Smallest enclosing circle problem

From Rosetta Code
Revision as of 20:32, 7 April 2022 by Petelomax (talk | contribs) (→‎{{header|Phix}}: syntax coloured, made p2js compatible)
Smallest enclosing circle problem is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

The smallest enclosing circle problem (aka minimum covering circle problem, bounding circle problem) is a mathematical problem of computing the smallest circle that contains all of a given set of points in the Euclidean plane.

Initially it was proposed by the English mathematician James Joseph Sylvester in 1857.

Task

Find circle of smallest radius containing all of given points.

  • Circle is defined by it's center and radius;
  • Points are defined by their coordinates in n-dimensional space;
  • Circle (sphere) contains point when distance between point and circle center <= circle radius.


11l

Translation of: Nim
Translation of: Go

<lang 11l>T Point = (Float, Float)

T Circle

  Point c
  Float r
  F (c, r)
     .c = c
     .r = r
  F String()
     R ‘Center ’(.c)‘, Radius ’(.r)

F getCircleCenter(Float bx, by, cx, cy)

  V b = bx * bx + by * by
  V c = cx * cx + cy * cy
  V d = bx * cy - by * cx
  R Point((cy * b - by * c) / (2 * d), (bx * c - cx * b) / (2 * d))

F contains(Circle ci, Point p)

  R sqlen(ci.c - p) <= ci.r ^ 2

F encloses(Circle ci, [Point] ps)

  L(p) ps
     I !contains(ci, p)
        R 0B
  R 1B

F circleFrom3(Point a, b, c)

  V i = getCircleCenter(b.x - a.x, b.y - a.y, c.x - a.x, c.y - a.y)
  i.x += a.x
  i.y += a.y
  R Circle(i, distance(i, a))

F circleFrom2(Point a, b)

  V c = Point((a.x + b.x) * 0.5, (a.y + b.y) * 0.5)
  R Circle(c, distance(a, b) / 2)

F secTrivial([Point] rs)

  I rs.empty
     R Circle(Point(0, 0), 0)
  I rs.len == 1
     R Circle(rs[0], 0)
  I rs.len == 2
     R circleFrom2(rs[0], rs[1])
  assert(rs.len == 3, ‘There shouldn't be more than three points.’)
  L(i) 2
     L(j) i + 1 .< 3
        V c = circleFrom2(rs[i], rs[j])
        I encloses(c, rs)
           R c
  R circleFrom3(rs[0], rs[1], rs[2])

F welzlHelper([Point] &ps, [Point] rs, Int n)

  V rc = copy(rs)
  I n == 0 | rc.len == 3
     R secTrivial(rc)
  V idx = random:(n)
  V p = ps[idx]
  swap(&ps[idx], &ps[n - 1])
  V d = welzlHelper(&ps, rc, n - 1)
  I contains(d, p)
     R d
  rc.append(p)
  R welzlHelper(&ps, rc, n - 1)

F welzl([Point] ps)

  V pc = copy(ps)
  random:shuffle(&pc)
  R welzlHelper(&pc, [Point](), pc.len)

V Tests = [[Point(0.0, 0.0), Point(0.0, 1.0), Point(1.0, 0.0)],

          [Point(5.0, -2.0), Point(-3.0, -2.0), Point(-2.0, 5.0), Point(1.0, 6.0), Point(0.0, 2.0)]]

L(test) Tests

  print(welzl(test))</lang>
Output:
Center (0.5, 0.5), Radius 0.707106781
Center (1, 1), Radius 5

Go

Translation of: Wren

<lang go>package main

import (

   "fmt"
   "log"
   "math"
   "math/rand"
   "time"

)

type Point struct{ x, y float64 }

type Circle struct {

   c Point
   r float64

}

// string representation of a Point func (p Point) String() string { return fmt.Sprintf("(%f, %f)", p.x, p.y) }

// returns the square of the distance between two points func distSq(a, b Point) float64 {

   return (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y)

}

// returns the center of a circle defined by 3 points func getCircleCenter(bx, by, cx, cy float64) Point {

   b := bx*bx + by*by
   c := cx*cx + cy*cy
   d := bx*cy - by*cx
   return Point{(cy*b - by*c) / (2 * d), (bx*c - cx*b) / (2 * d)}

}

// returns whether a circle contains the point 'p' func (ci Circle) contains(p Point) bool {

   return distSq(ci.c, p) <= ci.r*ci.r

}

// returns whether a circle contains a slice of points func (ci Circle) encloses(ps []Point) bool {

   for _, p := range ps {
       if !ci.contains(p) {
           return false
       }
   }
   return true

}

// string representation of a Circle func (ci Circle) String() string { return fmt.Sprintf("{%v, %f}", ci.c, ci.r) }

// returns a unique circle that intersects 3 points func circleFrom3(a, b, c Point) Circle {

   i := getCircleCenter(b.x-a.x, b.y-a.y, c.x-a.x, c.y-a.y)
   i.x += a.x
   i.y += a.y
   return Circle{i, math.Sqrt(distSq(i, a))}

}

// returns smallest circle that intersects 2 points func circleFrom2(a, b Point) Circle {

   c := Point{(a.x + b.x) / 2, (a.y + b.y) / 2}
   return Circle{c, math.Sqrt(distSq(a, b)) / 2}

}

// returns smallest enclosing circle for n <= 3 func secTrivial(rs []Point) Circle {

   size := len(rs)
   if size > 3 {
       log.Fatal("There shouldn't be more than 3 points.")
   }
   if size == 0 {
       return Circle{Point{0, 0}, 0}
   }
   if size == 1 {
       return Circle{rs[0], 0}
   }
   if size == 2 {
       return circleFrom2(rs[0], rs[1])
   }
   for i := 0; i < 2; i++ {
       for j := i + 1; j < 3; j++ {
           c := circleFrom2(rs[i], rs[j])
           if c.encloses(rs) {
               return c
           }
       }
   }
   return circleFrom3(rs[0], rs[1], rs[2])

