Algebraic data types: Difference between revisions

From Rosetta Code
Content added Content deleted
(added CL code (please PM me if it has bugs))
(describe pattern matching in CL)
Line 7: Line 7:
=={{header|Common Lisp}}==
=={{header|Common Lisp}}==


Common Lisp doesn't come with any pattern-matching solutions on its own, but with the help of its macro facility, it can incorporate features from other languages such as pattern matching. Macros expand into efficient code during compilation time and there isn't much difference if it's included in the core language or not. As has been said, Lisp is a ball of mud and remains one no matter what one throws at it.
A straighforward translation of the TCL solution. I don't know red-black-trees myself but I tried mirroring the original solution as closely as possible. It uses a pattern-matching library called [http://www.takeda.tk/~sthalik/stuff/toadstool-current.tar toadstool].

This is a straighforward translation of the TCL solution. I don't know red-black-trees myself but I tried mirroring the original program as closely as possible. It uses a pattern-matching library called [http://www.takeda.tk/~sthalik/stuff/toadstool-current.tar toadstool].


<lang lisp>(mapc #'use-package '(#:toadstool #:toadstool-system))
<lang lisp>(mapc #'use-package '(#:toadstool #:toadstool-system))

Revision as of 21:20, 6 August 2009

Task
Algebraic data types
You are encouraged to solve this task according to the task description, using any language you may know.

Some languages offer direct support for algebraic data types and pattern matching on them. While this of course can always be simulated with manual tagging and conditionals, it allows for terse code which is easy to read, and can represent the algorithm directly.

As an example, implement insertion in a red-black-tree. A red-black-tree is a binary tree where each internal node has a color attribute red or black. Moreover, no red node can have a red child, and every path from the root to an empty node must contain the same number of black nodes. As a consequence, the tree is balanced, and must be re-balanced after an insertion.

Common Lisp

Common Lisp doesn't come with any pattern-matching solutions on its own, but with the help of its macro facility, it can incorporate features from other languages such as pattern matching. Macros expand into efficient code during compilation time and there isn't much difference if it's included in the core language or not. As has been said, Lisp is a ball of mud and remains one no matter what one throws at it.

This is a straighforward translation of the TCL solution. I don't know red-black-trees myself but I tried mirroring the original program as closely as possible. It uses a pattern-matching library called toadstool.

<lang lisp>(mapc #'use-package '(#:toadstool #:toadstool-system)) (defstruct (red-black-tree (:constructor tree (color left val right)))

 color left val right)

(defcomponent tree (operator macro-mixin)) (defexpand tree (color left val right)

 `(class red-black-tree red-black-tree-color ,color
                        red-black-tree-left ,left
                        red-black-tree-val ,val
                        red-black-tree-right ,right))

(pushnew 'tree *used-components*)

(defun balance (color left val right)

 (toad-ecase color left val right
            'black (tree 'red (tree 'red a x b) y c) z d
            -> (tree 'red (tree 'black a x b) y
                     (tree 'black c z d))
            'black (tree 'red a x (tree 'red b y c)) z d
            -> (tree 'red (tree 'black a x b) y (tree 'black c z d))
            'black a x (tree 'red (tree 'red b y c) z d)
            -> (tree 'red (tree 'black a x b) y (tree 'black c z d))
            'black a x (tree 'red b y (tree 'red c z d))
            -> (tree 'red (tree 'black a x b) y (tree 'black c z d))
            color a x b -> (tree color a x b)))

(defun %insert (x s)

 (toad-ecase s
   nil -> (tree 'red nil x nil)
   (tree color a y b) -> (cond ((< x y)
                                (balance color (%insert x a) y b))
                               ((> x y)
                                (balance color a y (%insert x b)))
                               (t s))))

(defun insert (x s)

 (toad-ecase (%insert x s)
   (tree t a y b) -> (tree 'black a y b)))</lang>

E

Translation of: Haskell

In E, a pattern can be used almost anywhere a variable name can. Additionally, there are two operators used for pattern matching idioms: =~ (returns success as a boolean, somewhat like Perl's =~), and switch (matches multiple patterns, like Haskell's case).

