Arithmetic evaluation: Difference between revisions

From Rosetta Code
Content added Content deleted
(Added zkl)
m (→‎{{header|Sidef}}: minor fix: replaced 'qr' with '%r')
Line 3,946: Line 3,946:


var reM = /\*/;
var reM = /\*/;
var reMD = qr"(\d+\.?\d*\s*[*/]\s*[+-]?\d+\.?\d*)";
var reMD = %r"(\d+\.?\d*\s*[*/]\s*[+-]?\d+\.?\d*)";


var reA = /\d\+/;
var reA = /\d\+/;

Revision as of 00:02, 20 March 2014

Task
Arithmetic evaluation
You are encouraged to solve this task according to the task description, using any language you may know.

Create a program which parses and evaluates arithmetic expressions.

Requirements
  • An abstract-syntax tree (AST) for the expression must be created from parsing the input.
  • The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.)
  • The expression will be a string or list of symbols like "(1+3)*7".
  • The four symbols + - * / must be supported as binary operators with conventional precedence rules.
  • Precedence-control parentheses must also be supported.
Note

For those who don't remember, mathematical precedence is as follows:

  • Parentheses
  • Multiplication/Division (left to right)
  • Addition/Subtraction (left to right)


C.f

Ada

See Arithmetic Evaluator/Ada.

ALGOL 68

Works with: ALGOL 68 version Revision 1 - no extensions to language used
Works with: ALGOL 68G version Any - tested with release 1.18.0-9h.tiny

<lang algol68>INT base=10; MODE FIXED = LONG REAL; # numbers in the format 9,999.999 #

  1. IF build abstract syntax tree and then EVAL tree #

MODE AST = UNION(NODE, FIXED); MODE NUM = REF AST; MODE NODE = STRUCT(NUM a, PROC (FIXED,FIXED)FIXED op, NUM b);

OP EVAL = (NUM ast)FIXED:(

 CASE ast IN
   (FIXED num): num,
   (NODE fork): (op OF fork)(EVAL( a OF fork), EVAL (b OF fork))
 ESAC

);

OP + = (NUM a,b)NUM: ( HEAP AST := NODE(a, (FIXED a,b)FIXED:a+b, b) ); OP - = (NUM a,b)NUM: ( HEAP AST := NODE(a, (FIXED a,b)FIXED:a-b, b) ); OP * = (NUM a,b)NUM: ( HEAP AST := NODE(a, (FIXED a,b)FIXED:a*b, b) ); OP / = (NUM a,b)NUM: ( HEAP AST := NODE(a, (FIXED a,b)FIXED:a/b, b) ); OP **= (NUM a,b)NUM: ( HEAP AST := NODE(a, (FIXED a,b)FIXED:a**b, b) );

  1. ELSE simply use REAL arithmetic with no abstract syntax tree at all # CO

MODE NUM = FIXED, AST = FIXED; OP EVAL = (FIXED num)FIXED: num;

  1. FI# END CO

MODE LEX = PROC (TOK)NUM; MODE MONADIC =PROC (NUM)NUM; MODE DIADIC = PROC (NUM,NUM)NUM;

MODE TOK = CHAR; MODE ACTION = UNION(STACKACTION, LEX, MONADIC, DIADIC); MODE OPVAL = STRUCT(INT prio, ACTION action); MODE OPITEM = STRUCT(TOK token, OPVAL opval);

[256]STACKITEM stack; MODE STACKITEM = STRUCT(NUM value, OPVAL op); MODE STACKACTION = PROC (REF STACKITEM)VOID;

PROC begin = (REF STACKITEM top)VOID: prio OF op OF top -:= +10; PROC end = (REF STACKITEM top)VOID: prio OF op OF top -:= -10;

OP ** = (COMPL a,b)COMPL: complex exp(complex ln(a)*b);

[8]OPITEM op list :=(

  1. OP PRIO ACTION #
 ("^", (8, (NUM a,b)NUM: a**b)),
 ("*", (7, (NUM a,b)NUM: a*b)),
 ("/", (7, (NUM a,b)NUM: a/b)),
 ("+", (6, (NUM a,b)NUM: a+b)),
 ("-", (6, (NUM a,b)NUM: a-b)),
 ("(",(+10, begin)),
 (")",(-10, end)),
 ("?", (9, LEX:SKIP))

);

PROC op dict = (TOK op)REF OPVAL:(

  1. This can be unrolled to increase performance #
 REF OPITEM candidate;
 FOR i TO UPB op list WHILE
   candidate := op list[i];
  1. WHILE # op /= token OF candidate DO
   SKIP
 OD;
 opval OF candidate

);

PROC build ast = (STRING expr)NUM:(

 INT top:=0;
 PROC compress ast stack = (INT prio, NUM in value)NUM:(
   NUM out value := in value;
   FOR loc FROM top BY -1 TO 1 WHILE 
     REF STACKITEM stack top := stack[loc];
 # WHILE # ( top >= LWB stack | prio <= prio OF op OF stack top | FALSE ) DO
     top := loc - 1;
     out value := 
       CASE action OF op OF stack top IN
         (MONADIC op): op(value OF stack top), # not implemented #
         (DIADIC op): op(value OF stack top,out value)
       ESAC
   OD;
   out value
 );
 NUM value := NIL;
 FIXED num value;
 INT decimal places;
 FOR i TO UPB expr DO
   TOK token = expr[i];
   REF OPVAL this op := op dict(token); 
   CASE action OF this op IN
     (STACKACTION action):(
       IF prio OF thisop = -10 THEN
         value := compress ast stack(0, value)
       FI;
       IF top >= LWB stack THEN
         action(stack[top])
       FI
     ),
     (LEX):( # a crude lexer #
       SHORT INT digit = ABS token - ABS "0";
       IF 0<= digit AND digit < base THEN
         IF NUM(value) IS NIL THEN # first digit #
           decimal places := 0;
           value := HEAP AST := num value := digit
         ELSE
           NUM(value) := num value := IF decimal places = 0 
             THEN
               num value * base + digit
             ELSE
               decimal places *:= base;
               num value + digit / decimal places
             FI
         FI
       ELIF token = "." THEN
         decimal places := 1
       ELSE
         SKIP # and ignore spaces and any unrecognised characters #
       FI
     ),
     (MONADIC): SKIP, # not implemented #
     (DIADIC):(
       value := compress ast stack(prio OF this op, value);
       IF top=UPB stack THEN index error FI;
       stack[top+:=1]:=STACKITEM(value, this op);
       value:=NIL
     )
   ESAC
 OD;
 compress ast stack(-max int, value)

);

test:(

  printf(($" euler's number is about: "g(-long real width,long real width-2)l$,
    EVAL build ast("1+1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+1/15)/14)/13)/12)/11)/10)/9)/8)/7)/6)/5)/4)/3)/2")));
 SKIP EXIT
 index error:
   printf(("Stack over flow"))

)</lang> Output:

 euler's number is about: 2.71828182845899446428546958

AutoHotkey

Works with: AutoHotkey_L

<lang AutoHotkey>/* hand coded recursive descent parser expr : term ( ( PLUS | MINUS ) term )* ; term : factor ( ( MULT | DIV ) factor )* ; factor : NUMBER | '(' expr ')';

  • /

calcLexer := makeCalcLexer() string := "((3+4)*(7*9)+3)+4" tokens := tokenize(string, calcLexer) msgbox % printTokens(tokens) ast := expr() msgbox % printTree(ast) msgbox % expression := evalTree(ast) filedelete expression.ahk fileappend, % "msgbox % " expression, expression.ahk run, expression.ahk return


expr() {

 global tokens
 ast := object(1, "expr")
 if node := term()
   ast._Insert(node)    
 loop 
 {
   if peek("PLUS") or peek("MINUS")
   {  
     op := getsym()
     newop := object(1, op.type, 2, op.value)
     node := term()
     ast._Insert(newop)
     ast._Insert(node)
   }
   Else  
     Break
 }
 return ast

}

term() {

 global tokens
 tree := object(1, "term")
 if node := factor()
   tree._Insert(node)
 loop 
 {
   if  peek("MULT") or peek("DIV")
   {  
     op := getsym()
     newop := object(1, op.type, 2, op.value)
     node := factor()
     tree._Insert(newop)
     tree._Insert(node)
   }
   else
     Break
 }
 return tree

}

factor() {

 global tokens
 if peek("NUMBER")
 {  
   token := getsym()
   tree := object(1, token.type, 2, token.value)
   return tree
 }
 else if  peek("OPEN")
 {
   getsym()
   tree := expr()
   if  peek("CLOSE")
   {
     getsym()
     return tree
   }
   else
     error("miss closing parentheses ")
 }
 else  
   error("no factor found")

}

peek(type, n=1) { global tokens

 if (tokens[n, "type"] == type)
 return 1

}

getsym(n=1) { global tokens return token := tokens._Remove(n) }

error(msg) { global tokens msgbox % msg " at:`n" printToken(tokens[1]) }


printTree(ast) { if !ast return

n := 0

 loop
 {
 n += 1
   if !node := ast[n]
     break
   if !isobject(node)
     treeString .= node
   else
     treeString .= printTree(node)
 }
 return ("(" treeString ")" )

}

evalTree(ast) { if !ast return

n := 1

 loop
 {
 n += 1
   if !node := ast[n]
     break
   if !isobject(node)
     treeString .= node
   else
     treeString .= evalTree(node)
 }

if (n == 3) return treeString

 return ("(" treeString ")" )

}

  1. include calclex.ahk</lang>

calclex.ahk<lang AutoHotkey>tokenize(string, lexer) {

 stringo := string  ; store original string
 locationInString := 1
 size := strlen(string)
 tokens := object()
 

start:

 Enum := Lexer._NewEnum()
 While Enum[type, value]  ; loop through regular expression lexing rules
 {
   if (1 == regexmatch(string, value, tokenValue))
   {
     token := object()     
     token.pos := locationInString 
     token.value := tokenValue
     token.length := strlen(tokenValue)
     token.type := type
     tokens._Insert(token)
     locationInString += token.length
     string := substr(string, token.length + 1)
     goto start
   } 
   continue
 }
 if (locationInString < size)
   msgbox % "unrecognized token at " substr(stringo, locationInstring)
 return tokens

}

makeCalcLexer() {

 calcLexer := object()
 PLUS := "\+"
 MINUS := "-"
 MULT := "\*"
 DIV := "/"
 OPEN := "\("
 CLOSE := "\)"
 NUMBER := "\d+"
 WS := "[ \t\n]+"
 END := "\."
 RULES := "PLUS,MINUS,MULT,DIV,OPEN,CLOSE,NUMBER,WS,END"
 loop, parse, rules, `,
 {
   type := A_LoopField
   value := %A_LoopField%
   calcLexer._Insert(type, value)
 }
 return calcLexer

}

printTokens(tokens) {

 loop % tokens._MaxIndex()
 {  
   tokenString .= printToken(tokens[A_Index]) "`n`n"
 }
 return tokenString

}


printToken(token) {

 string := "pos= " token.pos "`nvalue= " token.value "`ntype= " token.type
 return string

}</lang>

BBC BASIC

<lang bbcbasic> Expr$ = "1 + 2 * (3 + (4 * 5 + 6 * 7 * 8) - 9) / 10"

     PRINT "Input = " Expr$
     AST$ = FNast(Expr$)
     PRINT "AST =   " AST$
     PRINT "Value = " ;EVAL(AST$)
     END
     
     DEF FNast(RETURN in$)
     LOCAL ast$, oper$
     REPEAT
       ast$ += FNast1(in$)
       WHILE ASC(in$)=32 in$ = MID$(in$,2) : ENDWHILE
       oper$ = LEFT$(in$,1)
       IF oper$="+" OR oper$="-" THEN
         ast$ += oper$
         in$ = MID$(in$,2)
       ELSE
         EXIT REPEAT
       ENDIF
     UNTIL FALSE
     = "(" + ast$ + ")"
     
     DEF FNast1(RETURN in$)
     LOCAL ast$, oper$
     REPEAT
       ast$ += FNast2(in$)
       WHILE ASC(in$)=32 in$ = MID$(in$,2) : ENDWHILE
       oper$ = LEFT$(in$,1)
       IF oper$="*" OR oper$="/" THEN
         ast$ += oper$
         in$ = MID$(in$,2)
       ELSE
         EXIT REPEAT
       ENDIF
     UNTIL FALSE
     = "(" + ast$ + ")"
     
     DEF FNast2(RETURN in$)
     LOCAL ast$
     WHILE ASC(in$)=32 in$ = MID$(in$,2) : ENDWHILE
     IF ASC(in$)<>40 THEN = FNnumber(in$)
     in$ = MID$(in$,2)
     ast$ = FNast(in$)
     in$ = MID$(in$,2)
     = ast$
     
     DEF FNnumber(RETURN in$)
     LOCAL ch$, num$
     REPEAT
       ch$ = LEFT$(in$,1)
       IF INSTR("0123456789.", ch$) THEN
         num$ += ch$
         in$ = MID$(in$,2)
       ELSE
         EXIT REPEAT
       ENDIF
     UNTIL FALSE
     = num$</lang>

Output:

Input = 1 + 2 * (3 + (4 * 5 + 6 * 7 * 8) - 9) / 10
AST =   ((1)+(2*((3)+(((4*5)+(6*7*8)))-(9))/10))
Value = 71

C

See Arithmetic Evaluator/C.

C++

Works with: g++ version 4.1.2 20061115 (prerelease) (SUSE Linux)
Library: Boost.Spirit version 1.8.4

<lang cpp> #include <boost/spirit.hpp>

#include <boost/spirit/tree/ast.hpp>
#include <string>
#include <cassert>
#include <iostream>
#include <istream>
#include <ostream>

using boost::spirit::rule;
using boost::spirit::parser_tag;
using boost::spirit::ch_p;
using boost::spirit::real_p;

using boost::spirit::tree_node;
using boost::spirit::node_val_data;

// The grammar
struct parser: public boost::spirit::grammar<parser>
{
  enum rule_ids { addsub_id, multdiv_id, value_id, real_id };

  struct set_value
  {
    set_value(parser const& p): self(p) {}
    void operator()(tree_node<node_val_data<std::string::iterator,
                                            double> >& node,
                    std::string::iterator begin,
                    std::string::iterator end) const
    {
      node.value.value(self.tmp);
    }
    parser const& self;
  };

  mutable double tmp;

  template<typename Scanner> struct definition
  {
    rule<Scanner, parser_tag<addsub_id> > addsub;
    rule<Scanner, parser_tag<multdiv_id> > multdiv;
    rule<Scanner, parser_tag<value_id> > value;
    rule<Scanner, parser_tag<real_id> > real;

    definition(parser const& self)
    {
      using namespace boost::spirit;
      addsub = multdiv
        >> *((root_node_d[ch_p('+')] | root_node_d[ch_p('-')]) >> multdiv);
      multdiv = value
        >> *((root_node_d[ch_p('*')] | root_node_d[ch_p('/')]) >> value);
      value = real | inner_node_d[('(' >> addsub >> ')')];
      real = leaf_node_d[access_node_d[real_p[assign_a(self.tmp)]][set_value(self)]];
    }

    rule<Scanner, parser_tag<addsub_id> > const& start() const
    {
      return addsub;
    }
  };
};

template<typename TreeIter>
double evaluate(TreeIter const& i)
{
  double op1, op2;
  switch (i->value.id().to_long())
  {
  case parser::real_id:
    return i->value.value();
  case parser::value_id:
  case parser::addsub_id:
  case parser::multdiv_id:
    op1 = evaluate(i->children.begin());
    op2 = evaluate(i->children.begin()+1);
    switch(*i->value.begin())
    {
    case '+':
      return op1 + op2;
    case '-':
      return op1 - op2;
    case '*':
      return op1 * op2;
    case '/':
      return op1 / op2;
    default:
      assert(!"Should not happen");
    }
  default:
    assert(!"Should not happen");
  }
  return 0;
}

// the read/eval/write loop
int main()
{
  parser eval;
  std::string line;
  while (std::cout << "Expression: "
         && std::getline(std::cin, line)
         && !line.empty())
  {
    typedef boost::spirit::node_val_data_factory<double> factory_t;
    boost::spirit::tree_parse_info<std::string::iterator, factory_t> info =
      boost::spirit::ast_parse<factory_t>(line.begin(), line.end(),
                                          eval, boost::spirit::space_p);
    if (info.full)
    {
      std::cout << "Result: " << evaluate(info.trees.begin()) << std::endl;
    }
    else
    {
      std::cout << "Error in expression." << std::endl;
    }
  }
};</lang>

Clojure

<lang Clojure>(def precedence '{* 0, / 0 + 1, - 1})

(defn order-ops

 "((A x B) y C) or (A x (B y C)) depending on precedence of x and y"
 A x B y C & more
 (let [ret (if (<=  (precedence x)

(precedence y)) (list (list A x B) y C) (list A x (list B y C)))]

   (if more
     (recur (concat ret more))
     ret)))

(defn add-parens

 "Tree walk to add parens.  All lists are length 3 afterwards."
 [s]
 (clojure.walk/postwalk
  #(if (seq? %)
     (let [c (count %)]

(cond (even? c) (throw (Exception. "Must be an odd number of forms")) (= c 1) (first %) (= c 3) % (>= c 5) (order-ops %)))

     %)
  s))

(defn make-ast

 "Parse a string into a list of numbers, ops, and lists"
 [s]
 (-> (format "'(%s)" s)
     (.replaceAll , "([*+-/])" " $1 ")
     load-string
     add-parens))

(def ops {'* * '+ + '- - '/ /})

(def eval-ast

    (partial clojure.walk/postwalk

#(if (seq? %) (let [[a o b] %] ((ops o) a b))  %)))

(defn evaluate [s]

 "Parse and evaluate an infix arithmetic expression"
 (eval-ast (make-ast s)))

user> (evaluate "1 + 2*(3 - 2*(3 - 2)*((2 - 4)*5 - 22/(7 + 2*(3 - 1)) - 1)) + 1") 60</lang>

Common Lisp

The following code processes the data in a pipeline of steps which are combined in the evaluate function.