}

// helper function for Welzl method func welzlHelper(ps, rs []Point, n int) Circle {

   rc := make([]Point, len(rs))
   copy(rc, rs) // 'rs' passed by value so need to copy
   if n == 0 || len(rc) == 3 {
       return secTrivial(rc)
   }
   idx := rand.Intn(n)
   p := ps[idx]
   ps[idx], ps[n-1] = ps[n-1], p
   d := welzlHelper(ps, rc, n-1)
   if d.contains(p) {
       return d
   }
   rc = append(rc, p)
   return welzlHelper(ps, rc, n-1)

}

// applies the Welzl algorithm to find the SEC func welzl(ps []Point) Circle {

   var pc = make([]Point, len(ps))
   copy(pc, ps)
   rand.Shuffle(len(pc), func(i, j int) {
       pc[i], pc[j] = pc[j], pc[i]
   })
   return welzlHelper(pc, []Point{}, len(pc))

}

func main() {

   rand.Seed(time.Now().UnixNano())
   tests := [][]Point{
       {Point{0, 0}, Point{0, 1}, Point{1, 0}},
       {Point{5, -2}, Point{-3, -2}, Point{-2, 5}, Point{1, 6}, Point{0, 2}},
   }
   for _, test := range tests {
       fmt.Println(welzl(test))
   }

}</lang>

Output:
{(0.500000, 0.500000), 0.707107}
{(1.000000, 1.000000), 5.000000}

Julia

N-dimensional solution using the Welzl algorithm. Derived from the BoundingSphere.jl module at https://github.com/JuliaFEM. See also Bernd Gärtner's paper at people.inf.ethz.ch/gaertner/subdir/texts/own_work/esa99_final.pdf. <lang julia>import Base.pop!, Base.push!, Base.length, Base.* using LinearAlgebra, Random

struct ProjectorStack{P <: AbstractVector}

   vs::Vector{P}

end Base.push!(p::ProjectorStack, v) = (push!(p.vs, v); p) Base.pop!(p::ProjectorStack) = (pop!(p.vs); p) Base.:*(p::ProjectorStack, v) = (s = zero(v); for vi in p.vs s += vi * dot(vi, v) end; s)

"""

   GärtnerBoundary

See the passage regarding M_B in Section 4 of Gärtner's paper. """ mutable struct GärtnerBoundary{P<:AbstractVector, F<:AbstractFloat}

   centers::Vector{P}
   square_radii::Vector{F}
   # projection onto of affine space spanned by points
   # shifted such that first point becomes origin
   projector::ProjectorStack{P}
   empty_center::P # center of nsphere spanned by empty boundary

end

function GärtnerBoundary(pts)

   P = eltype(pts)
   F = eltype(P)
   projector, centers, square_radii = ProjectorStack(P[]), P[], F[]
   empty_center = F(NaN) * first(pts)
   GärtnerBoundary(centers, square_radii, projector, empty_center)

end

function push_if_stable!(b::GärtnerBoundary, pt)

   if isempty(b)
       push!(b.square_radii, zero(eltype(pt)))
       push!(b.centers, pt)
       dim = length(pt)
       return true
   end
   q0, center = first(b.centers), b.centers[end]
   C, r2  = center - q0, b.square_radii[end]
   Qm, M = pt - q0, b.projector
   Qm_bar = M*Qm
   residue, e = Qm - Qm_bar, sqdist(Qm, C) - r2
   z, tol = 2*sqnorm(residue), eps(eltype(pt)) * max(r2, one(r2))
   isstable = abs(z) > tol
   if isstable
       center_new  = center + (e/z) * residue
       r2new = r2 + (e^2)/(2z)
       push!(b.projector, residue / norm(residue))
       push!(b.centers, center_new)
       push!(b.square_radii, r2new)
   end
   return isstable

end

function Base.pop!(b::GärtnerBoundary)

   n = length(b)
   pop!(b.centers)
   pop!(b.square_radii)
   if n >= 2
       pop!(b.projector)
   end
   return b

end

struct NSphere{P,F}

   center::P
   sqradius::F

end

function isinside(pt, nsphere::NSphere; atol=0, rtol=0)

   r2, R2 = sqdist(pt, center(nsphere)), sqradius(nsphere)
   return r2 <= R2 || isapprox(r2, R2;atol=atol^2,rtol=rtol^2)

end allinside(pts, nsphere; kw...) = all(pt -> isinside(pt, nsphere; kw...), pts)

function move_to_front!(pts, i)

   pt = pts[i]
   for j in eachindex(pts)
       pts[j], pt = pt, pts[j]
       j == i && break
   end
   pts

end

prefix(pts, i) = view(pts, 1:i) Base.length(b::GärtnerBoundary) = length(b.centers) Base.isempty(b::GärtnerBoundary) = length(b) == 0 center(b::NSphere) = b.center radius(b::NSphere) = sqrt(b.sqradius) sqradius(b::NSphere) = b.sqradius dist(p1,p2) = norm(p1-p2) sqdist(p1::AbstractVector, p2::AbstractVector) = sqnorm(p1-p2) sqnorm(p) = sum(abs2,p) ismaxlength(b::GärtnerBoundary) = length(b) == length(b.empty_center) + 1

function NSphere(b::GärtnerBoundary)

   return isempty(b) ? NSphere(b.empty_center, 0.0) :
       NSphere(b.centers[end], b.square_radii[end])

end

function welzl!(pts, bdry)

   bdry_len, support_count, nsphere = length(bdry), 0, NSphere(bdry)
   ismaxlength(bdry) && return nsphere, 0
   for i in eachindex(pts)
       pt = pts[i]
       if !isinside(pt, nsphere)
           pts_i = prefix(pts, i-1)
           isstable = push_if_stable!(bdry, pt)
           if isstable
               nsphere, s = welzl!(pts_i, bdry)
               pop!(bdry)
               move_to_front!(pts, i)
               support_count = s + 1
           end
       end
   end
   return nsphere, support_count

end

function find_max_excess(nsphere, pts, k1)

