Sum and product of an array

From Rosetta Code
Task
Sum and product of an array
You are encouraged to solve this task according to the task description, using any language you may know.

Compute the sum and product of an array of integers.

4D

<lang 4d>ARRAY INTEGER($list;0) For ($i;1;5)

      APPEND TO ARRAY($list;$i)

End for

$sum:=0 $product:=1 For ($i;1;Size of array($list))

  $sum:=$var+$list{$i}
  $product:=$product*$list{$i}

End for

// since 4D v13

$sum:=sum($list) </lang>

ACL2

<lang Lisp>(defun sum (xs)

  (if (endp xs)
      0
      (+ (first xs)
         (sum (rest xs)))))

(defun prod (xs)

  (if (endp xs)
      1
      (* (first xs)
         (prod (rest xs)))))</lang>

ActionScript

<lang actionscript>package { import flash.display.Sprite;

public class SumAndProduct extends Sprite { public function SumAndProduct() { var arr:Array = [1, 2, 3, 4, 5]; var sum:int = 0; var prod:int = 1;

for (var i:int = 0; i < arr.length; i++) { sum += arr[i]; prod *= arr[i]; }

trace("Sum: " + sum); // 15 trace("Product: " + prod); // 120 } } }</lang>

Ada

<lang ada>type Int_Array is array(Integer range <>) of Integer;

array : Int_Array := (1,2,3,4,5,6,7,8,9,10); Sum : Integer := 0; for I in array'range loop

  Sum := Sum + array(I);

end loop;</lang> Define the product function <lang ada>function Product(Item : Int_Array) return Integer is

 Prod : Integer := 1;

begin

 for I in Item'range loop
    Prod := Prod * Item(I);
 end loop;
 return Prod;

end Product;</lang> This function will raise the predefined exception Constraint_Error if the product overflows the values represented by type Integer

Aime

<lang aime>void compute(integer &s, integer &p, list l) {

   integer i;
   s = 0;
   p = 1;
   i = l_length(l);
   while (i) {
       i -= 1;
       s += l_q_integer(l, i);
       p *= l_q_integer(l, i);
   }

}

integer main(void) {

   integer sum, product;
   compute(sum, product, l_effect(2, 3, 5, 7, 11, 13, 17, 19));
   o_integer(sum);
   o_newline();
   o_integer(product);
   o_newline();
   return 0;

}</lang>

Output:
77
9699690

ALGOL 68

<lang algol68>main:(

 INT default upb := 3;
 MODE INTARRAY = [default upb]INT;

 INTARRAY array = (1,2,3,4,5,6,7,8,9,10);
 INT sum := 0;
 FOR i FROM LWB array TO UPB array DO
    sum +:= array[i]
 OD;

 # Define the product function #
 PROC int product = (INTARRAY item)INT:
 (
   INT prod :=1;
   FOR i FROM LWB item TO UPB item DO
      prod *:= item[i]
   OD;
   prod
 ) # int product # ;
 printf(($" Sum: "g(0)$,sum,$", Product:"g(0)";"l$,int product(array)))

)</lang>

Output:
 Sum: 55, Product:3628800;

ALGOL W

<lang algolw>begin

   % computes the sum and product of intArray                               %
   % the results are returned in sum and product                            %
   % the bounds of the array must be specified in lb and ub                 %
   procedure sumAndProduct( integer array  intArray ( * )
                          ; integer value  lb, ub
                          ; integer result sum, product
                          ) ;
   begin
       sum     := 0;
       product := 1;
       for i := lb until ub
       do begin
           sum     :=     sum + intArray( i );
           product := product * intArray( i );
       end for_i ;
   end sumAndProduct ;
   % test the sumAndProduct procedure                                       %
   begin
       integer array v   ( 1 :: 10 );
       integer sum, product;
       for i := 1 until 10 do v( i ) := i;
       sumAndProduct( v, 1, 10, sum, product );
       write( sum, product );
   end

end.</lang>

Output:
            55         3628800  

APL

Works with: APL2

<lang apl> sum ← +/

     prod ←  ×/
     
     list ←  1 2 3 4 5 
     
     sum  list

15

     prod list

120</lang>

AppleScript

<lang applescript>set array to {1, 2, 3, 4, 5} set sum to 0 set product to 1 repeat with i in array

   set sum to sum + i
   set product to product * i

end repeat</lang>

Or, using an AppleScript implementation of fold/reduce:

<lang AppleScript>on run

   set lstRange to {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
   
   {{sum:reduce(summed, 0, lstRange)}, ¬
       {product:reduce(product, 1, lstRange)}}
   

end run

on summed(a, b)

   a + b

end summed

on product(a, b)

   a * b

end product


-- GENERIC LIBRARY FUNCTION

-- list, function, initial accumulator value -- the arguments available to the function f(a, x, i, l) are -- v: current accumulator value -- x: current item in list -- i: [ 1-based index in list ] optional -- l: [ a reference to the list itself ] optional on reduce(f, initialValue, xs)

   script mf
       property lambda : f
   end script
   
   set v to initialValue
   repeat with i from 1 to length of xs
       set v to mf's lambda(v, item i of xs, i, xs)
   end repeat
   return v

end reduce</lang>

Output:

<lang AppleScript>{{sum:55}, {product:3628800}}</lang>

AutoHotkey

<lang AutoHotkey>numbers = 1,2,3,4,5 product := 1 loop, parse, numbers, `, { sum += A_LoopField product *= A_LoopField } msgbox, sum = %sum%`nproduct = %product%</lang>

AWK

For array input, it is easiest to "deserialize" it from a string with the split() function. <lang awk>$ awk 'func sum(s){split(s,a);r=0;for(i in a)r+=a[i];return r}{print sum($0)}' 1 2 3 4 5 6 7 8 9 10 55

$ awk 'func prod(s){split(s,a);r=1;for(i in a)r*=a[i];return r}{print prod($0)}' 1 2 3 4 5 6 7 8 9 10 3628800</lang>

Babel

<lang babel>main: { [2 3 5 7 11 13] sp }

sum!  : { <- 0 -> { + } eachar } product!: { <- 1 -> { * } eachar }

sp!:

   { dup 
   sum %d cr <<
   product %d cr << }

Result: 41 30030</lang>

Perhaps better Babel:

<lang babel>main:

   { [2 3 5 7 11 13] 
   ar2ls dup cp
   <- sum_stack ->
   prod_stack
   %d cr << 
   %d cr << }

sum_stack:

   { { give  
       { + }
       { depth 1 > }
   do_while } nest }

prod_stack:

   { { give  
       { * }
       { depth 1 > }
   do_while } nest }</lang>

The nest operator creates a kind of argument-passing context - it saves whatever is on Top-of-Stack (TOS), saves the old stack, clears the stack and places the saved TOS on the new, cleared stack. This permits a section to monopolize the stack. At the end of the nest context, whatever is on TOS will be "passed back" to the original stack which will be restored.

The depth operator returns the current depth of the stack.

