SHA-256

From Rosetta Code
Revision as of 16:46, 7 April 2021 by rosettacode>Lscrd (Updated to work with Nim 1.4. Removed compilation option "-d:ssl", which seems no longer needed.)
Task
SHA-256
You are encouraged to solve this task according to the task description, using any language you may know.

SHA-256 is the recommended stronger alternative to SHA-1. See FIPS PUB 180-4 for implementation details.

Either by using a dedicated library or implementing the algorithm in your language, show that the SHA-256 digest of the string "Rosetta code" is: 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

AArch64 Assembly

Works with: as version Raspberry Pi 3B version Buster 64 bits

<lang AArch64 Assembly> /* ARM assembly AARCH64 Raspberry PI 3B */ /* program sha256_64.s */

/*******************************************/ /* Constantes file */ /*******************************************/ /* for this file see task include a file in language AArch64 assembly*/ .include "../includeConstantesARM64.inc"

.equ LGHASH, 32 // result length

/*******************************************/ /* Structures */ /********************************************/ /* example structure variables */

   .struct  0

var_a: // a

   .struct  var_a + 4

var_b: // b

   .struct  var_b + 4

var_c: // c

   .struct  var_c + 4

var_d: // d

   .struct  var_d + 4

var_e: // e

   .struct  var_e + 4

var_f: // f

   .struct  var_f + 4

var_g: // g

   .struct  var_g + 4

var_h: // h

   .struct  var_h + 4

/*********************************/ /* Initialized data */ /*********************************/ .data szMessRosetta: .asciz "Rosetta code" szMessTest1: .asciz "abc" szMessSup64: .ascii "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

                      .ascii "abcdefghijklmnopqrstuvwxyz"
                      .asciz "1234567890AZERTYUIOP"

szMessTest2: .asciz "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" szMessFinPgm: .asciz "Program End ok.\n" szMessResult: .asciz "Rosetta code => " szCarriageReturn: .asciz "\n"

/* array constantes Hi */ tbConstHi: .int 0x6A09E667 // H0

                    .int 0xBB67AE85       // H1
                    .int 0x3C6EF372       // H2
                    .int 0xA54FF53A       // H3
                    .int 0x510E527F       // H4
                    .int 0x9B05688C       // H5
                    .int 0x1F83D9AB       // H6
                    .int 0x5BE0CD19       // H7

/* array 64 constantes Kt */ tbConstKt:

 .int 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5
 .int 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174
 .int 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da
 .int 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967
 .int 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85
 .int 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070
 .int 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3
 .int 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2

/*********************************/ /* UnInitialized data */ /*********************************/ .bss .align 4 qNbBlocs: .skip 8 sZoneConv: .skip 24 sZoneTrav: .skip 1000 .align 8 tbH: .skip 4 * 8 // 8 variables H tbabcdefgh: .skip 4 * 8 tbW: .skip 4 * 64 // 64 words W /*********************************/ /* code section */ /*********************************/ .text .global main main: // entry of program

   ldr x0,qAdrszMessRosetta
   //ldr x0,qAdrszMessTest1
   //ldr x0,qAdrszMessTest2
   //ldr x0,qAdrszMessSup64
   bl computeSHA256                       // call routine SHA1
   ldr x0,qAdrszMessResult
   bl affichageMess                       // display message
   ldr x0, qAdrtbH
   bl displaySHA1
   ldr x0,qAdrszMessFinPgm
   bl affichageMess                       // display message

100: // standard end of the program

   mov x0,0                               // return code
   mov x8,EXIT                            // request to exit program
   svc 0                                  // perform the system call

qAdrszCarriageReturn: .quad szCarriageReturn qAdrszMessResult: .quad szMessResult qAdrszMessRosetta: .quad szMessRosetta qAdrszMessTest1: .quad szMessTest1 qAdrszMessTest2: .quad szMessTest2 qAdrsZoneTrav: .quad sZoneTrav qAdrsZoneConv: .quad sZoneConv qAdrszMessFinPgm: .quad szMessFinPgm qAdrszMessSup64: .quad szMessSup64 /******************************************************************/ /* compute SHA1 */ /******************************************************************/ /* x0 contains the address of the message */ computeSHA256:

   stp x1,lr,[sp,-16]!      // save  registers
   ldr x1,qAdrsZoneTrav
   mov x2,#0                // counter length 

debCopy: // copy string in work area

   ldrb w3,[x0,x2]
   strb w3,[x1,x2]
   cmp x3,#0
   add x4,x2,1
   csel x2,x4,x2,ne
   bne debCopy
   lsl x6,x2,#3             // initial message length in bits 
   mov x3,#0b10000000       // add bit 1 at end of string
   strb w3,[x1,x2]
   add x2,x2,#1             // length in bytes
   lsl x4,x2,#3             // length in bits
   mov x3,#0

addZeroes:

   lsr x5,x2,#6
   lsl x5,x5,#6
   sub x5,x2,x5
   cmp x5,#56
   beq storeLength          // yes -> end add
   strb w3,[x1,x2]          // add zero at message end
   add x2,x2,#1              // increment lenght bytes 
   add x4,x4,#8             // increment length in bits
   b addZeroes

storeLength:

   add x2,x2,#4             // add four bytes
   rev w6,w6                // inversion bits initials message length
   str w6,[x1,x2]           // and store at end
   ldr x7,qAdrtbConstHi     // constantes H address
   ldr x4,qAdrtbH           // start area H
   mov x5,#0

loopConst: // init array H with start constantes

   ldr w6,[x7,x5,lsl #2]    // load constante
   str w6,[x4,x5,lsl #2]    // and store
   add x5,x5,#1
   cmp x5,#8
   blt loopConst
                            // split into block of 64 bytes
   add x2,x2,#4                // 
   lsr x4,x2,#6             // blocks number
   ldr x0,qAdrqNbBlocs
   str x4,[x0]              // save block maxi
   mov x7,#0                // n° de block et x1 contient l adresse zone de travail

loopBlock: // begin loop of each block of 64 bytes

   mov x0,x7
   bl inversion             // inversion each word because little indian
   ldr x3,qAdrtbW           // working area W address
   mov x6,#0                // indice t
                            /* x2  address begin each block */
   ldr x1,qAdrsZoneTrav
   add x2,x1,x7,lsl #6      //  compute block begin  indice * 4 * 16
   //vidregtit avantloop
   //mov x0,x2
   //vidmemtit  verifBloc x0 10

loopPrep: // loop for expand 80 words

   cmp x6,#15               // 
   bgt expand1
   ldr w0,[x2,x6,lsl #2]    // load word message
   str w0,[x3,x6,lsl #2]    // store in first 16 block 
   b expandEnd

expand1:

   sub x8,x6,#2
   ldr w9,[x3,x8,lsl #2]
   ror w10,w9,#17           // fonction e1 (256)
   ror w11,w9,#19
   eor w10,w10,w11
   lsr w11,w9,#10
   eor w10,w10,w11
   sub x8,x6,#7
   ldr w9,[x3,x8,lsl #2]
   add w9,w9,w10            // + w - 7
   sub x8,x6,#15
   ldr w10,[x3,x8,lsl #2]
   ror w11,w10,#7          // fonction e0 (256)
   ror w12,w10,#18
   eor w11,w11,w12
   lsr w12,w10,#3
   eor w10,w11,w12
   add w9,w9,w10
   sub x8,x6,#16
   ldr w11,[x3,x8,lsl #2]
   add w9,w9,w11
   str w9,[x3,x6,lsl #2] 

expandEnd:

   add x6,x6,#1
   cmp x6,#64                 // 64 words ?
   blt loopPrep               // and loop