   T = eltype(first(pts))
   e_max, k_max = T(-Inf), k1 -1
   for k in k1:length(pts)
       pt = pts[k]
       e = sqdist(pt, center(nsphere)) - sqradius(nsphere)
       if  e > e_max
           e_max = e
           k_max = k
       end
   end
   return e_max, k_max

end

function welzl(points, maxiterations=2000)

   pts = deepcopy(points)
   bdry, t = GärtnerBoundary(pts), 1
   nsphere, s = welzl!(prefix(pts, t), bdry)
   for i in 1:maxiterations
       e, k = find_max_excess(nsphere, pts, t + 1)
       P = eltype(pts)
       F = eltype(P)
       e <= eps(F) && break
       pt = pts[k]
       push_if_stable!(bdry, pt)
       nsphere_new, s_new = welzl!(prefix(pts, s), bdry)
       pop!(bdry)
       move_to_front!(pts, k)
       nsphere = nsphere_new
       t, s = s + 1, s_new + 1
   end
   return nsphere

end

function testwelzl()

   testdata =[
       [[0.0, 0.0], [0.0, 1.0], [1.0, 0.0]],
       [[5.0, -2.0], [-3.0, -2.0], [-2.0, 5.0], [1.0, 6.0], [0.0, 2.0]],
       [[2.0, 4.0, -1.0], [1.0, 5.0, -3.0], [8.0, -4.0, 1.0], [3.0, 9.0, -5.0]],
       [randn(5) for _ in 1:8]
   ]
   for test in testdata
       nsphere = welzl(test)
       println("For points: ", test)
       println("    Center is at: ", nsphere.center)
       println("    Radius is: ", radius(nsphere), "\n")
   end

end

testwelzl()

</lang>

Output:
For points: [[0.0, 0.0], [0.0, 1.0], [1.0, 0.0]]
    Center is at: [0.5, 0.5]
    Radius is: 0.7071067811865476

For points: [[5.0, -2.0], [-3.0, -2.0], [-2.0, 5.0], [1.0, 6.0], [0.0, 2.0]]
    Center is at: [1.0, 1.0]
    Radius is: 5.0

For points: [[2.0, 4.0, -1.0], [1.0, 5.0, -3.0], [8.0, -4.0, 1.0], [3.0, 9.0, -5.0]]
    Center is at: [5.5, 2.5, -2.0]
    Radius is: 7.582875444051551

For points: [[-0.6400900432782123, 2.643703255134232, 0.4016122094706093, 1.8959601399652273, -1.1624046608380516], [0.5632393652621324, -0.015981105190064373, -2.193725940351997, -0.9094586577358262, 0.7165036664470906], [-1.7704367632976061, 0.2518283698686299, -1.3810444289625348, -0.597516704360172, 1.089645656962647], [1.3448578652803103, -0.18140877132223002, -0.4288734015080915, 1.53271973321691, 0.41896461833399573], [0.2132336397213029, 0.07659442168765788, 0.148636431531099, 2.3386893481333795, -2.3000459709300927], [0.6023153188617328, 0.3051735340025314, 1.0732600437151525, 1.1148388039984898, 0.047605838564167786], [1.3655523661720959, 0.5461416420929995, -0.09321951900362889, -1.004771137760985, 1.6532914656050117], [-0.14974382165751837, -0.5375672589202939, -0.15845596754003466, -0.2750720340454088, -0.441247015836271]]
    Center is at: [0.0405866077655439, 0.5556683897981481, -0.2313678300507679, 0.6074066023194586, -0.2003463948612026]
    Radius is: 2.7946020036995454

Mathematica/Wolfram Language

<lang Mathematica>f=BoundingRegion[#,"MinBall"]&; f[{{0,0},{0,1},{1,0}}] f[{{5,-2},{-3,-2},{-2,5},{1,6},{0,2}}] f[{{2,4,-1},{1,5,-3},{8,-4,1},{3,9,-5}}] f[{{-0.6400900432782123`,2.643703255134232`,0.4016122094706093`,1.8959601399652273`,-1.1624046608380516`},{0.5632393652621324`,-0.015981105190064373`,-2.193725940351997`,-0.9094586577358262`,0.7165036664470906`},{-1.7704367632976061`,0.2518283698686299`,-1.3810444289625348`,-0.597516704360172`,1.089645656962647`},{1.3448578652803103`,-0.18140877132223002`,-0.4288734015080915`,1.53271973321691`,0.41896461833399573`},{0.2132336397213029`,0.07659442168765788`,0.148636431531099`,2.3386893481333795`,-2.3000459709300927`},{0.6023153188617328`,0.3051735340025314`,1.0732600437151525`,1.1148388039984898`,0.047605838564167786`},{1.3655523661720959`,0.5461416420929995`,-0.09321951900362889`,-1.004771137760985`,1.6532914656050117`},{-0.14974382165751837`,-0.5375672589202939`,-0.15845596754003466`,-0.2750720340454088`,-0.441247015836271`}}]</lang>

