then a= '87.70.141.1/22' , /*Not specified? Then use the defaults*/

                          '36.18.154.103/12'  ,
                          '62.62.197.11/29'   ,
                          '67.137.119.181/4'  ,
                          '161.214.74.21/24'  ,
                          '184.232.176.184/18'
   do i=1  for words(a);  z= word(a, i)         /*process each IPv4 address in the list*/
   parse var   z    #  '/'  -0  mask            /*get the address nodes & network mask.*/
   #= subword( translate(#, , .)  0 0 0, 1, 4)  /*elide dots from addr, ensure 4 nodes.*/
   $= #                                         /*use original node address (for now). */
   hb= 32 - substr(word(mask .32, 1), 2)        /*obtain the size of the host bits.    */
   $=;                          ##=             /*crop the host bits only if mask ≤ 32.*/
           do k=1  for 4;        _= word(#, k)  /*create a 32-bit (binary) IPv4 address*/
           ##= ##  ||  right(d2b(_), 8, 0)      /*append eight bits of the   "     "   */
           end   /*k*/                          /* [↑] ... and ensure a node is 8 bits.*/
   ##= left(##, 32-hb, 0)                       /*crop bits in host part of IPv4 addr. */
   ##= left(##, 32,    0)                       /*replace cropped bits with binary '0's*/
           do j=8  by 8  for 4                  /* [↓]  parse the four nodes of address*/
           $= $ || . || b2d(substr(##, j-7, 8)) /*reconstitute the decimal nodes.      */
           end   /*j*/                          /* [↑]  and insert a dot between nodes.*/
   say                                          /*introduce a blank line between IPv4's*/
   $= substr($, 2)                              /*elid the leading decimal point in  $ */
   say '   original IPv4 address: '  z          /*display the original  IPv4  address. */
   say '   canonicalized address: '  translate( space($), ., " ")mask  /*canonicalized.*/
   end   /*i*/

exit 0 /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ b2d: return x2d( b2x( arg(1) ) ) + 0 /*convert binary ───► decimal number.*/ d2b: return x2b( d2x( arg(1) ) ) + 0 /* " decimal ───► binary " */</lang>

output   when using the default input:
   original IPv4 address:  87.70.141.1/22
   canonicalized address:  87.70.140.0/22

   original IPv4 address:  36.18.154.103/12
   canonicalized address:  36.16.0.0/12

   original IPv4 address:  62.62.197.11/29
   canonicalized address:  62.62.197.8/29

   original IPv4 address:  67.137.119.181/4
   canonicalized address:  64.0.0.0/4

   original IPv4 address:  161.214.74.21/24
   canonicalized address:  161.214.74.0/24

   original IPv4 address:  184.232.176.184/18
   canonicalized address:  184.232.128.0/18 

Ruby

Translation of: Python
Translation of: Raku

<lang ruby>#!/usr/bin/env ruby

  1. canonicalize a CIDR block: make sure none of the host bits are set

if ARGV.length == 0 then

   ARGV = $stdin.readlines.map(&:chomp)

end

ARGV.each do |cidr|

 # dotted-decimal / bits in network part
 dotted, size_str = cidr.split('/')
 size = size_str.to_i
 # get IP as binary string
 binary = dotted.split('.').map { |o| "%08b" % o }.join
 # Replace the host part with all zeroes
 binary[size .. -1] = '0' * (32 - size)
 # Convert back to dotted-decimal
 canon = binary.chars.each_slice(8).map { |a| a.join.to_i(2) }.join('.')
 # And output
 puts "#{canon}/#{size}"

end</lang>

Output:
$ canonicalize_cidr.rb 87.70.141.1/22
87.70.140.0/22

Rust

<lang Rust>use std::net::Ipv4Addr;

fn canonical_cidr(cidr: &str) -> Result<String, &str> {

   let mut split = cidr.splitn(2, '/');
   if let (Some(addr), Some(mask)) = (split.next(), split.next()) {
       let addr = addr.parse::<Ipv4Addr>().map(u32::from).map_err(|_| cidr)?;
       let mask = mask.parse::<u8>().map_err(|_| cidr)?;
       let bitmask = 0xff_ff_ff_ffu32 << (32 - mask);
       let addr = Ipv4Addr::from(addr & bitmask);
       Ok(format!("{}/{}", addr, mask))
   } else {
       Err(cidr)
   }

}

  1. [cfg(test)]

mod tests {

   #[test]
   fn valid() {
       [
           ("87.70.141.1/22", "87.70.140.0/22"),
           ("36.18.154.103/12", "36.16.0.0/12"),
           ("62.62.197.11/29", "62.62.197.8/29"),
           ("67.137.119.181/4", "64.0.0.0/4"),
           ("161.214.74.21/24", "161.214.74.0/24"),
           ("184.232.176.184/18", "184.232.128.0/18"),
       ]
       .iter()
       .cloned()
       .for_each(|(input, expected)| {
           assert_eq!(expected, super::canonical_cidr(input).unwrap());
       });
   }

}

fn main() {

   println!("{}", canonical_cidr("127.1.2.3/24").unwrap());

}</lang>

Wren

Translation of: Ruby
Library: Wren-fmt
Library: Wren-str

<lang ecmascript>import "/fmt" for Fmt, Conv import "/str" for Str

// canonicalize a CIDR block: make sure none of the host bits are set var canonicalize = Fn.new { |cidr|

   // dotted-decimal / bits in network part
   var split = cidr.split("/")
   var dotted = split[0]
   var size = Num.fromString(split[1])
   // get IP as binary string
   var binary = dotted.split(".").map { |n| Fmt.swrite("$08b", Num.fromString(n)) }.join()
   // replace the host part with all zeros
   binary = binary[0...size] + "0" * (32 - size)
   // convert back to dotted-decimal
   var chunks = Str.chunks(binary, 8)
   var canon = chunks.map { |c| Conv.atoi(c, 2) }.join(".")
   // and return
   return canon + "/" + split[1]

}

var tests = [

   "87.70.141.1/22",
   "36.18.154.103/12",
   "62.62.197.11/29",
   "67.137.119.181/4",
   "161.214.74.21/24",
   "184.232.176.184/18"

]

for (test in tests) {

   Fmt.print("$-18s -> $s", test, canonicalize.call(test))

}</lang>

Output:
87.70.141.1/22     -> 87.70.140.0/22
36.18.154.103/12   -> 36.16.0.0/12
62.62.197.11/29    -> 62.62.197.8/29
67.137.119.181/4   -> 64.0.0.0/4
161.214.74.21/24   -> 161.214.74.0/24
184.232.176.184/18 -> 184.232.128.0/18