   /* COMPUTING THE MESSAGE DIGEST */
   /* x1  area H constantes address */
   /* x3  working area W address  */
   /* x5  address constantes K   */
   /* x6  counter t */
   /* x7  block counter */
   /* x8  addresse variables a b c d e f g h  */
   //ldr x0,qAdrtbW
   //vidmemtit  verifW80 x0 20
                              // init variable a b c d e f g h
   ldr x0,qAdrtbH
   ldr x8,qAdrtbabcdefgh
   mov x1,#0

loopInita:

   ldr w9,[x0,x1,lsl #2]
   str w9,[x8,x1,lsl #2]
   add x1,x1,#1
   cmp x1,#8
   blt loopInita


   ldr x1,qAdrtbConstHi
   ldr x5,qAdrtbConstKt
   mov x6,#0

loop64T: // begin loop 64 t

   ldr w9,[x8,#var_h]
   ldr w10,[x8,#var_e]       // calcul T1
   ror w11,w10,#6            // fonction sigma 1
   ror w12,w10,#11
   eor w11,w11,w12
   ror w12,w10,#25
   eor w11,w11,w12
   add w9,w9,w11             // h + sigma1 (e)
   ldr w0,[x8,#var_f]        //  fonction ch  x and y xor (non x and z)
   ldr w4,[x8,#var_g]
   and w11,w10,w0
   mvn w12,w10
   and w12,w12,w4
   eor w11,w11,w12
   add w9,w9,w11             // h + sigma1 (e) + ch (e,f,g)
   ldr w0,[x5,x6,lsl #2]     // load constantes k0
   add w9,w9,w0
   ldr w0,[x3,x6,lsl #2]     // Wt
   add w9,w9,w0
                             // calcul T2
   ldr w10,[x8,#var_a]       // fonction sigma 0
   ror w11,w10,#2
   ror w12,w10,#13
   eor w11,w11,w12
   ror w12,w10,#22
   eor w11,w11,w12
   ldr w2,[x8,#var_b]
   ldr w4,[x8,#var_c]
                             // fonction maj x and y xor x and z xor y and z
   and w12,w10,w2
   and w0,w10,w4
   eor w12,w12,w0
   and w0,w2,w4
   eor w12,w12,w0            //
   add w12,w12,w11           // T2
                             // compute variables
   ldr w4,[x8,#var_g]
   str w4,[x8,#var_h]
   ldr w4,[x8,#var_f]
   str w4,[x8,#var_g]
   ldr w4,[x8,#var_e]
   str w4,[x8,#var_f]
   ldr w4,[x8,#var_d]
   add w4,w4,w9              // add T1
   str w4,[x8,#var_e]
   ldr w4,[x8,#var_c]
   str w4,[x8,#var_d]
   ldr w4,[x8,#var_b]
   str w4,[x8,#var_c]
   ldr w4,[x8,#var_a]
   str w4,[x8,#var_b]
   add w4,w9,w12             // add T1 T2
   str w4,[x8,#var_a]
   add x6,x6,#1              // increment t
   cmp x6,#64
   blt loop64T
                             // End block
   ldr x0,qAdrtbH            // start area H
   mov x10,#0

loopStoreH:

   ldr w9,[x8,x10,lsl #2]
   ldr w3,[x0,x10,lsl #2]
   add w3,w3,w9
   str w3,[x0,x10,lsl #2]    // store variables in H0
   add x10,x10,#1
   cmp x10,#8
   blt loopStoreH
                             // other bloc
   add x7,x7,#1                 // increment block
   ldr x0,qAdrqNbBlocs
   ldr x4,[x0]               // restaur maxi block
   cmp x7,x4                 // maxi ?
   blt loopBlock             //  loop other block
   mov x0,#0                 // routine OK

100:

   ldp x1,lr,[sp],16              // restaur  2 registers
   ret                            // return to address lr x30

qAdrtbConstHi: .quad tbConstHi qAdrtbConstKt: .quad tbConstKt qAdrtbH: .quad tbH qAdrtbW: .quad tbW qAdrtbabcdefgh: .quad tbabcdefgh qAdrqNbBlocs: .quad qNbBlocs /******************************************************************/ /* inversion des mots de 32 bits d un bloc */ /******************************************************************/ /* x0 contains N° block */ inversion:

   stp x1,lr,[sp,-16]!            // save  registers
   stp x2,x3,[sp,-16]!            // save  registers
   ldr x1,qAdrsZoneTrav
   add x1,x1,x0,lsl #6           // debut du bloc
   mov x2,#0

1: // start loop

   ldr w3,[x1,x2,lsl #2]
   rev w3,w3
   str w3,[x1,x2,lsl #2]
   add x2,x2,#1
   cmp x2,#16
   blt 1b

100:

   ldp x2,x3,[sp],16              // restaur  2 registers
   ldp x1,lr,[sp],16              // restaur  2 registers
   ret                            // return to address lr x30

/******************************************************************/ /* display hash SHA1 */ /******************************************************************/ /* x0 contains the address of hash */ displaySHA1:

   stp x1,lr,[sp,-16]!            // save  registers
   stp x2,x3,[sp,-16]!            // save  registers
   mov x3,x0
   mov x2,#0

1:

   ldr w0,[x3,x2,lsl #2]          // load 4 bytes
   //rev x0,x0                    // reverse bytes
   ldr x1,qAdrsZoneConv
   bl conversion16_4W             // conversion hexa
   ldr x0,qAdrsZoneConv
   bl affichageMess
   add x2,x2,#1
   cmp x2,#LGHASH / 4
   blt 1b                         // and loop
   ldr x0,qAdrszCarriageReturn
   bl affichageMess               // display message

100:

   ldp x2,x3,[sp],16              // restaur  2 registers
   ldp x1,lr,[sp],16              // restaur  2 registers
   ret                            // return to address lr x30

/******************************************************************/ /* conversion hexadecimal register 32 bits */ /******************************************************************/ /* x0 contains value and x1 address zone receptrice */ conversion16_4W:

   stp x0,lr,[sp,-48]!        // save  registres
   stp x1,x2,[sp,32]          // save  registres
   stp x3,x4,[sp,16]          // save  registres
   mov x2,#28                 // start bit position
   mov x4,#0xF0000000         // mask
   mov x3,x0                  // save entry value

1: // start loop

   and x0,x3,x4               // value register and mask
   lsr x0,x0,x2               // right shift
   cmp x0,#10                 // >= 10 ?
   bge 2f                     // yes
   add x0,x0,#48              // no is digit
   b 3f

2:

   add x0,x0,#55              // else is a letter A-F

3:

   strb w0,[x1],#1            // load result  and + 1 in address
   lsr x4,x4,#4               // shift mask 4 bits left
   subs x2,x2,#4              // decrement counter 4 bits <= zero  ?
   bge 1b                     // no -> loop

100: // fin standard de la fonction

   ldp x3,x4,[sp,16]          // restaur des  2 registres
   ldp x1,x2,[sp,32]          // restaur des  2 registres
   ldp x0,lr,[sp],48          // restaur des  2 registres
   ret    

/********************************************************/ /* File Include fonctions */ /********************************************************/ /* for this file see task include a file in language AArch64 assembly */ .include "../includeARM64.inc"

</lang>

Output:
pi@debian-buster-64:~/asm64/rosetta/asm5 $ sha256_64
Rosetta code => 764FAF5C61AC315F1497F9DFA542713965B785E5CC2F707D6468D7D1124CDFCF
Program End ok.

