Sunflower fractal

From Rosetta Code
Revision as of 08:14, 1 April 2022 by Peak (talk | contribs) (→‎{{header|jq}}: Adapted from)
Sunflower fractal is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
This task has been flagged for clarification. Code on this page in its current state may be flagged incorrect once this task has been clarified. See this page's Talk page for discussion.

Draw a Sunflower fractal


11l

Translation of: Perl

<lang 11l>-V

  phi = (1 + sqrt(5)) / 2
  size = 600
  seeds = 5 * size

print(‘<svg xmlns="http://www.w3.org/2000/svg" width="’size‘" height="’size‘" style="stroke:gold">’) print(‘<rect width="100%" height="100%" fill="black" />’)

L(i) 1..seeds

  V r = 2 * (i ^ phi) / seeds
  V t = 2 * math:pi * phi * i
  print(‘<circle cx="#.2" cy="#.2" r="#.1" />’.format(r * sin(t) + size / 2,
                                                      r * cos(t) + size / 2, sqrt(i) / 13))

print(‘</svg>’)</lang>

Action!

Calculations on a real Atari 8-bit computer take quite long time. It is recommended to use an emulator capable with increasing speed of Atari CPU.

<lang Action!>INCLUDE "H6:REALMATH.ACT"

INT ARRAY SinTab=[

 0 4 9 13 18 22 27 31 36 40 44 49 53 58 62 66 71 75 79 83
 88 92 96 100 104 108 112 116 120 124 128 132 136 139 143
 147 150 154 158 161 165 168 171 175 178 181 184 187 190
 193 196 199 202 204 207 210 212 215 217 219 222 224 226
 228 230 232 234 236 237 239 241 242 243 245 246 247 248
 249 250 251 252 253 254 254 255 255 255 256 256 256 256]

INT FUNC Sin(INT a)

 WHILE a<0 DO a==+360 OD
 WHILE a>360 DO a==-360 OD
 IF a<=90 THEN
   RETURN (SinTab(a))
 ELSEIF a<=180 THEN
   RETURN (SinTab(180-a))
 ELSEIF a<=270 THEN
   RETURN (-SinTab(a-180))
 ELSE
   RETURN (-SinTab(360-a))
 FI

RETURN (0)

INT FUNC Cos(INT a) RETURN (Sin(a-90))

PROC Circle(INT x0,y0,d)

 BYTE MaxD=[13]
 BYTE ARRAY Start=[0 1 2 4 6 9 12 16 20 25 30 36 42 49]
 BYTE ARRAY MaxY=[0 0 1 1 2 2 3 3 4 4 5 5 6 6]
 INT ARRAY CircleX=[
   0  0  1 0  1 1  2 1 0  2 2 1  3 2 2 0  3 3 2 1
   4 4 3 2 1  4 4 4 3 2  5 5 4 4 3 1  5 5 5 4 4 2
   6 6 5 5 4 3 1  6 6 6 5 5 4 2]
 INT i,ind,max
 CARD x
 BYTE dx,y
 IF d>MAXD THEN d=MaxD FI
 IF d<0 THEN d=0 FI
 ind=Start(d)
 max=MaxY(d)
 FOR i=0 TO max
 DO
   dx=CircleX(ind)
   y=y0-i
   IF (y>=0) AND (y<=191) THEN
     Plot(x0-dx,y) DrawTo(x0+dx,y)
   FI
   y=y0+i
   IF (y>=0) AND (y<=191) THEN
     Plot(x0-dx,y) DrawTo(x0+dx,y)
   FI
   ind==+1
 OD

RETURN

PROC DrawFractal(CARD seeds INT x0,y0)