BASIC

Works with: FreeBASIC

<lang freebasic>dim array(5) as integer = { 1, 2, 3, 4, 5 }

dim sum as integer = 0 dim prod as integer = 1 for index as integer = lbound(array) to ubound(array)

 sum += array(index)
 prod *= array(index)

next</lang>

Applesoft BASIC

<lang ApplesoftBasic> 10 N = 5

20 S = 0:P = 1: DATA 1,2,3,4,5
30 N = N - 1: DIM A(N)
40  FOR I = 0 TO N
50  READ A(I): NEXT
60  FOR I = 0 TO N
70 S = S + A(I):P = P * A(I)
80  NEXT
90  PRINT "SUM="S,"PRODUCT="P</lang>

BBC BASIC

<lang bbcbasic> DIM array%(5)

     array%() = 1, 2, 3, 4, 5, 6
     
     PRINT "Sum of array elements = " ; SUM(array%())
     
     product% = 1
     FOR I% = 0 TO DIM(array%(),1)
       product% *= array%(I%)
     NEXT
     PRINT "Product of array elements = " ; product%</lang>

bc

<lang bc>a[0] = 3.0 a[1] = 1 a[2] = 4.0 a[3] = 1.0 a[4] = 5 a[5] = 9.00 n = 6 p = 1 for (i = 0; i < n; i++) {

   s += a[i]
   p *= a[i]

} "Sum: "; s "Product: "; p</lang>

Befunge

Works with: befungee

The program first reads the number of elements in the array, then the elements themselves (each number on a separate line) and calculates their sum. <lang Befunge>0 &>: #v_ $. @

      >1- \ & + \v
  ^              <</lang>

Bracmat

<lang bracmat>( ( sumprod

 =   sum prod num
   .   0:?sum
     & 1:?prod
     & (   !arg
         :   ?
             ( #%?num ?
             & !num+!sum:?sum
             & !num*!prod:?prod
             & ~
             )
       | (!sum.!prod)
       )
 )

& out$sumprod$(2 3 5 7 11 13 17 19) );</lang>

Output:
77.9699690

C

<lang c>/* using pointer arithmetic (because we can, I guess) */ int arg[] = { 1,2,3,4,5 }; int arg_length = sizeof(arg)/sizeof(arg[0]); int *end = arg+arg_length; int sum = 0, prod = 1; int *p;

for (p = arg; p!=end; ++p) {

  sum += *p;
  prod *= *p;

}</lang>

C#

<lang csharp>int sum = 0, prod = 1; int[] arg = { 1, 2, 3, 4, 5 }; foreach (int value in arg) {

 sum += value;
 prod *= value;

}</lang>

Alternative using Linq (C# 3)

Works with: C# version 3

<lang csharp>int[] arg = { 1, 2, 3, 4, 5 }; int sum = arg.Sum(); int prod = arg.Aggregate((runningProduct, nextFactor) => runningProduct * nextFactor);</lang>

C++

Library: STL

<lang cpp>#include <numeric>

  1. include <functional>

int arg[] = { 1, 2, 3, 4, 5 }; int sum = std::accumulate(arg, arg+5, 0, std::plus<int>()); // or just // std::accumulate(arg, arg + 5, 0); // since plus() is the default functor for accumulate int prod = std::accumulate(arg, arg+5, 1, std::multiplies<int>());</lang> Template alternative: <lang cpp>// this would be more elegant using STL collections template <typename T> T sum (const T *array, const unsigned n) {

   T accum = 0;
   for (unsigned i=0; i<n; i++)
       accum += array[i];
   return accum;

} template <typename T> T prod (const T *array, const unsigned n) {

   T accum = 1;
   for (unsigned i=0; i<n; i++)
       accum *= array[i];
   return accum;

}

  1. include <iostream>

using std::cout; using std::endl;

int main () {

   int aint[] = {1, 2, 3};
   cout << sum(aint,3) << " " << prod(aint, 3) << endl;
   float aflo[] = {1.1, 2.02, 3.003, 4.0004};
   cout << sum(aflo,4) << " " << prod(aflo,4) << endl;
   return 0;

}</lang>

Chef

<lang chef>Sum and Product of Numbers as a Piece of Cake.

This recipe sums N given numbers.

Ingredients. 1 N 0 sum 1 product 1 number

Method. Put sum into 1st mixing bowl. Put product into 2nd mixing bowl. Take N from refrigerator. Chop N. Take number from refrigerator. Add number into 1st mixing bowl. Combine number into 2nd mixing bowl. Chop N until choped. Pour contents of 2nd mixing bowl into the baking dish. Pour contents of 1st mixing bowl into the baking dish.

Serves 1.</lang>

Clean

<lang clean>array = {1, 2, 3, 4, 5} Sum = sum [x \\ x <-: array] Prod = foldl (*) 1 [x \\ x <-: array]</lang>

Clojure

<lang lisp>(defn sum [vals] (reduce + vals))

(defn product [vals] (reduce * vals))</lang>

COBOL

<lang cobol> IDENTIFICATION DIVISION.

      PROGRAM-ID. array-sum-and-product.
      DATA DIVISION.
      WORKING-STORAGE SECTION.
      78  Array-Size              VALUE 10.
      01  array-area              VALUE "01020304050607080910".
          03  array               PIC 99 OCCURS Array-Size TIMES.
      01  array-sum               PIC 9(8).
      01  array-product           PIC 9(10) VALUE 1.
      01  i                       PIC 99.
      PROCEDURE DIVISION.
          PERFORM VARYING i FROM 1 BY 1 UNTIL Array-Size < i
              ADD array (i) TO array-sum
              MULTIPLY array (i) BY array-product
          END-PERFORM
          DISPLAY "Sum:     " array-sum
          DISPLAY "Product: " array-product
          GOBACK
          .</lang>

CoffeeScript

<lang coffeescript> sum = (array) ->

 array.reduce (x, y) -> x + y

product = (array) ->

 array.reduce (x, y) -> x * y

</lang>

ColdFusion

Sum of an Array, <lang cfm><cfset Variables.myArray = [1,2,3,4,5,6,7,8,9,10]> <cfoutput>#ArraySum(Variables.myArray)#</cfoutput></lang>

Product of an Array, <lang cfm><cfset Variables.myArray = [1,2,3,4,5,6,7,8,9,10]> <cfset Variables.Product = 1> <cfloop array="#Variables.myArray#" index="i">

<cfset Variables.Product *= i>

</cfloop> <cfoutput>#Variables.Product#</cfoutput></lang>

Common Lisp

<lang lisp>(let ((data #(1 2 3 4 5)))  ; the array

 (values (reduce #'+ data)       ; sum
         (reduce #'* data)))     ; product</lang>

The loop macro also has support for sums. <lang lisp>(loop for i in '(1 2 3 4 5) sum i)</lang>

D

<lang d>import std.stdio;

void main() {

   immutable array = [1, 2, 3, 4, 5];
   int sum = 0;
   int prod = 1;
   foreach (x; array) {
       sum += x;
       prod *= x;
   }
   writeln("Sum: ", sum);
   writeln("Product: ", prod);

}</lang>

Output:
Sum: 15
Product: 120

Compute sum and product of array in one pass (same output): <lang d>import std.stdio, std.algorithm, std.typecons;

void main() {

   immutable array = [1, 2, 3, 4, 5];
   // Results are stored in a 2-tuple
   immutable r = reduce!(q{a + b}, q{a * b})(tuple(0, 1), array);
   writeln("Sum: ", r[0]);
   writeln("Product: ", r[1]);

}</lang>

dc

<lang dc>1 3 5 7 9 11 13 0ss1sp[dls+sslp*spz0!=a]dsax[Sum: ]Plsp[Product: ]Plpp Sum: 49 Product: 135135</lang>

Delphi

<lang delphi>program SumAndProductOfArray;

{$APPTYPE CONSOLE}

var

 i: integer;
 lIntArray: array [1 .. 5] of integer = (1, 2, 3, 4, 5);
 lSum: integer = 0;
 lProduct: integer = 1;

begin

 for i := 1 to length(lIntArray) do
 begin
   Inc(lSum, lIntArray[i]);
   lProduct := lProduct * lIntArray[i]
 end;
 Write('Sum: ');
 Writeln(lSum);
 Write('Product: ');
 Writeln(lProduct);

end.</lang>

E

<lang e>pragma.enable("accumulator") accum 0 for x in [1,2,3,4,5] { _ + x } accum 1 for x in [1,2,3,4,5] { _ * x }</lang>

Eiffel

<lang eiffel> class APPLICATION

create make

feature {NONE}

make local test: ARRAY [INTEGER] do create test.make_empty test := <<5, 1, 9, 7>> io.put_string ("Sum: " + sum (test).out) io.new_line io.put_string ("Product: " + product (test).out) end

sum (ar: ARRAY [INTEGER]): INTEGER -- Sum of the items of the array 'ar'. do across ar.lower |..| ar.upper as c loop Result := Result + ar [c.item] end end

product (ar: ARRAY [INTEGER]): INTEGER -- Product of the items of the array 'ar'. do Result := 1 across ar.lower |..| ar.upper as c loop Result := Result * ar [c.item] end end

end </lang>

Output:
Sum of the elements of the array: 30
Product of the elements of the array: 3840

Elena

<lang elena>#import system.