Ada

Library: CryptAda

<lang Ada>with Ada.Text_IO;

with CryptAda.Pragmatics; with CryptAda.Digests.Message_Digests.SHA_256; with CryptAda.Digests.Hashes; with CryptAda.Utils.Format;

procedure RC_SHA_256 is

  use CryptAda.Pragmatics;
  use CryptAda.Digests.Message_Digests;
  use CryptAda.Digests;
  function To_Byte_Array (Item : String) return Byte_Array is
     Result : Byte_Array (Item'Range);
  begin
     for I in Result'Range loop
        Result (I) := Byte (Character'Pos (Item (I)));
     end loop;
     return Result;
  end To_Byte_Array;
  Text    : constant String                := "Rosetta code";
  Bytes   : constant Byte_Array            := To_Byte_Array (Text);
  Handle  : constant Message_Digest_Handle := SHA_256.Get_Message_Digest_Handle;
  Pointer : constant Message_Digest_Ptr    := Get_Message_Digest_Ptr (Handle);
  Hash    : Hashes.Hash;

begin

  Digest_Start  (Pointer);
  Digest_Update (Pointer, Bytes);
  Digest_End    (Pointer, Hash);
  Ada.Text_IO.Put_Line
    ("""" & Text & """: " & CryptAda.Utils.Format.To_Hex_String (Hashes.Get_Bytes (Hash)));

end RC_SHA_256;</lang>

Output:
"Rosetta code": 764FAF5C61AC315F1497F9DFA542713965B785E5CC2F707D6468D7D1124CDFCF

ARM Assembly

Works with: as version Raspberry Pi

<lang ARM Assembly> /* ARM assembly Raspberry PI */ /* program sha256.s */

/* REMARK 1 : this program use routines in a include file

  see task Include a file language arm assembly 
  for the routine affichageMess conversion10 
  see at end of this program the instruction include */

/* for constantes see task include a file in arm assembly */ /************************************/ /* Constantes */ /************************************/ .include "../constantes.inc"

.equ LGHASH, 32 // result length

/*******************************************/ /* Structures */ /********************************************/ /* example structure variables */

   .struct  0

var_a: // a

   .struct  var_a + 4

var_b: // b

   .struct  var_b + 4

var_c: // c

   .struct  var_c + 4

var_d: // d

   .struct  var_d + 4

var_e: // e

   .struct  var_e + 4

var_f: // f

   .struct  var_f + 4

var_g: // g

   .struct  var_g + 4

var_h: // h

   .struct  var_h + 4

/*********************************/ /* Initialized data */ /*********************************/ .data szMessRosetta: .asciz "Rosetta code" szMessTest1: .asciz "abc" szMessSup64: .ascii "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

                      .ascii "abcdefghijklmnopqrstuvwxyz"
                      .asciz "1234567890AZERTYUIOP"

szMessTest2: .asciz "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" szMessFinPgm: .asciz "Program End ok.\n" szMessResult: .asciz "Rosetta code => " szCarriageReturn: .asciz "\n"

/* array constantes Hi */ tbConstHi: .int 0x6A09E667 @ H0

                    .int 0xBB67AE85       @ H1
                    .int 0x3C6EF372       @ H2
                    .int 0xA54FF53A       @ H3
                    .int 0x510E527F       @ H4
                    .int 0x9B05688C       @ H5
                    .int 0x1F83D9AB       @ H6
                    .int 0x5BE0CD19       @ H7

/* array 64 constantes Kt */ tbConstKt:

 .int 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5
 .int 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174
 .int 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da
 .int 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967
 .int 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85
 .int 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070
 .int 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3
 .int 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2

/*********************************/ /* UnInitialized data */ /*********************************/ .bss .align 4 iNbBlocs: .skip 4 sZoneConv: .skip 24 sZoneTrav: .skip 1000 .align 8 tbH: .skip 4 * 8 @ 8 variables H tbabcdefgh: .skip 4 * 8 tbW: .skip 4 * 64 @ 64 words W /*********************************/ /* code section */ /*********************************/ .text .global main main: @ entry of program

   ldr r0,iAdrszMessRosetta
   //ldr r0,iAdrszMessTest1
   //ldr r0,iAdrszMessTest2
   //ldr r0,iAdrszMessSup64
   bl computeSHA256                         @ call routine SHA1
   ldr r0,iAdrszMessResult
   bl affichageMess                       @ display message
   ldr r0, iAdrtbH
   bl displaySHA1
   ldr r0,iAdrszMessFinPgm
   bl affichageMess                       @ display message

100: @ standard end of the program

   mov r0, #0                             @ return code
   mov r7, #EXIT                          @ request to exit program
   svc #0                                 @ perform the system call

iAdrszCarriageReturn: .int szCarriageReturn iAdrszMessResult: .int szMessResult iAdrszMessRosetta: .int szMessRosetta iAdrszMessTest1: .int szMessTest1 iAdrszMessTest2: .int szMessTest2 iAdrsZoneTrav: .int sZoneTrav iAdrsZoneConv: .int sZoneConv iAdrszMessFinPgm: .int szMessFinPgm iAdrszMessSup64: .int szMessSup64 /******************************************************************/ /* compute SHA1 */ /******************************************************************/ /* r0 contains the address of the message */ computeSHA256:

   push {r1-r12,lr}         @ save  registres
   ldr r1,iAdrsZoneTrav
   mov r2,#0                @ counter length 

debCopy: @ copy string in work area

   ldrb r3,[r0,r2]
   strb r3,[r1,r2]
   cmp r3,#0                    
   addne r2,r2,#1
   bne debCopy
   lsl r6,r2,#3             @ initial message length in bits 
   mov r3,#0b10000000       @ add bit 1 at end of string
   strb r3,[r1,r2]
   add r2,r2,#1             @ length in bytes
   lsl r4,r2,#3             @ length in bits
   mov r3,#0

addZeroes:

   lsr r5,r2,#6
   lsl r5,r5,#6
   sub r5,r2,r5
   cmp r5,#56
   beq storeLength          @ yes -> end add
   strb r3,[r1,r2]          @ add zero at message end
   add r2,#1                @ increment lenght bytes 
   add r4,#8                @ increment length in bits
   b addZeroes

storeLength:

   add r2,#4                @ add four bytes
   rev r6,r6                @ inversion bits initials message length
   str r6,[r1,r2]           @ and store at end
   ldr r7,iAdrtbConstHi     @ constantes H address
   ldr r4,iAdrtbH           @ start area H
   mov r5,#0

loopConst: @ init array H with start constantes

   ldr r6,[r7,r5,lsl #2]    @ load constante
   str r6,[r4,r5,lsl #2]    @ and store
   add r5,r5,#1
   cmp r5,#8
   blt loopConst
                            @ split into block of 64 bytes
   add r2,#4                @  TODO : à revoir
   lsr r4,r2,#6             @ blocks number
   ldr r0,iAdriNbBlocs
   str r4,[r0]              @ save block maxi
   mov r7,#0                @ n° de block et r1 contient l adresse zone de travail

loopBlock: @ begin loop of each block of 64 bytes

   mov r0,r7
   bl inversion             @ inversion each word because little indian
   ldr r3,iAdrtbW           @ working area W address
   mov r6,#0                @ indice t
                            /* r2  address begin each block */
   ldr r1,iAdrsZoneTrav
   add r2,r1,r7,lsl #6      @  compute block begin  indice * 4 * 16
   //vidregtit avantloop
   //mov r0,r2
   //vidmemtit  verifBloc r0 10

loopPrep: @ loop for expand 80 words

   cmp r6,#15               @ 
   bgt expand1
   ldr r0,[r2,r6,lsl #2]    @ load byte message
   str r0,[r3,r6,lsl #2]    @ store in first 16 block 
   b expandEnd

expand1:

   sub r8,r6,#2
   ldr r9,[r3,r8,lsl #2]
   ror r10,r9,#17           @ fonction e1 (256)
   ror r11,r9,#19
   eor r10,r10,r11
   lsr r11,r9,#10
   eor r10,r10,r11
   sub r8,r6,#7
   ldr r9,[r3,r8,lsl #2]
   add r9,r9,r10            @ + w - 7
   sub r8,r6,#15
   ldr r10,[r3,r8,lsl #2]
   ror r11,r10,#7          @ fonction e0 (256)
   ror r12,r10,#18
   eor r11,r12
   lsr r12,r10,#3
   eor r10,r11,r12
   add r9,r9,r10
   sub r8,r6,#16
   ldr r11,[r3,r8,lsl #2]
   add r9,r9,r11
   str r9,[r3,r6,lsl #2] 

expandEnd:

   add r6,r6,#1
   cmp r6,#64                 @ 64 words ?
   blt loopPrep               @ and loop