Output:
Ball[{0.5,0.5},0.707107]
Ball[{1.,1.},5.]
Disk[{11/2,5/2,-2},Sqrt[115/2]]
Ball[{0.0405866,0.555668,-0.231368,0.607407,-0.200346},2.7946]

Nim

Translation of: Go
Translation of: Wren

<lang Nim>import math, random, strutils

type

 Point = tuple[x, y: float]
 Circle = tuple[c: Point; r: float]


func `$`(p: Point): string =

 ## Return the string representation of a point.
 "($1, $2)".format(p.x, p.y)


func dist(a, b: Point): float =

 ## Return the distance between two points.
 hypot(a.x - b.x, a.y - b.y)


func getCircleCenter(bx, by, cx, cy: float): Point =

 ## Return the center of a circle defined by three points.
 let
   b = bx * bx + by * by
   c = cx * cx + cy * cy
   d = bx * cy - by * cx
 result = ((cy * b - by * c) / (2 * d), (bx * c - cx * b) / (2 * d))

func contains(ci: Circle; p: Point): bool =

 ## Return whether a circle contains the point 'p'.
 ## Used by 'in' and 'notin'.
 dist(ci.c, p) <= ci.r


func contains(ci: Circle; ps: seq[Point]): bool =

 ## Return whether a circle contains a slice of points.
 ## Used by 'in'.
 for p in ps:
   if p notin ci: return false
 result = true


func `$`(ci: Circle): string =

 ## Return the string representation of a circle.
 "Center $1, Radius $2".format(ci.c, ci.r)


func circleFrom3(a, b, c: Point): Circle =

 ## Return the smallest circle that intersects three points.
 var i = getCircleCenter(b.x - a.x, b.y - a.y, c.x - a.x, c.y - a.y)
 i.x += a.x
 i.y += a.y
 result = (c: i, r: dist(i, a))


func circleFrom2(a, b: Point): Circle =

 ## Return the smallest circle that intersects two points.
 let c = ((a.x + b.x) * 0.5, (a.y + b.y) * 0.5)
 result = (c: c, r: dist(a, b) * 0.5)


func secTrivial(rs: seq[Point]): Circle =

 ## Return the smallest enclosing circle for n <= 3.
 case rs.len
 of 0: return ((0.0, 0.0), 0.0)
 of 1: return (rs[0], 0.0)
 of 2: return circleFrom2(rs[0], rs[1])
 of 3: discard
 else: raise newException(ValueError, "There shouldn't be more than three points.")
 # Three points.
 for i in 0..1:
   for j in (i + 1)..2:
     let c = circleFrom2(rs[i], rs[j])
     if rs in c: return c
 result = circleFrom3(rs[0], rs[1], rs[2])


proc welzl(ps: var seq[Point]; rs: seq[Point]; n: int): Circle =

 ## Helper function for Welzl method.
 var rc = rs
 if n == 0 or rc.len == 3: return secTrivial(rc)
 let idx = rand(n-1)
 let p = ps[idx]
 swap ps[idx], ps[n-1]
 let d = welzl(ps, rc, n-1)
 if p in d: return d
 rc.add p
 result = welzl(ps, rc, n-1)


proc welzl(ps: seq[Point]): Circle =

 # Applies the Welzl algorithm to find the SEC.
 var pc = ps
 pc.shuffle()
 result = welzl(pc, @[], pc.len)


when isMainModule:

 randomize()
 const Tests = [@[(0.0, 0.0), (0.0, 1.0), (1.0, 0.0)],
                @[(5.0, -2.0), (-3.0, -2.0), (-2.0, 5.0), (1.0, 6.0), (0.0, 2.0)]]
 for test in Tests:
   echo welzl(test)</lang>
Output:
Center (0.5, 0.5), Radius 0.7071067811865476
Center (1.0, 1.0), Radius 5.0

Phix

Based on the same code as Wren, and likewise limited to 2D circles - I believe (but cannot prove) the main barrier to coping with more than two dimensions lies wholly within the circle_from3() routine.

with javascript_semantics
type point(sequence s) return true end type
enum CENTRE, RADIUS
type circle(sequence s) return true end type

function distance(point a, b)
    return sqrt(sum(sq_power(sq_sub(a,b),2)))
end function

function in_circle(point p, circle c)
    return distance(p,c[CENTRE]) <= c[RADIUS]
end function

function circle_from2(point a, b)
    -- return the smallest circle that intersects 2 points:
    point midpoint = sq_div(sq_add(a,b),2)
    atom halfdiameter = distance(a,b)/2
    circle res = { midpoint, halfdiameter }
    return res
end function

function circle_from3(point a, b, c)
    -- return a unique circle that intersects three points 
    point bma = sq_sub(b,a),
          cma = sq_sub(c,a)
    atom {{aX,aY},{bX,bY},{cX,cY}} = {a,bma,cma},
         B = sum(sq_power(bma,2)),
         C = sum(sq_power(cma,2)),
         D = (bX*cY - bY*cX)*2 
    point centre = {(cY*B - bY*C)/D + aX, 
                    (bX*C - cX*B)/D + aY }
    atom radius = distance(centre,a) -- (=== b,c)
    circle res = { centre, radius }
    return res
end function
  
function trivial(sequence r)
    integer l = length(r)
    switch l do
        case 0: return {{0,0},0}
        case 1: return {r[1],0}
        case 2: return circle_from2(r[1],r[2])
        case 3: return circle_from3(r[1],r[2],r[3])
    end switch
end function

function welzlr(sequence p, r)
    if p={} or length(r)=3 then return trivial(r) end if
    point p1 = p[1]
    p = p[2..$]
    circle d = welzlr(p, r)
    if in_circle(p1,d) then return d end if
    return welzlr(p, append(deep_copy(r),p1))
end function

procedure welzl(sequence p)
    circle c = welzlr(shuffle(p),{})
    string s = sprintf("centre %v radius %.14g",c)
    printf(1,"Points %v ==> %s\n",{p,s})
end procedure

constant tests = {{{0, 0},{ 0, 1},{ 1,0}},
                  {{5,-2},{-3,-2},{-2,5},{1,6},{0,2}}}
papply(tests,welzl)
Output:
Points {{0,0},{0,1},{1,0}} ==> centre {0.5,0.5} radius 0.70710678118655
Points {{5,-2},{-3,-2},{-2,5},{1,6},{0,2}} ==> centre {1,1} radius 5

n-dimensional

Translation of: Python

Uses the last test from Julia, however, since that's given more accurately.