First, the string is converted into a sequence of tokens, represented as a list. Operator tokens are represented directly by the corresponding Lisp symbols, and the integer terms are represented by Lisp integer objects. The symbols :lparen and :rparen represent the the parentheses. So for instance the input "1*(3+2)" tokenizes as (1 * :lparen 3 + 2 :rparen).

Next, that sequence of tokens is then transformed by eliminating the parentheses. Subsequences of the form :lparen ... :rparen with a sublist containing the tokens between the :lparen and :rparen. The sequence now has an intermediate tree structure, in which parenthesized fragments like 1 + 2 * 3 + 4 / 9 still remain flat.

At this point, another processing stage parses the operator precedence, and fully parenthesizes fragments, turning (1 + 2 / 3 + 5) into (1 + (2 / 3) + 5). The result is a Lisp-ified infix representation.

Finally, this infix representation can be easily converted to prefix, forming the final AST which is a Lisp expression. (Lisp expressions are abstract syntax trees!) This representation evaluates directly with eval.

This implementation can read integers, and produce integral and rational values.

<lang lisp>(defun tokenize-stream (stream)

 (labels ((whitespace-p (char)
            (find char #(#\space #\newline #\return #\tab)))
          (consume-whitespace ()
            (loop while (whitespace-p (peek-char nil stream nil #\a))
                  do (read-char stream)))
          (read-integer ()
            (loop while (digit-char-p (peek-char nil stream nil #\space))
                  collect (read-char stream) into digits
                  finally (return (parse-integer (coerce digits 'string))))))
   (consume-whitespace)
   (let ((c (peek-char nil stream nil nil)))
     (let ((token (case c
                    ((nil) nil)
                    ((#\() :lparen)
                    ((#\)) :rparen)
                    ((#\*) '*)
                    ((#\/) '/)
                    ((#\+) '+)
                    ((#\-) '-)
                    (otherwise
                      (unless (digit-char-p c)
                        (cerror "Skip it." "Unexpected character ~w." c)
                        (read-char stream)
                        (return-from tokenize-stream
                                     (tokenize-stream stream)))
                      (read-integer)))))
       (unless (or (null token) (integerp token))
         (read-char stream))
       token))))

(defun group-parentheses (tokens &optional (delimited nil))

 (do ((new-tokens '()))
     ((endp tokens)
      (when delimited
        (cerror "Insert it."  "Expected right parenthesis."))
      (values (nreverse new-tokens) '()))
   (let ((token (pop tokens)))
     (case token
       ((:lparen)
        (multiple-value-bind (group remaining-tokens)
            (group-parentheses tokens t)
          (setf new-tokens (cons group new-tokens)
                tokens remaining-tokens)))
       ((:rparen)
        (if (not delimited)
          (cerror "Ignore it." "Unexpected right parenthesis.")
          (return (values (nreverse new-tokens) tokens))))
       (otherwise
        (push token new-tokens))))))

(defun group-operations (expression)

 (flet ((gop (exp) (group-operations exp)))
   (if (integerp expression)
     expression
     (destructuring-bind (a &optional op1 b op2 c &rest others)
                         expression
       (unless (member op1 '(+ - * / nil))
         (error "syntax error: in expr ~a expecting operator, not ~a"
                expression op1))
       (unless (member op2 '(+ - * / nil))
         (error "syntax error: in expr ~a expecting operator, not ~a"
                expression op2))
       (cond
        ((not op1) (gop a))
        ((not op2) `(,(gop a) ,op1 ,(gop b)))
        (t (let ((a (gop a)) (b (gop b)) (c (gop c)))
             (if (and (member op1 '(+ -)) (member op2 '(* /)))
               (gop `(,a ,op1 (,b ,op2 ,c) ,@others))
               (gop `((,a ,op1 ,b) ,op2 ,c ,@others))))))))))

(defun infix-to-prefix (expression)

 (if (integerp expression)
   expression
   (destructuring-bind (a op b) expression
     `(,op ,(infix-to-prefix a) ,(infix-to-prefix b)))))

(defun evaluate (string)

 (with-input-from-string (in string)
   (eval
     (infix-to-prefix
       (group-operations
         (group-parentheses
           (loop for token = (tokenize-stream in)
                 until (null token)
                 collect token)))))))</lang>

Examples

> (evaluate "1 - 5 * 2 / 20 + 1")
3/2
> (evaluate "(1 - 5) * 2 / (20 + 1)")
-8/21
> (evaluate "2 * (3 + ((5) / (7 - 11)))")
7/2
> (evaluate "(2 + 3) / (10 - 5)")
1

Examples of error handling

> (evaluate "(3 * 2) a - (1 + 2) / 4")

 Error: Unexpected character a.
  1 (continue) Skip it.
  2 (abort) Return to level 0.
  3 Return to top loop level 0.

Type :b for backtrace, :c <option number> to proceed,  or :? for other options

 : 1 > :c 1
21/4
> (evaluate "(3 * 2) - (1 + 2) / (4")

Error: Expected right parenthesis.
  1 (continue) Insert it.
  2 (abort) Return to level 0.
  3 Return to top loop level 0.

Type :b for backtrace, :c <option number> to proceed,  or :? for other options

: 1 > :c 1
21/4

D

After the AST tree is constructed, a visitor pattern is used to display the AST structure and calculate the expression value. <lang d>import std.stdio, std.string, std.ascii, std.conv, std.array,

      std.exception, std.traits;

struct Stack(T) {

   T[] data;
   alias data this;
   void push(T top) pure nothrow { data ~= top; }
   T pop(bool discard = true)() pure {
     if (data.empty)
       throw new Exception("Stack Empty");
     auto top = data.back;
     static if (discard)
       data.popBack;
     return top;
   }

}

enum Type { Num, OBkt, CBkt, Add, Sub, Mul, Div } immutable opChar = ["#", "(", ")", "+", "-", "*", "/"]; immutable opPrec = [ 0, -9, -9, 1, 1, 2, 2];

abstract class Visitor { void visit(XP e); }

final class XP {

 immutable Type type;
 immutable string str;
 immutable int pos; // Optional, to dispaly AST struct.
 XP LHS, RHS;
 this(string s=")", int p = -1) nothrow {
   str = s;
   pos = p;
   auto localType = Type.Num;
   foreach_reverse (immutable t; [EnumMembers!Type[1 .. $]])
     if (opChar[t] == s)
       localType = t;
   this.type = localType;
 }
 override int opCmp(Object other) pure {
   auto rhs = cast(XP)other;
   enforce(rhs !is null);
   return opPrec[type] - opPrec[rhs.type];
 }
 void accept(Visitor v) { v.visit(this); }

}

final class AST {

 XP root;
 Stack!XP opr, num;
 string xpr, token;
 int xpHead, xpTail;
 void joinXP(XP x) pure {
   x.RHS = num.pop;
   x.LHS = num.pop;
   num.push(x);
 }
 string nextToken() pure {
   while (xpHead < xpr.length && xpr[xpHead] == ' ')
     xpHead++; // Skip spc.
   xpTail = xpHead;
   if (xpHead < xpr.length) {
     token = xpr[xpTail .. xpTail + 1];
     switch (token) {
       case "(", ")", "+", "-", "*", "/": // Valid non-number.
         xpTail++;
         return token;
       default: // Should be number.
         if (token[0].isDigit) {
           while (xpTail < xpr.length && xpr[xpTail].isDigit())
             xpTail++;
           return xpr[xpHead .. xpTail];
         } // Else may be error.
     } // End switch.
   }
   if (xpTail < xpr.length)
     throw new Exception("Invalid Char <" ~ xpr[xpTail] ~ ">");
   return null;
 } // End nextToken.
 AST parse(in string s) {
   bool expectingOP;
   xpr = s;
   try {
     xpHead = xpTail = 0;
     num = opr = null;
     root = null;
     opr.push(new XP); // CBkt, prevent evaluate null OP precedence.
     while ((token = nextToken) !is null) {
       XP tokenXP = new XP(token, xpHead);
       if (expectingOP) { // Process OP-alike XP.
         switch (token) {
           case ")":
             while (opr.pop!false.type != Type.OBkt)
               joinXP(opr.pop);
             opr.pop;
             expectingOP = true;
             break;
           case "+", "-", "*", "/":
             while (tokenXP <= opr.pop!false)
               joinXP(opr.pop());
             opr.push(tokenXP);
             expectingOP = false;
             break;
           default:
             throw new Exception("Expecting Operator or ), not <"
                                 ~ token ~ ">");
         }
       } else { // Process Num-alike XP.
         switch (token) {
           case "+", "-", "*", "/", ")":
             throw new Exception("Expecting Number or (, not <"
                                 ~ token ~ ">");
           case "(":
             opr.push(tokenXP);
             expectingOP = false;
             break;
           default: // Number.
             num.push(tokenXP);
             expectingOP = true;
         }
       }
       xpHead = xpTail;
     } // End while.
     while (opr.length > 1) // Join pending Op.
       joinXP(opr.pop);
   } catch(Exception e) {
     writefln("%s\n%s\n%s^", e.msg, xpr, " ".replicate(xpHead));
     root = null;
     return this;
   }
   if (num.length != 1) { // Should be one XP left.
     "Parse Error...".writefln;
     root = null;
   } else {
     root = num.pop;
   }
   return this;
 } // End Parse.

} // End class AST.

// To display AST fancy struct. void ins(ref char[][] s, in string v, in int p, in int l) pure nothrow {

 if (l + 1 > s.length)
   s.length++;
 while (s[l].length < p + v.length + 1)
   s[l] ~= " ";
 s[l][p .. p + v.length] = v[];

}

final class CalcVis : Visitor {

 int result, level;
 string resultStr;
 char[][] Tree;
 static void opCall(AST a) {
   if (a && a.root) {
     auto c = new CalcVis;
     a.root.accept(c);
     foreach (immutable i; 1 .. c.Tree.length) { // More fancy.
       bool flipflop = false;
       enum char mk = '.';
       foreach (immutable j; 0 .. c.Tree[i].length) {
         while (j >= c.Tree[i - 1].length)
           c.Tree[i - 1] ~= " ";
         immutable c1 = c.Tree[i][j];
         immutable c2 = c.Tree[i - 1][j];
         if (flipflop && (c1 == ' ') && c2 == ' ')
           c.Tree[i - 1][j] = mk;
         if (c1 != mk && c1 != ' ' &&
             (j == 0 || !isDigit(c.Tree[i][j - 1])))
           flipflop = !flipflop;
       }
     }
     foreach (const t; c.Tree)
       t.writefln;
     writefln("\n%s ==>\n%s = %s", a.xpr, c.resultStr, c.result);
   } else
     "Evalute invalid or null Expression.".writefln;
 }
 // Calc. the value, display AST struct and eval order.
 override void visit(XP xp) {
   ins(Tree, xp.str, xp.pos, level);
   level++;
   if (xp.type == Type.Num) {
     resultStr ~= xp.str;
     result = xp.str.to!int;
   } else {
     resultStr ~= "(";
     xp.LHS.accept(this);
     immutable int lhs = result;
     resultStr ~= opChar[xp.type];
     xp.RHS.accept(this);
     resultStr ~= ")";
     switch (xp.type) {
       case Type.Add: result = lhs + result; break;
       case Type.Sub: result = lhs - result; break;
       case Type.Mul: result = lhs * result; break;
       case Type.Div: result = lhs / result; break;
       default: throw new Exception("Invalid type");
     }
   }
   level--;
 }

}

void main(string[] args) {

 immutable exp0 = "1 + 2*(3 - 2*(3 - 2)*((2 - 4)*5" ~
                  " - 22/(7 + 2*(3 - 1)) - 1)) + 1";
 immutable exp = (args.length > 1) ? args[1 .. $].join(" ") : exp0;
 new AST().parse(exp).CalcVis; // Should be 60.

}</lang>

Output:
   ........................................................+.  
 .+..                                                        1 
1    *...  
    2   .-..........  
       3     .......*................................  
            *...                 ....................-.  
           2   .-.            ..-...                   1 
              3   2       ...*      /...  
                        .-.   5   22   .+..  
                       2   4          7    *...  
                                          2   .-.  
                                             3   1 

1 + 2*(3 - 2*(3 - 2)*((2 - 4)*5 - 22/(7 + 2*(3 - 1)) - 1)) + 1 ==>
((1+(2*(3-((2*(3-2))*((((2-4)*5)-(22/(7+(2*(3-1)))))-1)))))+1) = 60

E

While the task requirements specify not evaluating using the language's built-in eval, they don't say that you have to write your own parser...

<lang e>def eParser := <elang:syntax.makeEParser> def LiteralExpr := <elang:evm.makeLiteralExpr>.asType() def arithEvaluate(expr :String) {

 def ast := eParser(expr)
 
 def evalAST(ast) {
   return switch (ast) {
     match e`@a + @b` { evalAST(a) + evalAST(b) }
     match e`@a - @b` { evalAST(a) - evalAST(b) }
     match e`@a * @b` { evalAST(a) * evalAST(b) }
     match e`@a / @b` { evalAST(a) / evalAST(b) }
     match e`-@a` { -(evalAST(a)) }
     match l :LiteralExpr { l.getValue() }
   }
 }
 
 return evalAST(ast)

}</lang>

Parentheses are handled by the parser.

<lang e>? arithEvaluate("1 + 2")

  1. value: 3

? arithEvaluate("(1 + 2) * 10 / 100")

  1. value: 0.3

? arithEvaluate("(1 + 2 / 2) * (5 + 5)")

  1. value: 20.0</lang>

Elena

<lang elena>#define system.

  1. define extensions.

// --- Token ---

  1. class Token

{

   #field theValue.
   
   #constructor new
   [
       theValue := String new.
   ]
   
   #constructor new : aValue
   [
       theValue := String new:aValue.
   ]
   
   #method ParseOrder = 0.
   
   #method append : aChar
   [
       theValue += aChar.
   ]
   
   #method add : aNode
   [
       ^ aNode += self.
   ]
   #method Number = convertor toReal:theValue.    

}

// --- Node ---

  1. class Node

{

   #field theLeft.
   #field theRight.
   #field theState.
   