   /* COMPUTING THE MESSAGE DIGEST */
   /* r1  area H constantes address */
   /* r3  working area W address  */
   /* r5  address constantes K   */
   /* r6  counter t */
   /* r7  block counter */
   /* r8  addresse variables a b c d e f g h  */
   //ldr r0,iAdrtbW
   //vidmemtit  verifW80 r0 20
                              @ init variable a b c d e f g h
   ldr r0,iAdrtbH
   ldr r8,iAdrtbabcdefgh
   mov r1,#0

loopInita:

   ldr r9,[r0,r1,lsl #2]
   str r9,[r8,r1,lsl #2]
   add r1,r1,#1
   cmp r1,#8
   blt loopInita


   ldr r1,iAdrtbConstHi
   ldr r5,iAdrtbConstKt
   mov r6,#0

loop64T: @ begin loop 64 t

   ldr r9,[r8,#var_h]
   ldr r10,[r8,#var_e]      @ calcul T1
   ror r11,r10,#6           @ fonction sigma 1
   ror r12,r10,#11
   eor r11,r12
   ror r12,r10,#25
   eor r11,r12
   add r9,r9,r11             @ h + sigma1 (e)
   ldr r0,[r8,#var_f]        @  fonction ch  x and y xor (non x and z)
   ldr r4,[r8,#var_g]
   and r11,r10,r0
   mvn r12,r10
   and r12,r12,r4
   eor r11,r12
   add r9,r9,r11             @ h + sigma1 (e) + ch (e,f,g)
   ldr r0,[r5,r6,lsl #2]     @ load constantes k0
   add r9,r9,r0
   ldr r0,[r3,r6,lsl #2]     @ Wt
   add r9,r9,r0
                             @ calcul T2
   ldr r10,[r8,#var_a]       @ fonction sigma 0
   ror r11,r10,#2
   ror r12,r10,#13
   eor r11,r11,r12
   ror r12,r10,#22
   eor r11,r11,r12
   ldr r2,[r8,#var_b]
   ldr r4,[r8,#var_c]
                             @ fonction maj x and y xor x and z xor y and z
   and r12,r10,r2
   and r0,r10,r4
   eor r12,r12,r0
   and r0,r2,r4
   eor r12,r12,r0            @
   add r12,r12,r11           @ T2
                             @ compute variables
   ldr r4,[r8,#var_g]
   str r4,[r8,#var_h]
   ldr r4,[r8,#var_f]
   str r4,[r8,#var_g]
   ldr r4,[r8,#var_e]
   str r4,[r8,#var_f]
   ldr r4,[r8,#var_d]
   add r4,r4,r9              @ add T1
   str r4,[r8,#var_e]
   ldr r4,[r8,#var_c]
   str r4,[r8,#var_d]
   ldr r4,[r8,#var_b]
   str r4,[r8,#var_c]
   ldr r4,[r8,#var_a]
   str r4,[r8,#var_b]
   add r4,r9,r12             @ add T1 T2
   str r4,[r8,#var_a]
   mov r0,r8
   add r6,r6,#1              @ increment t
   cmp r6,#64
   blt loop64T
                             @ End block
   ldr r0,iAdrtbH            @ start area H
   mov r10,#0

loopStoreH:

   ldr r9,[r8,r10,lsl #2]
   ldr r3,[r0,r10,lsl #2]
   add r3,r9
   str r3,[r0,r10,lsl #2]    @ store variables in H0
   add r10,r10,#1
   cmp r10,#8
   blt loopStoreH
                             @ other bloc
   add r7,#1                 @ increment block
   ldr r0,iAdriNbBlocs
   ldr r4,[r0]               @ restaur maxi block
   cmp r7,r4                 @ maxi ?
   blt loopBlock             @  loop other block
   mov r0,#0                 @ routine OK

100:

   pop {r1-r12,lr}           @ restaur registers
   bx lr                     @ return  

iAdrtbConstHi: .int tbConstHi iAdrtbConstKt: .int tbConstKt iAdrtbH: .int tbH iAdrtbW: .int tbW iAdrtbabcdefgh: .int tbabcdefgh iAdriNbBlocs: .int iNbBlocs /******************************************************************/ /* inversion des mots de 32 bits d un bloc */ /******************************************************************/ /* r0 contains N° block */ inversion:

   push {r1-r3,lr}                                 @ save registers 
   ldr r1,iAdrsZoneTrav
   add r1,r0,lsl #6           @ debut du bloc
   mov r2,#0

1: @ start loop

   ldr r3,[r1,r2,lsl #2]
   rev r3,r3
   str r3,[r1,r2,lsl #2]
   add r2,r2,#1
   cmp r2,#16
   blt 1b

100:

   pop {r1-r3,lr}                                  @ restaur registres 
   bx lr                                           @return

/******************************************************************/ /* display hash SHA1 */ /******************************************************************/ /* r0 contains the address of hash */ displaySHA1:

   push {r1-r3,lr}                @ save  registres
   mov r3,r0
   mov r2,#0

1:

   ldr r0,[r3,r2,lsl #2]          @ load 4 bytes
   //rev r0,r0                      @ reverse bytes
   ldr r1,iAdrsZoneConv
   bl conversion16                @ conversion hexa
   ldr r0,iAdrsZoneConv
   bl affichageMess
   add r2,r2,#1
   cmp r2,#LGHASH / 4
   blt 1b                         @ and loop
   ldr r0,iAdrszCarriageReturn
   bl affichageMess               @ display message

100:

   pop {r1-r3,lr}                 @ restaur registers
   bx lr                          @ return  

/***************************************************/ /* ROUTINES INCLUDE */ /***************************************************/ .include "../affichage.inc" </lang>

Output:
Rosetta code => 764FAF5C61AC315F1497F9DFA542713965B785E5CC2F707D6468D7D1124CDFCF
Program End ok.

AutoHotkey

Source: SHA-256 @github by jNizM <lang AutoHotkey>str := "Rosetta code" MsgBox, % "File:`n" (file) "`n`nSHA-256:`n" FileSHA256(file)

SHA256 ============================================================================

SHA256(string, encoding = "utf-8") {

   return CalcStringHash(string, 0x800c, encoding)

}

CalcAddrHash ======================================================================

CalcAddrHash(addr, length, algid, byref hash = 0, byref hashlength = 0) {

   static h := [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "A", "B", "C", "D", "E", "F"]
   static b := h.minIndex()
   o := ""
   if (DllCall("advapi32\CryptAcquireContext", "Ptr*", hProv, "Ptr", 0, "Ptr", 0, "UInt", 24, "UInt", 0xF0000000))
   {
       if (DllCall("advapi32\CryptCreateHash", "Ptr", hProv, "UInt", algid, "UInt", 0, "UInt", 0, "Ptr*", hHash))
       {
           if (DllCall("advapi32\CryptHashData", "Ptr", hHash, "Ptr", addr, "UInt", length, "UInt", 0))
           {
               if (DllCall("advapi32\CryptGetHashParam", "Ptr", hHash, "UInt", 2, "Ptr", 0, "UInt*", hashlength, "UInt", 0))
               {
                   VarSetCapacity(hash, hashlength, 0)
                   if (DllCall("advapi32\CryptGetHashParam", "Ptr", hHash, "UInt", 2, "Ptr", &hash, "UInt*", hashlength, "UInt", 0))
                   {
                       loop, % hashlength
                       {
                           v := NumGet(hash, A_Index - 1, "UChar")
                           o .= h[(v >> 4) + b] h[(v & 0xf) + b]
                       }
                   }
               }
           }
           DllCall("advapi32\CryptDestroyHash", "Ptr", hHash)
       }
       DllCall("advapi32\CryPtreleaseContext", "Ptr", hProv, "UInt", 0)
   }
   return o

}

CalcStringHash ====================================================================

CalcStringHash(string, algid, encoding = "utf-8", byref hash = 0, byref hashlength = 0) {

   chrlength := (encoding = "cp1200" || encoding = "utf-16") ? 2 : 1
   length := (StrPut(string, encoding) - 1) * chrlength
   VarSetCapacity(data, length, 0)
   StrPut(string, &data, floor(length / chrlength), encoding)
   return CalcAddrHash(&data, length, algid, hash, hashlength)