with javascript_semantics
constant inf = 1e300*1e300,
         nan = -(inf/inf),
         eps = 1e-8
 
function sqnorm(sequence p)
    return sum(sq_power(p,2))
end function
 
function sqdist(sequence p1, p2)
    return sqnorm(sq_sub(p1,p2))
end function
 
function projector_mult(sequence vs, v)
    sequence s = repeat(0,length(v))
    for i=1 to length(vs) do
        sequence vi = vs[i]
        s = sq_add(s,sq_mul(vi,sum(sq_mul(vi, v))))
    end for
    return s
end function
 
-- Gaertner Boundary:
sequence empty_center,
         centers,
         square_radii,
         -- Stack of points that are shifted / projected to put first one at origin:
         projector

function push_if_stable(sequence pt)
    if length(centers) == 0 then
        square_radii = append(square_radii, 0)
        centers = {pt}
        return true
    end if
    sequence q0 = centers[1],
             center = centers[$],
             C = sq_sub(center,q0),
             Qm = sq_sub(pt,q0),
             Qm_bar = projector_mult(projector,Qm),
             residue = sq_sub(Qm,Qm_bar)
    atom r2 = square_radii[$],
         e = sqdist(Qm, C) - r2,
         z = 2 * sqnorm(residue),
         tol = eps * max(r2, 1),
         isstable = abs(z) > tol
    if isstable then
        sequence center_new = sq_add(center,sq_mul(e/z,residue))
        atom r2new = r2 + (e * e) / (2 * z)
        projector = append(projector,sq_div(residue,sqrt(sqnorm(residue))))
        centers = append(centers, center_new)
        square_radii = append(square_radii, r2new)
    end if
    return isstable
end function
 
procedure pop_gb()
    integer n = length(centers)
    centers = centers[1..$-1]
    square_radii = square_radii[1..$-1]
    if n >= 2 then
        projector = projector[1..$-1] -- (pop/discard)
    end if
end procedure
 
function isinside(sequence pt, center, atom sqradius)
    atom r2 = sqdist(pt, center)
    return r2!=nan and (r2<=sqradius or abs(r2-sqradius)<eps)
end function
 
function move_to_front(sequence pts, integer i)
    sequence pt = pts[i]
    for j=1 to i do
        {pts[j], pt} = {pt, pts[j]}
    end for
    return pts
end function
 
function ismaxlength()
    return length(centers) == length(empty_center) + 1
end function
 
function _welzl(sequence pts, integer pos)
    integer support_count = 0, s
    sequence center = iff(length(centers)?centers[$]:empty_center)
    atom sqradius = iff(length(centers)?square_radii[$]:0)
    if ismaxlength() then
        return {center, sqradius, 0}
    end if
    for i=1 to pos do
        if not isinside(pts[i], center, sqradius) then
            bool isstable = push_if_stable(pts[i])
            if isstable then
                {center, sqradius, s} = _welzl(pts, i)
                pop_gb()
                pts = move_to_front(deep_copy(pts), i)
                support_count = s + 1
            end if
        end if
    end for
    return {center, sqradius, support_count}
end function
 
function find_max_excess(sequence center, pts, atom sqradius, integer k1)
    atom err_max  = -inf
    integer k_max = k1 - 1
    for k=k_max to length(pts) do
        sequence pt = pts[k]
        atom err = sqdist(pt, center) - sqradius
        if err > err_max then
            err_max = err
            k_max = k + 1
        end if
    end for
    return {err_max, k_max - 1}
end function
 
procedure welzl(sequence points, integer maxiterations=2000)
    sequence pts = points
    empty_center = repeat(nan,length(pts[1]))
    centers = {}
    square_radii = {}
    projector = {}

    integer t = 1, s_new
    {sequence center, atom sqradius, integer s} = _welzl(pts, t)
    for i=1 to maxiterations do
        atom {e, k} = find_max_excess(center, pts, sqradius, t + 1)
        if e <= eps then exit end if
        sequence pt = pts[k]
        {} = push_if_stable(pt)
        {center, sqradius, s_new} = _welzl(pts, s)
        pop_gb()
        pts = move_to_front(deep_copy(pts), k)
        t = s + 1
        s = s_new + 1
    end for
    printf(1,"For points: ") pp(points,{pp_Indent,12,pp_FltFmt,"%11.8f"})
    printf(1,"    Center is at: %v\n", {center})
    printf(1,"    Radius is: %.16g\n", {sqrt(sqradius)})
end procedure
 