Both of those operators are defined in terms of the basic bind/match operation: def pattern exit failure_handler := specimen

def balance(tree) {
  return if (
    tree =~ term`tree(black, tree(red, tree(red, @a, @x, @b), @y, @c), @z, @d)` ||
    tree =~ term`tree(black, tree(red, @a, @x, tree(red, @b, @y, @c)), @z, @d)` ||
    tree =~ term`tree(black, @a, @x, tree(red, tree(red, @b, @y, @c), @z, @d))` ||
    tree =~ term`tree(black, @a, @x, tree(red, @b, @y, tree(red, @c, @z, @d)))`
  ) {
    term`tree(red, tree(black, $a, $x, $b), $y, tree(black, $c, $z, $d))`
  } else { tree }
}
def insert(elem, tree) {
  def ins(tree) {
    return switch (tree) {
      match term`empty` { term`tree(red, empty, $elem, empty)` }
      match term`tree(@color, @a, @y, @b)` {
        if (elem < y) {
          balance(term`tree($color, ${ins(a)}, $y, $b)`)
        } else if (elem > y) {
          balance(term`tree($color, $a, $y, ${ins(b)})`)
        } else {
          tree
        }
      }
    }
  }
  def term`tree(@_, @a, @y, @b)` := ins(tree)
  return term`tree(black, $a, $y, $b)`
}

This code was tested by filling a tree with random values; you can try this at the E REPL:

? var tree := term`empty`
> for _ in 1..20 {
>   tree := insert(entropy.nextInt(100), tree)
> }
> tree

Haskell

<lang haskell>data Color = R | B data Tree a = E | T Color (Tree a) a (Tree a)

balance :: Color -> Tree a -> a -> Tree a -> Tree a balance B (T R (T R a x b) y c ) z d = T R (T B a x b) y (T B c z d) balance B (T R a x (T R b y c)) z d = T R (T B a x b) y (T B c z d) balance B a x (T R (T R b y c) z d ) = T R (T B a x b) y (T B c z d) balance B a x (T R b y (T R c z d)) = T R (T B a x b) y (T B c z d) balance col a x b = T col a x b

insert :: Ord a => a -> Tree a -> Tree a insert x s = T B a y b where

 ins E          =  T R E x E
 ins s@(T col a y b) 
   | x < y      =  balance col (ins a) y b
   | x > y      =  balance col a y (ins b)
   | otherwise  =  s
 T _ a y b = ins s</lang>

OCaml

<lang ocaml> type color = R | B type 'a tree = E | T of color * 'a tree * 'a * 'a tree

(** val balance : color * 'a tree * 'a * 'a tree -> 'a tree *) let balance = function

 | B, T (R, T (R,a,x,b), y, c), z, d
 | B, T (R, a, x, T (R,b,y,c)), z, d
 | B, a, x, T (R, T (R,b,y,c), z, d)
 | B, a, x, T (R, b, y, T (R,c,z,d)) -> T (R, T (B,a,x,b), y, T (B,c,z,d))
 | col, a, x, b                      -> T (col, a, x, b) 

(** val insert : 'a -> 'a tree -> 'a tree *) let insert x s =

 let rec ins = function
   | E                  -> T (R,E,x,E)
   | T (col,a,y,b) as s ->

if x < y then balance (col, ins a, y, b) else if x > y then balance (col, a, y, ins b) else s

 in let T (_,a,y,b) = ins s 
 in T (B,a,y,b)

</lang>

Prolog

color(r).
color(b).

tree(_,e).
tree(P,t(C,L,X,R)) :- color(C), tree(P,L), call(P,X), tree(P,R).

bal(b, t(r,t(r,A,X,B),Y,C), Z, D, t(r,t(b,A,X,B),Y,t(b,C,Z,D))).
bal(b, t(r,A,X,t(r,B,Y,C)), Z, D, t(r,t(b,A,X,B),Y,t(b,C,Z,D))).
bal(b, A, X, t(r,t(r,B,Y,C),Z,D), t(r,t(b,A,X,B),Y,t(b,C,Z,D))).
bal(b, A, X, t(r,B,Y,t(r,C,Z,D)), t(r,t(b,A,X,B),Y,t(b,C,Z,D))).

balance(C,A,X,B,S) :- ( bal(C,A,X,B,T) -> S = T ; S = t(C,A,X,B) ).

ins(X,e,t(r,e,X,e)).
ins(X,t(C,A,Y,B),R) :- ( X < Y -> ins(X,A,Ao), balance(C,Ao,Y,B,R)
                       ; X > Y -> ins(X,B,Bo), balance(C,A,Y,Bo,R)
                       ; X = Y -> R = t(C,A,Y,B)
                       ).

insert(X,S,t(b,A,Y,B)) :- ins(X,S,t(_,A,Y,B)).