}</lang>

Output:
String:    Rosetta code
SHA-256:   764FAF5C61AC315F1497F9DFA542713965B785E5CC2F707D6468D7D1124CDFCF

AWK

Using the system function as a 'library'. <lang AWK>{

   ("echo -n " $0 " | sha256sum") | getline sha;
   gsub(/[^0-9a-zA-Z]/, "", sha);
   print sha;

} </lang>

Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

BaCon

<lang qbasic>PRAGMA INCLUDE <openssl/sha.h> PRAGMA LDFLAGS -lcrypto

OPTION MEMTYPE unsigned char

DECLARE result TYPE unsigned char*

result = SHA256("Rosetta code", 12, 0)

FOR i = 0 TO SHA256_DIGEST_LENGTH-1

   PRINT PEEK(result+i) FORMAT "%02x"

NEXT

PRINT</lang>

Output:
user@host $ bacon sha256
Converting 'sha256.bac'... done, 14 lines were processed in 0.002 seconds.
Compiling 'sha256.bac'... cc  -c sha256.bac.c
cc -o sha256 sha256.bac.o -lbacon -lm  -lcrypto
Done, program 'sha256' ready.
user@host $ ./sha256 
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

BBC BASIC

Library

<lang bbcbasic> PRINT FNsha256("Rosetta code")

     END
     
     DEF FNsha256(message$)
     LOCAL buflen%, buffer%, hcont%, hprov%, hhash%, hash$, i%
     CALG_SHA_256 = &800C
     HP_HASHVAL = 2
     CRYPT_NEWKEYSET = 8
     PROV_RSA_AES = 24
     buflen% = 128
     DIM buffer% LOCAL buflen%-1
     SYS "CryptAcquireContext", ^hcont%, 0, \
     \   "Microsoft Enhanced RSA and AES Cryptographic Provider", \
     \   PROV_RSA_AES, CRYPT_NEWKEYSET
     SYS "CryptAcquireContext", ^hprov%, 0, 0, PROV_RSA_AES, 0
     SYS "CryptCreateHash", hprov%, CALG_SHA_256, 0, 0, ^hhash%
     SYS "CryptHashData", hhash%, message$, LEN(message$), 0
     SYS "CryptGetHashParam", hhash%, HP_HASHVAL, buffer%, ^buflen%, 0
     SYS "CryptDestroyHash", hhash%
     SYS "CryptReleaseContext", hprov%
     SYS "CryptReleaseContext", hcont%
     FOR i% = 0 TO buflen%-1
       hash$ += RIGHT$("0" + STR$~buffer%?i%, 2)
     NEXT
     = hash$</lang>

Output:

764FAF5C61AC315F1497F9DFA542713965B785E5CC2F707D6468D7D1124CDFCF

Native

<lang bbcbasic> REM SHA-256 calculation by Richard Russell in BBC BASIC for Windows

     REM Must run in FLOAT64 mode:
     *FLOAT64
     
     REM Test message for validation:
     message$ = "Rosetta code"
     
     REM Initialize variables:
     h0% = &6A09E667
     h1% = &BB67AE85
     h2% = &3C6EF372
     h3% = &A54FF53A
     h4% = &510E527F
     h5% = &9B05688C
     h6% = &1F83D9AB
     h7% = &5BE0CD19
     
     REM Create table of constants:
     DIM k%(63) : k%() = \
     \ &428A2F98, &71374491, &B5C0FBCF, &E9B5DBA5, &3956C25B, &59F111F1, &923F82A4, &AB1C5ED5, \
     \ &D807AA98, &12835B01, &243185BE, &550C7DC3, &72BE5D74, &80DEB1FE, &9BDC06A7, &C19BF174, \
     \ &E49B69C1, &EFBE4786, &0FC19DC6, &240CA1CC, &2DE92C6F, &4A7484AA, &5CB0A9DC, &76F988DA, \
     \ &983E5152, &A831C66D, &B00327C8, &BF597FC7, &C6E00BF3, &D5A79147, &06CA6351, &14292967, \
     \ &27B70A85, &2E1B2138, &4D2C6DFC, &53380D13, &650A7354, &766A0ABB, &81C2C92E, &92722C85, \
     \ &A2BFE8A1, &A81A664B, &C24B8B70, &C76C51A3, &D192E819, &D6990624, &F40E3585, &106AA070, \
     \ &19A4C116, &1E376C08, &2748774C, &34B0BCB5, &391C0CB3, &4ED8AA4A, &5B9CCA4F, &682E6FF3, \
     \ &748F82EE, &78A5636F, &84C87814, &8CC70208, &90BEFFFA, &A4506CEB, &BEF9A3F7, &C67178F2
     
     Length% = LEN(message$)*8
     
     REM Pre-processing:
     REM append the bit '1' to the message:
     message$ += CHR$&80
     
     REM append k bits '0', where k is the minimum number >= 0 such that
     REM the resulting message length (in bits) is congruent to 448 (mod 512)
     WHILE (LEN(message$) MOD 64) <> 56
       message$ += CHR$0
     ENDWHILE
     
     REM append length of message (before pre-processing), in bits, as
     REM 64-bit big-endian integer:
     FOR I% = 56 TO 0 STEP -8
       message$ += CHR$(Length% >>> I%)
     NEXT
     
     REM Process the message in successive 512-bit chunks:
     REM break message into 512-bit chunks, for each chunk
     REM break chunk into sixteen 32-bit big-endian words w[i], 0 <= i <= 15
     
     DIM w%(63)
     FOR chunk% = 0 TO LEN(message$) DIV 64 - 1
       
       FOR i% = 0 TO 15
         w%(i%) = !(!^message$ + 64*chunk% + 4*i%)
         SWAP ?(^w%(i%)+0),?(^w%(i%)+3)
         SWAP ?(^w%(i%)+1),?(^w%(i%)+2)
       NEXT i%
       
       REM Extend the sixteen 32-bit words into sixty-four 32-bit words:
       FOR i% = 16 TO 63
         s0% = FNrr(w%(i%-15),7) EOR FNrr(w%(i%-15),18) EOR (w%(i%-15) >>> 3)
         s1% = FNrr(w%(i%-2),17) EOR FNrr(w%(i%-2),19) EOR (w%(i%-2) >>> 10)
         w%(i%) = FN32(w%(i%-16) + s0% + w%(i%-7) + s1%)
       NEXT i%
       
       REM Initialize hash value for this chunk:
       a% = h0%
       b% = h1%
       c% = h2%
       d% = h3%
       e% = h4%
       f% = h5%
       g% = h6%
       h% = h7%
       
       REM Main loop:
       FOR i% = 0 TO 63
         s0% = FNrr(a%,2) EOR FNrr(a%,13) EOR FNrr(a%,22)
         maj% = (a% AND b%) EOR (a% AND c%) EOR (b% AND c%)
         t2% = FN32(s0% + maj%)
         s1% = FNrr(e%,6) EOR FNrr(e%,11) EOR FNrr(e%,25)
         ch% = (e% AND f%) EOR ((NOT e%) AND g%)
         t1% = FN32(h% + s1% + ch% + k%(i%) + w%(i%))
         
         h% = g%
         g% = f%
         f% = e%
         e% = FN32(d% + t1%)
         d% = c%
         c% = b%
         b% = a%
         a% = FN32(t1% + t2%)
         
       NEXT i%
       
       REM Add this chunk's hash to result so far:
       h0% = FN32(h0% + a%)
       h1% = FN32(h1% + b%)
       h2% = FN32(h2% + c%)
       h3% = FN32(h3% + d%)
       h4% = FN32(h4% + e%)
       h5% = FN32(h5% + f%)
       h6% = FN32(h6% + g%)
       h7% = FN32(h7% + h%)
       
     NEXT chunk%
     
     REM Produce the final hash value (big-endian):
     hash$ = FNhex(h0%) + " " + FNhex(h1%) + " " + FNhex(h2%) + " " + FNhex(h3%) + \
     \ " " + FNhex(h4%) + " " + FNhex(h5%) + " " + FNhex(h6%) + " " + FNhex(h7%)
     