  1. import system'routines.
  2. import extensions.
  1. symbol program =

[

   #var list := (1, 2, 3, 4, 5 ).
   
   #var sum := list summarize:(Integer new).
   #var product := list accumulate:(Integer new:1) &with:(:var:val) [ var * val ].

].</lang>

Elixir

When an accumulator is omitted, the first element of the collection is used as the initial value of acc. <lang elixir>iex(26)> Enum.reduce([1,2,3,4,5], 0, fn x,acc -> x+acc end) 15 iex(27)> Enum.reduce([1,2,3,4,5], 1, fn x,acc -> x*acc end) 120 iex(28)> Enum.reduce([1,2,3,4,5], fn x,acc -> x+acc end) 15 iex(29)> Enum.reduce([1,2,3,4,5], fn x,acc -> x*acc end) 120 iex(30)> Enum.reduce([], 0, fn x,acc -> x+acc end) 0 iex(31)> Enum.reduce([], 1, fn x,acc -> x*acc end) 1 iex(32)> Enum.reduce([], fn x,acc -> x+acc end)

    • (Enum.EmptyError) empty error
   (elixir) lib/enum.ex:1287: Enum.reduce/2

iex(32)> Enum.reduce([], fn x,acc -> x*acc end)

    • (Enum.EmptyError) empty error
   (elixir) lib/enum.ex:1287: Enum.reduce/2</lang>

The function with sum <lang elixir>Enum.sum([1,2,3,4,5]) #=> 15</lang>

Emacs Lisp

Works with: XEmacs version version 21.5.21

<lang lisp>(setq array [1 2 3 4 5]) (eval (concatenate 'list '(+) array)) (eval (concatenate 'list '(*) array))</lang>

With a list

<lang lisp>(setq array '(1 2 3 4 5)) (apply '+ array) (apply '* array)</lang>

With explicit conversion

<lang lisp>(setq array [1 2 3 4 5]) (apply '+ (append array nil)) (apply '* (append array nil))</lang>

Erlang

Using the standard libraries: <lang erlang>% create the list: L = lists:seq(1, 10).

% and compute its sum: S = lists:sum(L). P = lists:foldl(fun (X, P) -> X * P end, 1, L).</lang> To compute sum and products in one pass: <lang erlang> {Prod,Sum} = lists:foldl(fun (X, {P,S}) -> {P*X,S+X} end, {1,0}, lists:seq(1,10)).</lang> Or defining our own versions: <lang erlang>-module(list_sum). -export([sum_rec/1, sum_tail/1]).

% recursive definition: sum_rec([]) ->

   0;

sum_rec([Head|Tail]) ->

   Head + sum_rec(Tail).

% tail-recursive definition: sum_tail(L) ->

   sum_tail(L, 0).

sum_tail([], Acc) ->

   Acc;

sum_tail([Head|Tail], Acc) ->

   sum_tail(Tail, Head + Acc).</lang>

Euphoria

<lang euphoria>sequence array integer sum,prod

array = { 1, 2, 3, 4, 5 }

sum = 0 prod = 1 for i = 1 to length(array) do

 sum += array[i]
 prod *= array[i]

end for

printf(1,"sum is %d\n",sum) printf(1,"prod is %d\n",prod)</lang>

Output:
 sum is 15
 prod is 120

F#

<lang fsharp> let numbers = [| 1..10 |] let sum = numbers |> Array.sum let product = numbers |> Array.fold (*) 1 </lang>

Factor

<lang factor>1 5 1 <range> [ sum . ] [ product . ] bi

   15 120

{ 1 2 3 4 } [ sum ] [ product ] bi

   10 24</lang>

sum and product are defined in the sequences vocabulary: <lang factor>: sum ( seq -- n ) 0 [ + ] reduce ;

product ( seq -- n ) 1 [ * ] reduce ;</lang>

FALSE

Strictly speaking, there are no arrays in FALSE. However, a number of elements on the stack could be considered an array. The implementation below assumes the length of the array on top of the stack, and the actual items below it. Note that this implementation does remove the "array" from the stack, so in case the original values need to be retained, a copy should be provided before executing this logic. <lang false>1 2 3 4 5 {input "array"} 5 {length of input} 0s: {sum} 1p: {product}

[$0=~][1-\$s;+s:p;*p:]#%

"Sum: "s;." Product: "p;.</lang>

Output:
Sum: 15
Product: 120

Fantom

<lang fantom> class Main {

 public static Void main ()
 {
   Int[] array := (1..20).toList
   
   // you can use a loop
   Int sum := 0
   array.each |Int n| { sum += n }
   echo ("Sum of array is : $sum")
   Int product := 1
   array.each |Int n| { product *= n }
   echo ("Product of array is : $product")
   // or use 'reduce'
   // 'reduce' takes a function, 
   //       the first argument is the accumulated value
   //       and the second is the next item in the list
   sum = array.reduce(0) |Obj r, Int v -> Obj| 
   { 
     return (Int)r + v 
   }
   echo ("Sum of array : $sum")
   product = array.reduce(1) |Obj r, Int v -> Obj| 
   { 
     return (Int)r * v 
   }
   echo ("Product of array : $product")
 }

} </lang>

Forth

<lang forth>: third ( a b c -- a b c a ) 2 pick ;

reduce ( xt n addr cnt -- n' ) \ where xt ( a b -- n )
 cells bounds do i @ third execute  cell +loop nip ;

create a 1 , 2 , 3 , 4 , 5 ,

' + 0 a 5 reduce . \ 15 ' * 1 a 5 reduce . \ 120</lang>

Fortran

In ISO Fortran 90 and later, use SUM and PRODUCT intrinsics: <lang fortran>integer, dimension(10) :: a = (/ (i, i=1, 10) /) integer :: sresult, presult

sresult = sum(a); presult = product(a);</lang>

Frink

<lang frink> a = [1,2,3,5,7] sum[a] product[a] </lang>

GAP

<lang gap>v := [1 .. 8];

Sum(v);

  1. 36

Product(v);

  1. 40320
  1. You can sum or multiply the result of a function

Sum(v, n -> n^2);

  1. 204

Product(v, n -> 1/n);

  1. 1/40320</lang>

GFA Basic

<lang basic> DIM a%(10) ' put some values into the array FOR i%=1 TO 10

 a%(i%)=i%

NEXT i% ' sum%=0 product%=1 FOR i%=1 TO 10

 sum%=sum%+a%(i%)
 product%=product%*a%(i%)

NEXT i% ' PRINT "Sum is ";sum% PRINT "Product is ";product% </lang>

Go

Implementation

<lang go>package main

import "fmt"

func main() {

   sum, prod := 0, 1
   for _, x := range []int{1,2,5} {
       sum += x
       prod *= x
   }
   fmt.Println(sum, prod)

}</lang>

Output:
8 10
Library

<lang go>package main

import (

   "fmt"
   "github.com/gonum/floats"

)

var a = []float64{1, 2, 5}

func main() {

   fmt.Println("Sum:    ", floats.Sum(a))
   fmt.Println("Product:", floats.Prod(a))

}</lang>

Output:
Sum:     8
Product: 10

Groovy

Groovy adds a "sum()" method for collections, but not a "product()" method: <lang groovy>[1,2,3,4,5].sum()</lang> However, for general purpose "reduction" or "folding" operations, Groovy does provide an "inject()" method for collections similar to "inject" in Ruby. <lang groovy>[1,2,3,4,5].inject(0) { sum, val -> sum + val } [1,2,3,4,5].inject(1) { prod, val -> prod * val }</lang> You can also combine these operations: <lang groovy>println ([1,2,3,4,5].inject([sum: 0, product: 1]) { result, value ->