   #method setRight : aNode
   [
       theRight := aNode.
       
       theState := %appendRight.
   ]
   
   #method setLeft : aNode
   [
       theLeft := aNode.
       
       theState := %setRight.
   ]
   
   #constructor new
   [
       theState := %setLeft.
   ]
   #method add : aNode
       = (self ParseOrder > aNode ParseOrder)
           ? [
               self += aNode.
               
               ^ self.
           ]
           ! [
               aNode += self.
               
               ^ aNode.
           ].
       
   #method appendRight : aNode
   [
       (theRight ParseOrder > aNode ParseOrder)
       ? [
           theRight += aNode.
       ]
       ! [
           theRight := aNode += theRight.
       ].        
   ]
   
   #method append : anObject
       = $self~theState eval:anObject. 
   
   #method => theState.

}

// --- SummaryNode

  1. class SummaryNode : Node

{

   #method ParseOrder = 2.
   
   #method Number = theLeft Number + theRight Number.

}

// --- DifferenceNode ---

  1. class DifferenceNode : Node

{

   #method ParseOrder = 2.
   
   #method Number = theLeft Number - theRight Number.

}

// --- ProductNode ---

  1. class ProductNode : Node

{

   #method ParseOrder = 1.
   
   #method Number = theLeft Number * theRight Number.

}

// --- FractionNode ---

  1. class FractionNode : Node

{

   #method ParseOrder = 1.
   
   #method Number = theLeft Number / theRight Number.

}

// --- SubExpression ---

  1. class SubExpression

{

   #field theParser.
   #field theCounter.
   
   #constructor new
   [
       theParser := arithmeval'Parser new.
       theCounter := Integer new:1.
   ]
   #method ParseOrder = 0.
   
   #method add : aNode
   [
       ^ aNode += self.
   ]
   
   #method validate
   [
       (theCounter < 0)
           ? [ #throw Exception new:"Invalid expression". ].
           
       ^ (0 == theCounter).
   ]
   
   #method append : aChar
   [
       aChar =>
           41 ? [ 
               theCounter -= 1. 
           ]
           40 ? [ theCounter += 1 ]
           ! [ theParser evaluate:aChar ].
   ]
   #method Number
       = $self validate
           ? [ theParser Number ]
           ! [ #throw Exception new:"Invalid expression". ].

}

// ---- Parser ----

  1. class Parser : system'routines'BasePattern

{

   #field theToken.
   #field theTopNode.
   #field theState.
   
   #method onBrackets : aChar
   [
       theToken += aChar.
               
       (theToken validate)
         ? [
             theState := %onDigit.
         ].
   ]
   #method onStart : aChar
   [
       aChar =>
            40 ? [ // (
               theToken := SubExpression new.
               theTopNode := theToken.
 
               theState := %onBrackets.
           ]
           45 ? [ // -
               theToken := DifferenceNode new add:(Token new:"0").
               
               theTopNode := theToken.
               
               theState := %onOperator.
           ]
           ! [
               theToken := Token new.
               theTopNode := theToken.
               theState := %onDigit.
               
               $self appendDigit:aChar.                
           ].
   ]
   #method onOperator : aChar
   [
       aChar =>
           40 ? [
               theToken := SubExpression new.
               theTopNode += theToken.
               theState := %onBrackets.
           ]
           ! [
               theToken := Token new.
               theTopNode += theToken.
               theState := %onDigit.
               $self appendDigit:aChar.
           ].
   ]
   #constructor new
   [
       theState := %onStart.
   ]
   #method Number = theTopNode Number.
   #method appendDigit : aChar
   [
       (aChar >= 48) and:(aChar < 58)
       ? [
           theToken += aChar.
       ]
       ! [
           #throw Exception new:"Invalid expression".
       ]
       
   ]
   #method onDigit : aChar
   [
       aChar =>
           40 ? [      // (
               theToken := SubExpression new.
               theTopNode := theToken.
               theState := %onBrackets.
           ]
           42 ? [      // *
               theTopNode := theTopNode + ProductNode new.
               theState := %onOperator.
           ]
           43 ? [      // +
               theTopNode := theTopNode + SummaryNode new.
               theState := %onOperator.
           ]
           45 ? [      // -
               theTopNode := theTopNode + DifferenceNode new.
               theState := %onOperator.
           ]
           47 ?       // /
           [
               theTopNode := theTopNode + FractionNode new.
               theState := %onOperator.
           ]
           ! [
               $self appendDigit:aChar.
           ].
   ]
   #method eval : aChar = $self~theState eval:aChar.

}

  1. symbol program =

[

   #var aText := String new.
   control while:(consoleEx readLine:aText length > 0) &do:
   [
       #var aParser := Parser new.
       consoleEx writeLine:"=" :(aParser foreach:aText Number)
           | ifFailed: 
               [
                   consoleEx writeLine:"Invalid Expression".
               ].
   ].

].</lang>

ELENA VM script

<lang elena>number  ::= $numeric; numeric  ::= "(" sub_expr; numeric  ::= number; factor  ::= number factor_r; factor  ::= "(" sub_expr; sum  ::= "+" factor ; difference  ::= "-" factor ; multiply  ::= "*" numeric; divide  ::= "/" numeric; factor_r  ::= multiply factor_r; factor_r  ::= divide factor_r; factor_r  ::= $eps; expr_r  ::= sum expr_r; expr_r  ::= difference expr_r; expr_r  ::= $eps; neg_r  ::= factor_r expr_r; sub_expr  ::= expression sub_expr_r; sub_expr_r  ::= ")" factor_r; neg_expression  ::= $numeric neg_r; expression  ::= factor expr_r; expression  ::= "-" neg_expression; print  ::= "?" expression; start  ::= print; print => &nil 'program'output $body ^write; multiply => $body ^multiply; divide => $body ^divide; sum => $body ^add; difference => $body ^subtract; neg_expression => 0 $terminal ^subtract $body; number => $terminal $body;</lang>

Factor

<lang factor>USING: accessors kernel locals math math.parser peg.ebnf ; IN: rosetta.arith

TUPLE: operator left right ; TUPLE: add < operator ; C: <add> add TUPLE: sub < operator ; C: sub TUPLE: mul < operator ; C: <mul> mul

TUPLE: div < operator ; C:

div

EBNF: expr-ast spaces = [\n\t ]* digit = [0-9] number = (digit)+ => [[ string>number ]]

value = spaces number:n => n

          | spaces "(" exp:e spaces ")"    => e 

fac = fac:a spaces "*" value:b => [[ a b <mul> ]]

| fac:a spaces "/" value:b => [[ a b
]]
          | value

exp = exp:a spaces "+" fac:b => [[ a b <add> ]]

          | exp:a spaces "-" fac:b         => [[ a b  ]]
          | fac

main = exp:e spaces !(.) => e

EBNF

GENERIC: eval-ast ( ast -- result )

M: number eval-ast ;

recursive-eval ( ast -- left-result right-result )
   [ left>> eval-ast ] [ right>> eval-ast ] bi ;

M: add eval-ast recursive-eval + ; M: sub eval-ast recursive-eval - ; M: mul eval-ast recursive-eval * ; M: div eval-ast recursive-eval / ;

evaluate ( string -- result )
   expr-ast eval-ast ;</lang>

F#

Using FsLex and FsYacc from the F# PowerPack, we implement this with multiple source files:

AbstractSyntaxTree.fs: <lang fsharp>module AbstractSyntaxTree

type Expression =

 | Int    of int 
 | Plus   of Expression * Expression 
 | Minus  of Expression * Expression 
 | Times  of Expression * Expression 
 | Divide of Expression * Expression</lang>

Lexer.fsl: <lang fsharp>{ module Lexer

open Parser // we need the terminal tokens from the Parser

let lexeme = Lexing.LexBuffer<_>.LexemeString }

let intNum = '-'? ['0'-'9']+ let whitespace = ' ' | '\t' let newline = '\n' | '\r' '\n'

rule token = parse

   | intNum     { INT (lexeme lexbuf |> int) }
   | '+'        { PLUS }
   | '-'        { MINUS }
   | '*'        { TIMES }
   | '/'        { DIVIDE }
   | '('        { LPAREN }
   | ')'        { RPAREN }
   | whitespace { token lexbuf }
   | newline    { lexbuf.EndPos <- lexbuf.EndPos.NextLine; token lexbuf }
   | eof        { EOF }
   | _          { failwithf "unrecognized input: '%s'" <| lexeme lexbuf }</lang>

Parser.fsy: <lang fsharp>%{ open AbstractSyntaxTree %}

%start Expr

// terminal tokens %token <int> INT %token PLUS MINUS TIMES DIVIDE LPAREN RPAREN %token EOF

// associativity and precedences %left PLUS MINUS %left TIMES DIVIDE

// return type of Expr %type <Expression> Expr

%%

Expr: INT { Int $1 }

   | Expr PLUS Expr          { Plus ($1, $3) } 
   | Expr MINUS Expr         { Minus ($1, $3) } 
   | Expr TIMES Expr         { Times ($1, $3) } 
   | Expr DIVIDE Expr        { Divide ($1, $3) } 
   | LPAREN Expr RPAREN      { $2 } </lang>

Program.fs: <lang fsharp>open AbstractSyntaxTree open Lexer open Parser

let parse txt =

 txt
 |> Lexing.LexBuffer<_>.FromString
 |> Parser.Expr Lexer.token

let rec eval = function

 | Int i        -> i
 | Plus (a,b)   -> eval a + eval b
 | Minus (a,b)  -> eval a - eval b
 | Times (a,b)  -> eval a * eval b
 | Divide (a,b) -> eval a / eval b

do

 "((11+15)*15)*2-(3)*4*1"
 |> parse 
 |> eval
 |> printfn "%d"</lang>

Go

See Arithmetic Evaluator/Go


Groovy

Solution: <lang groovy>enum Op {

   ADD('+', 2),
   SUBTRACT('-', 2),
   MULTIPLY('*', 1),
   DIVIDE('/', 1);
   
   static {
       ADD.operation = { a, b -> a + b }
       SUBTRACT.operation = { a, b -> a - b }
       MULTIPLY.operation = { a, b -> a * b }
       DIVIDE.operation = { a, b -> a / b }
   }
   
   final String symbol
   final int precedence
   Closure operation
   private Op(String symbol, int precedence) {
       this.symbol = symbol
       this.precedence = precedence
   }
   String toString() { symbol }
   static Op fromSymbol(String symbol) {
       Op.values().find { it.symbol == symbol }
   }

}

interface Expression {

   Number evaluate();

}

class Constant implements Expression {

   Number value
   Constant (Number value) { this.value = value }
   Constant (String str) {
       try { this.value = str as BigInteger }
       catch (e) { this.value = str as BigDecimal }
   }
   Number evaluate() { value }
   String toString() { "${value}" }

}

class Term implements Expression {

   Op op
   Expression left, right
   Number evaluate() { op.operation(left.evaluate(), right.evaluate()) }
   String toString() { "(${op} ${left} ${right})" }

}

void fail(String msg, Closure cond = {true}) {

   if (cond()) throw new IllegalArgumentException("Cannot parse expression: ${msg}")

}

Expression parse(String expr) {

   def tokens = tokenize(expr)
   def elements = groupByParens(tokens, 0)
   parse(elements)

}

List tokenize(String expr) {

   def tokens = []
   def constStr = ""
   def captureConstant = { i ->
       if (constStr) {
           try { tokens << new Constant(constStr) }
           catch (NumberFormatException e) { fail "Invalid constant '${constStr}' near position ${i}" }
           constStr = 
       }
   }
   for(def i = 0; i<expr.size(); i++) {
       def c = expr[i]
       def constSign = c in ['+','-'] && constStr.empty && (tokens.empty || tokens[-1] != ')') 
       def isConstChar = { it in ['.'] + ('0'..'9') || constSign }
       if (c in ([')'] + Op.values()*.symbol) && !constSign) { captureConstant(i) }
       switch (c) {
           case ~/\s/:               break
           case isConstChar:         constStr += c; break
           case Op.values()*.symbol: tokens << Op.fromSymbol(c); break
           case ['(',')']:           tokens << c; break
           default:                  fail "Invalid character '${c}' at position ${i+1}"
       }
   }
   captureConstant(expr.size())
   tokens

}

List groupByParens(List tokens, int depth) {

   def deepness = depth
   def tokenGroups = []
   for (def i = 0; i < tokens.size(); i++) {
       def token = tokens[i]
       switch (token) {
           case '(':
               fail("'(' too close to end of expression") { i+2 > tokens.size() }
               def subGroup = groupByParens(tokens[i+1..-1], depth+1)
               tokenGroups << subGroup[0..-2]
               i += subGroup[-1] + 1
               break
           case ')':
               fail("Unbalanced parens, found extra ')'") { deepness == 0 }
               tokenGroups << i
               return tokenGroups
           default:
               tokenGroups << token
       }
   }
   fail("Unbalanced parens, unclosed groupings at end of expression") { deepness != 0 }
   def n = tokenGroups.size()
   fail("The operand/operator sequence is wrong") { n%2 == 0 }
   (0..<n).each {
       def i = it
       fail("The operand/operator sequence is wrong") { (i%2 == 0) == (tokenGroups[i] instanceof Op) }
   }
   tokenGroups

}

Expression parse(List elements) {

   while (elements.size() > 1) {
       def n = elements.size()
       fail ("The operand/operator sequence is wrong") { n%2 == 0 }
       def groupLoc = (0..<n).find { i -> elements[i] instanceof List }
       if (groupLoc != null) {
           elements[groupLoc] = parse(elements[groupLoc])
           continue
       }
       def opLoc = (0..<n).find { i -> elements[i] instanceof Op && elements[i].precedence == 1 } \
                       ?: (0..<n).find { i -> elements[i] instanceof Op && elements[i].precedence == 2 }
       if (opLoc != null) {
           fail ("Operator out of sequence") { opLoc%2 == 0 }
           def term = new Term(left:elements[opLoc-1], op:elements[opLoc], right:elements[opLoc+1])
           elements[(opLoc-1)..(opLoc+1)] = [term]
           continue
       }
   }
   return elements[0] instanceof List ? parse(elements[0]) : elements[0]

}</lang>

Test: <lang groovy>def testParse = {

   def ex = parse(it)
   print """

Input: ${it} AST: ${ex} value: ${ex.evaluate()} """ }


testParse('1+1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+1/15)/14)/13)/12)/11)/10)/9)/8)/7)/6)/5)/4)/3)/2') assert (parse('1+1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+1/15)/14)/13)/12)/11)/10)/9)/8)/7)/6)/5)/4)/3)/2')

       .evaluate() - Math.E).abs() < 0.0000000000001

testParse('1 + 2*(3 - 2*(3 - 2)*((2 - 4)*5 - 22/(7 + 2*(3 - 1)) - 1)) + 1') testParse('1 - 5 * 2 / 20 + 1') testParse('(1 - 5) * 2 / (20 + 1)') testParse('2 * (3 + ((5) / (7 - 11)))') testParse('(2 + 3) / (10 - 5)') testParse('(1 + 2) * 10 / 100') testParse('(1 + 2 / 2) * (5 + 5)') testParse('2*-3--4+-.25') testParse('2*(-3)-(-4)+(-.25)') testParse('((11+15)*15)*2-(3)*4*1') testParse('((11+15)*15)* 2 + (3) * -4 *1') testParse('(((((1)))))') testParse('-35') println()

try { testParse('((11+15)*1') } catch (e) { println e } try { testParse('((11+15)*1)))') } catch (e) { println e } try { testParse('((11+15)*x)') } catch (e) { println e } try { testParse('+++++') } catch (e) { println e } try { testParse('1 /') } catch (e) { println e } try { testParse('1++') } catch (e) { println e } try { testParse('*1') } catch (e) { println e } try { testParse('/ 1 /') } catch (e) { println e }</lang>

Output:

Input: 1+1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+1/15)/14)/13)/12)/11)/10)/9)/8)/7)/6)/5)/4)/3)/2
AST:   (+ (+ 1 1) (/ (+ 1 (/ (+ 1 (/ (+ 1 (/ (+ 1 (/ (+ 1 (/ (+ 1 (/ (+ 1 (/ (+ 1 (/ (+ 1 (/ (+ 1 (/ (+ 1 (/ (+ 1 (/ (+ 1 (/ 1 15)) 14)) 13)) 12)) 11)) 10)) 9)) 8)) 7)) 6)) 5)) 4)) 3)) 2))
value: 2.7182818284589946