     PRINT hash$
     END
     
     DEF FNrr(A%,I%) = (A% >>> I%) OR (A% << (32-I%))
     
     DEF FNhex(A%) = RIGHT$("0000000"+STR$~A%,8)
     
     DEF FN32(n#)
     WHILE n# > &7FFFFFFF : n# -= 2^32 : ENDWHILE
     WHILE n# < &80000000 : n# += 2^32 : ENDWHILE
     = n#</lang>

Output:

764FAF5C 61AC315F 1497F9DF A5427139 65B785E5 CC2F707D 6468D7D1 124CDFCF

C

Requires OpenSSL, compile flag: -lssl -lcrypto <lang c>#include <stdio.h>

  1. include <string.h>
  2. include <openssl/sha.h>

int main (void) { const char *s = "Rosetta code"; unsigned char *d = SHA256(s, strlen(s), 0);

int i; for (i = 0; i < SHA256_DIGEST_LENGTH; i++) printf("%02x", d[i]); putchar('\n');

return 0; }</lang>

C#

<lang csharp>using System; using System.Security.Cryptography; using System.Text; using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace RosettaCode.SHA256 {

   [TestClass]
   public class SHA256ManagedTest
   {
       [TestMethod]
       public void TestComputeHash()
       {
           var buffer = Encoding.UTF8.GetBytes("Rosetta code");
           var hashAlgorithm = new SHA256Managed();
           var hash = hashAlgorithm.ComputeHash(buffer);
           Assert.AreEqual(
               "76-4F-AF-5C-61-AC-31-5F-14-97-F9-DF-A5-42-71-39-65-B7-85-E5-CC-2F-70-7D-64-68-D7-D1-12-4C-DF-CF",
               BitConverter.ToString(hash));
       }
   }

}</lang>

C++

Uses crypto++. Compile it with -lcryptopp

<lang cpp>#include <iostream>

  1. include <cryptopp/filters.h>
  2. include <cryptopp/hex.h>
  3. include <cryptopp/sha.h>

int main(int argc, char **argv){ CryptoPP::SHA256 hash; std::string digest; std::string message = "Rosetta code";

CryptoPP::StringSource s(message, true, new CryptoPP::HashFilter(hash, new CryptoPP::HexEncoder( new CryptoPP::StringSink(digest))));

std::cout << digest << std::endl;

return 0; } </lang>

Caché ObjectScript

USER>set hash=$System.Encryption.SHAHash(256, "Rosetta code")
USER>zzdump hash
0000: 76 4F AF 5C 61 AC 31 5F 14 97 F9 DF A5 42 71 39
0010: 65 B7 85 E5 CC 2F 70 7D 64 68 D7 D1 12 4C DF CF

Clojure

Library: pandect

<lang clojure>(use 'pandect.core) (sha256 "Rosetta code")</lang>

Output:
"764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf"

Common Lisp

Library: Ironclad

<lang lisp>(ql:quickload 'ironclad) (defun sha-256 (str)

 (ironclad:byte-array-to-hex-string
   (ironclad:digest-sequence :sha256 
                             (ironclad:ascii-string-to-byte-array str))))

(sha-256 "Rosetta code")</lang>

Output:
"764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf"

Crystal

<lang ruby>require "openssl" puts OpenSSL::Digest.new("SHA256").update("Rosetta code") </lang> Output:

764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

D

Standard Version

<lang d>void main() {

   import std.stdio, std.digest.sha;
   writefln("%-(%02x%)", "Rosetta code".sha256Of);

}</lang>

Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Simple Implementation

<lang d>// Copyright (C) 2005, 2006 Free Software Foundation, Inc. GNU License. // Translated to D language. Only lightly tested, not for serious use.

import core.stdc.string: memcpy; import core.bitop: bswap;

struct SHA256 {

   enum uint BLOCK_SIZE = 4096;
   static assert(BLOCK_SIZE % 64 == 0, "Invalid BLOCK_SIZE.");
   uint[8] state;
   uint[2] total;
   uint bufLen;
   union {
       uint[32] buffer;
       ubyte[buffer.sizeof] bufferB;
   }
   alias TResult = ubyte[256 / 8];
   version(WORDS_BIGENDIAN) {
       static uint bswap(in uint n) pure nothrow @safe @nogc { return n; }
   }
   // Bytes used to pad the buffer to the next 64-byte boundary.
   static immutable ubyte[64] fillBuf = [0x80, 0 /* , 0, 0, ...  */];


   /** Initialize structure containing state of computation.
   Takes a pointer to a 256 bit block of data (eight 32 bit ints) and
   intializes it to the start constants of the SHA256 algorithm. This
   must be called before using hash in the call to sha256_hash. */
   void init() pure nothrow @safe @nogc {
       state = [0x6a09e667U, 0xbb67ae85U, 0x3c6ef372U, 0xa54ff53aU,
                0x510e527fU, 0x9b05688cU, 0x1f83d9abU, 0x5be0cd19U];
       total[] = 0;
       bufLen = 0;
   }


   /** Starting with the result of former calls of this function (or
   the initialization function) update the context for the next LEN
   bytes starting at BUFFER.
   It is not required that LEN is a multiple of 64. */
   void processBytes(in ubyte[] inBuffer) pure nothrow @nogc {
       // When we already have some bits in our internal
       // buffer concatenate both inputs first.
       const(ubyte)* inBufferPtr = inBuffer.ptr;
       auto len = inBuffer.length;
       if (bufLen != 0) {
           immutable size_t left_over = bufLen;
           immutable size_t add = (128 - left_over > len) ?
                                  len :
                                  128 - left_over;
           memcpy(&bufferB[left_over], inBufferPtr, add);
           bufLen += add;
           if (bufLen > 64) {
               processBlock(bufferB[0 .. bufLen & ~63]);
               bufLen &= 63;
               // The regions in the following copy operation cannot overlap.
               memcpy(bufferB.ptr, &bufferB[(left_over + add) & ~63], bufLen);
           }
           inBufferPtr += add;
           len -= add;
       }
       // Process available complete blocks.
       if (len >= 64) {
           processBlock(inBufferPtr[0 .. len & ~63]);
           inBufferPtr += (len & ~63);
           len &= 63;
       }
       // Move remaining bytes in internal buffer.
       if (len > 0) {
           size_t left_over = bufLen;
           memcpy(&bufferB[left_over], inBufferPtr, len);
           left_over += len;
           if (left_over >= 64) {
               processBlock(bufferB[0 .. 64]);
               left_over -= 64;
               memcpy(bufferB.ptr, &bufferB[64], left_over);
           }
           bufLen = left_over;
       }
   }