   [sum: result.sum + value, product: result.product * value]})</lang>

GW-BASIC

Works with: GW-BASIC
Works with: QBasic

<lang qbasic>10 REM Create an array with some test data in it 20 DIM A(5) 30 FOR I = 1 TO 5: READ A(I): NEXT I 40 DATA 1, 2, 3, 4, 5 50 REM Find the sum of elements in the array 60 S = 0 65 P = 1 70 FOR I = 1 TO 5 72 S = SUM + A(I) 75 P = P * A(I) 77 NEXT I 80 PRINT "The sum is "; S; 90 PRINT " and the product is "; P</lang>

Haskell

For lists, sum and product are already defined in the Prelude: <lang haskell>values = [1..10]

s = sum values -- the easy way p = product values

s' = foldl (+) 0 values -- the hard way p' = foldl (*) 1 values</lang> To do the same for an array, just convert it lazily to a list: <lang haskell>import Data.Array

values = listArray (1,10) [1..10]

s = sum . elems $ values p = product . elems $ values</lang>

HicEst

<lang hicest>array = $ ! 1, 2, ..., LEN(array)

sum = SUM(array)

product = 1 ! no built-in product function in HicEst DO i = 1, LEN(array)

 product = product * array(i)

ENDDO

WRITE(ClipBoard, Name) n, sum, product ! n=100; sum=5050; product=9.33262154E157;</lang>

Icon and Unicon

The program below prints the sum and product of the arguments to the program. <lang Icon>procedure main(arglist) every ( sum := 0 ) +:= !arglist every ( prod := 1 ) *:= !arglist write("sum := ", sum,", prod := ",prod) end</lang>

IDL

<lang idl>array = [3,6,8] print,total(array) print,product(array)</lang>

Inform 7

<lang inform7>Sum And Product is a room.

To decide which number is the sum of (N - number) and (M - number) (this is summing): decide on N + M.

To decide which number is the product of (N - number) and (M - number) (this is production): decide on N * M.

When play begins: let L be {1, 2, 3, 4, 5}; say "List: [L in brace notation], sum = [summing reduction of L], product = [production reduction of L]."; end the story.</lang>

J

<lang j>sum =: +/ product =: */</lang>

For example:

<lang j> sum 1 3 5 7 9 11 13 49

  product 1 3 5 7 9 11 13

135135

  a=: 3 10 ?@$ 100  NB. random array
  a

90 47 58 29 22 32 55 5 55 73 58 50 40 5 69 46 34 40 46 84 29 8 75 97 24 40 21 82 77 9

  NB. on a table, each row is an item to be summed:
  sum a

177 105 173 131 115 118 110 127 178 166

  product a

151380 18800 174000 14065 36432 58880 39270 16400 194810 55188

  NB. but we can tell J to sum everything within each row, instead:
  sum"1 a

466 472 462

  product"1 a

5.53041e15 9.67411e15 1.93356e15</lang>

Java

Works with: Java version 1.5+

<lang java5>public class SumProd {

public static void main(final String[] args)
{
 int sum = 0;
 int prod = 1;
 int[] arg = {1,2,3,4,5};
 for (int i : arg)
 {
  sum += i;
  prod *= i;
 }
}

}</lang>

Works with: Java version 1.8+

<lang java5>import java.util.Arrays;

public class SumProd {

public static void main(final String[] args)
{
 int[] arg = {1,2,3,4,5};
 System.out.printf("sum = %d\n", Arrays.stream(arg).sum());
 System.out.printf("sum = %d\n", Arrays.stream(arg).reduce(0, (a, b) -> a + b));
 System.out.printf("product = %d\n", Arrays.stream(arg).reduce(1, (a, b) -> a * b));
}

}</lang>

Output:
sum = 15
sum = 15
product = 120

JavaScript

<lang javascript>var array = [1, 2, 3, 4, 5],

   sum = 0,
   prod = 1,
   i;

for (i = 0; i < array.length; i += 1) {

   sum += array[i];
   prod *= array[i];

} alert(sum + ' ' + prod);</lang>


Works with: Javascript version 1.8

Where supported, the reduce method can also be used: <lang javascript>var array = [1, 2, 3, 4, 5],

   sum = array.reduce(function (a, b) {
       return a + b;
   }, 0),
   prod = array.reduce(function (a, b) {
       return a * b;
   }, 1);

alert(sum + ' ' + prod);</lang>

jq

The builtin filter, add/0, computes the sum of an array: <lang jq>[4,6,8] | add

  1. => 18</lang>

<lang jq>[range(2;5) * 2] | add

  1. => 18</lang>

An efficient companion filter for computing the product of the items in an array can be defined as follows: <lang jq>def prod: reduce .[] as $i (1; . * $i);</lang> Examples: <lang jq>[4,6,8] | prod

# => 192</lang>

10! <lang jq>[range(1;11)] | prod

  1. =>3628800</lang>

Julia

<lang julia>julia> sum([4,6,8]) 18

julia> +((1:10)...) 55

julia +([1,2,3]...) 6

julia> prod([4,6,8]) 192</lang>

K

<lang k> sum: {+/}x

 product: {*/}x
 a: 1 3 5 7 9 11 13
 sum a

49

 product a

135135</lang>

It is easy to see the relationship of K to J here.

Lang5

<lang lang5>4 iota 1 + dup

'+ reduce '* reduce</lang>

Lasso

<lang Lasso>local(x = array(1,2,3,4,5,6,7,8,9,10)) // sum of array elements 'Sum: ' with n in #x sum #n '\r' // product of arrray elements 'Product: ' local(product = 1) with n in #x do => { #product *= #n }

  1. product</lang>
Output:
Sum: 55
Product: 3628800

Liberty BASIC

<lang lb>Dim array(19)

For i = 0 To 19

   array(i) = Int(Rnd(1) * 20)

Next i

'product must first equal one or you will get 0 as the product product = 1 For i = 0 To 19

   sum = (sum + array(i))
   product = (product * array(i))

next i

Print "Sum is " + str$(sum) Print "Product is " + str$(product)</lang>

LiveCode

<lang LiveCode>//sum put "1,2,3,4" into nums split nums using comma answer sum(nums)

// product local prodNums repeat for each element n in nums

   if prodNums is empty then 
       put n into prodNums
   else
       multiply prodnums by n
   end if

end repeat answer prodnums</lang>

<lang logo>print apply "sum arraytolist {1 2 3 4 5} print apply "product arraytolist {1 2 3 4 5}</lang>

Lua

<lang lua> function sumf(a, ...) return a and a + sumf(...) or 0 end function sumt(t) return sumf(unpack(t)) end function prodf(a, ...) return a and a * prodf(...) or 1 end function prodt(t) return prodf(unpack(t)) end

print(sumt{1, 2, 3, 4, 5}) print(prodt{1, 2, 3, 4, 5})</lang>

<lang lua> function table.sum(arr, length)

     --same as if <> then <> else <>
     return length == 1 and arr[1] or arr[length] + table.sum(arr, length -1)

end

function table.product(arr, length)

     return length == 1 and arr[1] or arr[length] * table.sum(arr, length -1)

end

t = {1,2,3} print(table.sum(t,#t)) print(table.product(t,3)) </lang>

Lucid

prints a running sum and product of sequence 1,2,3... <lang lucid>[%sum,product%]

where
   x = 1 fby x + 1;
   sum = 0 fby sum + x;
   product = 1 fby product * x
end</lang>

Mathematica

Mathematica provides many ways of doing the sum of an array (any kind of numbers or symbols): <lang Mathematica>a = {1, 2, 3, 4, 5} Plus @@ a Apply[Plus, a] Total[a] Total@a a // Total Sum[ai, {i, 1, Length[a]}] Sum[i, {i, a}]</lang> all give 15. For product we also have a couple of choices: <lang Mathematica>a = {1, 2, 3, 4, 5} Times @@ a Apply[Times, a] Product[ai, {i, 1, Length[a]}] Product[i, {i, a}]</lang> all give 120.

MATLAB

These two function are built into MATLAB as the "sum(array)" and "prod(array)" functions.