 CARD i
 REAL a,c,r,ir,tmp,tmp2,r256,rx,ry,rr,r360,c360,seeds2
 INT ia,sc,x,y
 IntToReal(256,r256)
 ValR("1.618034",c) ;c=(sqrt(5)+1)/2
 IntToReal(seeds/2,seeds2) ;seeds2=seeds/2
 IntToReal(360,r360)
 RealMult(r360,c,c360) ;c360=360*c
 FOR i=0 TO seeds
 DO
   IntToReal(i,ir)
   Power(ir,c,tmp) 
   RealDiv(tmp,seeds2,r) ;r=i^c/(seeds/2)
   RealMult(c360,ir,a) ;a=360*c*i
   WHILE RealGreaterOrEqual(a,r360)
   DO
     RealSub(a,r360,tmp)
     RealAssign(tmp,a)
   OD
   ia=RealToInt(a)
   sc=Sin(ia)
   IntToRealForNeg(sc,tmp)
   RealDiv(tmp,r256,tmp2)
   RealMult(r,tmp2,rx)
   x=Round(rx) ;x=r*sin(a)
   
   sc=Cos(ia)
   IntToRealForNeg(sc,tmp)
   RealDiv(tmp,r256,tmp2)
   RealMult(r,tmp2,ry)
   y=Round(ry) ;y=r*cos(a)
   Circle(x+x0,y+y0,10*i/seeds)
   Poke(77,0) ;turn off the attract mode
 OD

RETURN

PROC Main()

 BYTE CH=$02FC,COLOR1=$02C5,COLOR2=$02C6
 Graphics(8+16)
 Color=1
 COLOR1=$12
 COLOR2=$18
 DrawFractal(1000,160,96)
 DO UNTIL CH#$FF OD
 CH=$FF

RETURN</lang>

Output:

Screenshot from Atari 8-bit computer

C

The colouring of the "fractal" is determined with every iteration to ensure that the resulting graphic looks similar to a real Sunflower, thus the parameter diskRatio determines the radius of the central disk as the maximum radius of the flower is known from the number of iterations. The scaling factor is currently hardcoded but can also be externalized. Requires the WinBGIm library.

<lang C> /*Abhishek Ghosh, 14th September 2018*/

  1. include<graphics.h>
  2. include<math.h>
  1. define pi M_PI

void sunflower(int winWidth, int winHeight, double diskRatio, int iter){ double factor = .5 + sqrt(1.25),r,theta; double x = winWidth/2.0, y = winHeight/2.0; double maxRad = pow(iter,factor)/iter;

int i;

setbkcolor(LIGHTBLUE);

for(i=0;i<=iter;i++){ r = pow(i,factor)/iter;

r/maxRad < diskRatio?setcolor(BLACK):setcolor(YELLOW);

theta = 2*pi*factor*i; circle(x + r*sin(theta), y + r*cos(theta), 10 * i/(1.0*iter)); } }

int main() { initwindow(1000,1000,"Sunflower...");

sunflower(1000,1000,0.5,3000);

getch();

closegraph();

return 0; } </lang>

C++

Translation of: Perl

<lang cpp>#include <cmath>

  1. include <fstream>
  2. include <iostream>

bool sunflower(const char* filename) {

   std::ofstream out(filename);
   if (!out)
       return false;
   constexpr int size = 600;
   constexpr int seeds = 5 * size;
   constexpr double pi = 3.14159265359;
   constexpr double phi = 1.61803398875;
   
   out << "<svg xmlns='http://www.w3.org/2000/svg\' width='" << size;
   out << "' height='" << size << "' style='stroke:gold'>\n";
   out << "<rect width='100%' height='100%' fill='black'/>\n";
   out << std::setprecision(2) << std::fixed;
   for (int i = 1; i <= seeds; ++i) {
       double r = 2 * std::pow(i, phi)/seeds;
       double theta = 2 * pi * phi * i;
       double x = r * std::sin(theta) + size/2;
       double y = r * std::cos(theta) + size/2;
       double radius = std::sqrt(i)/13;
       out << "<circle cx='" << x << "' cy='" << y << "' r='" << radius << "'/>\n";
   }
   out << "</svg>\n";
   return true;