   /** Starting with the result of former calls of this function
   (or the initialization function) update the context ctx for
   the next len bytes starting at buffer.
   It is necessary that len is a multiple of 64. */
   void processBlock(in ubyte[] inBuffer)
   pure nothrow @nogc in {
       assert(inBuffer.length % 64 == 0);
   } body {
       // Round functions.
       static uint F1(in uint e, in uint f, in uint g) pure nothrow @safe @nogc {
           return g ^ (e & (f ^ g));
       }
       static uint F2(in uint a, in uint b, in uint c) pure nothrow @safe @nogc {
           return (a & b) | (c & (a | b));
       }
       immutable len = inBuffer.length;
       auto words = cast(uint*)inBuffer.ptr;
       immutable size_t nWords = len / uint.sizeof;
       const uint* endp = words + nWords;
       uint[16] x = void;
       auto a = state[0];
       auto b = state[1];
       auto c = state[2];
       auto d = state[3];
       auto e = state[4];
       auto f = state[5];
       auto g = state[6];
       auto h = state[7];
       // First increment the byte count. FIPS PUB 180-2 specifies the
       // possible length of the file up to 2^64 bits. Here we only
       // compute the number of bytes.  Do a double word increment.
       total[0] += len;
       if (total[0] < len)
           total[1]++;
       static uint rol(in uint x, in uint n) pure nothrow @safe @nogc {
           return (x << n) | (x >> (32 - n)); }
       static uint S0(in uint x) pure nothrow @safe @nogc {
           return rol(x, 25) ^ rol(x, 14) ^ (x >> 3); }
       static uint S1(in uint x) pure nothrow @safe @nogc {
           return rol(x, 15) ^ rol(x, 13) ^ (x >> 10); }
       static uint SS0(in uint x) pure nothrow @safe @nogc {
           return rol(x, 30) ^ rol(x,19) ^ rol(x, 10); }
       static uint SS1(in uint x) pure nothrow @safe @nogc {
           return rol(x, 26) ^ rol(x, 21) ^ rol(x, 7); }
       uint M(in uint I) pure nothrow @safe @nogc {
           immutable uint tm = S1(x[(I - 2) & 0x0f]) +
                               x[(I - 7) & 0x0f] +
                               S0(x[(I - 15) & 0x0f]) +
                               x[I & 0x0f];
           x[I & 0x0f] = tm;
           return tm;
       }
       static void R(in uint a, in uint b, in uint c, ref uint d,
                     in uint e, in uint f, in uint g, ref uint h,
                     in uint k, in uint m) pure nothrow @safe @nogc {
           immutable t0 = SS0(a) + F2(a, b, c);
           immutable t1 = h + SS1(e) + F1(e, f, g) + k + m;
           d += t1;
           h = t0 + t1;
       }
       // SHA256 round constants.
       static immutable uint[64] K = [
           0x428a2f98U, 0x71374491U, 0xb5c0fbcfU, 0xe9b5dba5U,
           0x3956c25bU, 0x59f111f1U, 0x923f82a4U, 0xab1c5ed5U,
           0xd807aa98U, 0x12835b01U, 0x243185beU, 0x550c7dc3U,
           0x72be5d74U, 0x80deb1feU, 0x9bdc06a7U, 0xc19bf174U,
           0xe49b69c1U, 0xefbe4786U, 0x0fc19dc6U, 0x240ca1ccU,
           0x2de92c6fU, 0x4a7484aaU, 0x5cb0a9dcU, 0x76f988daU,
           0x983e5152U, 0xa831c66dU, 0xb00327c8U, 0xbf597fc7U,
           0xc6e00bf3U, 0xd5a79147U, 0x06ca6351U, 0x14292967U,
           0x27b70a85U, 0x2e1b2138U, 0x4d2c6dfcU, 0x53380d13U,
           0x650a7354U, 0x766a0abbU, 0x81c2c92eU, 0x92722c85U,
           0xa2bfe8a1U, 0xa81a664bU, 0xc24b8b70U, 0xc76c51a3U,
           0xd192e819U, 0xd6990624U, 0xf40e3585U, 0x106aa070U,
           0x19a4c116U, 0x1e376c08U, 0x2748774cU, 0x34b0bcb5U,
           0x391c0cb3U, 0x4ed8aa4aU, 0x5b9cca4fU, 0x682e6ff3U,
           0x748f82eeU, 0x78a5636fU, 0x84c87814U, 0x8cc70208U,
           0x90befffaU, 0xa4506cebU, 0xbef9a3f7U, 0xc67178f2U];
       while (words < endp) {
           foreach (ref xi; x) {
               xi = bswap(*words);
               words++;
           }
           R(a, b, c, d, e, f, g, h, K[ 0], x[ 0]);
           R(h, a, b, c, d, e, f, g, K[ 1], x[ 1]);
           R(g, h, a, b, c, d, e, f, K[ 2], x[ 2]);
           R(f, g, h, a, b, c, d, e, K[ 3], x[ 3]);
           R(e, f, g, h, a, b, c, d, K[ 4], x[ 4]);
           R(d, e, f, g, h, a, b, c, K[ 5], x[ 5]);
           R(c, d, e, f, g, h, a, b, K[ 6], x[ 6]);
           R(b, c, d, e, f, g, h, a, K[ 7], x[ 7]);
           R(a, b, c, d, e, f, g, h, K[ 8], x[ 8]);
           R(h, a, b, c, d, e, f, g, K[ 9], x[ 9]);
           R(g, h, a, b, c, d, e, f, K[10], x[10]);
           R(f, g, h, a, b, c, d, e, K[11], x[11]);
           R(e, f, g, h, a, b, c, d, K[12], x[12]);
           R(d, e, f, g, h, a, b, c, K[13], x[13]);
           R(c, d, e, f, g, h, a, b, K[14], x[14]);
           R(b, c, d, e, f, g, h, a, K[15], x[15]);
           R(a, b, c, d, e, f, g, h, K[16], M(16));
           R(h, a, b, c, d, e, f, g, K[17], M(17));
           R(g, h, a, b, c, d, e, f, K[18], M(18));
           R(f, g, h, a, b, c, d, e, K[19], M(19));
           R(e, f, g, h, a, b, c, d, K[20], M(20));
           R(d, e, f, g, h, a, b, c, K[21], M(21));
           R(c, d, e, f, g, h, a, b, K[22], M(22));
           R(b, c, d, e, f, g, h, a, K[23], M(23));
           R(a, b, c, d, e, f, g, h, K[24], M(24));
           R(h, a, b, c, d, e, f, g, K[25], M(25));
           R(g, h, a, b, c, d, e, f, K[26], M(26));
           R(f, g, h, a, b, c, d, e, K[27], M(27));
           R(e, f, g, h, a, b, c, d, K[28], M(28));
           R(d, e, f, g, h, a, b, c, K[29], M(29));
           R(c, d, e, f, g, h, a, b, K[30], M(30));
           R(b, c, d, e, f, g, h, a, K[31], M(31));
           R(a, b, c, d, e, f, g, h, K[32], M(32));
           R(h, a, b, c, d, e, f, g, K[33], M(33));
           R(g, h, a, b, c, d, e, f, K[34], M(34));
           R(f, g, h, a, b, c, d, e, K[35], M(35));
           R(e, f, g, h, a, b, c, d, K[36], M(36));
           R(d, e, f, g, h, a, b, c, K[37], M(37));
           R(c, d, e, f, g, h, a, b, K[38], M(38));
           R(b, c, d, e, f, g, h, a, K[39], M(39));
           R(a, b, c, d, e, f, g, h, K[40], M(40));
           R(h, a, b, c, d, e, f, g, K[41], M(41));
           R(g, h, a, b, c, d, e, f, K[42], M(42));
           R(f, g, h, a, b, c, d, e, K[43], M(43));
           R(e, f, g, h, a, b, c, d, K[44], M(44));
           R(d, e, f, g, h, a, b, c, K[45], M(45));
           R(c, d, e, f, g, h, a, b, K[46], M(46));
           R(b, c, d, e, f, g, h, a, K[47], M(47));
           R(a, b, c, d, e, f, g, h, K[48], M(48));
           R(h, a, b, c, d, e, f, g, K[49], M(49));
           R(g, h, a, b, c, d, e, f, K[50], M(50));
           R(f, g, h, a, b, c, d, e, K[51], M(51));
           R(e, f, g, h, a, b, c, d, K[52], M(52));
           R(d, e, f, g, h, a, b, c, K[53], M(53));
           R(c, d, e, f, g, h, a, b, K[54], M(54));
           R(b, c, d, e, f, g, h, a, K[55], M(55));
           R(a, b, c, d, e, f, g, h, K[56], M(56));
           R(h, a, b, c, d, e, f, g, K[57], M(57));
           R(g, h, a, b, c, d, e, f, K[58], M(58));
           R(f, g, h, a, b, c, d, e, K[59], M(59));
           R(e, f, g, h, a, b, c, d, K[60], M(60));
           R(d, e, f, g, h, a, b, c, K[61], M(61));
           R(c, d, e, f, g, h, a, b, K[62], M(62));
           R(b, c, d, e, f, g, h, a, K[63], M(63));
           a = state[0] += a;
           b = state[1] += b;
           c = state[2] += c;
           d = state[3] += d;
           e = state[4] += e;
           f = state[5] += f;
           g = state[6] += g;
           h = state[7] += h;
       }
   }