Sample Usage: <lang MATLAB>>> array = [1 2 3;4 5 6;7 8 9]

array =

    1     2     3
    4     5     6
    7     8     9

>> sum(array,1)

ans =

   12    15    18

>> sum(array,2)

ans =

    6
   15
   24

>> prod(array,1)

ans =

   28    80   162

>> prod(array,2)

ans =

    6
  120
  504</lang>


Maxima

<lang maxima>lreduce("+", [1, 2, 3, 4, 5, 6, 7, 8]); 36

lreduce("*", [1, 2, 3, 4, 5, 6, 7, 8]); 40320</lang>

MAXScript

<lang maxscript>arr = #(1, 2, 3, 4, 5) sum = 0 for i in arr do sum += i product = 1 for i in arr do product *= i</lang>

МК-61/52

<lang>^ 1 ПE + П0 КИП0 x#0 18 ^ ИПD + ПD <-> ИПE * ПE БП 05 С/П</lang>

Instruction: РX - array length, Р1:РC - array, РD and РE - sum and product of an array.

Modula-3

<lang modula3>MODULE Sumprod EXPORTS Main;

FROM IO IMPORT Put; FROM Fmt IMPORT Int;

VAR a := ARRAY [1..5] OF INTEGER {1, 2, 3, 4, 5}; VAR sum: INTEGER := 0; VAR prod: INTEGER := 1;

BEGIN

 FOR i := FIRST(a) TO LAST(a) DO
   INC(sum, a[i]);
   prod := prod * a[i];
 END;
 Put("Sum of array: " & Int(sum) & "\n");
 Put("Product of array: " & Int(prod) & "\n");

END Sumprod.</lang>

Output:
Sum of array: 15
Product of array: 120

MUMPS

<lang MUMPS> SUMPROD(A)

;Compute the sum and product of the numbers in the array A
NEW SUM,PROD,POS
;SUM is the running sum, 
;PROD is the running product,
;POS is the position within the array A
SET SUM=0,PROD=1,POS=""
FOR  SET POS=$ORDER(A(POS)) Q:POS=""  SET SUM=SUM+A(POS),PROD=PROD*A(POS)
WRITE !,"The sum of the array is "_SUM
WRITE !,"The product of the array is "_PROD
KILL SUM,PROD,POS
QUIT</lang>

Example:

USER>SET C(-1)=2,C("A")=3,C(42)=1,C(0)=7
 
USER>D SUMPROD^ROSETTA(.C)
 
The sum of the array is 13
The product of the array is 42

Note - the string "A" converts to 0 when doing mathematical operations.

USER>SET C(-1)=2,C("A")="3H",C(42)=.1,C(0)=7.0,C("B")="A"
 
USER>D SUMPROD^ROSETTA(.C)
 
The sum of the array is 12.1
The product of the array is 0

Nemerle

As mentioned for some of the other functional languages, it seems more natural to work with lists in Nemerle, but as the task specifies working on an array, this solution will work on either. <lang Nemerle>using System; using System.Console; using System.Collections.Generic; using Nemerle.Collections;

module SumProd {

   Sum[T] (nums : T) : int
     where T : IEnumerable[int]
   {
       nums.FoldLeft(0, _+_)
   }
   
   Product[T] (nums : T) : int
     where T : IEnumerable[int]
   {
       nums.FoldLeft(1, _*_)
   }
   
   Main() : void
   {
       def arr = array[1, 2, 3, 4, 5];
       def lis = [1, 2, 3, 4, 5];
       
       def suml = Sum(lis);
       def proda = Product(arr);
       
       WriteLine("Sum is: {0}\tProduct is: {1}", suml, proda);
   }

}</lang>

NetRexx

<lang NetRexx>/* NetRexx */

options replace format comments java crossref savelog symbols binary

harry = [long 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

sum = long 0 product = long 1 entries = Rexx

loop n_ = int 0 to harry.length - 1

 nxt = harry[n_]
 entries = entries nxt
 sum = sum + nxt
 product = product * nxt 
 end n_

entries = entries.strip

say 'Sum and product of' entries.changestr(' ', ',')':' say ' Sum:' sum say ' Product:' product

return </lang>

Output:
 Sum and product of 1,2,3,4,5,6,7,8,9,10:
     Sum: 55
 Product: 3628800

NewLISP

<lang NewLISP>(setq a '(1 2 3 4 5)) (apply + a) (apply * a)</lang>

Nial

Nial being an array language, what applies to individual elements are extended to cover array operations by default strand notation <lang nial>+ 1 2 3 = 6

  • 1 2 3

= 6</lang> array notation <lang nial>+ [1,2,3]</lang> grouped notation <lang nial>(* 1 2 3) = 6

  • (1 2 3)

= 6</lang> (All these notations are equivalent)

Nim

<lang nim>var xs = @[1,2,3,4,5,6]

var sum, product: int

product = 1

for x in xs:

 sum += x
 product *= x</lang>

Or functionally: <lang nim>import sequtils

let

 xs = @[1,2,3,4,5,6]
 sum = xs.foldl(a + b)
 product = xs.foldl(a * b)</lang>

Objeck

<lang objeck> sum := 0; prod := 1; arg := [1, 2, 3, 4, 5]; each(i : arg) {

 sum += arg[i];
 prod *= arg[i];

}; </lang>

Objective-C

Works with: GCC version 4.0.1 (apple)

Sum: <lang objc>- (float) sum:(NSMutableArray *)array { int i, sum, value; sum = 0; value = 0;

for (i = 0; i < [array count]; i++) { value = [[array objectAtIndex: i] intValue]; sum += value; }

return suml; }</lang> Product: <lang objc>- (float) prod:(NSMutableArray *)array { int i, prod, value; prod = 0; value = 0;

for (i = 0; i < [array count]; i++) { value = [[array objectAtIndex: i] intValue]; prod *= value; }

return suml; }</lang>

OCaml

Arrays

<lang ocaml>(* ints *) let a = [| 1; 2; 3; 4; 5 |];; Array.fold_left (+) 0 a;; Array.fold_left ( * ) 1 a;; (* floats *) let a = [| 1.0; 2.0; 3.0; 4.0; 5.0 |];; Array.fold_left (+.) 0.0 a;; Array.fold_left ( *.) 1.0 a;;</lang>

Lists

<lang ocaml>(* ints *) let x = [1; 2; 3; 4; 5];; List.fold_left (+) 0 x;; List.fold_left ( * ) 1 x;; (* floats *) let x = [1.0; 2.0; 3.0; 4.0; 5.0];; List.fold_left (+.) 0.0 x;; List.fold_left ( *.) 1.0 x;;</lang>

Octave

<lang octave>a = [ 1, 2, 3, 4, 5, 6 ]; b = [ 10, 20, 30, 40, 50, 60 ]; vsum = a + b; vprod = a .* b;</lang>

Oforth

<lang Oforth>[1, 2, 3, 4, 5 ] sum println [1, 3, 5, 7, 9 ] prod println</lang>

Output:
15
945

ooRexx

Translation of: REXX

<lang oorexx>a=.my_array~new(20) do i=1 To 20

 a[i]=i
 End

s=a~makestring((LINE),',') Say s Say ' sum='a~sum Say 'product='a~prod

class my_array subclass array
method sum

sum=0 Do i=1 To self~dimension(1)

 sum+=self[i]
 End

Return sum

method prod

Numeric Digits 30 prod=1 Do i=1 To self~dimension(1)

 prod*=self[i]
 End

Return prod</lang>

Output:
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
    sum=210
product=2432902008176640000

Oz

Calculations like this are typically done on lists, not on arrays: <lang oz>declare

 Xs = [1 2 3 4 5]
 Sum = {FoldL Xs Number.'+' 0}
 Product = {FoldL Xs Number.'*' 1}

in

 {Show Sum}
 {Show Product}</lang>

If you are actually working with arrays, a more imperative approach seems natural: <lang oz>declare

 Arr = {Array.new 1 3 0}
 Sum = {NewCell 0}

in

 Arr.1 := 1
 Arr.2 := 2
 Arr.3 := 3
 for I in {Array.low Arr}..{Array.high Arr} do
    Sum := @Sum + Arr.I
 end
 {Show @Sum}</lang>

PARI/GP

These are built in to GP: vecsum and factorback (the latter can also take factorization matrices, thus the name). They could be coded like so: <lang parigp>vecsum1(v)={

 sum(i=1,#v,v[i])