Input: 1 + 2*(3 - 2*(3 - 2)*((2 - 4)*5 - 22/(7 + 2*(3 - 1)) - 1)) + 1
AST:   (+ (+ 1 (* 2 (- 3 (* (* 2 (- 3 2)) (- (- (* (- 2 4) 5) (/ 22 (+ 7 (* 2 (- 3 1))))) 1))))) 1)
value: 60

Input: 1 - 5 * 2 / 20 + 1
AST:   (+ (- 1 (/ (* 5 2) 20)) 1)
value: 1.5

Input: (1 - 5) * 2 / (20 + 1)
AST:   (/ (* (- 1 5) 2) (+ 20 1))
value: -0.3809523810

Input: 2 * (3 + ((5) / (7 - 11)))
AST:   (* 2 (+ 3 (/ 5 (- 7 11))))
value: 3.50

Input: (2 + 3) / (10 - 5)
AST:   (/ (+ 2 3) (- 10 5))
value: 1

Input: (1 + 2) * 10 / 100
AST:   (/ (* (+ 1 2) 10) 100)
value: 0.3

Input: (1 + 2 / 2) * (5 + 5)
AST:   (* (+ 1 (/ 2 2)) (+ 5 5))
value: 20

Input: 2*-3--4+-.25
AST:   (+ (- (* 2 -3) -4) -0.25)
value: -2.25

Input: 2*(-3)-(-4)+(-.25)
AST:   (+ (- (* 2 -3) -4) -0.25)
value: -2.25

Input: ((11+15)*15)*2-(3)*4*1
AST:   (- (* (* (+ 11 15) 15) 2) (* (* 3 4) 1))
value: 768

Input: ((11+15)*15)* 2 + (3) * -4 *1
AST:   (+ (* (* (+ 11 15) 15) 2) (* (* 3 -4) 1))
value: 768

Input: (((((1)))))
AST:   1
value: 1

Input: -35
AST:   -35
value: -35

java.lang.IllegalArgumentException: Cannot parse expression: Unbalanced parens, unclosed groupings at end of expression
java.lang.IllegalArgumentException: Cannot parse expression: Unbalanced parens, found extra ')'
java.lang.IllegalArgumentException: Cannot parse expression: Invalid character 'x' at position 10
java.lang.IllegalArgumentException: Cannot parse expression: Invalid constant '+' near position 1
java.lang.IllegalArgumentException: Cannot parse expression: The operand/operator sequence is wrong
java.lang.IllegalArgumentException: Cannot parse expression: Invalid constant '+' near position 3
java.lang.IllegalArgumentException: Cannot parse expression: The operand/operator sequence is wrong
java.lang.IllegalArgumentException: Cannot parse expression: The operand/operator sequence is wrong

Haskell

<lang haskell>import Text.ParserCombinators.Parsec import Text.ParserCombinators.Parsec.Expr

data Exp = Num Int

        | Add Exp Exp
        | Sub Exp Exp
        | Mul Exp Exp
        | Div Exp Exp

expr = buildExpressionParser table factor

table = [[op "*" (Mul) AssocLeft, op "/" (Div) AssocLeft]

       ,[op "+" (Add) AssocLeft, op "-" (Sub) AssocLeft]]
       where op s f assoc = Infix (do string s; return f) assoc

factor = do char '(' ; x <- expr ; char ')'

            return x 
     <|> do ds <- many1 digit
            return $ Num (read ds)

evaluate (Num x) = fromIntegral x evaluate (Add a b) = (evaluate a) + (evaluate b) evaluate (Sub a b) = (evaluate a) - (evaluate b) evaluate (Mul a b) = (evaluate a) * (evaluate b) evaluate (Div a b) = (evaluate a) `div` (evaluate b)

solution exp = case parse expr [] exp of

                Right expr -> evaluate expr
                Left _ -> error "Did not parse"</lang>

Icon and Unicon

A compact recursive descent parser using Hanson's device. This program

  • handles left and right associativity and different precedences
  • is ready to handle any number of infix operators without adding more functions to handle the precedences
  • accepts integers, reals, and radix constants (e.g. 3r10 is 3 in base 3)
  • currently accepts the Icon operators + - * / % (remainder) and ^ (exponentiation) and unary operators + and -
  • string invocation is used to evaluate binary operators hence other Icon binary operators (including handle multiple character ones) can be easily added
  • uses Icon style type coercion on operands
  • represents the AST as a nested list eliminating unneeded parenthesis
  • Notice that the code looks remarkably like a typical grammar, rather than being an opaque cryptic solution
  • Does not rely on any library to silently solve 1/2 the problem; in fact, this code would probably suit being put into a library almost verbatim

<lang Icon>procedure main() #: simple arithmetical parser / evaluator

  write("Usage: Input expression = Abstract Syntax Tree = Value, ^Z to end.")
  repeat {
     writes("Input expression : ")
     if not writes(line := read()) then break
     if map(line) ? { (x := E()) & pos(0) } then
        write(" = ", showAST(x), " = ", evalAST(x))
     else
        write(" rejected")
  }

end

procedure evalAST(X) #: return the evaluated AST

  local x
  if type(X) == "list" then {
     x := evalAST(get(X))
     while x := get(X)(x, evalAST(get(X) | stop("Malformed AST.")))
  }
  return \x | X

end

procedure showAST(X) #: return a string representing the AST

  local x,s
  s := ""
  every x := !X do
     s ||:= if type(x) == "list" then "(" || showAST(x) || ")" else x
  return s

end

  1. When you're writing a big parser, a few utility recognisers are very useful

procedure ws() # skip optional whitespace

  suspend tab(many(' \t')) | ""

end

procedure digits()

  suspend tab(many(&digits))

end

procedure radixNum(r) # r sets the radix

  static chars
  initial chars := &digits || &lcase
  suspend tab(many(chars[1 +: r]))

end

global token record HansonsDevice(precedence,associativity)

procedure opinfo()

  static O
  initial {
     O := HansonsDevice([], table(&null))                         # parsing table
     put(O.precedence, ["+", "-"], ["*", "/", "%"], ["^"])        # Lowest to Highest precedence
     every O.associativity[!!O.precedence] := 1                   # default to 1 for LEFT associativity
     O.associativity["^"] := 0                                    # RIGHT associativity
  }
  return O

end

procedure E(k) #: Expression

  local lex, pL
  static opT
  initial opT := opinfo()
  /k := 1
  lex := []
  if not (pL := opT.precedence[k]) then                        # this op at this level?
     put(lex, F())
  else {
     put(lex, E(k + 1))
     while ws() & put(lex, token := =!pL) do
        put(lex, E(k + opT.associativity[token]))
  }
  suspend if *lex = 1 then lex[1] else lex                     # strip useless []

end

procedure F() #: Factor

  suspend ws() & (    # skip optional whitespace, and ...
     (="+" & F())              |          # unary + and a Factor, or ...
     (="-" || V())             |          # unary - and a Value, or ...
     (="-" & [-1, "*", F()])   |          # unary - and a Factor, or ...
    2(="(", E(), ws(), =")")   |          # parenthesized subexpression, or ...
      V()                                 # just a value
  )

end

procedure V() #: Value

  local r
  suspend ws() & numeric(    # skip optional whitespace, and ...
      =(r := 1 to 36) || ="r" || radixNum(r)             |     # N-based number, or ...
      digits() || (="." || digits() | "") || exponent()        # plain number with optional fraction
  )

end

procedure exponent()

  suspend tab(any('eE')) || =("+" | "-" | "") || digits() | ""

end</lang>

Sample Output:

#matheval.exe 

Usage: Input expression = Abstract Syntax Tree = Value, ^Z to end.
Input expression : 1
1 = 1 = 1
Input expression : -1
-1 = -1 = -1
Input expression : (-15/2.0)
(-15/2.0) = -15/2.0 = -7.5
Input expression : -(15/2.0)
-(15/2.0) = -1*(15/2.0) = -7.5
Input expression : 2+(3-4)*6/5^2^3%3
2+(3-4)*6/5^2^3%3 = 2+((3-4)*6/(5^(2^3))%3) = 2
Input expression : 1+2+3+4
1+2+3+4 = 1+2+3+4 = 10
Input expression : ((((2))))+3*5
((((2))))+3*5 = 2+(3*5) = 17
Input expression : 3r10*3
3r10*3 = 3r10*3 = 9
Input expression : ^Z

J

Note that once you get beyond a few basic arithmetic operations, what we commonly call "mathematical precedence" stops making sense, and primary value for this kind of precedence has been that it allows polynomials to be expressed simply (but expressing polynomials as a sequence of coefficients, one for each exponent, is even simpler).

Nevertheless, this task deals only with simple arithmetic, so this kind of precedence is an arguably appropriate choice for this task.

The implementation here uses a shift/reduce parser to build a tree structure which J happens to support for evaluation:

<lang j>parse=:parse_parser_ eval=:monad define

 'gerund structure'=:y
 gerund@.structure

)

coclass 'parser' classify=: '$()*/+-'&(((>:@#@[ # 2:) #: 2 ^ i.)&;:)

rules=: patterns=: ,"0 assert 1

addrule=: dyad define

  rules=: rules,;:x
  patterns=: patterns,+./@classify"1 y

)

'Term' addrule '$()', '0', '+-',: '0' 'Factor' addrule '$()+-', '0', '*/',: '0' 'Parens' addrule '(', '*/+-0', ')',: ')*/+-0$' rules=: rules,;:'Move'

buildTree=: monad define

 words=: ;:'$',y
 queue=: classify '$',y
 stack=: classify '$$$$'
 tokens=: ]&.>i.#words
 tree=: 
 while.(#queue)+.6<#stack do.
   rule=: rules {~ i.&1 patterns (*./"1)@:(+./"1) .(*."1)4{.stack
   rule`:6
 end.
 'syntax' assert 1 0 1 1 1 1 -: {:"1 stack
 gerund=: literal&.> (<,'%') (I. words=<,'/')} words
 gerund;1{tree

)

literal=:monad define ::]

 ".'t=.',y
 5!:1<'t'

)

Term=: Factor=: monad define

 stack=: ({.stack),(classify '0'),4}.stack
 tree=: ({.tree),(<1 2 3{tree),4}.tree

)

Parens=: monad define

 stack=: (1{stack),3}.stack
 tree=: (1{tree),3}.tree

)

Move=: monad define

 'syntax' assert 0<#queue
 stack=: ({:queue),stack
 queue=: }:queue
 tree=: ({:tokens),tree
 tokens=: }:tokens

)

parse=:monad define

 tmp=: conew 'parser'
 r=: buildTree__tmp y
 coerase tmp
 r

)</lang> example use: <lang j> eval parse '1+2*3/(4-5+6)' 2.2</lang>

You can also display the syntax tree, for example: <lang j> parse '2*3/(4-5)' ┌─────────────────────────────────────────────────────┬───────────────────┐ │┌───┬───────┬───┬───────┬───┬─┬───────┬───┬───────┬─┐│┌───────┬─┬───────┐│ ││┌─┐│┌─────┐│┌─┐│┌─────┐│┌─┐│(│┌─────┐│┌─┐│┌─────┐│)│││┌─┬─┬─┐│4│┌─┬─┬─┐││ │││$│││┌─┬─┐│││*│││┌─┬─┐│││%││ ││┌─┬─┐│││-│││┌─┬─┐││ ││││1│2│3││ ││6│7│8│││ ││└─┘│││0│2│││└─┘│││0│3│││└─┘│ │││0│4│││└─┘│││0│5│││ │││└─┴─┴─┘│ │└─┴─┴─┘││ ││ ││└─┴─┘││ ││└─┴─┘││ │ ││└─┴─┘││ ││└─┴─┘││ ││└───────┴─┴───────┘│ ││ │└─────┘│ │└─────┘│ │ │└─────┘│ │└─────┘│ ││ │ │└───┴───────┴───┴───────┴───┴─┴───────┴───┴───────┴─┘│ │ └─────────────────────────────────────────────────────┴───────────────────┘</lang>

At the top level, the first box is a list of terminals, and the second box represents their parsed structure within the source sentence, with numbers indexing the respective terminals.

Java

Uses the BigRational class to handle arbitrary-precision numbers (rational numbers since basic arithmetic will result in rational values).

<lang java>import java.util.Stack;

public class ArithmeticEvaluation {

 public static enum Parentheses { LEFT, RIGHT }
 
 public static enum BinaryOperator
 {
   ADD('+', 1) {
     public BigRational eval(BigRational leftValue, BigRational rightValue) {  return leftValue.add(rightValue);  }
   },
   SUB('-', 1) {
     public BigRational eval(BigRational leftValue, BigRational rightValue) {  return leftValue.subtract(rightValue);  }
   },
   MUL('*', 2) {
     public BigRational eval(BigRational leftValue, BigRational rightValue) {  return leftValue.multiply(rightValue);  }
   },
   DIV('/', 2) {
     public BigRational eval(BigRational leftValue, BigRational rightValue) {  return leftValue.divide(rightValue);  }
   };
   
   public final char symbol;
   public final int precedence;
   
   BinaryOperator(char symbol, int precedence)
   {
     this.symbol = symbol;
     this.precedence = precedence;
   }
   
   public abstract BigRational eval(BigRational leftValue, BigRational rightValue);
 }
 
 public static class BinaryExpression
 {
   public Object leftOperand = null;
   public BinaryOperator operator = null;
   public Object rightOperand = null;
   
   public BinaryExpression(Object leftOperand, BinaryOperator operator, Object rightOperand)
   {
     this.leftOperand = leftOperand;
     this.operator = operator;
     this.rightOperand = rightOperand;
   }
   
   public BigRational eval()
   {
     BigRational leftValue = (leftOperand instanceof BinaryExpression) ? ((BinaryExpression)leftOperand).eval() : (BigRational)leftOperand;
     BigRational rightValue = (rightOperand instanceof BinaryExpression) ? ((BinaryExpression)rightOperand).eval() : (BigRational)rightOperand;
     return operator.eval(leftValue, rightValue);
   }
   
   public String toString()
   {  return "(" + leftOperand + " " + operator.symbol + " " + rightOperand + ")";  }
 }
 
 public static void createNewOperand(BinaryOperator operator, Stack<Object> operands)
 {
   Object rightOperand = operands.pop();
   operands.push(new BinaryExpression(operands.pop(), operator, rightOperand));
   return;
 }
 
 public static Object createExpression(String inputString)
 {
   int curIndex = 0;
   boolean afterOperand = false;
   Stack<Object> operands = new Stack<Object>();
   Stack<Object> operators = new Stack<Object>();

inputStringLoop:

   while (curIndex < inputString.length())
   {
     int startIndex = curIndex;
     char c = inputString.charAt(curIndex++);
     if (Character.isWhitespace(c))
       continue;
     if (afterOperand)
     {
       if (c == ')')
       {
         Object operator = null;
         while (!operators.isEmpty() && ((operator = operators.pop()) != Parentheses.LEFT))
           createNewOperand((BinaryOperator)operator, operands);
         continue;
       }
       afterOperand = false;
       for (BinaryOperator operator : BinaryOperator.values())
       {
         if (c == operator.symbol)
         {
           while (!operators.isEmpty() && (operators.peek() != Parentheses.LEFT) && (((BinaryOperator)operators.peek()).precedence >= operator.precedence))
             createNewOperand((BinaryOperator)operators.pop(), operands);
           operators.push(operator);
           continue inputStringLoop;
         }
       }
       throw new IllegalArgumentException();
     }
     if (c == '(')
     {
       operators.push(Parentheses.LEFT);
       continue;
     }
     afterOperand = true;
     while (curIndex < inputString.length())
     {
       c = inputString.charAt(curIndex);
       if (((c < '0') || (c > '9')) && (c != '.'))
         break;
       curIndex++;
     }
     operands.push(BigRational.valueOf(inputString.substring(startIndex, curIndex)));
   }
   
   while (!operators.isEmpty())
   {
     Object operator = operators.pop();
     if (operator == Parentheses.LEFT)
       throw new IllegalArgumentException();
     createNewOperand((BinaryOperator)operator, operands);
   }
   Object expression = operands.pop();
   if (!operands.isEmpty())
     throw new IllegalArgumentException();
   return expression;
 }
 
 public static void main(String[] args)
 {
   String[] testExpressions = { "2+3", "2+3/4", "2*3-4", "2*(3+4)+5/6", "2 * (3 + (4 * 5 + (6 * 7) * 8) - 9) * 10", "2*-3--4+-.25" };
   for (String testExpression : testExpressions)
   {
     Object expression = createExpression(testExpression);
     System.out.println("Input: \"" + testExpression + "\", AST: \"" + expression + "\", eval=" + (expression instanceof BinaryExpression ? ((BinaryExpression)expression).eval() : expression));
   }
 }

}</lang>

Output:

Input: "2+3", AST: "(2 + 3)", eval=5
Input: "2+3/4", AST: "(2 + (3 / 4))", eval=11/4
Input: "2*3-4", AST: "((2 * 3) - 4)", eval=2
Input: "2*(3+4)+5/6", AST: "((2 * (3 + 4)) + (5 / 6))", eval=89/6
Input: "2 * (3 + (4 * 5 + (6 * 7) * 8) - 9) * 10", AST: "((2 * ((3 + ((4 * 5) + ((6 * 7) * 8))) - 9)) * 10)", eval=7000
Input: "2*-3--4+-.25", AST: "(((2 * -3) - -4) + -1/4)", eval=-9/4

JavaScript

Numbers must have a digit before the decimal point, so 0.1 not .1.