constant tests = {{{0, 0}, { 0, 1}, { 1, 0}},
                  {{5,-2}, {-3,-2}, {-2, 5}, {1, 6}, {0, 2}},
                  {{2, 4, -1}, {1, 5, -3}, {8, -4, 1}, {3, 9, -5}},
                  {{-0.6400900432782123, 2.643703255134232,    0.4016122094706093, 1.8959601399652273,-1.1624046608380516},
                   { 0.5632393652621324,-0.015981105190064373,-2.193725940351997, -0.9094586577358262, 0.7165036664470906},
                   {-1.7704367632976061, 0.2518283698686299,  -1.3810444289625348,-0.597516704360172,  1.089645656962647},
                   { 1.3448578652803103,-0.18140877132223002, -0.4288734015080915, 1.53271973321691,   0.41896461833399573},
                   { 0.2132336397213029, 0.07659442168765788,  0.1486364315310990, 2.3386893481333795,-2.3000459709300927},
                   { 0.6023153188617328, 0.3051735340025314,   1.0732600437151525, 1.1148388039984898, 0.047605838564167786},
                   { 1.3655523661720959, 0.5461416420929995, -0.09321951900362889,-1.004771137760985,  1.6532914656050117},
                   {-0.14974382165751837,-0.5375672589202939,-0.15845596754003466,-0.2750720340454088,-0.441247015836271}}}
papply(tests,welzl)
Output:
For points: {{0,0}, {0,1}, {1,0}}
    Center is at: {0.5,0.5}
    Radius is: 0.7071067811865476
For points: {{5,-2}, {-3,-2}, {-2,5}, {1,6}, {0,2}}
    Center is at: {1,1}
    Radius is: 5
For points: {{2,4,-1}, {1,5,-3}, {8,-4,1}, {3,9,-5}}
    Center is at: {5.5,2.5,-2}
    Radius is: 7.582875444051551
For points: {{-0.64009004, 2.64370326, 0.40161221, 1.89596014,-1.16240466},
             { 0.56323937,-0.01598111,-2.19372594,-0.90945866, 0.71650367},
             {-1.77043676, 0.25182837,-1.38104443,-0.59751670, 1.08964566},
             { 1.34485787,-0.18140877,-0.42887340, 1.53271973, 0.41896462},
             { 0.21323364, 0.07659442, 0.14863643, 2.33868935,-2.30004597},
             { 0.60231532, 0.30517353, 1.07326004, 1.11483880, 0.04760584},
             { 1.36555237, 0.54614164,-0.09321952,-1.00477114, 1.65329147},
             {-0.14974382,-0.53756726,-0.15845597,-0.27507203,-0.44124702}}
    Center is at: {0.0405866078,0.5556683898,-0.2313678301,0.6074066023,-0.2003463949}
    Radius is: 2.794602003699545

Python

Translation of: Julia

<lang python>import numpy as np

class ProjectorStack:

   """
   Stack of points that are shifted / projected to put first one at origin.
   """
   def __init__(self, vec):
       self.vs = np.array(vec)
       
   def push(self, v):
       if len(self.vs) == 0:
           self.vs = np.array([v])
       else:
           self.vs = np.append(self.vs, [v], axis=0)
       return self
   
   def pop(self):
       if len(self.vs) > 0:
           ret, self.vs = self.vs[-1], self.vs[:-1]
           return ret
   
   def __mul__(self, v):
       s = np.zeros(len(v))
       for vi in self.vs:
           s = s + vi * np.dot(vi, v)
       return s
   

class GaertnerBoundary:

   """
       GärtnerBoundary
   See the passage regarding M_B in Section 4 of Gärtner's paper.
   """
   def __init__(self, pts):
       self.projector = ProjectorStack([])
       self.centers, self.square_radii = np.array([]), np.array([])
       self.empty_center = np.array([np.NaN for _ in pts[0]])


def push_if_stable(bound, pt):

   if len(bound.centers) == 0:
       bound.square_radii = np.append(bound.square_radii, 0.0)
       bound.centers = np.array([pt])
       return True
   q0, center = bound.centers[0], bound.centers[-1]
   C, r2  = center - q0, bound.square_radii[-1]
   Qm, M = pt - q0, bound.projector
   Qm_bar = M * Qm
   residue, e = Qm - Qm_bar, sqdist(Qm, C) - r2
   z, tol = 2 * sqnorm(residue), np.finfo(float).eps * max(r2, 1.0)
   isstable = np.abs(z) > tol
   if isstable:
       center_new  = center + (e / z) * residue
       r2new = r2 + (e * e) / (2 * z)
       bound.projector.push(residue / np.linalg.norm(residue))
       bound.centers = np.append(bound.centers, np.array([center_new]), axis=0)
       bound.square_radii = np.append(bound.square_radii, r2new)
   return isstable

def pop(bound):

   n = len(bound.centers)
   bound.centers = bound.centers[:-1]
   bound.square_radii = bound.square_radii[:-1]
   if n >= 2:
       bound.projector.pop()
   return bound


class NSphere:

   def __init__(self, c, sqr):
       self.center = np.array(c)
       self.sqradius = sqr

def isinside(pt, nsphere, atol=1e-6, rtol=0.0):

   r2, R2 = sqdist(pt, nsphere.center), nsphere.sqradius
   return r2 <= R2 or np.isclose(r2, R2, atol=atol**2,rtol=rtol**2)

def allinside(pts, nsphere, atol=1e-6, rtol=0.0):

   for p in pts:
       if not isinside(p, nsphere, atol, rtol):
           return False
   return True

def move_to_front(pts, i):

   pt = pts[i]
   for j in range(len(pts)):
       pts[j], pt = pt, np.array(pts[j])
       if j == i:
           break
   return pts

def dist(p1, p2):

   return np.linalg.norm(p1 - p2)

def sqdist(p1, p2):

   return sqnorm(p1 - p2)

def sqnorm(p):

   return np.sum(np.array([x * x for x in p]))

def ismaxlength(bound):

   len(bound.centers) == len(bound.empty_center) + 1

def makeNSphere(bound):

