Talk:Boolean values: Difference between revisions

From Rosetta Code
Content added Content deleted
(remove a statement that I need to think about)
(reinsert my statement about logical not, with some qualifiers)
Line 45: Line 45:
└──┴───────┘</lang>
└──┴───────┘</lang>


Also, I cannot find any treatment of "logical not" in older treatments of boolean algebra. It has been added to newer works, but in that context it seems to be an arbitrary operation (it might be 1-x, or it might be any of a wide variety of other operations).
--[[User:Rdm|Rdm]] 13:40, 30 April 2012 (UTC)
--[[User:Rdm|Rdm]] 13:40, 30 April 2012 (UTC)

Revision as of 13:53, 30 April 2012

Python twice?

It's already been noted. a merge is in the works. --Mwn3d 20:20, 10 July 2009 (UTC)

Sorry about the wait. All done. --Paddy3118 21:12, 10 July 2009 (UTC)

Rename page?

This page only deals with the two-valued boolean algebra.

This leaves out some important history and the full scope of what the word "Boolean" means. This is a distressingly common practice.

See, for example:

http://sumon3get.hubpages.com/hub/Basic-Concept-And-History-Of-Boolean-Algebra

http://mathworld.wolfram.com/BooleanAlgebra.html

Remedies might include:

1. A new page title that somehow incorporates the phrase "two valued".

2. A new Rosetta code task which treats some other subset of boolean values. For example, here's a table the boolean operation which corresponds to "logical and" on the integers 0 through 3:

<lang J> *. table i. 4 ┌──┬───────┐ │*.│0 1 2 3│ ├──┼───────┤ │0 │0 0 0 0│ │1 │0 1 2 3│ │2 │0 2 2 6│ │3 │0 3 6 3│ └──┴───────┘</lang>

(this operation is "least common multiple",).

And here's the boolean operation which corresponds to "logical or" (greatest common divisor) on these integers:

<lang J> +. table i. 4 ┌──┬───────┐ │+.│0 1 2 3│ ├──┼───────┤ │0 │0 1 2 3│ │1 │1 1 1 1│ │2 │2 1 2 1│ │3 │3 1 1 3│ └──┴───────┘</lang>

Also, I cannot find any treatment of "logical not" in older treatments of boolean algebra. It has been added to newer works, but in that context it seems to be an arbitrary operation (it might be 1-x, or it might be any of a wide variety of other operations).

 --Rdm 13:40, 30 April 2012 (UTC)