Spaces are removed, expressions like 5--1 are treated as 5 - -1

<lang javascript>function evalArithmeticExp(s) {

 s = s.replace(/\s/g,).replace(/^\+/,);
 var rePara = /\([^\(\)]*\)/;
 var exp = s.match(rePara);
 while (exp = s.match(rePara)) {
   s = s.replace(exp[0], evalExp(exp[0]));
 }
 return evalExp(s);
 
 function evalExp(s) {
   s = s.replace(/[\(\)]/g,);
   var reMD = /\d+\.?\d*\s*[\*\/]\s*[+-]?\d+\.?\d*/;
   var reM = /\*/;
   var reAS = /-?\d+\.?\d*\s*[\+-]\s*[+-]?\d+\.?\d*/;
   var reA  = /\d\+/;
   var exp;
   while (exp = s.match(reMD)) {
     s = exp[0].match(reM)? s.replace(exp[0], multiply(exp[0])) : s.replace(exp[0], divide(exp[0]));
   }
   
   while (exp = s.match(reAS)) {
     s = exp[0].match(reA)? s.replace(exp[0], add(exp[0])) : s.replace(exp[0], subtract(exp[0]));
   }
   
   return  + s;
   function multiply(s, b) {
     b = s.split('*');
     return b[0] * b[1];
   }
   
   function divide(s, b) {
     b = s.split('/');
     return b[0] / b[1];
   }
   
   function add(s, b) {
     s = s.replace(/^\+/,).replace(/\++/,'+');
     b = s.split('+');
     return Number(b[0]) + Number(b[1]);
   }
   
   function subtract(s, b) {
     s = s.replace(/\+-|-\+/g,'-');
     if (s.match(/--/)) {
       return add(s.replace(/--/,'+'));
     }
     b = s.split('-');
     return b.length == 3? -1 * b[1] - b[2] : b[0] - b[1];
   }
 }

}</lang>


Sample output:

evalArithmeticExp('2+3') // 5
evalArithmeticExp('2+3/4') // 2.75
evalArithmeticExp('2*3-4') // 2
evalArithmeticExp('2*(3+4)+5/6') // 14.833333333333334
evalArithmeticExp('2 * (3 + (4 * 5 + (6 * 7) * 8) - 9) * 10') // 7000
evalArithmeticExp('2*-3--4+-0.25' // -2.25

Julia

Julia's homoiconic nature and strong metaprogramming facilities make AST/Expression parsing and creation as accessible and programmatic as other language features <lang julia>julia> expr="2 * (3 -1) + 2 * 5" "2 * (3 -1) + 2 * 5"

julia> parsed = parse(expr) #Julia provides low-level access to language parser for AST/Expr creation

(+(*(2,-(3,1)),*(2,5)))

julia> t = typeof(parsed) Expr

julia> names(t) #shows type fields (:head,:args,:typ)

julia> parsed.args #Inspect our 'Expr' type innards 3-element Any Array:

:+            
:(*(2,-(3,1)))
:(*(2,5))     

julia> typeof(parsed.args[2]) #'Expr' types can nest Expr

julia> parsed.args[2].args 3-element Any Array:

 :*       
2         
 :(-(3,1))

julia> parsed.args[2].args[3].args #Will nest until lowest level of AST 3-element Any Array:

 :-
3  
1  

julia> eval(parsed) 14

julia> eval(parse("1 - 5 * 2 / 20 + 1")) 1.5

julia> eval(parse("2 * (3 + ((5) / (7 - 11)))")) 3.5</lang>

Lua

<lang lua>require"lpeg"

P, R, C, S, V = lpeg.P, lpeg.R, lpeg.C, lpeg.S, lpeg.V

--matches arithmetic expressions and returns a syntax tree expression = P{"expr"; ws = P" "^0, number = C(R"09"^1) * V"ws", lp = "(" * V"ws", rp = ")" * V"ws", sym = C(S"+-*/") * V"ws", more = (V"sym" * V"expr")^0, expr = V"number" * V"more" + V"lp" * lpeg.Ct(V"expr" * V"more") * V"rp" * V"more"}

--evaluates a tree function eval(expr)

 --empty
 if type(expr) == "string" or type(expr) == "number" then return expr + 0 end
 
 --arithmetic functions
 tb = {["+"] = function(a,b) return eval(a) + eval(b) end,

["-"] = function(a,b) return eval(a) - eval(b) end, ["*"] = function(a,b) return eval(a) * eval(b) end, ["/"] = function(a,b) return eval(a) / eval(b) end}

 --you could add ^ or other operators to this pretty easily
 for i, v in ipairs{"*/", "+-"} do
   for s, u in ipairs(expr) do

local k = type(u) == "string" and C(S(v)):match(u) if k then expr[s-1] = tb[k](expr[s-1],expr[s+1]) table.remove(expr, s) table.remove(expr, s) end end

 end
 return expr[1]

end

print(eval{expression:match(io.read())})</lang>

Liberty BASIC

<lang lb> '[RC] Arithmetic evaluation.bas 'Buld the tree (with linked nodes, in array 'cause LB has no pointers) 'applying shunting yard algorythm. 'Then evaluate tree

global stack$ 'operator/brakets stack stack$=""

maxStack = 100 dim stack(maxStack) 'nodes stack global SP 'stack pointer SP = 0

'------------------- global maxNode,curFree global FirstOp,SecondOp,isNumber,NodeCont global opList$ opList$ = "+-*/^"

maxNode=100 FirstOp=1 'pointers to other nodes; 0 means no pointer SecondOp=2 isNumber=3 'like, 1 is number, 0 is operator NodeCont=4 'number if isNumber; or mid$("+-*/^", i, 1) for 1..5 operator

dim node(NodeCont, maxNode) 'will be used from 1, 0 plays null pointer (no link)

curFree=1 'first free node '-------------------

in$ = " 1 + 2 ^ 3 * 4 - 12 / 6 " print "Input: " print in$

'read tokens token$ = "#" while 1

   i=i+1
   token$ = word$(in$, i)
   if token$ = "" then i=i-1: exit while
   select case
   case token$ = "("
       'If the token is a left parenthesis, then push it onto the stack.
       call stack.push token$
   case token$ = ")"
       'If the token is a right parenthesis:
       'Until the token at the top of the stack is a left parenthesis, pop operators off the stack onto the output queue.
       'Pop the left parenthesis from the stack, but not onto the output queue.
       'If the stack runs out without finding a left parenthesis, then there are mismatched parentheses.
       while stack.peek$() <> "("
           'if stack is empty
           if stack$="" then print "Error: no matching '(' for token ";i: end
           'add operator node to tree
           child2=node.pop()
           child1=node.pop()
           call node.push addOpNode(child1,child2,stack.pop$())
       wend
       discard$=stack.pop$()   'discard "("
   case isOperator(token$)
       'If the token is an operator, o1, then:
       'while there is an operator token, o2, at the top of the stack, and
       'either o1 is left-associative and its precedence is equal to that of o2,
       'or o1 has precedence less than that of o2,
       '   pop o2 off the stack, onto the output queue;
       'push o1 onto the stack
       op1$=token$
       while(isOperator(stack.peek$()))
           op2$=stack.peek$()
           if (op2$<>"^" and precedence(op1$) = precedence(op2$)) _
               OR (precedence(op1$) < precedence(op2$)) then
               '"^" is the only right-associative operator
               'add operator node to tree
               child2=node.pop()
               child1=node.pop()
               call node.push addOpNode(child1,child2,stack.pop$())
           else
               exit while
           end if
       wend
       call stack.push op1$
   case else   'number
   'actually, wrohg operator could end up here, like say %
       'If the token is a number, then
       'add leaf node to tree (number)
       call node.push addNumNode(val(token$))
   end select

wend

'When there are no more tokens to read: 'While there are still operator tokens in the stack: ' If the operator token on the top of the stack is a parenthesis, then there are mismatched parentheses. ' Pop the operator onto the output queue. while stack$<>""

   if stack.peek$() = "(" then print "no matching ')'": end
   'add operator node to tree
   child2=node.pop()
   child1=node.pop()
   call node.push addOpNode(child1,child2,stack.pop$())

wend

root = node.pop() 'call dumpNodes print "Tree:" call drawTree root, 1, 0, 3 locate 1, 10 print "Result: ";evaluate(root)

end

'------------------------------------------ function isOperator(op$)

   isOperator = instr(opList$, op$)<>0 AND len(op$)=1

end function

function precedence(op$)

   if isOperator(op$) then
       precedence = 1 _
           + (instr("+-*/^", op$)<>0) _
           + (instr("*/^", op$)<>0) _
           + (instr("^", op$)<>0)
   end if

end function

'------------------------------------------ sub stack.push s$

   stack$=s$+"|"+stack$ 

end sub

function stack.pop$()

   'it does return empty on empty stack or queue
   stack.pop$=word$(stack$,1,"|")
   stack$=mid$(stack$,instr(stack$,"|")+1)

end function

function stack.peek$()

   'it does return empty on empty stack or queue
   stack.peek$=word$(stack$,1,"|")

end function

'--------------------------------------- sub node.push s

   stack(SP)=s
   SP=SP+1

end sub

function node.pop()

   'it does return -999999 on empty stack
   if SP<1 then pop=-999999: exit function
   SP=SP-1
   node.pop=stack(SP)

end function

'======================================= sub dumpNodes

   for i = 1 to curFree-1
       print i,
       for j = 1 to 4
           print node(j, i),
       next
       print
   next
   print

end sub

function evaluate(node)

   if node=0 then exit function
   if node(isNumber, node) then
       evaluate = node(NodeCont, node)
       exit function
   end if
   'else operator
   op1 = evaluate(node(FirstOp, node))
   op2 = evaluate(node(SecondOp, node))
   select case node(NodeCont, node)    'opList$, "+-*/^"
   case 1
       evaluate = op1+op2
   case 2
       evaluate = op1-op2
   case 3
       evaluate = op1*op2
   case 4
       evaluate = op1/op2
   case 5
       evaluate = op1^op2
   end select

end function

sub drawTree node, level, leftRight, offsetY

   if node=0 then exit sub
   call drawTree node(FirstOp, node), level+1, leftRight-1/2^level, offsetY
   'print node
   'count on 80 char maiwin
   x = 40*(1+leftRight)
   y = level+offsetY
   locate x, y
   'print  x, y,">";
   if node(isNumber, node) then
       print node(NodeCont, node)
   else
       print  mid$(opList$, node(NodeCont, node),1)
   end if
   call drawTree node(SecondOp, node), level+1, leftRight+1/2^level, offsetY

end sub

function addNumNode(num) 'returns new node

   newNode=curFree
   curFree=curFree+1
   node(isNumber,newNode)=1
   node(NodeCont,newNode)=num
   addNumNode = newNode

end function

function addOpNode(firstChild, secondChild, op$) 'returns new node 'FirstOrSecond ignored if parent is 0

   newNode=curFree
   curFree=curFree+1
   node(isNumber,newNode)=0
   node(NodeCont,newNode)=instr(opList$, op$)
   node(FirstOp,newNode)=firstChild
   node(SecondOp,newNode)=secondChild
   addOpNode = newNode

end function </lang>

Output:
Input:
 1 + 2 ^ 3 * 4 - 12 / 6
Tree:
                                       -
                   +                                       /
         1                   *                   12                  6
                        ^         4
                     2    3

Result: 31

Mathematica

<lang Mathematica>(*parsing:*) parse[string_] :=

Module[{e}, 
 StringCases[string, 
    "+" | "-" | "*" | "/" | "(" | ")" | 
     DigitCharacter ..] //. {a_String?DigitQ :> 
     e[ToExpression@a], {x___, PatternSequence["(", a_e, ")"], 
      y___} :> {x, a, 
      y}, {x : 
       PatternSequence[] | 
        PatternSequence[___, "(" | "+" | "-" | "*" | "/"], 
      PatternSequence[op : "+" | "-", a_e], y___} :> {x, e[op, a], 
      y}, {x : 
       PatternSequence[] | PatternSequence[___, "(" | "+" | "-"], 
      PatternSequence[a_e, op : "*" | "/", b_e], y___} :> {x, 
      e[op, a, b], 
      y}, {x : 
       PatternSequence[] | PatternSequence[___, "(" | "+" | "-"], 
      PatternSequence[a_e, b_e], y___} :> {x, e["*", a, b], 
      y}, {x : PatternSequence[] | PatternSequence[___, "("], 
      PatternSequence[a_e, op : "+" | "-", b_e], 
      y : PatternSequence[] | 
        PatternSequence[")" | "+" | "-", ___]} :> {x, e[op, a, b], 
      y}} //. {e -> List, {a_Integer} :> a, {a_List} :> a}]

(*evaluation*) evaluate[a_Integer] := a; evaluate[{"+", a_}] := evaluate[a]; evaluate[{"-", a_}] := -evaluate[a]; evaluate[{"+", a_, b_}] := evaluate[a] + evaluate[b]; evaluate[{"-", a_, b_}] := evaluate[a] - evaluate[b]; evaluate[{"*", a_, b_}] := evaluate[a]*evaluate[b]; evaluate[{"/", a_, b_}] := evaluate[a]/evaluate[b]; evaluate[string_String] := evaluate[parse[string]]</lang>

Example use: <lang Mathematica>parse["-1+2(3+4*-5/6)"] evaluate["-1+2(3+4*-5/6)"]</lang>

Output:

{"+", {"-", 1}, {"*", 2, {"-", 3, {"/", {"*", 4, {"-", 5}}, 6}}}}
35/3

OCaml

<lang ocaml>type expression =

 | Const of float
 | Sum  of expression * expression   (* e1 + e2 *)
 | Diff of expression * expression   (* e1 - e2 *)
 | Prod of expression * expression   (* e1 * e2 *)
 | Quot of expression * expression   (* e1 / e2 *)

let rec eval = function

 | Const c -> c
 | Sum (f, g) -> eval f +. eval g
 | Diff(f, g) -> eval f -. eval g
 | Prod(f, g) -> eval f *. eval g
 | Quot(f, g) -> eval f /. eval g

open Genlex

let lexer = make_lexer ["("; ")"; "+"; "-"; "*"; "/"]

let rec parse_expr = parser

    [< e1 = parse_mult; e = parse_more_adds e1 >] -> e
and parse_more_adds e1 = parser
    [< 'Kwd "+"; e2 = parse_mult; e = parse_more_adds (Sum(e1, e2)) >] -> e
  | [< 'Kwd "-"; e2 = parse_mult; e = parse_more_adds (Diff(e1, e2)) >] -> e
  | [< >] -> e1
and parse_mult = parser
    [< e1 = parse_simple; e = parse_more_mults e1 >] -> e
and parse_more_mults e1 = parser
    [< 'Kwd "*"; e2 = parse_simple; e = parse_more_mults (Prod(e1, e2)) >] -> e
  | [< 'Kwd "/"; e2 = parse_simple; e = parse_more_mults (Quot(e1, e2)) >] -> e
  | [< >] -> e1
and parse_simple = parser
  | [< 'Int i >] -> Const(float i)
  | [< 'Float f >] -> Const f
  | [< 'Kwd "("; e = parse_expr; 'Kwd ")" >] -> e


let parse_expression = parser [< e = parse_expr; _ = Stream.empty >] -> e

let read_expression s = parse_expression(lexer(Stream.of_string s))</lang>

Using the function read_expression in an interactive loop:

<lang ocaml>let () =

 while true do
   print_string "Expression: ";
   let str = read_line() in
   if str = "q" then exit 0;
   let expr = read_expression str in
   let res = eval expr in
   Printf.printf " = %g\n%!" res;
 done</lang>

Compile with:

ocamlopt -pp camlp4o arith_eval.ml -o arith_eval.opt

ooRexx

<lang ooRexx> expressions = .array~of("2+3", "2+3/4", "2*3-4", "2*(3+4)+5/6", "2 * (3 + (4 * 5 + (6 * 7) * 8) - 9) * 10", "2*-3--4+-.25") loop input over expressions

   expression = createExpression(input)
   if expression \= .nil then
       say 'Expression "'input'" parses to "'expression~string'" and evaluates to "'expression~evaluate'"'

end


-- create an executable expression from the input, printing out any -- errors if they are raised.

routine createExpression
 use arg inputString

-- signal on syntax

 return .ExpressionParser~parseExpression(inputString)

syntax:

  condition = condition('o')
  say condition~errorText
  say condition~message
  return .nil


-- a base class for tree nodes in the tree -- all nodes return some sort of value. This can be constant, -- or the result of additional evaluations

class evaluatornode

-- all evaluation is done here

method evaluate abstract

-- node for numeric values in the tree

class constant
method init
 expose value
 use arg value
method evaluate
 expose value
 return value
method string
 expose value
 return value

-- node for a parenthetical group on the tree

class parens
method init
 expose subexpression
 use arg subexpression
method evaluate
 expose subexpression
 return subexpression~evaluate
method string
 expose subexpression
 return "("subexpression~string")"

-- base class for binary operators

class binaryoperator
method init
 expose left right
 -- the left and right sides are set after the left and right sides have
 -- been resolved.
 left = .nil
 right = .nil

-- base operation

method evaluate
 expose left right
 return self~operation(left~evaluate, right~evaluate)

-- the actual operation of the node

method operation abstract
method symbol abstract
method precedence abstract

-- display an operator as a string value

method string
 expose left right
 return '('left~string self~symbol right~string')'
attribute left
attribute right
class addoperator subclass binaryoperator
method operation
 use arg left, right
 return left + right
method symbol
 return "+"
method precedence
 return 1
class subtractoperator subclass binaryoperator
method operation
 use arg left, right
 return left - right
method symbol
 return "-"
method precedence
 return 1
class multiplyoperator subclass binaryoperator
method operation
 use arg left, right
 return left * right
method symbol
 return "*"
method precedence
 return 2
class divideoperator subclass binaryoperator
method operation
 use arg left, right
 return left / right
method symbol
 return "/"
method precedence
 return 2

-- a class to parse the expression and build an evaluation tree

class expressionParser

-- create a resolved operand from an operator instance and the top -- two entries on the operand stack.

method createNewOperand class
 use strict arg operator, operands
 -- the operands are a stack, so they are in inverse order current
 operator~right = operands~pull
 operator~left = operands~pull
 -- this goes on the top of the stack now
 operands~push(operator)
method parseExpression class
 use strict arg inputString
 -- stacks for managing the operands and pending operators
 operands = .queue~new
 operators = .queue~new
 -- this flags what sort of item we expect to find at the current
 -- location
 afterOperand = .false
 loop currentIndex = 1 to inputString~length
     char = inputString~subChar(currentIndex)
     -- skip over whitespace
     if char == ' ' then iterate currentIndex
     -- If the last thing we parsed was an operand, then
     -- we expect to see either a closing paren or an
     -- operator to appear here
     if afterOperand then do
         if char == ')' then do
             loop while \operators~isempty
                 operator = operators~pull
                 -- if we find the opening paren, replace the
                 -- top operand with a paren group wrapper
                 -- and stop popping items
                 if operator == '(' then do
                    operands~push(.parens~new(operands~pull))
                    leave
                 end
                 -- collapse the operator stack a bit
                 self~createNewOperand(operator, operands)
             end
             -- done with this character
             iterate currentIndex
         end
         afterOperand = .false
         operator = .nil
         if char == "+" then operator = .addoperator~new
         else if char == "-" then operator = .subtractoperator~new
         else if char == "*" then operator = .multiplyoperator~new
         else if char == "/" then operator = .divideoperator~new
         if operator \= .nil then do
             loop while \operators~isEmpty
                 top = operators~peek
                 -- start of a paren group stops the popping
                 if top == '(' then leave
                 -- or the top operator has a lower precedence
                 if top~precedence < operator~precedence then leave
                 -- process this pending one
                 self~createNewOperand(operators~pull, operands)
             end
             -- this new operator is now top of the stack
             operators~push(operator)
             -- and back to the top
             iterate currentIndex
         end
         raise syntax 98.900 array("Invalid expression character" char)
     end
     -- if we've hit an open paren, add this to the operator stack
     -- as a phony operator
     if char == '(' then do
         operators~push('(')
         iterate currentIndex
     end
     -- not an operator, so we have an operand of some type
     afterOperand = .true
     startindex = currentIndex
     -- allow a leading minus sign on this
     if inputString~subchar(currentIndex) == '-' then
         currentIndex += 1
     -- now scan for the end of numbers
     loop while currentIndex <= inputString~length
         -- exit for any non-numeric value
         if \inputString~matchChar(currentIndex, "0123456789.") then leave
         currentIndex += 1
     end
     -- extract the string value
     operand = inputString~substr(startIndex, currentIndex - startIndex)
     if \operand~datatype('Number') then
         raise syntax 98.900 array("Invalid numeric operand '"operand"'")
     -- back this up to the last valid character
     currentIndex -= 1
     -- add this to the operand stack as a tree element that returns a constant
     operands~push(.constant~new(operand))
 end
 loop while \operators~isEmpty
     operator = operators~pull
     if operator == '(' then
         raise syntax 98.900 array("Missing closing ')' in expression")
     self~createNewOperand(operator, operands)
 end
 -- our entire expression should be the top of the expression tree
 expression = operands~pull
 if \operands~isEmpty then
     raise syntax 98.900 array("Invalid expression")
 return expression

</lang> Output:

Expression "2+3" parses to "(2 + 3)" and evaluates to "5"
Expression "2+3/4" parses to "(2 + (3 / 4))" and evaluates to "2.75"
Expression "2*3-4" parses to "((2 * 3) - 4)" and evaluates to "2"
Expression "2*(3+4)+5/6" parses to "((2 * ((3 + 4))) + (5 / 6))" and evaluates to "14.8333333"
Expression "2 * (3 + (4 * 5 + (6 * 7) * 8) - 9) * 10" parses to "((2 * (((3 + (((4 * 5) + (((6 * 7)) * 8)))) - 9))) * 10)" and evaluates to 7000"
Expression "2*-3--4+-.25" parses to "(((2 * -3) - -4) + -.25)" and evaluates to "-2.25"

Oz

We can create a simple, but slow parser using logic programming. Every procedure reads the input characters from X0 and returns the remaining characters in X. The AST is returned as the regular return value.

The Do procedure automatically threads the input state through a sequence of procedure calls.

<lang oz>declare

 fun {Expr X0 ?X}
    choice
       [L _ R] = {Do [Term &+ Expr] X0 ?X} in add(L R)
    [] [L _ R] = {Do [Term &- Expr] X0 ?X} in sub(L R)
    [] {Term X0 X}
    end
 end
 fun {Term X0 ?X}
    choice
       [L _ R] = {Do [Factor &* Term] X0 ?X} in mul(L R)
    [] [L _ R] = {Do [Factor &/ Term] X0 ?X} in 'div'(L R)
    [] {Factor X0 X}
    end
 end
 fun {Factor X0 ?X}
    choice {Parens Expr X0 X}
    [] {Number X0 X}
    end
 end
 fun {Number X0 X}
    Ds = {Many1 Digit X0 X}
 in
    num(Ds)
 end
 fun {Digit X0 ?X}
    D|!X = X0
 in
    D = choice &0 [] &1 [] &2 [] &3 [] &4 [] &5 [] &6 [] &7 [] &8 [] &9 end 
 end
 fun {Many1 Rule X0 ?X}
    choice [{Rule X0 X}]
    [] X1 in {Rule X0 X1}|{Many1 Rule X1 X}
    end
 end
 fun {Parens Rule X0 ?X}
    [_ R _] = {Do [&( Rule &)] X0 X}
 in
    R
 end
 fun {Do Rules X0 ?X}
    Res#Xn = {FoldL Rules
              fun {$ Res#Xi Rule}
                 if {Char.is Rule} then
                    !Rule|X2 = Xi
                 in
                    (Rule|Res) # X2
                 elseif {Procedure.is Rule} then
                    X2 in
                    ({Rule Xi X2}|Res) # X2
                 end
              end
              nil#X0}
 in
    X = Xn
    {Reverse Res}
 end
 %% Returns a singleton list if an AST was found or nil otherwise.
 fun {Parse S}
    {SearchOne fun {$} {Expr S nil} end}
 end
 fun {Eval X}
    case X of
       num(Ds)    then {String.toInt Ds}
    [] add(L R)   then {Eval L} + {Eval R}
    [] sub(L R)   then {Eval L} - {Eval R}
    [] mul(L R)   then {Eval L} * {Eval R}
    [] 'div'(L R) then {Eval L} div {Eval R}
    end
 end
 [AST] = {Parse "((11+15)*15)*2-(3)*4*1"}

in

 {Inspector.configure widgetShowStrings true}
 {Inspect AST}
 {Inspect {Eval AST}}</lang>

To improve performance, the number of choice points should be limited, for example by reading numbers deterministically instead. For real parsing with possible large input, it is however recommended to use Gump, Mozart's parser generator.

Pascal

See Arithmetic Evaluator/Pascal.

Perl

<lang perl>sub ev

  1. Evaluates an arithmetic expression like "(1+3)*7" and returns
  2. its value.
{my $exp = shift;
 # Delete all meaningless characters. (Scientific notation,
 # infinity, and not-a-number aren't supported.)
 $exp =~ tr {0-9.+-/*()} {}cd;
 return ev_ast(astize($exp));}
{my $balanced_paren_regex;
 $balanced_paren_regex = qr
    {\( ( [^()]+ | (??{$balanced_paren_regex}) )+ \)}x;
 # ??{ ... } interpolates lazily (only when necessary),
 # permitting recursion to arbitrary depths.
 
 sub astize
 # Constructs an abstract syntax tree by recursively
 # transforming textual arithmetic expressions into array
 # references of the form [operator, left oprand, right oprand].
  {my $exp = shift;
   # If $exp is just a number, return it as-is.
   $exp =~ /[^0-9.]/ or return $exp;
   # If parentheses surround the entire expression, get rid of
   # them.
   $exp = substr($exp, 1, -1)
       while $exp =~ /\A($balanced_paren_regex)\z/;
   # Replace stuff in parentheses with placeholders.
   my @paren_contents;
   $exp =~ s {($balanced_paren_regex)}
             {push(@paren_contents, $1);
              "[p$#paren_contents]"}eg;
   # Scan for operators in order of increasing precedence,
   # preferring the rightmost.
   $exp =~ m{(.+) ([+-]) (.+)}x or
       $exp =~ m{(.+) ([*/]) (.+)}x or
       # The expression must've been malformed somehow.
       # (Note that unary minus isn't supported.)
       die "Eh?: [$exp]\n";
   my ($op, $lo, $ro) = ($2, $1, $3);
   # Restore the parenthetical expressions.
   s {\[p(\d+)\]} {($paren_contents[$1])}eg
       foreach $lo, $ro;
   # And recurse.
   return [$op, astize($lo), astize($ro)];}}
{my %ops =
    ('+' => sub {$_[0] + $_[1]},
     '-' => sub {$_[0] - $_[1]},
     '*' => sub {$_[0] * $_[1]},
     '/' => sub {$_[0] / $_[1]});
 
 sub ev_ast
 # Evaluates an abstract syntax tree of the form returned by
 # &astize.
  {my $ast = shift;
   # If $ast is just a number, return it as-is.
   ref $ast or return $ast;
   # Otherwise, recurse.
   my ($op, @operands) = @$ast;
   $_ = ev_ast($_) foreach @operands;
   return $ops{$op}->(@operands);}}</lang>

Perl 6

Works with: Rakudo version #22 "Thousand Oaks"

<lang perl6>sub ev (Str $s --> Num) {

   grammar expr {
       token TOP { ^ <sum> $ }
       token sum { <product> (('+' || '-') <product>)* }
       token product { <factor> (('*' || '/') <factor>)* }
       token factor { <unary_minus>? [ <parens> || <literal> ] }
       token unary_minus { '-' }
       token parens { '(' <sum> ')' }
       token literal { \d+ ['.' \d+]? || '.' \d+ }
   }
   
   my sub minus ($b) { $b ?? -1 !! +1 }
   my sub sum ($x) {
       [+] product($x<product>), map
           { minus($^y[0] eq '-') * product $^y<product> },
           |($x[0] or [])
   }
   
   my sub product ($x) {
       [*] factor($x<factor>), map
           { factor($^y<factor>) ** minus($^y[0] eq '/') },
           |($x[0] or [])
   }
   
   my sub factor ($x) {
       minus($x<unary_minus>) * ($x<parens>
         ?? sum $x<parens><sum>
         !! $x<literal>)
   }
   expr.parse([~] split /\s+/, $s);
   $/ or fail 'No parse.';
   sum $/<sum>;

}</lang>

Testing:

<lang perl6>say ev '5'; # 5 say ev '1 + 2 - 3 * 4 / 5'; # 0.6 say ev '1 + 5*3.4 - .5 -4 / -2 * (3+4) -6'; # 25.5 say ev '((11+15)*15)* 2 + (3) * -4 *1'; # 768</lang>

PicoLisp

The built-in function 'str' splits a string into a list of lexical tokens (numbers and transient symbols). From that, a recursive descendent parser can build an expression tree, resulting in directly executable Lisp code. <lang PicoLisp>(de ast (Str)

  (let *L (str Str "")
     (aggregate) ) )

(de aggregate ()

  (let X (product)
     (while (member (car *L) '("+" "-"))
        (setq X (list (intern (pop '*L)) X (product))) )
     X ) )

(de product ()

  (let X (term)
     (while (member (car *L) '("*" "/"))
        (setq X (list (intern (pop '*L)) X (term))) )
     X ) )

(de term ()

  (let X (pop '*L)
     (cond
        ((num? X) X)
        ((= "+" X) (term))
        ((= "-" X) (list '- (term)))
        ((= "(" X) (prog1 (aggregate) (pop '*L)))) ) ) )</lang>

Output: <lang PicoLisp>: (ast "1+2+3*-4/(1+2)") -> (+ (+ 1 2) (/ (* 3 (- 4)) (+ 1 2)))

(ast "(1+2+3)*-4/(1+2)")

-> (/ (* (+ (+ 1 2) 3) (- 4)) (+ 1 2))</lang>

Pop11

<lang pop11>/* Scanner routines */ /* Uncomment the following to parse data from standard input

vars itemrep; incharitem(charin) -> itemrep;

  • /
Current symbol

vars sym;

define get_sym();

   itemrep() -> sym;

enddefine;

define expect(x);

   lvars x;
   if x /= sym then
       printf(x, 'Error, expected %p\n');
       mishap(sym, 1, 'Example parser error');
   endif;
   get_sym();

enddefine;

lconstant res_list = [( ) + * ];

lconstant reserved = newproperty(

 maplist(res_list, procedure(x); [^x ^(true)]; endprocedure),
   20, false, "perm");