}

int main(int argc, char *argv[]) {

   if (argc != 2) {
       std::cerr << "usage: " << argv[0] << " filename\n";
       return EXIT_FAILURE;
   }
   if (!sunflower(argv[1])) {
       std::cerr << "image generation failed\n";
       return EXIT_FAILURE;
   }
   return EXIT_SUCCESS;

}</lang>

Output:

See: sunflower.svg (offsite SVG image)

FreeBASIC

<lang freebasic> Const PI As Double = 4 * Atn(1) Const ancho = 400 Const alto = 400

Screenres ancho, alto, 8 Windowtitle" Pulsa una tecla para finalizar" Cls

Sub Sunflower(semillas As Integer)

   Dim As Double c = (Sqr(5)+1)/2
   
   For i As Integer = 0 To semillas
       Dim As Double r = (i^c) / semillas
       Dim As Double angulo = 2 * Pi * c * i
       Dim As Double x = r * Sin(angulo) + 200
       Dim As Double y = r * Cos(angulo) + 200
       
       Circle (x, y), i/semillas*10, i/semillas*10
   Next i

End Sub

Sunflower(2000) Bsave "sunflower_fractal.bmp",0 Sleep End </lang>

Go

Library: Go Graphics
Translation of: Ring


The image produced, when viewed with (for example) EOG, is similar to the Ring entry. <lang go>package main

import (

   "github.com/fogleman/gg"
   "math"

)

func main() {

   dc := gg.NewContext(400, 400)
   dc.SetRGB(1, 1, 1)
   dc.Clear()
   dc.SetRGB(0, 0, 1)
   c := (math.Sqrt(5) + 1) / 2
   numberOfSeeds := 3000
   for i := 0; i <= numberOfSeeds; i++ {
       fi := float64(i)
       fn := float64(numberOfSeeds)
       r := math.Pow(fi, c) / fn
       angle := 2 * math.Pi * c * fi
       x := r*math.Sin(angle) + 200
       y := r*math.Cos(angle) + 200
       fi /= fn / 5
       dc.DrawCircle(x, y, fi)
   }
   dc.SetLineWidth(1)
   dc.Stroke()
   dc.SavePNG("sunflower_fractal.png")

}</lang>

JavaScript

HTML to test

<!DOCTYPE html>
<html>
    <head>
        <meta charset="utf-8" />
        <meta http-equiv="X-UA-Compatible" content="IE=edge">
        <title>Sunflower</title>
        <meta name="viewport" content="width=device-width, initial-scale=1">
        <style>
            body{background-color:black;text-align:center;margin-top:150px}
        </style>
        <script src="sunflower.js"></script>
    </head>
    <body onload="start()">
        <div id='wnd'></div>
    </body>
</html>

<lang javascript>const SIZE = 400, HS = SIZE >> 1, WAIT = .005, SEEDS = 3000,

     TPI = Math.PI * 2, C = (Math.sqrt(10) + 1) / 2;