   if len(bound.centers) == 0: 
       return NSphere(bound.empty_center, 0.0)
   return NSphere(bound.centers[-1], bound.square_radii[-1])

def _welzl(pts, pos, bdry):

   support_count, nsphere = 0, makeNSphere(bdry)
   if ismaxlength(bdry):
       return nsphere, 0
   for i in range(pos):
       if not isinside(pts[i], nsphere):
           isstable = push_if_stable(bdry, pts[i])
           if isstable:
               nsphere, s = _welzl(pts, i, bdry)
               pop(bdry)
               move_to_front(pts, i)
               support_count = s + 1
   return nsphere, support_count

def find_max_excess(nsphere, pts, k1):

   err_max, k_max = -np.Inf, k1 - 1
   for (k, pt) in enumerate(pts[k_max:]):
       err = sqdist(pt, nsphere.center) - nsphere.sqradius
       if  err > err_max:
           err_max, k_max = err, k + k1
   return err_max, k_max - 1

def welzl(points, maxiterations=2000):

   pts, eps = np.array(points, copy=True), np.finfo(float).eps
   bdry, t = GaertnerBoundary(pts), 1
   nsphere, s = _welzl(pts, t, bdry)
   for i in range(maxiterations):
       e, k = find_max_excess(nsphere, pts, t + 1)
       if e <= eps:
           break
       pt = pts[k]
       push_if_stable(bdry, pt)
       nsphere_new, s_new = _welzl(pts, s, bdry)
       pop(bdry)
       move_to_front(pts, k)
       nsphere = nsphere_new
       t, s = s + 1, s_new + 1
   return nsphere

if __name__ == '__main__':

   TESTDATA =[
       np.array([[0.0, 0.0], [0.0, 1.0], [1.0, 0.0]]),
       np.array([[5.0, -2.0], [-3.0, -2.0], [-2.0, 5.0], [1.0, 6.0], [0.0, 2.0]]),
       np.array([[2.0, 4.0, -1.0], [1.0, 5.0, -3.0], [8.0, -4.0, 1.0], [3.0, 9.0, -5.0]]),
       np.random.normal(size=(8, 5))
   ]
   for test in TESTDATA:
       nsphere = welzl(test)
       print("For points: ", test)
       print("    Center is at: ", nsphere.center)
       print("    Radius is: ", np.sqrt(nsphere.sqradius), "\n")

</lang>

Output:
For points:  [[0. 0.]
 [0. 1.]
 [1. 0.]]
    Center is at:  [0.5 0.5]
    Radius is:  0.7071067811865476 

For points:  [[ 5. -2.]
 [-3. -2.]
 [-2.  5.]
 [ 1.  6.]
 [ 0.  2.]]
    Center is at:  [1. 1.]
    Radius is:  5.0 

For points:  [[ 2.  4. -1.]
 [ 1.  5. -3.]
 [ 8. -4.  1.]
 [ 3.  9. -5.]]
    Center is at:  [ 5.5  2.5 -2. ]
    Radius is:  7.582875444051551 

For points:  [[-0.28550471 -0.12787614 -0.65666165 -0.57319826 -0.09253894]
 [ 0.08947276  0.64778564 -0.54953015  0.05332253 -0.93055218]
 [ 1.26721546 -1.26410984 -0.79937865 -0.45096792 -1.23946668]
 [-0.62653779  0.56561466  0.62403237  0.23226903 -0.95820264]
 [ 0.90973949 -0.9821474   0.41400032 -1.11268937  0.19568717]
 [-0.4931165   0.94778404 -0.10534124  0.96431358  0.36504087]
 [ 1.43895269 -0.69957774 -0.31486014 -1.14980913  0.42550193]
 [ 1.4722404   1.19711551 -0.18735466  1.69208268  1.04594225]]
    Center is at:  [ 1.00038333  0.08534583 -0.22414667  0.50927606 -0.15936026]
    Radius is:  2.076492284522762 

Raku

Translation of: Go

<lang perl6>class P { has ($.x, $.y) is rw; # Point

  method gist { "({$.x~", "~$.y})" }

}

class C { has (P $.c, Numeric $.r); # Circle

  method gist { "Center = " ~$.c.gist ~ " and Radius = $.r\n" }
  # tests whether a circle contains the point 'p'
  method contains(P \p --> Bool) { distSq($.c, p) ≤ $.r² }
  # tests whether a circle contains a slice of point
  method encloses(@ps --> Bool) { [and] @ps.map: { $.contains($_) } } 

}

sub infix:<−> (P \a, P \b) { a.x - b.x, a.y - b.y } # note: Unicode 'minus'

  1. returns the square of the distance between two points

sub distSq (P \a, P \b) { [+] (a − b)»² }

sub getCenter (\bx, \by, \cx, \cy --> P) {

  my (\b,\c,\d) = bx²+by², cx²+cy², bx*cy - by*cx;
  P.new: x => (cy*b - by*c) / (2 * d), y => (bx*c - cx*b) / (2 * d)

} # returns the center of a circle defined by 3 points

sub circleFrom3 (P \a, P \b, P \c --> C) {

  my \k = $ = getCenter |(b − a), |(c − a);
  k.x, k.y Z[+=] a.x, a.y;
  C.new: c => k, r => distSq(k, a).sqrt

} # returns a unique circle that intersects 3 points

sub circleFrom2 (P \a, P \b --> C ) {

  my \center = P.new: x => ((a.x + b.x) / 2), y => ((a.y + b.y) / 2) ;
  C.new: c => center, r => (distSq(a, b).sqrt / 2)