Standard ML

<lang sml> datatype color = R | B datatype 'a tree = E | T of color * 'a tree * 'a * 'a tree

(** val balance = fn : color * 'a tree * 'a * 'a tree -> 'a tree *) fun balance (B, T (R, T (R,a,x,b), y, c), z, d) = T (R, T (B,a,x,b), y, T (B,c,z,d))

 | balance (B, T (R, a, x, T (R,b,y,c)), z, d) = T (R, T (B,a,x,b), y, T (B,c,z,d))
 | balance (B, a, x, T (R, T (R,b,y,c), z, d)) = T (R, T (B,a,x,b), y, T (B,c,z,d))
 | balance (B, a, x, T (R, b, y, T (R,c,z,d))) = T (R, T (B,a,x,b), y, T (B,c,z,d))
 | balance (col, a, x, b)                      = T (col, a, x, b) 

(** val insert = fn : int -> int tree -> int tree *) fun insert x s = let

 fun ins E                    = T (R,E,x,E)
   | ins (s as T (col,a,y,b)) =

if x < y then balance (col, ins a, y, b) else if x > y then balance (col, a, y, ins b) else s

 val T (_,a,y,b) = ins s 

in

 T (B,a,y,b)

end </lang>

Tcl

Translation of: Haskell

Tcl doesn't have algebraic types built-in, but they can be simulated using tagged lists, and a custom pattern matching control structure can be built: <lang tcl># From http://wiki.tcl.tk/9547 package require Tcl 8.5 package provide datatype 0.1

namespace eval ::datatype {

   namespace export define match matches
   namespace ensemble create
   # Datatype definitions
   proc define {type = args} { 
       set ns [uplevel 1 { namespace current }]
       foreach cons [split [join $args] |] {
           set name [lindex $cons 0]
           set args [lrange $cons 1 end]
           proc $ns\::$name $args [format {
               lreplace [info level 0] 0 0 %s
           } [list $name]]
       }
       return $type
   }
   # Pattern matching
   # matches pattern value envVar --
   #   Returns 1 if value matches pattern, else 0
   #   Binds match variables in envVar
   proc matches {pattern value envVar} {
       upvar 1 $envVar env
       if {[var? $pattern]} { return [bind env $pattern $value] }
       if {[llength $pattern] != [llength $value]} { return 0 }
       if {[lindex $pattern 0] ne [lindex $value 0]} { return 0 }
       foreach pat [lrange $pattern 1 end] val [lrange $value 1 end] {
           if {![matches $pat $val env]} { return 0 }
       }
       return 1
   }
   # A variable starts with lower-case letter or _. _ is a wildcard.
   proc var? term { string match {[a-z_]*} $term }
   proc bind {envVar var value} {
       upvar 1 $envVar env
       if {![info exists env]} { set env [dict create] }
       if {$var eq "_"} { return 1 }
       dict set env $var $value
       return 1
   }
   proc match args {
       #puts "MATCH: $args"
       set values [lrange $args 0 end-1]
       set choices [lindex $args end]
       append choices \n [list return -code error -level 2 "no match for $values"]
       set f [list values $choices [namespace current]]
       lassign [apply $f $values] env body
       #puts "RESULT: $env -> $body"
       dict for {k v} $env { upvar 1 $k var; set var $v }
       catch { uplevel 1 $body } msg opts
       dict incr opts -level
       return -options $opts $msg
   }
   proc case args {
       upvar 1 values values
       set patterns [lrange $args 0 end-2]
       set body [lindex $args end]
       set env [dict create]
       if {[llength $patterns] != [llength $values]} { return }
       foreach pattern $patterns value $values {
           if {![matches $pattern $value env]} { return }
       }
       return -code return [list $env $body]
   }
   proc default body { return -code return [list {} $body] }

} </lang> We can then code our solution similar to Haskell:

<lang tcl>datatype define Color = R | B datatype define Tree = E | T color left val right

  1. balance :: Color -> Tree a -> a -> Tree a -> Tree a

proc balance {color left val right} {

   datatype match $color $left $val $right {
       case B [T R [T R a x b] y c] z d -> { T R [T B $a $x $b] $y [T B $c $z $d] }
       case B [T R a x [T R b y c]] z d -> { T R [T B $a $x $b] $y [T B $c $z $d] }
       case B a x [T R [T R b y c] z d] -> { T R [T B $a $x $b] $y [T B $c $z $d] }
       case B a x [T R b y [T R c z d]] -> { T R [T B $a $x $b] $y [T B $c $z $d] }
       case col a x b                   -> { T $col $a $x $b }
   }

}

  1. insert :: Ord a => a -> Tree a -> Tree a

proc insert {x s} {

   datatype match [ins $x $s] {
       case [T _ a y b]  -> { T B $a $y $b }
   }

}

  1. ins :: Ord a => a -> Tree a -> Tree a

proc ins {x s} {

   datatype match $s {
       case E               -> { T R E $x E }
       case [T col a y b]   -> {
           if {$x < $y} { return [balance $col [ins $x $a] $y $b] }
           if {$x > $y} { return [balance $col $a $y [ins $x $b]] }
           return $s
       }
   }

}</lang>