class Sunflower {

   constructor() {
       this.wait = WAIT;
       this.colorIndex = 0;
       this.dimension = 0;
       this.lastTime = 0;
       this.accumulator = 0;
       this.deltaTime = 1 / 60;
       this.colors = ["#ff0000", "#ff8000", "#ffff00", "#80ff00", "#00ff00", "#00ff80", 
                      "#00ffff", "#0080ff", "#0000ff", "#8000ff", "#ff00ff", "#ff0080"];
       this.canvas = document.createElement('canvas');
       this.canvas.width = SIZE;
       this.canvas.height = SIZE;
       const d = document.getElementById("wnd");
       d.appendChild(this.canvas);
       this.ctx = this.canvas.getContext('2d');
   }
   draw(clr, d) {
       let r = Math.pow(d, C) / SEEDS;
       let angle = TPI * C * d;
       let x = HS + r * Math.sin(angle), 
           y = HS + r * Math.cos(angle);
       this.ctx.strokeStyle = clr;
       this.ctx.beginPath();
       this.ctx.arc(x, y, d / (SEEDS / 50), 0, TPI);
       this.ctx.closePath();
       this.ctx.stroke();
   }
   update(dt) {
       if((this.wait -= dt) < 0) {
           this.draw(this.colors[this.colorIndex], this.dimension);
           this.wait = WAIT;
           if((this.dimension++) > 600) {
               this.dimension = 0;
               this.colorIndex = (this.colorIndex + 1) % this.colors.length;
           }
       }
   }
   start() {
       this.loop = (time) => {
           this.accumulator += (time - this.lastTime) / 1000;
           while(this.accumulator > this.deltaTime) {
               this.accumulator -= this.deltaTime;
               this.update(Math.min(this.deltaTime));
           }
           this.lastTime = time;
           requestAnimationFrame(this.loop);
       }
       this.loop(0);
   }

} function start() {

   const sunflower = new Sunflower();
   sunflower.start();

}</lang>

J

This (currently draft) task really needs an adequate description. Still, it's straightforward to derive code from another implementation on this page.

This implementation assumes a recent J implementation (for example, J903):

<lang J>require'format/printf'

sunfract=: {{ NB. y: number of "sunflower seeds"

 phi=. 0.5*1+%:5
 XY=. (y%10)+(2*(I^phi)%y) * +.^j.2*1p1*phi*I=.1+i.y
 XY,.(%:I)%13

}}

sunfractsvg=: {{

 fract=. sunfract x
 C=.,'\n<circle cx="%.2f" cy="%.2f" r="%.1f" />' sprintf fract
 ({{)n
   <svg xmlns="http://www.w3.org/2000/svg" width="%d" height="%d" style="stroke:gold">
     <rect width="100%%" height="100%%" fill="black" />
       %s
   </svg>

}} sprintf (;/<.20+}:>./fract),<C) fwrite y}} </lang>

Example use:

<lang J>

  3000 sunfractsvg '~/sunfract.html'

129147 </lang>

(The number displayed is the size of the generated file.)

jq

Adapted from Perl

Works with: jq

Works with gojq, the Go implementation of jq

<lang jq># SVG headers def svg(size):

 "<svg xmlns='http://www.w3.org/2000/svg' width='\(size)'",
 "height='\(size)' style='stroke:gold'>",
 "<rect width='100%' height='100%' fill='black'/>";
  1. emit the "<circle />" elements

def sunflower(size):

 def rnd: 100*.|round/100;
 (5 * size) as $seeds
 | ((1|atan) * 4) as $pi
 | ((1 + (5|sqrt)) / 2) as $phi
 | range(1; 1 + $seeds) as $i
 | {}
 | .r = 2 * pow($i; $phi)/$seeds
 | .theta = 2 * $pi * $phi * $i
 | .x = .r * (.theta|sin) + size/2
 | .y = .r * (.theta|cos) + size/2
 | .radius = ($i|sqrt)/13
 | "<circle cx='\(.x|rnd)' cy='\(.y|rnd)' r='\(.radius|rnd)' />" ;

def end_svg:

 "</svg>";

svg(600), sunflower(600), end_svg</lang>

Julia

Translation of: R

Run from REPL. <lang julia>using Makie

function sunflowerplot()

   len = 2000
   ϕ = 0.5 + sqrt(5) / 2
   r = LinRange(0.0, 100.0, len)
   θ = zeros(len)
   markersizes = zeros(Int, len)
   for i in 2:length(r)
       θ[i] = θ[i - 1] + 2π * ϕ
       markersizes[i] = div(i, 500) + 3
   end
   x = r .* cos.(θ)
   y = r .* sin.(θ)
   scene = Scene(backgroundcolor=:green)
   scatter!(scene, x, y, color=:gold, markersize=markersizes, strokewidth=1, fill=false, show_axis=false)

end

sunflowerplot() </lang>

Liberty BASIC

<lang lb> nomainwin UpperLeftX=1:UpperLeftY=1 WindowWidth=800:WindowHeight=600 open "Sunflower Fractal" for graphics_nf_nsb as #1