}; vecprod(v)={

 prod(i=1,#v,v[i])

};</lang>

Pascal

See Delphi

Perl

<lang perl>my @list = ( 1, 2, 3 );

my ( $sum, $prod ) = ( 0, 1 ); $sum += $_ foreach @list; $prod *= $_ foreach @list;</lang> Or using the List::Util module: <lang perl>use List::Util qw/sum0 product/; my @list = (1..9);

say "Sum: ", sum0(@list); # sum0 returns 0 for an empty list say "Product: ", product(@list);</lang>

Output:
Sum: 45
Product: 362880

Perl 6

<lang perl6>my @ary = 1, 5, 10, 100; say 'Sum: ', [+] @ary; say 'Product: ', [*] @ary;</lang>

Phix

<lang Phix>sequence s = {1,2,3,4,5} integer asum = 0, aprod = 1 for i=1 to length(s) do

 asum += s[i]
 aprod *= s[i]

end for printf(1,"sum is %d\n",asum) -- or sum(s) printf(1,"prod is %d\n",aprod)</lang>

Output:
sum is 15
prod is 120

PHP

<lang php>$array = array(1,2,3,4,5,6,7,8,9); echo array_sum($array); echo array_product($array);</lang>

PicoLisp

<lang PicoLisp>(let Data (1 2 3 4 5)

  (cons
     (apply + Data)
     (apply * Data) ) )</lang>
Output:
(15 . 120)

PL/I

<lang pli>declare A(10) fixed binary static initial

  (1, 2, 3, 4, 5, 6, 7, 8, 9, 10);

put skip list (sum(A)); put skip list (prod(A));</lang>

Pop11

Simple loop: <lang pop11>lvars i, sum = 0, prod = 1, ar = {1 2 3 4 5 6 7 8 9}; for i from 1 to length(ar) do

   ar(i) + sum -> sum;
   ar(i) * prod -> prod;

endfor;</lang> One can alternatively use second order iterator: <lang pop11>lvars sum = 0, prod = 1, ar = {1 2 3 4 5 6 7 8 9}; appdata(ar, procedure(x); x + sum -> sum; endprocedure); appdata(ar, procedure(x); x * prod -> prod; endprocedure);</lang>

PostScript

<lang> /sumandproduct { /x exch def /sum 0 def /prod 0 def /i 0 def x length 0 eq { } { /prod prod 1 add def x length{ /sum sum x i get add def /prod prod x i get mul def /i i 1 add def }repeat }ifelse sum == prod == }def </lang>

Library: initlib

<lang postscript> % sum [1 1 1 1 1] 0 {add} fold % product [1 1 1 1 1] 1 {mul} fold

</lang>

PowerShell

The Measure-Object cmdlet already knows how to compute a sum: <lang powershell>function Get-Sum ($a) {

   return ($a | Measure-Object -Sum).Sum

}</lang> But not how to compute a product: <lang powershell>function Get-Product ($a) {

   if ($a.Length -eq 0) {
       return 0
   } else {
       $p = 1
       foreach ($x in $a) {
           $p *= $x
       }
       return $p
   }

}</lang> One could also let PowerShell do all the work by simply creating an expression to evaluate:

Works with: PowerShell version 2

<lang powershell>function Get-Product ($a) {

   if ($a.Length -eq 0) {
       return 0
   }
   $s = $a -join '*'
   return (Invoke-Expression $s)

}</lang> Even nicer, however, is a function which computes both at once and returns a custom object with appropriate properties: <lang powershell>function Get-SumAndProduct ($a) {

   $sum = 0
   if ($a.Length -eq 0) {
       $prod = 0
   } else {
       $prod = 1
       foreach ($x in $a) {
           $sum += $x
           $prod *= $x
       }
   }
   $ret = New-Object PSObject
   $ret | Add-Member NoteProperty Sum $sum
   $ret | Add-Member NoteProperty Product $prod
   return $ret

}</lang>

Output:
PS> Get-SumAndProduct 5,9,7,2,3,8,4

Sum Product
--- -------
 38   60480

Prolog

<lang prolog>sum([],0). sum([H|T],X) :- sum(T,Y), X is H + Y. product([],1). product([H|T],X) :- product(T,Y), X is H * X.</lang>

test

:- sum([1,2,3,4,5,6,7,8,9],X).
X =45;
:- product([1,2,3,4,5],X).
X = 120;


Using fold <lang prolog> add(A,B,R):-

   R is A + B.

mul(A,B,R):-

   R is A * B.

% define fold now. fold([], Act, Init, Init).

fold(Lst, Act, Init, Res):-

   head(Lst,Hd),
   tail(Lst,Tl),
   apply(Act,[Init, Hd, Ra]),
   fold(Tl, Act, Ra, Res).

sumproduct(Lst, Sum, Prod):-

   fold(Lst,mul,1, Prod),
   fold(Lst,add,0, Sum).

?- sumproduct([1,2,3,4],Sum,Prod). Sum = 10, Prod = 24 .

</lang>

PureBasic

<lang PureBasic>Dim MyArray(9) Define a, sum=0, prod=1

For a = 0 To ArraySize(MyArray())  ; Create a list of some random numbers

 MyArray(a) = 1 + Random(9)          ; Insert a number [1...10] in current element

Next

For a = 0 To ArraySize(MyArray())  ; Calculate Sum and Product of this Array

 sum  + MyArray(a)
 prod * MyArray(a)

Next

Debug "The sum is " + Str(sum)  ; Present the results Debug "Product is " + Str(prod)</lang>

Python

Works with: Python version 2.5

<lang python>numbers = [1, 2, 3] total = sum(numbers)

product = 1 for i in numbers:

   product *= i</lang>

Or functionally (faster but perhaps less clear):

Works with: Python version 2.5

<lang python>from operator import mul, add sum = reduce(add, numbers) # note: this version doesn't work with empty lists sum = reduce(add, numbers, 0) product = reduce(mul, numbers) # note: this version doesn't work with empty lists product = reduce(mul, numbers, 1)</lang>

Library: numpy

<lang python>from numpy import r_ numbers = r_[1:4] total = numbers.sum() product = numbers.prod()</lang>

If you are summing floats in Python 2.6+, you should use math.fsum() to avoid loss of precision:

Works with: Python version 2.6, 3.x

<lang python>import math total = math.fsum(floats)</lang>

R

<lang r>total <- sum(1:5) product <- prod(1:5)</lang>

Racket

<lang racket>

  1. lang racket

(for/sum ([x #(3 1 4 1 5 9)]) x) (for/product ([x #(3 1 4 1 5 9)]) x) </lang>

Raven

<lang raven>0 [ 1 2 3 ] each + 1 [ 1 2 3 ] each *</lang>

REBOL

<lang REBOL>REBOL [

   Title: "Sum and Product"
   Date: 2010-01-04
   Author: oofoe
   URL: http://rosettacode.org/wiki/Sum_and_product_of_array

]

Simple

sum: func [a [block!] /local x] [x: 0 forall a [x: x + a/1] x]

product: func [a [block!] /local x] [x: 1 forall a [x: x * a/1] x]

Way too fancy

redux: func [ "Applies an operation across an array to produce a reduced value." a [block!] "Array to operate on." op [word!] "Operation to perform." /init x "Initial value (default 0)." ][if not init [x: 0] forall a [x: do compose [x (op) (a/1)]] x]

rsum: func [a [block!]][redux a '+]

rproduct: func [a [block!]][redux/init a '* 1]

Tests

assert: func [code][print [either do code [" ok"]["FAIL"] mold code]]

print "Simple dedicated functions:" assert [55 = sum [1 2 3 4 5 6 7 8 9 10]] assert [3628800 = product [1 2 3 4 5 6 7 8 9 10]]

print [crlf "Fancy reducing function:"] assert [55 = rsum [1 2 3 4 5 6 7 8 9 10]] assert [3628800 = rproduct [1 2 3 4 5 6 7 8 9 10]]</lang>