} # returns smallest circle that intersects 2 points

sub secTrivial( @rs --> C ) {

  given @rs {
     when * == 0 { return C.new: c => (P.new: x => 0, y => 0), r => 0 }
     when * == 1 { return C.new: c => @rs[0], r => 0 }
     when * == 2 { return circleFrom2 |@rs }
     when * == 3 { #`{ no-op } }
     when *  > 3 { die "There shouldn't be more than 3 points." }
  }
  for 0, 1 X 1, 2 -> ( \i, \j ) {
     return $_ if .encloses(@rs) given circleFrom2 |@rs[i,j]
  }
  circleFrom3 |@rs

} # returns smallest enclosing circle for n ≤ 3

sub Welzl-helper( @ps is copy, @rs is copy , \n --> C ) {

  return secTrivial(@rs) if n == 0 or @rs == 3;
  my \p = @ps.shift;
  return $_ if .contains(p) given Welzl-helper @ps, @rs, n-1;
  Welzl-helper @ps, @rs.append(p), n-1

} # helper function for Welzl method

  1. applies the Welzl algorithm to find the SEC

sub welzl(@ps --> C) { Welzl-helper @ps.pick(*), [], @ps }

my @tests = (

  [ (0,0), (0,1), (1,0) ],
  [ (5,-2), (-3,-2), (-2,5), (1,6), (0,2) ]

).map: {

  @_.map: { P.new: x => $_[0], y => $_[1] }

}

say "Solution for smallest circle enclosing {$_.gist} :\n", welzl $_ for @tests;</lang>

Output:
Solution for smallest circle enclosing ((0, 0) (0, 1) (1, 0)) :
Center = (0.5, 0.5) and Radius = 0.7071067811865476

Solution for smallest circle enclosing ((5, -2) (-3, -2) (-2, 5) (1, 6) (0, 2)) :
Center = (1, 1) and Radius = 5

Wren

Well a circle is a two dimensional figure and so, despite any contradictory indications in the task description, that's what this solution provides.

It is based on Welzl's algorithm and follows closely the C++ code here. <lang ecmascript>import "random" for Random

var Rand = Random.new()

class Point {

   // returns the square of the distance between two points
   static distSq(a, b) { (a.x - b.x)*(a.x - b.x) + (a.y - b.y)*(a.y - b.y) }
   // returns the center of a circle defined by 3 points
   static getCircleCenter(bx, by, cx, cy) {
       var b = bx*bx + by*by
       var c = cx*cx + cy*cy
       var d = bx*cy - by*cx
       return Point.new((cy*b - by*c) / (2 * d), (bx*c - cx*b) / (2 * d))
   }
   // constructs a new Point object
   construct new(x, y) {
       _x = x
       _y = y
   }
   // basic properties
   x { _x }
   x=(o) { _x = o }
   y { _y }
   y=(o) { _y = o }
   // returns a copy of the current instance
   copy() { Point.new(_x, _y) }
   // string representation
   toString { "(%(_x), %(_y))" }

}

class Circle {

   // returns a unique circle that intersects 3 points
   static from(a, b, c) {
       var i = Point.getCircleCenter(b.x - a.x, b.y - a.y, c.x - a.x, c.y - a.y)
       i.x = i.x + a.x
       i.y = i.y + a.y
       return Circle.new(i, Point.distSq(i, a).sqrt)
   }
   // returns smallest circle that intersects 2 points
   static from(a, b) {
       var c = Point.new((a.x + b.x) / 2, (a.y + b.y) / 2)
       return Circle.new(c, Point.distSq(a, b).sqrt/2)
   }
   // returns smallest enclosing circle for n <= 3
   static secTrivial(rs) {
       var size = rs.count
       if (size > 3) Fiber.abort("There shouldn't be more than 3 points.")
       if (size == 0) return Circle.new(Point.new(0, 0), 0)
       if (size == 1) return Circle.new(rs[0], 0)
       if (size == 2) return Circle.from(rs[0], rs[1])
       for (i in 0..1) {
           for (j in i+1..2) {
               var c = Circle.from(rs[i], rs[j])
               if (c.encloses(rs)) return c
           }
       }
       return Circle.from(rs[0], rs[1], rs[2])
   }
   // private helper method for Welzl method
   static welzl_(ps, rs, n) {
       rs = rs.toList // passed by value so need to copy
       if (n == 0 || rs.count == 3) return secTrivial(rs)
       var idx = Rand.int(n)
       var p = ps[idx]
       ps[idx] = ps[n-1]
       ps[n-1] = p
       var d = welzl_(ps, rs, n-1)
       if (d.contains(p)) return d
       rs.add(p)
       return welzl_(ps, rs, n-1)
   }
   // applies the Welzl algorithm to find the SEC
   static welzl(ps) {
       var pc = List.filled(ps.count, null)
       for (i in 0...pc.count) pc[i] = ps[i].copy()
       Rand.shuffle(pc)
       return welzl_(pc, [], pc.count)
   }
   // constructs a new Circle object from its center point and its radius
   construct new(c, r) {
       _c = c.copy()
       _r = r
   }
   // basic properties
   c { _c }
   r { _r }
   // returns whether the current instance contains the point 'p'
   contains(p) { Point.distSq(_c, p) <= _r * _r }
   // returns whether the current instance contains a list of points
   encloses(ps) {
       for (p in ps) if (!contains(p)) return false
       return true
   }
   // string representation
   toString { "Center %(_c), Radius %(_r)" }

}

var tests = [

   [Point.new(0, 0), Point.new(0, 1), Point.new(1, 0)],
   [Point.new(5, -2), Point.new(-3, -2), Point.new(-2, 5), Point.new(1, 6), Point.new(0, 2)]

]

for (test in tests) System.print(Circle.welzl(test))</lang>

Output:
Center (0.5, 0.5), Radius 0.70710678118655
Center (1, 1), Radius 5