  1. 1 "trapclose [q];down;fill darkred;flush;size 3"
   c=1.618033988749895
   seeds=8000
   rd=gn=bl=int(rnd(1)*255)
   for i=0 to seeds
       rd=rd+5:if rd>254 then rd=1
       gn=gn+3:if gn>254 then gn=1
       bl=bl+1:if bl>254 then bl=1
       #1 "color ";rd;" ";gn;" ";bl
       #1 "backcolor ";rd;" ";gn;" ";bl
       r=(i^c)/seeds
       angle=2*3.14159*c*i
       x=r*sin(angle)+400
       y=r*cos(angle)+280
       #1 "place ";x;" ";y
       #1 "circlefilled ";i/seeds*5
       scan
   next i
   wait

[q]

   close #1
   end

</lang>

Mathematica / Wolfram Language

<lang Mathematica>numseeds = 3000; pts = Table[

  i = N[ni];
  r = i^GoldenRatio/numseeds;
  t = 2 Pi GoldenRatio i;
  Circle[AngleVector[{r, t}], i/(numseeds/3)]
  ,
  {ni, numseeds}
  ];

Graphics[pts]</lang>

Microsoft Small Basic

Translation of: Ring

<lang smallbasic>' Sunflower fractal - 24/07/2018

 GraphicsWindow.Width=410
 GraphicsWindow.Height=400
 c=(Math.SquareRoot(5)+1)/2
 numberofseeds=3000
 For i=0 To numberofseeds
   r=Math.Power(i,c)/numberofseeds
   angle=2*Math.Pi*c*i
   x=r*Math.Sin(angle)+200
   y=r*Math.Cos(angle)+200
   GraphicsWindow.DrawEllipse(x, y, i/numberofseeds*10, i/numberofseeds*10)
 EndFor </lang>
Output:

Sunflower fractal

Nim

Translation of: Go
Library: imageman

<lang Nim>import math import imageman

const

 Size = 600
 Background = ColorRGBU [byte 0, 0, 0]
 Foreground = ColorRGBU [byte 0, 255, 0]
 C = (sqrt(5.0) + 1) / 2
 NumberOfSeeds = 6000
 Fn = float(NumberOfSeeds)

var image = initImage[ColorRGBU](Size, Size) image.fill(Background)

for i in 0..<NumberOfSeeds:

 let
   fi = float(i)
   r = pow(fi, C) / Fn
   angle = 2 * PI * C * fi
   x = toInt(r * sin(angle) + Size div 2)
   y = toInt(r * cos(angle) + Size div 2)
 image.drawCircle(x, y, toInt(8 * fi / Fn), Foreground)

image.savePNG("sunflower.png", compression = 9)</lang>

Objeck

Translation of: C

<lang perl>use Game.SDL2; use Game.Framework;

class Test {

 @framework : GameFramework;
 @colors : Color[];
 
 function : Main(args : String[]) ~ Nil {
   Test->New()->Run();
 }
 
 New() {
   @framework := GameFramework->New(GameConsts->SCREEN_WIDTH, GameConsts->SCREEN_HEIGHT, "Test");
   @framework->SetClearColor(Color->New(0, 0, 0));
   @colors := Color->New[2];
   @colors[0] := Color->New(255,128,0); 
   @colors[1] := Color->New(255,255,25); 
 }
 
 method : Run() ~ Nil {
   if(@framework->IsOk()) {
     e := @framework->GetEvent();
     