Output:
Simple dedicated functions:
  ok [55 = sum [1 2 3 4 5 6 7 8 9 10]]
  ok [3628800 = product [1 2 3 4 5 6 7 8 9 10]]

Fancy reducing function:
  ok [55 = rsum [1 2 3 4 5 6 7 8 9 10]]
  ok [3628800 = rproduct [1 2 3 4 5 6 7 8 9 10]]

REXX

<lang rexx>/*REXX program adds and multiplies N elements of a (populated) array @. */ numeric digits 200 /*200 decimal digit #s (default is 9).*/ parse arg N .; if N== then N=20 /*Not specified? Then use the default.*/

         do j=1  for N                /*build array of  N  elements (or 20?).*/
         @.j=j                        /*set 1st to 1, 3rd to 3, 8th to 8 ··· */
         end   /*j*/

sum=0 /*initialize SUM (variable) to zero. */ prod=1 /*initialize PROD (variable) to unity.*/

         do k=1  for N
         sum  = sum  + @.k            /*add the element to the running total.*/
         prod = prod * @.k            /*multiply element to running product. */
         end   /*k*/                  /* [↑]  this pgm:  same as N factorial.*/

say ' sum of ' m " elements for the @ array is: " sum say ' product of ' m " elements for the @ array is: " prod

                                      /*stick a fork in it,  we're all done. */</lang>

output using the default input of:   20

     sum of  M  elements for the  @  array is:  210
 product of  M  elements for the  @  array is:  2432902008176640000

Ring

<lang ring> aList = 1:10 nSum=0 nProduct=0 for x in aList nSum += x nProduct *= x next See "Sum = " + nSum + nl See "Product = " + nProduct + nl </lang>

Ruby

<lang ruby>arr = [1,2,3,4,5] # or ary = *1..5, or ary = (1..5).to_a p sum = arr.inject(0) { |sum, item| sum + item }

  1. => 15

p product = arr.inject(1) { |prod, element| prod * element }

  1. => 120</lang>
Works with: Ruby version 1.8.7

<lang ruby>arr = [1,2,3,4,5] p sum = arr.inject(0, :+) #=> 15 p product = arr.inject(1, :*) #=> 120

  1. If you do not explicitly specify an initial value for memo,
  2. then the first element of collection is used as the initial value of memo.

p sum = arr.inject(:+) #=> 15 p product = arr.inject(:*) #=> 120</lang>

Note: When the Array is empty, the initial value returns. However, nil returns if not giving an initial value. <lang ruby>arr = [] p arr.inject(0, :+) #=> 0 p arr.inject(1, :*) #=> 1 p arr.inject(:+) #=> nil p arr.inject(:*) #=> nil</lang>

Enumerable#reduce is the alias of Enumerable#inject.

Works with: Ruby version 1.9.3

<lang ruby>arr = [1,2,3,4,5] p sum = arr.sum #=> 15 p [].sum #=> 0</lang>

Run BASIC

<lang runbasic>dim array(100) for i = 1 To 100

   array(i) = rnd(0) * 100

next i

product = 1 for i = 0 To 19

   sum     = (sum + array(i))
   product = (product * array(i))

next i

Print " Sum is ";sum Print "Product is ";product</lang>

Rust

<lang rust>#![feature(iter_arith)]

fn main() {

   let arr: [i32; 9] = [1i32, 2, 3, 4, 5, 6, 7, 8, 9];
   // using fold
   let sum = arr.iter().fold(0i32, |a, &b| a + b);
   let product = arr.iter().fold(1i32, |a, &b| a * b);
   println!("the sum is {} and the product is {}", sum, product);
   // or using sum and product
   // these are NOT YET STABLE (hence the #![feature(..)] line
   let sum = arr.iter().sum::<i32>();
   let product = arr.iter().product::<i32>();
   println!("the sum is {} and the product is {}", sum, product);

} </lang>

S-lang

<lang S-lang>variable a = [5, -2, 3, 4, 666, 7];</lang>

The sum of array elements is handled by an intrinsic. [note: print is slsh-specific; if not available, use printf().]

<lang S-lang>print(sum(a));</lang>

The product is slightly more involved; I'll use this as a chance to show the alternate stack-based use of 'foreach': <lang S-lang>variable prod = a[0];

% Skipping the loop variable causes the val to be placed on the stack. % Also note that the double-brackets ARE required. The inner one creates % a "range array" based on the length of a. foreach (a1:)

 % () pops it off.
 prod *= ();

print(prod);</lang>

SAS

<lang sas>data _null_;

  array a{*} a1-a100;
  do i=1 to 100;
     a{i}=i*i;
  end;
  b=sum(of a{*});
  put b c;

run;</lang>

Sather

<lang sather>class MAIN is

 main is
   a :ARRAY{INT} := |10, 5, 5, 20, 60, 100|;
   sum, prod :INT;
   loop sum := sum + a.elt!; end;
   prod := 1;
   loop prod := prod * a.elt!; end;
   #OUT + sum + " " + prod + "\n";
 end;

end;</lang>

Scala

<lang scala>val seq = Seq(1, 2, 3, 4, 5) val sum = seq.foldLeft(0)(_ + _) val product = seq.foldLeft(1)(_ * _)</lang>

Or even shorter: <lang scala>val sum = seq.sum val product = seq.product</lang>

Works with all data types for which a Numeric implicit is available.

Scheme

<lang scheme>(apply + '(1 2 3 4 5)) (apply * '(1 2 3 4 5))</lang> A tail-recursive solution, without the n-ary operator "trick". Because Scheme supports tail call optimization, this is as space-efficient as an imperative loop. <lang scheme>(define (reduce f i l)

 (if (null? l)
   i
   (reduce f (f i (car l)) (cdr l))))

(reduce + 0 '(1 2 3 4 5)) ;; 0 is unit for + (reduce * 1 '(1 2 3 4 5)) ;; 1 is unit for *</lang>

Seed7

<lang seed7>const func integer: sumArray (in array integer: valueArray) is func

 result
   var integer: sum is 0;
 local
   var integer: value is 0;
 begin
   for value range valueArray do
     sum +:= value;
   end for;
 end func;

const func integer: prodArray (in array integer: valueArray) is func

 result
   var integer: prod is 1;
 local
   var integer: value is 0;
 begin
   for value range valueArray do
     prod *:= value;
   end for;
 end func;</lang>

Call these functions with:

writeln(sumArray([](1, 2, 3, 4, 5)));
writeln(prodArray([](1, 2, 3, 4, 5)));

SETL

<lang SETL>numbers := [1 2 3 4 5 6 7 8 9]; print(+/ numbers, */ numbers);</lang>

=> 45 362880

Sidef

Using built-in methods: <lang ruby>var ary = [1, 2, 3, 4, 5]; say ary.sum; # => 15 say ary.prod; # => 120</lang>

Alternatively, using hyper-operators: <lang ruby>var ary = [1, 2, 3, 4, 5]; say ary«+»; # => 15 say ary«*»; # => 120</lang>

Slate

<lang slate>#(1 2 3 4 5) reduce: [:sum :number | sum + number]

  1. (1 2 3 4 5) reduce: [:product :number | product * number]</lang>

Shorthand for the above with a macro: <lang slate>#(1 2 3 4 5) reduce: #+ `er

  1. (1 2 3 4 5) reduce: #* `er</lang>

Smalltalk

<lang smalltalk>#(1 2 3 4 5) inject: 0 into: [:sum :number | sum + number]

  1. (1 2 3 4 5) inject: 1 into: [:product :number | product * number]</lang>

Some implementation also provide a fold: message: <lang smalltalk>#(1 2 3 4 5) fold: [:sum :number | sum + number]

  1. (1 2 3 4 5) fold: [:product :number | product * number]</lang>

SNOBOL4

<lang snobol> t = table()

  • read the integer from the std. input

init_tab t<x = x + 1> = trim(input) :s(init_tab)

         product = 1
         sum = 0
  • counting backwards to 1

loop i = t< x = ?gt(x,1) x - 1> :f(out)

         sum = sum + i
         product = product * i         :(loop)

out output = "Sum: " sum

         output = "Prod: " product

end</lang>

Input

1
2
3
4
5
Output:
 Sum:  15
 Prod: 120

Sparkling

<lang Sparkling>spn:1> reduce({ 1, 2, 3, 4, 5 }, 0, function(x, y) { return x + y; }) = 15 spn:2> reduce({ 1, 2, 3, 4, 5 }, 1, function(x, y) { return x * y; }) = 120</lang>