/*

 Parser for arithmetic expressions
  • /

/* expr: term

  | expr "+" term
  | expr "-" term
  ;
  • /

define do_expr() -> result;

   lvars result = do_term(), op;
   while sym = "+" or sym = "-" do
       sym -> op;
       get_sym();
       [^op ^result ^(do_term())] -> result;
   endwhile;

enddefine;

/* term: factor

  | term "*" factor
  | term "/" factor
  ;
  • /

define do_term() -> result;

   lvars result = do_factor(), op;
   while sym = "*" or sym = "/" do
       sym -> op;
       get_sym();
       [^op ^result ^(do_factor())] -> result;
   endwhile;

enddefine;

/* factor: word

  | constant
  | "(" expr ")"
  ;
  • /

define do_factor() -> result;

   if sym = "(" then
       get_sym();
       do_expr() -> result;
       expect(")");
   elseif isinteger(sym) or isbiginteger(sym) then
       sym -> result;
       get_sym();
   else
       if reserved(sym) then
           printf(sym, 'unexpected symbol %p\n');
           mishap(sym, 1, 'Example parser syntax error');
       endif;
       sym -> result;
       get_sym();
   endif;

enddefine;

/* Expression evaluator, returns false on error (currently only

  division by 0 */

define arith_eval(expr);

   lvars op, arg1, arg2;
   if not(expr) then
       return(expr);
   endif;
   if isinteger(expr) or isbiginteger(expr) then
       return(expr);
   endif;
   expr(1) -> op;
   arith_eval(expr(2)) -> arg1;
   arith_eval(expr(3)) -> arg2;
   if not(arg1) or not(arg2) then
       return(false);
   endif;
   if op = "+" then
       return(arg1 + arg2);
   elseif op = "-" then
       return(arg1 - arg2);
   elseif op = "*" then
       return(arg1 * arg2);
   elseif op = "/" then
       if arg2 = 0 then
           return(false);
       else
           return(arg1 div arg2);
       endif;
   else
       printf('Internal error\n');
       return(false);
   endif;

enddefine;

/* Given list, create item repeater. Input list is stored in a

  closure are traversed when new item is requested. */

define listitemrep(lst);

   procedure();
       lvars item;
       if lst = [] then
           termin;
       else
           front(lst) -> item;
           back(lst) -> lst;
           item;
        endif;
    endprocedure;

enddefine;

/* Initialise scanner */

listitemrep([(3 + 50) * 7 - 100 / 10]) -> itemrep;

get_sym();

Test it

arith_eval(do_expr()) =></lang>

Prolog

Works with: SWI Prolog

<lang prolog>% Lexer

numeric(X) :- 48 =< X, X =< 57.
not_numeric(X) :- 48 > X ; X > 57.

lex1([], []).
lex1([40|Xs], ['('|Ys]) :- lex1(Xs, Ys).
lex1([41|Xs], [')'|Ys]) :- lex1(Xs, Ys).
lex1([43|Xs], ['+'|Ys]) :- lex1(Xs, Ys).
lex1([45|Xs], ['-'|Ys]) :- lex1(Xs, Ys).
lex1([42|Xs], ['*'|Ys]) :- lex1(Xs, Ys).
lex1([47|Xs], ['/'|Ys]) :- lex1(Xs, Ys).
lex1([X|Xs], [N|Ys]) :- numeric(X), N is X - 48, lex1(Xs, Ys).

lex2([], []).
lex2([X], [X]).
lex2([Xa,Xb|Xs], [Xa|Ys]) :- atom(Xa), lex2([Xb|Xs], Ys).
lex2([Xa,Xb|Xs], [Xa|Ys]) :- number(Xa), atom(Xb), lex2([Xb|Xs], Ys).
lex2([Xa,Xb|Xs], [Y|Ys]) :- number(Xa), number(Xb), N is Xa * 10 + Xb, lex2([N|Xs], [Y|Ys]).

% Parser
oper(1, *, X, Y, X * Y). oper(1, /, X, Y, X / Y).
oper(2, +, X, Y, X + Y). oper(2, -, X, Y, X - Y).

num(D) --> [D], {number(D)}.

expr(0, Z) --> num(Z).
expr(0, Z) --> {Z = (X)}, ['('], expr(2, X), [')'].

expr(N, Z) --> {succ(N0, N)}, {oper(N, Op, X, Y, Z)}, expr(N0, X), [Op], expr(N, Y).
expr(N, Z) --> {succ(N0, N)}, expr(N0, Z).

parse(Tokens, Expr) :- expr(2, Expr, Tokens, []).


% Evaluator
evaluate(E, E) :- number(E).
evaluate(A + B, E) :- evaluate(A, Ae), evaluate(B, Be), E is Ae + Be.
evaluate(A - B, E) :- evaluate(A, Ae), evaluate(B, Be), E is Ae - Be.
evaluate(A * B, E) :- evaluate(A, Ae), evaluate(B, Be), E is Ae * Be.
evaluate(A / B, E) :- evaluate(A, Ae), evaluate(B, Be), E is Ae / Be.

% Solution
calculator(String, Value) :-
   lex1(String, Tokens1),
   lex2(Tokens1, Tokens2),
   parse(Tokens2, Expression),
   evaluate(Expression, Value).

% Example use
% calculator("(3+50)*7-9", X).</lang>

Python

There are python modules, such as Ply, which facilitate the implementation of parsers. This example, however, uses only standard Python with the parser having two stacks, one for operators, one for operands.
A subsequent example uses Pythons' ast module to generate the abstract syntax tree.

<lang python>import operator

class AstNode(object):

  def __init__( self, opr, left, right ):
     self.opr = opr
     self.l = left
     self.r = right
  def eval(self):
     return self.opr(self.l.eval(), self.r.eval())

class LeafNode(object):

  def __init__( self, valStrg ):
     self.v = int(valStrg)
  def eval(self):
     return self.v

class Yaccer(object):

  def __init__(self):
     self.operstak = []
     self.nodestak =[]
     self.__dict__.update(self.state1)
  def v1( self, valStrg ):
     # Value String
     self.nodestak.append( LeafNode(valStrg))
     self.__dict__.update(self.state2)
     #print 'push', valStrg
  def o2( self, operchar ):
     # Operator character or open paren in state1
     def openParen(a,b):
        return 0		# function should not be called
     opDict= { '+': ( operator.add, 2, 2 ),
        '-': (operator.sub, 2, 2 ),
        '*': (operator.mul, 3, 3 ),
        '/': (operator.div, 3, 3 ),
        '^': ( pow,         4, 5 ),  # right associative exponentiation for grins
        '(': ( openParen,   0, 8 )
        }
     operPrecidence = opDict[operchar][2]
     self.redeuce(operPrecidence)
     self.operstak.append(opDict[operchar])
     self.__dict__.update(self.state1)
     # print 'pushop', operchar
  def syntaxErr(self, char ):
     # Open Parenthesis 
     print 'parse error - near operator "%s"' %char
  def pc2( self,operchar ):
     # Close Parenthesis
     # reduce node until matching open paren found 
     self.redeuce( 1 )
     if len(self.operstak)>0:
        self.operstak.pop()		# pop off open parenthesis
     else:
        print 'Error - no open parenthesis matches close parens.'
     self.__dict__.update(self.state2)
  def end(self):
     self.redeuce(0)
     return self.nodestak.pop()
  def redeuce(self, precidence):
     while len(self.operstak)>0:
        tailOper = self.operstak[-1]
        if tailOper[1] < precidence: break
        tailOper = self.operstak.pop()
        vrgt = self.nodestak.pop()
        vlft= self.nodestak.pop()
        self.nodestak.append( AstNode(tailOper[0], vlft, vrgt))
        # print 'reduce'
  state1 = { 'v': v1, 'o':syntaxErr, 'po':o2, 'pc':syntaxErr }
  state2 = { 'v': syntaxErr, 'o':o2, 'po':syntaxErr, 'pc':pc2 }


def Lex( exprssn, p ):

  bgn = None
  cp = -1
  for c in exprssn:
     cp += 1
     if c in '+-/*^()':         # throw in exponentiation (^)for grins
        if bgn is not None:
           p.v(p, exprssn[bgn:cp])
           bgn = None
        if c=='(': p.po(p, c)
        elif c==')':p.pc(p, c)
        else: p.o(p, c)
     elif c in ' \t':
        if bgn is not None:
           p.v(p, exprssn[bgn:cp])
           bgn = None
     elif c in '0123456789':
        if bgn is None:
           bgn = cp
     else:
        print 'Invalid character in expression'
        if bgn is not None:
           p.v(p, exprssn[bgn:cp])
           bgn = None
        
  if bgn is not None:
     p.v(p, exprssn[bgn:cp+1])
     bgn = None
  return p.end()


expr = raw_input("Expression:") astTree = Lex( expr, Yaccer()) print expr, '=',astTree.eval()</lang>

ast standard library module

Python comes with its own ast module as part of its standard libraries. The module compiles Python source into an AST tree that can in turn be compiled to bytecode then executed. <lang python>>>> import ast >>> >>> expr="2 * (3 -1) + 2 * 5" >>> node = ast.parse(expr, mode='eval') >>> print(ast.dump(node).replace(',', ',\n')) Expression(body=BinOp(left=BinOp(left=Num(n=2),

op=Mult(),
right=BinOp(left=Num(n=3),
op=Sub(),
right=Num(n=1))),
op=Add(),
right=BinOp(left=Num(n=2),
op=Mult(),
right=Num(n=5))))

>>> code_object = compile(node, filename='<string>', mode='eval') >>> eval(code_object) 14 >>> # lets modify the AST by changing the 5 to a 6 >>> node.body.right.right.n 5 >>> node.body.right.right.n = 6 >>> code_object = compile(node, filename='<string>', mode='eval') >>> eval(code_object) 16</lang>

Racket

<lang racket>

  1. lang racket

(require parser-tools/yacc parser-tools/lex

        (prefix-in ~ parser-tools/lex-sre))

(define-tokens value-tokens (NUM)) (define-empty-tokens op-tokens (OPEN CLOSE + - * / EOF NEG))

(define lex

 (lexer [(eof) 'EOF]
        [whitespace (lex input-port)]
        [(~or "+" "-" "*" "/") (string->symbol lexeme)]
        ["(" 'OPEN]
        [")" 'CLOSE]
        [(~: (~+ numeric) (~? #\. (~* numeric)))
         (token-NUM (string->number lexeme))]))

(define parse

 (parser [start E] [end EOF]
         [tokens value-tokens op-tokens]
         [error void]
         [precs (left - +) (left * /) (left NEG)]
         [grammar (E [(NUM) $1]
                     [(E + E) (+ $1 $3)]
                     [(E - E) (- $1 $3)]
                     [(E * E) (* $1 $3)]
                     [(E / E) (/ $1 $3)]
                     [(- E) (prec NEG) (- $2)]
                     [(OPEN E CLOSE) $2])]))

(define (calc str)

 (define i (open-input-string str))
 (displayln (parse (λ() (lex i)))))

(calc "(1 + 2 * 3) - (1+2)*-3") </lang>

REXX

Several additional operators are supported as well as several forms of exponentiated numbers:

  • ^     as well as   **
  • //     remainder division
  • %     integer division
  • ÷     in addition to   /
  • &     for logical and
  • |     for logical or
  • &&     for logical XOR
  • ||     for concatenation
  • [   ]     {   }     as grouping symbols
  • 12.3e+44     ("single" precision)
  • 12.3E+44     ("single" precision)
  • 12.3D+44     ("double" precision)
  • 12.3Q+44     ("extended" or "quad" precision)

<lang rexx>/*REXX pgm evaluates an infix-type arithmetic expression & shows result.*/ nchars = '0123456789.eEdDqQ' /*possible parts of a #, sans ± */ e='***error!***'; $=' '; doubleOps='&|*/'; z= parse arg x 1 ox1; if x= then call serr 'no input was specified.' x=space(x); L=length(x); x=translate(x,'()()',"[]{}")

j=0; do forever; j=j+1; if j>L then leave; _=substr(x,j,1); _2=getX()

    newT=pos(_,' ()[]{}^÷')\==0;  if newT  then do; z=z _ $; iterate; end
    possDouble=pos(_,doubleOps)\==0   /*is _ a possible double operator*/
    if possDouble then do             /*is this a possible double oper?*/
                       if _2==_  then do        /*yup, it's one of 'em.*/
                                      _=_||_    /*use a double operator*/
                                      x=overlay($,x,Nj) /*blank out the*/
                                      end               /*  2nd symbol.*/
                       z=z _ $;  iterate
                       end
    if _=='+' | _=="-"  then do;  p_=word(z,words(z))   /*last  Z token*/
                             if p_=='('   then z=z 0    /*handle unary±*/
                             z=z _ $;     iterate
                             end
    lets=0;  sigs=0;  #=_
           do j=j+1  to L;   _=substr(x,j,1)    /*build a valid number.*/
           if lets==1 & sigs==0 then if _=='+' | _=='-'  then do;  sigs=1
                                                              #=# || _
                                                              iterate
                                                              end /*exp*/
           if pos(_,nchars)==0  then leave
           lets=lets+datatype(_,'M')  /*keep track of # of exponents.  */
           #=# || translate(_,'EEEEE','eDdQq')  /*keep building the num*/
           end   /*j*/
    j=j-1
    if \datatype(#,'N') then call serr 'invalid number: ' #
    z=z # $
    end   /*forever*/

_=word(z,1); if _=='+' | _=='-' then z=0 z /*handle unary cases.*/ x='(' space(z) ') '; tokens=words(x) /*force stacking for expression. */

 do i=1  for tokens;  @.i=word(x,i);  end /*i*/   /*assign input tokens*/

L=max(20,length(x)) /*use 20 for the min show width. */ op=')(-+/*^'; rOp=substr(op,3); p.=; s.=; n=length(op); epr=; stack=

 do i=1  for n; _=substr(op,i,1); s._=(i+1)%2; p._=s._+(i==n);  end /*i*/
                                      /*[↑] assign operator priorities.*/
 do #=1  for tokens;   ?=@.#          /*process each token from @. list*/
 if ?=='**'      then ?="^"           /*convert REXX-type exponentation*/
    select                            /*@.# is: (, operator, ), operand*/
    when ?=='('  then stack='(' stack
    when isOp(?) then do                        /*is token an operator?*/
                      !=word(stack,1)           /*get token from stack.*/
                        do  while !\==')' & s.!>=p.?;  epr=epr !  /*add*/
                        stack=subword(stack,2); /*del token from stack.*/
                        !=word(stack,1)         /*get token from stack.*/
                        end   /*while ···)*/
                      stack=? stack             /*add token  to  stack.*/
                      end
    when ?==')' then do;   !=word(stack,1)      /*get token from stack.*/
                       do  while !\=='(';     epr=epr !   /*add to epr.*/
                       stack=subword(stack,2)   /*del token from stack.*/
                       !=word(stack,1)          /*get token from stack.*/
                       end   /*while ···( */
                     stack=subword(stack,2)     /*del token from stack.*/
                     end
   otherwise  epr=epr ?                         /*add operand to  epr. */
   end   /*select*/
 end     /*#*/

epr=space(epr stack); tokens=words(epr); x=epr; z=; stack=

 do i=1  for tokens; @.i=word(epr,i);  end /*i*/  /*assign input tokens*/

dop='/ // % ÷'; bop='& | &&' /*division ops; binary operands*/ aop='- + * ^ **' dop bop; lop=aop '||' /*arithmetic ops; legal operands*/

 do #=1  for tokens;   ?=@.#;  ??=?   /*process each token from @. list*/
 w=words(stack);  b=word(stack,max(1,w))     /*stack count; last entry.*/
                  a=word(stack,max(1,w-1))   /*stack's "first" operand.*/
 division  =wordpos(?,dop)\==0               /*flag:  doing a division.*/
 arith     =wordpos(?,aop)\==0               /*flag:  doing arithmetic.*/
 bitOp     =wordpos(?,bop)\==0               /*flag:  doing binary math*/
 if datatype(?,'N')   then do; stack=stack ?;                iterate; end
 if wordpos(?,lop)==0 then do; z=e 'illegal operator:' ?;      leave; end
 if w<2               then do; z=e 'illegal epr expression.';  leave; end
 if ?=='^'            then ??="**"    /*REXXify  ^ ──► **  (make legal)*/
 if ?=='÷'            then ??="/"     /*REXXify  ÷ ──► /   (make legal)*/
 if division  &  b=0  then do; z=e 'division by zero: '    b;  leave; end
 if bitOp & \isBit(a) then do; z=e "token isn't logical: " a;  leave; end
 if bitOp & \isBit(b) then do; z=e "token isn't logical: " b;  leave; end
   select                                    /*perform arith. operation*/
   when ??=='+'             then y = a +  b
   when ??=='-'             then y = a -  b
   when ??=='*'             then y = a *  b
   when ??=='/' | ??=="÷"   then y = a /  b
   when ??=='//'            then y = a // b
   when ??=='%'             then y = a %  b
   when ??=='^' | ??=="**"  then y = a ** b
   when ??=='||'            then y = a || b
   otherwise                   z=e 'invalid operator:' ?;      leave
   end   /*select*/
 if datatype(y,'W')   then y=y/1      /*normalize number with  ÷  by 1.*/
 _=subword(stack,1,w-2);   stack=_ y  /*rebuild the stack with answer. */
 end   /*#*/

if word(z,1)==e then stack= /*handle special case of errors. */ z=space(z stack) /*append any residual entries. */ say 'answer──►' z /*display the answer (result). */ parse source upper . how . /*invoked via C.L. or REXX pgm?*/ if how=='COMMAND' | ,