     quit := false;
     while(<>quit) {
       # process input
       while(e->Poll() <> 0) {
         if(e->GetType() = EventType->SDL_QUIT) {
           quit := true;
         };
       };
       @framework->FrameStart();
       Render(525,525,0.50,3000);
       @framework->FrameEnd();
     };
   }
   else {
     "--- Error Initializing Environment ---"->ErrorLine();
     return;
   };
   leaving {
     @framework->Quit();
   };
 }
 method : Render(winWidth : Int, winHeight : Int, diskRatio : Float, iter : Int) ~ Nil {
   renderer := @framework->GetRenderer();
   @framework->Clear();
   factor := 0.5 + 1.25->SquareRoot();
   x := winWidth / 2.0;
   y := winHeight / 2.0;
   maxRad := Float->Power(iter, factor) / iter;
   for(i:=0;i<=iter;i+=1;) {
     r := Float->Power(i,factor)/iter;
     color := r/maxRad < diskRatio ? @colors[0] : @colors[1];
     theta := 2*Float->Pi()*factor*i;
     renderer->CircleColor(x + r*theta->Sin(), y + r*theta->Cos(), 10 * i/(1.0*iter), color);
   };
       
   @framework->Show();
 }

}

consts GameConsts {

 SCREEN_WIDTH := 640,
 SCREEN_HEIGHT := 480

} </lang>

Perl

Translation of: Sidef

<lang perl>use utf8; use constant π => 3.14159265; use constant φ => (1 + sqrt(5)) / 2;

my $scale = 600; my $seeds = 5*$scale;

print qq{<svg xmlns="http://www.w3.org/2000/svg" width="$scale" height="$scale" style="stroke:gold">

          <rect width="100%" height="100%" fill="black" />\n};

for $i (1..$seeds) {

   $r = 2 * ($i**φ) / $seeds;
   $t = 2 * π * φ * $i;
   $x = $r * sin($t) + $scale/2;
   $y = $r * cos($t) + $scale/2;
   printf qq{<circle cx="%.2f" cy="%.2f" r="%.1f" />\n}, $x, $y, sqrt($i)/13;

}

print "</svg>\n";</lang> See Phi-packing image (SVG image)

Phix

Library: Phix/pGUI
Library: Phix/online

You can run this online here.

with javascript_semantics
constant numberofseeds = 3000
 
include pGUI.e
 
Ihandle dlg, canvas
cdCanvas cddbuffer, cdcanvas
 
function redraw_cb(Ihandle /*ih*/, integer /*posx*/, integer /*posy*/)
 
    integer {hw, hh} = sq_floor_div(IupGetIntInt(canvas, "DRAWSIZE"),2)
    atom s = min(hw,hh)/150,
         f = min(hw,hh)*8/125
    cdCanvasActivate(cddbuffer)
    cdCanvasClear(cddbuffer)
    atom c = (sqrt(5)+1)/2
    for i=0 to numberofseeds do
        atom r = power(i,c)/numberofseeds,
             angle = 2*PI*c*i,
             x = s*r*sin(angle)+hw,
             y = s*r*cos(angle)+hh
        cdCanvasCircle(cddbuffer,x,y,i/numberofseeds*f)
    end for 
    cdCanvasFlush(cddbuffer)
    return IUP_DEFAULT
end function
 
function map_cb(Ihandle ih)
    cdcanvas = cdCreateCanvas(CD_IUP, ih)
    cddbuffer = cdCreateCanvas(CD_DBUFFER, cdcanvas)
    cdCanvasSetBackground(cddbuffer, CD_WHITE)
    cdCanvasSetForeground(cddbuffer, CD_BLACK)
    return IUP_DEFAULT
end function
 
procedure main()
    IupOpen()
 
    canvas = IupCanvas(NULL)
    IupSetAttribute(canvas, "RASTERSIZE", "602x502") -- initial size
    IupSetCallback(canvas, "MAP_CB", Icallback("map_cb"))
 
    dlg = IupDialog(canvas)
    IupSetAttribute(dlg, "TITLE", "Sunflower")
    IupSetCallback(canvas, "ACTION", Icallback("redraw_cb"))
 