Standard ML

Arrays

<lang sml>(* ints *) val a = Array.fromList [1, 2, 3, 4, 5]; Array.foldl op+ 0 a; Array.foldl op* 1 a; (* reals *) val a = Array.fromList [1.0, 2.0, 3.0, 4.0, 5.0]; Array.foldl op+ 0.0 a; Array.foldl op* 1.0 a;</lang>

Lists

<lang sml>(* ints *) val x = [1, 2, 3, 4, 5]; foldl op+ 0 x; foldl op* 1 x; (* reals *) val x = [1.0, 2.0, 3.0, 4.0, 5.0]; foldl op+ 0.0 x; foldl op* 1.0 x;</lang>

Swift

<lang swift>let a = [1, 2, 3, 4, 5] println(a.reduce(0, +)) // prints 15 println(a.reduce(1, *)) // prints 120

println(reduce(a, 0, +)) // prints 15 println(reduce(a, 1, *)) // prints 120</lang>

Tcl

<lang tcl>set arr [list 3 6 8] set sum [expr [join $arr +]] set prod [expr [join $arr *]]</lang>

Works with: Tcl version 8.5

<lang tcl>set arr [list 3 6 8] set sum [tcl::mathop::+ {*}$arr] set prod [tcl::mathop::* {*}$arr]</lang>

TI-83 BASIC

Use the built-in functions

sum()

and

prod()

.

Toka

<lang toka>4 cells is-array foo

212 1 foo array.put 51 2 foo array.put 12 3 foo array.put 91 4 foo array.put

[ ( array size -- sum )

 >r 0 r> 0 [ over i swap array.get + ] countedLoop nip ] is sum-array
( product )

reset 1 4 0 [ i foo array.get * ] countedLoop .</lang>

Trith

<lang trith>[1 2 3 4 5] 0 [+] foldl</lang> <lang trith>[1 2 3 4 5] 1 [*] foldl</lang>

TUSCRIPT

<lang tuscript> $$ MODE TUSCRIPT list="1'2'3'4'5" sum=SUM(list) PRINT " sum: ",sum

product=1 LOOP l=list product=product*l ENDLOOP PRINT "product: ",product </lang>

Output:
    sum: 15
product: 120

UNIX Shell

Works with: NetBSD version 3.0

From an internal variable, $IFS delimited:

<lang bash>sum=0 prod=1 list="1 2 3" for n in $list do sum="$(($sum + $n))"; prod="$(($prod * $n))" done echo $sum $prod</lang>

From the argument list (ARGV):

<lang bash>sum=0 prod=1 for n do sum="$(($sum + $n))"; prod="$(($prod * $n))" done echo $sum $prod</lang>

From STDIN, one integer per line:

<lang bash>sum=0 prod=1 while read n do sum="$(($sum + $n))"; prod="$(($prod * $n))" done echo $sum $prod</lang>

Works with: GNU bash version 3.2.0(1)-release (i386-unknown-freebsd6.1)

From variable:

<lang bash>LIST='20 20 2'; SUM=0; PROD=1; for i in $LIST; do

 SUM=$[$SUM + $i]; PROD=$[$PROD * $i];

done; echo $SUM $PROD</lang>

UnixPipes

Uses ksh93-style process substitution.

Works with: bash

<lang bash>prod() {

  (read B; res=$1; test -n "$B" && expr $res \* $B || echo $res)

}

sum() {

  (read B; res=$1; test -n "$B" && expr $res + $B || echo $res)

}

fold() {

  (func=$1; while read a ; do fold $func | $func $a ; done)

}


(echo 3; echo 1; echo 4;echo 1;echo 5;echo 9) |

 tee >(fold sum) >(fold prod) > /dev/null</lang>

There is a race between fold sum and fold prod, which run in parallel. The program might print sum before product, or print product before sum.

Ursa

Ursa doesn't have arrays in the traditional sense. Its equivalent is the stream. All math operators take streams as arguments, so sums and products of streams can be found like this. <lang ursa>declare int<> stream append 34 76 233 8 2 734 56 stream

  1. outputs 1143

out (+ stream) endl console

  1. outputs 3.95961079808E11

out (* stream) endl console</lang>

Ursala

The reduction operator, :-, takes an associative binary function and a constant for the empty case. Natural numbers are unsigned and of unlimited size. <lang Ursala>#import nat

  1. cast %nW

sp = ^(sum:-0,product:-1) <62,43,46,40,29,55,51,82,59,92,48,73,93,35,42,25></lang>

Output:
(875,2126997171723931187788800000)

V

<lang v>[sp dup 0 [+] fold 'product=' put puts 1 [*] fold 'sum=' put puts].</lang>

Using it:

<lang v>[1 2 3 4 5] sp = product=15 sum=120</lang>

Vala

<lang vala> public static void main(){ int sum = 0, product = 1;

int[] array = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

foreach (int number in array){ sum += number; product *= number; } } </lang>

VBScript

<lang vb> Function sum_and_product(arr) sum = 0 product = 1 For i = 0 To UBound(arr) sum = sum + arr(i) product = product * arr(i) Next WScript.StdOut.Write "Sum: " & sum WScript.StdOut.WriteLine WScript.StdOut.Write "Product: " & product WScript.StdOut.WriteLine End Function

myarray = Array(1,2,3,4,5,6) sum_and_product(myarray) </lang>

Output:
Sum: 21
Product: 720

Wart

<lang wart>def (sum_prod nums)

 (list (+ @nums) (* @nums))</lang>

Wortel

<lang wortel>@sum [1 2 3 4] ; returns 10 @prod [1 2 3 4] ; returns 24</lang>

XPL0

<lang XPL0>code CrLf=9, IntOut=11;

func SumProd(A, L); int A, L; int S, P, I; [S:= 0; P:= 1; for I:= 0 to L-1 do [S:= S+A(I); P:= P*A(I)]; IntOut(0, S); CrLf(0); IntOut(0, P); CrLf(0); ]; \SumSq

SumProd([1,2,3,4,5,6,7,8,9,10], 10)</lang>

Output:
55
3628800

XSLT

XSLT (or XPath rather) has a few built-in functions for reducing from a collection, but product is not among them. Because of referential transparency, one must resort to recursive solutions for general iterative operations upon collections. The following code represents the array by numeric values in <price> elements in the source document.

<lang xml><xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="text" />
 
 <xsl:template name="sum-prod">
   <xsl:param name="values" />
   <xsl:param name="sum"  select="0" />
   <xsl:param name="prod" select="1" />
   <xsl:choose>
     <xsl:when test="not($values)">
       <xsl:text>

Sum: </xsl:text>

       <xsl:value-of select="$sum" />
       <xsl:text>

Product: </xsl:text>

       <xsl:value-of select="$prod" />
     </xsl:when>
     <xsl:otherwise>
       <xsl:call-template name="sum-prod">
         <xsl:with-param name="values" select="$values[position() > 1]" />
         <xsl:with-param name="sum"  select="$sum  + $values[1]" />
         <xsl:with-param name="prod" select="$prod * $values[1]" />
       </xsl:call-template>
     </xsl:otherwise>
   </xsl:choose>
 </xsl:template>
 
 <xsl:template match="/">
    <xsl:text>

Sum (built-in): </xsl:text>

   <xsl:value-of select="sum(//price)" />
   
   <xsl:call-template name="sum-prod">
     <xsl:with-param name="values" select="//price" />
   </xsl:call-template>
 </xsl:template>

</xsl:stylesheet></lang>

zkl

Translation of: Clojure

<lang zkl>fcn sum(vals){vals.reduce('+,0)} fcn product(vals){vals.reduce('*,1)}</lang>

sum(T(1,2,3,4))     //-->10
product(T(1,2,3,4)) //-->24