  \datatype(z,'W') then exit          /*stick a fork in it, we're done.*/

return z /*return Z ──► invoker (RESULT).*/ /*──────────────────────────────────subroutines─────────────────────────*/ isBit: return arg(1)==0 | arg(1)==1 /*returns 1 if arg1 is bin bit.*/ isOp: return pos(arg(1),rOp)\==0 /*is argument1 a "real" operator?*/ serr: say; say e arg(1); say; exit 13 /*issue an error message with txt*/ /*──────────────────────────────────GETX subroutine─────────────────────*/ getX: do Nj=j+1 to length(x); _n=substr(x,Nj,1); if _n==$ then iterate

      if _n==$   then iterate;  return  substr(x,Nj,1)  /*ignore blanks*/
      end   /*Nj*/

return $ /*reached end-of-tokens, return $*/</lang> output when using the input of: + 1+2.0-003e-00*[4/6]

answer──► 1

Ruby

Function to convert infix arithmetic expression to binary tree. The resulting tree knows how to print and evaluate itself. Assumes expression is well-formed (matched parens, all operators have 2 operands). Algorithm: http://www.seas.gwu.edu/~csci131/fall96/exp_to_tree.html <lang ruby>$op_priority = {"+" => 0, "-" => 0, "*" => 1, "/" => 1} $op_function = {

 "+" => lambda {|x, y| x + y},
 "-" => lambda {|x, y| x - y},
 "*" => lambda {|x, y| x * y},
 "/" => lambda {|x, y| x / y}}

class TreeNode

 attr_accessor :info, :left, :right
 def initialize(info)
   @info = info
 end
 def leaf?
   @left.nil? and @right.nil?
 end
 def to_s(order)
   if leaf?
     @info
   else
     left_s, right_s = @left.to_s(order), @right.to_s(order)
     strs = case order
            when :prefix then [@info, left_s, right_s]
            when :infix then [left_s, @info, right_s]
            when :postfix then [left_s, right_s, @info]
            else []
            end
     
     "(" + strs.join(" ") + ")"
   end
 end
 def eval
   if !leaf? and operator?(@info)
     $op_function[@info].call(@left.eval, @right.eval)
   else
     @info.to_f
   end
 end

end

def tokenize(exp)

 exp
   .gsub('(', ' ( ')
   .gsub(')', ' ) ')
   .split(' ')

end

def operator?(token)

 $op_priority.has_key?(token)

end

def pop_connect_push(op_stack, node_stack)

 temp = op_stack.pop
 temp.right = node_stack.pop
 temp.left = node_stack.pop
 node_stack.push(temp)

end

def infix_exp_to_tree(exp)

 tokens = tokenize(exp)
 op_stack, node_stack = [], []
 tokens.each do |token|
   if operator?(token)
     # clear stack of higher priority operators
     until (op_stack.empty? or
            op_stack.last.info == "(" or
            $op_priority[op_stack.last.info] < $op_priority[token])
       pop_connect_push(op_stack, node_stack)
     end
     op_stack.push(TreeNode.new(token))
   elsif token == "("
     op_stack.push(TreeNode.new(token))
   elsif token == ")"
     while op_stack.last.info != "("
       pop_connect_push(op_stack, node_stack)
     end
     # throw away the '('
     op_stack.pop
   else
     node_stack.push(TreeNode.new(token))
   end
 end
 until op_stack.empty?
   pop_connect_push(op_stack, node_stack)
 end
 node_stack.last

end</lang> Testing: <lang ruby>exp = "1 + 2 - 3 * (4 / 6)" puts("Original: " + exp)

tree = infix_exp_to_tree(exp) puts("Prefix: " + tree.to_s(:prefix)) puts("Infix: " + tree.to_s(:infix)) puts("Postfix: " + tree.to_s(:postfix)) puts("Result: " + tree.eval.to_s)</lang> Output:

Original: 1 + 2 - 3 * (4 / 6)
Prefix: (- (+ 1 2) (* 3 (/ 4 6)))
Infix: ((1 + 2) - (3 * (4 / 6)))
Postfix: ((1 2 +) (3 (4 6 /) *) -)
Result: 1.0

Scala

This code shows a bit of Scala's parser classes. The error handling of parser errors is practically non-existent, to avoid obscuring the code.

<lang scala> package org.rosetta.arithmetic_evaluator.scala

object ArithmeticParser extends scala.util.parsing.combinator.RegexParsers {

 def readExpression(input: String) : Option[()=>Int] = {
   parseAll(expr, input) match {
     case Success(result, _) =>
       Some(result)
     case other =>
       println(other)
       None
   }
 }
 private def expr : Parser[()=>Int] = {
   (term<~"+")~expr ^^ { case l~r => () => l() + r() } |
   (term<~"-")~expr ^^ { case l~r => () => l() - r() } |
   term
 }
 private def term : Parser[()=>Int] = {
   (factor<~"*")~term ^^ { case l~r => () => l() * r() } |
   (factor<~"/")~term ^^ { case l~r => () => l() / r() } |
   factor
 }
 private def factor : Parser[()=>Int] = {
   "("~>expr<~")" |
   "\\d+".r ^^ { x => () => x.toInt } |
   failure("Expected a value")
 }

}

object Main {

 def main(args: Array[String]) {
   println("""Please input the expressions. Type "q" to quit.""")
   var input: String = ""
   do {
     input = readLine("> ")
     if (input != "q") {
       ArithmeticParser.readExpression(input).foreach(f => println(f()))
     }
   } while (input != "q")
 }

} </lang>

Example:

C:\Workset>scala org.rosetta.arithmetic_evaluator.scala.ArithmeticEvaluator
Please input the expressions. Type "q" to quit.
> 2+3*2
8
> (1+3)*7
28
> 1+a
[1.3] failure: Expected a number

1+a
  ^
> 2 + 2
4
> q

This example was made rather more complex by the requirement of generating an AST tree. With a Scala distribution there are many examples of arithmetic parsers, as small as half a dozen lines.

Sidef

Translation of JavaScript.

<lang ruby>func evalArithmeticExp(s) {

   func evalExp(s) {
       func operate(s, op) {
          s.split(op).map{|c|c.toNum}.reduce(op);
       }
       func add(s) {
           operate(s.replace(/^\+/,).replace(/\++/,'+'), '+');
       }
       func subtract(s) {
           s.gReplace!(/(\+-|-\+)/,'-');
           if (s.match(/--/)) {
               return(add(s.replace(/--/,'+')));
           }
           b = (s.split('-')).len == 3
               ? (-1 * b[1].toNum - b[2].toNum)
               : (operate(s, '-'))
       }
       s.gReplace!(/[()]/,).gReplace!(/-\+/, '-');
       var reM  = /\*/;
       var reMD = %r"(\d+\.?\d*\s*[*/]\s*[+-]?\d+\.?\d*)";
       var reA  = /\d\+/;
       var reAS = /(-?\d+\.?\d*\s*[+-]\s*[+-]?\d+\.?\d*)/;
       var match;
       while (match = s.match(reMD)) {
           cap = (match.captures.first) =~ reM ??
               ? (s.replace!(reMD, operate(cap, '*').to_s))
               : (s.replace!(reMD, operate(cap, '/').to_s))
       }
       while (match = s.match(reAS)) {
           cap = (match.captures.first) =~ reA ??
               ? (s.replace!(reAS,      add(cap).to_s))
               : (s.replace!(reAS, subtract(cap).to_s));
       }
       return(s);
   }
   var rePara = /(\([^\(\)]*\))/;
   s = (s.split.join().replace(/^\+/,));
   while (var match = s.match(rePara)) {
       s.replace!(rePara, evalExp(match.captures.first));
   }
   return(evalExp(s).toNum);

}</lang>

Testing the function: <lang ruby>for [

    ['2+3'                                      =>        5],
    ['-4-3'                                     =>       -7],
    ['-+2+3/4'                                  =>    -1.25],
    ['2*3-4'                                    =>        2],
    ['2*(3+4)+2/4'                              => 2/4 + 14],
    ['2*-3--4+-0.25'                            =>    -2.25],
    ['2 * (3 + (4 * 5 + (6 * 7) * 8) - 9) * 10' =>     7000],
   ] { |expr, res|
   var num = (evalArithmeticExp(expr)) == res || (
           "Error occurred on expression '#{expr}': got '#{num}' instead of '#{res}'\n".die;
   );
   "%-45s == %10g\n".printf(expr, num);

}</lang>

Tcl

Works with: Tcl version 8.5

The code below delivers the AST for an expression in a form that it can be immediately eval-led, using Tcl's prefix operators. <lang Tcl>namespace import tcl::mathop::*

proc ast str {

   # produce abstract syntax tree for an expression
   regsub -all {[-+*/()]} $str { & } str ;# "tokenizer"
   s $str

} proc s {args} {

   # parse "(a + b) * c + d" to "+ [* [+ a b] c] d"
   if {[llength $args] == 1} {set args [lindex $args 0]}
   if [regexp {[()]} $args] {
       eval s [string map {( "\[s " ) \]} $args]
   } elseif {"*" in $args} {

s [s_group $args *]

   } elseif {"/" in $args} {

s [s_group $args /]

   } elseif {"+" in $args} {
       s [s_group $args +]
   } elseif {"-" in $args} {
       s [s_group $args -]
   } else {
       string map {\{ \[ \} \]} [join $args]
   }

} proc s_group {list op} {

   # turn ".. a op b .." to ".. {op a b} .."
   set pos [lsearch -exact $list $op]
   set p_1 [- $pos 1]
   set p1  [+ $pos 1]
   lreplace $list $p_1 $p1 \
                 [list $op [lindex $list $p_1] [lindex $list $p1]]

}

  1. -- Test suite

foreach test [split {

   ast 2-2
   ast 1-2-3
   ast (1-2)-3
   ast 1-(2-3)
   ast (1+2)*3
   ast (1+2)/3-4*5
   ast ((1+2)/3-4)*5

} \n] {

   puts "$test ..... [eval $test] ..... [eval [eval $test]]"

}</lang>

Output:
    ast 2-2 ..... - 2 2 ..... 0
    ast 1-2-3 ..... - [- 1 2] 3 ..... -4
    ast (1-2)-3 ..... - [- 1 2] 3 ..... -4
    ast 1-(2-3) ..... - 1 [- 2 3] ..... 2
    ast (1+2)*3 ..... * [+ 1 2] 3 ..... 9
    ast (1+2)/3-4*5 ..... - [/ [+ 1 2] 3] [* 4 5] ..... -19
    ast ((1+2)/3-4)*5 ..... * [- [/ [+ 1 2] 3] 4] 5 ..... -15

TXR

Use TXR text pattern matching to parse expression to a Lisp AST, then evaluate with eval:

<lang txr>@(next :args) @(define space)@/ */@(end) @(define mulop (nod))@\

  @(local op)@\
  @(space)@\
  @(cases)@\
    @{op /[*]/}@(bind nod @(intern op *user-package*))@\
  @(or)@\
    @{op /\//}@(bind (nod) @(list 'trunc))@\
  @(end)@\
  @(space)@\

@(end) @(define addop (nod))@\

  @(local op)@(space)@{op /[+\-]/}@(space)@\
  @(bind nod @(intern op *user-package*))@\

@(end) @(define number (nod))@\

 @(local n)@(space)@{n /[0-9]+/}@(space)@\
 @(bind nod @(int-str n 10))@\

@(end) @(define factor (nod))@(cases)(@(expr nod))@(or)@(number nod)@(end)@(end) @(define term (nod))@\

 @(local op nod1 nod2)@\
 @(cases)@\
   @(factor nod1)@\
   @(cases)@(mulop op)@(term nod2)@(bind nod (op nod1 nod2))@\
   @(or)@(bind nod nod1)@\
   @(end)@\
 @(or)@\
   @(addop op)@(factor nod1)@\
   @(bind nod (op nod1))@\
 @(end)@\

@(end) @(define expr (nod))@\

 @(local op nod1 nod2)@\
 @(term nod1)@\
 @(cases)@(addop op)@(expr nod2)@(bind nod (op nod1 nod2))@\
 @(or)@(bind nod nod1)@\
 @(end)@\

@(end) @(cases) @ {source (expr e)} @ (output) source: @source AST: @(format nil "~s" e) value: @(eval e nil) @ (end) @(or) @ (maybe)@(expr e)@(end)@bad @ (output) erroneous suffix "@bad" @ (end) @(end)</lang>

Run:

$  txr expr-ast.txr '3 + 3/4 * (2 + 2) + (4*4)'
source: 3 + 3/4 * (2 + 2) + (4*4)
AST:    (+ 3 (+ (trunc 3 (* 4 (+ 2 2))) (* 4 4)))
value:  19

Ursala

with no error checking other than removal of spaces <lang Ursala>#import std

  1. import nat
  2. import flo

lex = ~=' '*~F+ rlc both -=digits # separate into tokens

parse = # build a tree

--<';'>; @iNX ~&l->rh ^/~&lt cases~&lhh\~&lhPNVrC {

  '*/': ^|C/~&hNV associate '*/',
  '+-': ^|C/~&hNV associate '*/+-',
  ');': @r ~&htitBPC+ associate '*/+-'}

associate "ops" = ~&tihdh2B-="ops"-> ~&thd2tth2hNCCVttt2C

traverse = *^ ~&v?\%ep ^H\~&vhthPX '+-*/'-$<plus,minus,times,div>@dh

evaluate = traverse+ parse+ lex</lang>

test program: <lang Ursala>#cast %eL

test = evaluate*t

-[ 1+1 4/5 2-1 3*7 3+4+5 9-2-4 7/3/2 4+2*3 5*2-1 5-3*2 (1+1)*(2+3) (2-4)/(3+5*(8-1))]-</lang> output:

<
   2.000000e+00,
   8.000000e-01,
   1.000000e+00,
   2.100000e+01,
   1.200000e+01,
   3.000000e+00,
   1.166667e+00,
   1.000000e+01,
   9.000000e+00,
   -1.000000e+00,
   1.000000e+01,
   -5.263158e-02>

zkl

In zkl, the compiler stack is part of the language and is written in zkl so ... <lang zkl>Compiler.Parser.parseText("(1+3)*7").dump(); Compiler.Parser.parseText("1+3*7").dump();</lang> The ASTs look like

Output:
class RootClass#    Input source: "<text>"
Attributes:  static createReturnsSelf
   ...
{ Block(Class)   <Line 1>
   Exp(
      (,1,+,3,),*,7
   )
}

class RootClass#    Input source: "<text>"
...
{ Block(Class)   <Line 1>
   Exp(
      1,+,3,*,7
   )
}

Evaluating them is just moving up the stack: <lang zkl>Compiler.Compiler.compileText("(1+3)*7").__constructor(); vm.regX; Compiler.Compiler.compileText("1+3*7").__constructor(); vm.regX;</lang>

Output:
28
22