    IupShow(dlg)
    IupSetAttribute(canvas, "RASTERSIZE", NULL) -- release the minimum limitation
    if platform()!=JS then
        IupMainLoop()
        IupClose()
    end if
end procedure
main()

Python

<lang python> from turtle import * from math import *

  1. Based on C implementation

iter = 3000 diskRatio = .5

factor = .5 + sqrt(1.25)

screen = getscreen()

(winWidth, winHeight) = screen.screensize()

  1. x = winWidth/2.0
  1. y = winHeight/2.0

x = 0.0 y = 0.0

maxRad = pow(iter,factor)/iter;

bgcolor("light blue")

hideturtle()

tracer(0, 0)

for i in range(iter+1):

   r = pow(i,factor)/iter;
   
   if r/maxRad < diskRatio:
       pencolor("black")
   else:
       pencolor("yellow")

   theta = 2*pi*factor*i;
       
   up()
   
   setposition(x + r*sin(theta), y + r*cos(theta))
   
   down()
      
   circle(10.0 * i/(1.0*iter))
   

update()

done() </lang>

R

<lang R> phi=1/2+sqrt(5)/2 r=seq(0,1,length.out=2000) theta=numeric(length(r)) theta[1]=0 for(i in 2:length(r)){

 theta[i]=theta[i-1]+phi*2*pi

} x=r*cos(theta) y=r*sin(theta) par(bg="black") plot(x,y) size=seq(.5,2,length.out = length(x)) thick=seq(.1,2,length.out = length(x)) for(i in 1:length(x)){

 points(x[i],y[i],cex=size[i],lwd=thick[i],col="goldenrod1")

} </lang>

Output:

Sunflower

Racket

Translation of: C

<lang racket>#lang racket

(require 2htdp/image)

(define N 3000) (define DISK-RATIO 0.5) (define factor (+ 0.5 (sqrt 1.25))) (define WIDTH 500) (define HEIGHT 500) (define max-rad (/ (expt N factor) N))

(for/fold ([image (empty-scene WIDTH HEIGHT)]) ([i (in-range N)])

 (define r (/ (expt i factor) N))
 (define color (if (< (/ r max-rad) DISK-RATIO) 'brown 'darkyellow))
 (define theta (* 2 pi factor i))
 (place-image (circle (* 10 i (/ 1 N)) 'outline color)
              (+ (/ WIDTH 2) (* r (sin theta)))
              (+ (/ HEIGHT 2) (* r (cos theta)))
              image))</lang>

Raku

(formerly Perl 6)

Works with: Rakudo version 2018.06

This is not really a fractal. It is more accurately an example of a Fibonacci spiral or Phi-packing.

Or, to be completely accurate: It is a variation of a generative Fermat's spiral using the Vogel model to implement phi-packing. See: https://thatsmaths.com/2014/06/05/sunflowers-and-fibonacci-models-of-efficiency

<lang perl6>use SVG;

my $seeds = 3000; my @center = 300, 300; my $scale = 5;

constant \φ = (3 - 5.sqrt) / 2;

my @c = map {

   my ($x, $y) = ($scale * .sqrt) «*« |cis($_ * φ * τ).reals »+« @center;
   [ $x.round(.01), $y.round(.01), (.sqrt * $scale / 100).round(.1) ]

}, 1 .. $seeds;

say SVG.serialize(

   svg => [
       :600width, :600height, :style<stroke:yellow>,
       :rect[:width<100%>, :height<100%>, :fill<black>],
       |@c.map( { :circle[:cx(.[0]), :cy(.[1]), :r(.[2])] } ),
   ],

);</lang> See: Phi packing (SVG image)

Ring

<lang ring>

  1. Project : Sunflower fractal

load "guilib.ring"

paint = null

new qapp

       {
       win1 = new qwidget() {
                 setwindowtitle("Sunflower fractal")
                 setgeometry(100,100,320,500)
                 label1 = new qlabel(win1) {
                             setgeometry(10,10,400,400)
                             settext("")
                 }
                 new qpushbutton(win1) {
                         setgeometry(100,400,100,30)
                         settext("draw")
                         setclickevent("draw()")
                 }
                 show()
       }
       exec()
       }

func draw

       p1 = new qpicture()
              color = new qcolor() {
              setrgb(0,0,255,255)
       }
       pen = new qpen() {
                setcolor(color)
                setwidth(1)
       }
       paint = new qpainter() {
                 begin(p1)
                 setpen(pen)
       c = (sqrt(5) + 1) / 2
       numberofseeds = 3000
       for i = 0 to numberofseeds
             r = pow(i, c ) / (numberofseeds)
             angle = 2 * 3.14 * c * i
             x = r * sin(angle) + 100
             y = r * cos(angle) + 100
            drawellipse(x, y, i / (numberofseeds / 10), i / (numberofseeds / 10))
       next
       endpaint()
       }
       label1 { setpicture(p1) show() }

</lang> Output:

Sunflower fractal

Sidef

Translation of: Go

<lang ruby>require('Imager')

func draw_sunflower(seeds=3000) {

   var img = %O<Imager>.new(
       xsize => 400,
       ysize => 400,
   )
   var c = (sqrt(1.25) + 0.5)
   { |i|
       var r = (i**c / seeds)
       var θ = (2 * Num.pi * c * i)
       var x = (r * sin(θ) + 200)
       var y = (r * cos(θ) + 200)
       img.circle(x => x, y => y, r => i/(5*seeds))
   } * seeds
   return img

}

var img = draw_sunflower() img.write(file => "sunflower.png")</lang> Output image: Sunflower fractal

Wren

Translation of: Go
Library: DOME

<lang ecmascript>import "graphics" for Canvas, Color import "dome" for Window

class Game {

   static init() {
       Window.title = "Sunflower fractal"
       var width = 400
       var height = 400
       Window.resize(width, height)
       Canvas.resize(width, height)
       Canvas.cls(Color.black)
       var col = Color.green
       var seeds = 3000
       sunflower(seeds, col)
   }
   static update() {}
   static draw(alpha) {}
   static sunflower(seeds, col) {
       var c = (5.sqrt + 1) / 2
       for (i in 0..seeds) {
           var r = i.pow(c) / seeds
           var angle = 2 * Num.pi * c * i
           var x = r*angle.sin + 200
           var y = r*angle.cos + 200
           Canvas.circle(x, y, i/seeds*5, col)
       }
   }

}</lang>

Yabasic

Translation of: Wren

<lang Yabasic>// Rosetta Code problem: http://rosettacode.org/wiki/Sunflower_fractal // Adapted from Wren to Yabasic by Galileo, 01/2022

width = 400 height = 400

open window width, height backcolor 0,0,0 clear window

color 0,255,0 seeds = 3000

c = (sqrt(5) + 1) / 2 for i = 0 to seeds

   r = (i ** c) / seeds
   angle = 2 * pi * c * i
   x = r * sin(angle) + 200
   y = r * cos(angle) + 200
   circle x, y, i / seeds * 5

next</lang>

zkl

Translation of: Go

Uses Image Magick and the PPM class from http://rosettacode.org/wiki/Bitmap/Bresenham%27s_line_algorithm#zkl <lang zkl>fcn sunflower(seeds=3000){

  img,color := PPM(400,400), 0x00ff00;		// green
  c:=((5.0).sqrt() + 1)/2;
  foreach n in ([0.0 .. seeds]){  // floats
     r:=n.pow(c)/seeds;
     x,y := r.toRectangular(r.pi*c*n*2);
     r=(n/seeds*5).toInt();
     img.circle(200 + x, 200 + y, r,color);
  }
  img.writeJPGFile("sunflower.zkl.jpg");

}();</lang>

Output:

Image at sunflower fractal