   /** Process the remaining bytes in the internal buffer and the
   usual prolog according to the standard and write the result to
   resBuf.
   Important: On some systems it is required that resBuf is correctly
   aligned for a 32-bit value. */
   void conclude() pure nothrow @nogc {
       // Take yet unprocessed bytes into account.
       immutable bytes = bufLen;
       immutable size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
       // Now count remaining bytes.
       total[0] += bytes;
       if (total[0] < bytes)
           total[1]++;
       // Put the 64-bit file length in *bits* at the end of
       // the buffer.
       buffer[size - 2] = bswap((total[1] << 3) | (total[0] >> 29));
       buffer[size - 1] = bswap(total[0] << 3);
       memcpy(&bufferB[bytes], fillBuf.ptr, (size - 2) * 4 - bytes);
       // Process last bytes.
       processBlock(bufferB[0 .. size * 4]);
   }


   /** Put result from this in first 32 bytes following resBuf. The
   result must be in little endian byte order.
   Important: On some systems it is required that resBuf is correctly
   aligned for a 32-bit value. */
   ref TResult read(return ref TResult resBuf) pure nothrow @nogc {
       foreach (immutable i, immutable s; state)
           (cast(uint*)resBuf.ptr)[i] = bswap(s);
       return resBuf;
   }


   /** Process the remaining bytes in the buffer and put result from
   CTX in first 32 (28) bytes following resBuf.  The result is always
   in little endian byte order, so that a byte-wise output yields to
   the wanted ASCII representation of the message digest.
   Important: On some systems it is required that resBuf be correctly
   aligned for a 32 bits value. */
   ref TResult finish(return ref TResult resBuf) pure nothrow @nogc {
       conclude;
       return read(resBuf);
   }


   /** Compute SHA512 message digest for LEN bytes beginning at
   buffer. The result is always in little endian byte order, so that
   a byte-wise output yields to the wanted ASCII representation of
   the message digest. */
   static ref TResult digest(in ubyte[] inBuffer, return ref TResult resBuf)
   pure nothrow @nogc {
       SHA256 sha = void;
       // Initialize the computation context.
       sha.init;
       // Process whole buffer but last len % 64 bytes.
       sha.processBytes(inBuffer);
       // Put result in desired memory area.
       return sha.finish(resBuf);
   }


   /// ditto
   static TResult digest(in ubyte[] inBuffer) pure nothrow @nogc {
       align(4) TResult resBuf = void;
       return digest(inBuffer, resBuf);
   }

}


version (sha_256_main) {

   void main() {
       import std.stdio, std.string;
       immutable data = "Rosetta code".representation;
       writefln("%(%02x%)", SHA256.digest(data));
   }

}</lang> Compile with -version=sha_256_main to run the main function.

Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

This is a moderately efficient implementation, about 100 MB/s on a 4096 bytes input buffer on a 32 bit system, using the ldc2 compiler. On a more modern CPU (Intel Ivy Bridge) using HyperThreading, handwritten assembly by Intel is about twice faster.

Delphi

Library: DCPsha256

Part of DCPcrypt Cryptographic Component Library v2.1[1] by David Barton.

<lang Delphi> program SHA_256;

{$APPTYPE CONSOLE}

uses

 System.SysUtils,
 DCPsha256;

function SHA256(const Str: string): string; var

 HashDigest: array of byte;
 d: Byte;

begin

 Result := ;
 with TDCP_sha256.Create(nil) do
 begin
   Init;
   UpdateStr(Str);
   SetLength(HashDigest, GetHashSize div 8);
   final(HashDigest[0]);
   for d in HashDigest do
     Result := Result + d.ToHexString(2);
   Free;
 end;

end;

begin

 Writeln(SHA256('Rosetta code'));
 readln;

end.

</lang>

Output:
764FAF5C61AC315F1497F9DFA542713965B785E5CC2F707D6468D7D1124CDFCF

DWScript

<lang delphi>PrintLn( HashSHA256.HashData('Rosetta code') );</lang>

Emacs Lisp

<lang Lisp>(secure-hash 'sha256 "Rosetta code")  ;; as string of hex digits</lang>

Erlang

More code to get the correct display format than doing the calculation.

Output:
10> Binary =  crypto:hash( sha256, "Rosetta code" ).
11> lists:append( [erlang:integer_to_list(X, 16) || <<X:8/integer>> <= Binary] ).
"764FAF5C61AC315F1497F9DFA542713965B785E5CC2F707D6468D7D1124CDFCF"

F#

<lang fsharp>open System.Security.Cryptography open System.Text

"Rosetta code" |> Encoding.ASCII.GetBytes |> (new SHA256Managed()).ComputeHash |> System.BitConverter.ToString |> printfn "%s" </lang>

Output:
76-4F-AF-5C-61-AC-31-5F-14-97-F9-DF-A5-42-71-39-65-B7-85-E5-CC-2F-70-7D-64-68-D7-D1-12-4C-DF-CF

Factor

Works with: Factor version 0.98

<lang factor>USING: checksums checksums.sha io math.parser ;

"Rosetta code" sha-256 checksum-bytes bytes>hex-string print</lang>

Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Fortran

Intel Fortran on Windows

Using Windows API. See CryptAcquireContext, CryptCreateHash, CryptHashData and CryptGetHashParam on MSDN.

With the file rc.txt containing the string "Rosetta Code":

sha256 rc.txt
764FAF5C61AC315F1497F9DFA542713965B785E5CC2F707D6468D7D1124CDFCF rc.txt (12 bytes)

<lang fortran>module sha256_mod

   use kernel32
   use advapi32
   implicit none
   integer, parameter :: SHA256LEN = 32

contains

   subroutine sha256hash(name, hash, dwStatus, filesize)
       implicit none
       character(*) :: name
       integer, parameter :: BUFLEN = 32768
       integer(HANDLE) :: hFile, hProv, hHash
       integer(DWORD) :: dwStatus, nRead
       integer(BOOL) :: status
       integer(BYTE) :: buffer(BUFLEN)
       integer(BYTE) :: hash(SHA256LEN)
       integer(UINT64) :: filesize

       dwStatus = 0
       filesize = 0
       hFile = CreateFile(trim(name) // char(0), GENERIC_READ, FILE_SHARE_READ, NULL, &
                          OPEN_EXISTING, FILE_FLAG_SEQUENTIAL_SCAN, NULL)

       if (hFile == INVALID_HANDLE_VALUE) then
           dwStatus = GetLastError()
           print *, "CreateFile failed."
           return
       end if

       if (CryptAcquireContext(hProv, NULL, MS_ENH_RSA_AES_PROV, PROV_RSA_AES, &
                               CRYPT_VERIFYCONTEXT) == FALSE) then

           dwStatus = GetLastError()
           print *, "CryptAcquireContext failed.", dwStatus
           goto 3
       end if

       if (CryptCreateHash(hProv, CALG_SHA_256, 0_ULONG_PTR, 0_DWORD, hHash) == FALSE) then

           dwStatus = GetLastError()
           print *, "CryptCreateHash failed."
           go to 2
       end if

       do
           status = ReadFile(hFile, loc(buffer), BUFLEN, nRead, NULL)
           if (status == FALSE .or. nRead == 0) exit
           filesize = filesize + nRead
           if (CryptHashData(hHash, buffer, nRead, 0) == FALSE) then
               dwStatus = GetLastError()
               print *, "CryptHashData failed."
               go to 1
           end if
       end do

       if (status == FALSE) then
           dwStatus = GetLastError()
           print *, "ReadFile failed."
           go to 1
       end if

       nRead = SHA256LEN
       if (CryptGetHashParam(hHash, HP_HASHVAL, hash, nRead, 0) == FALSE) then
           dwStatus = GetLastError()
           print *, "CryptGetHashParam failed."
       end if

     1 status = CryptDestroyHash(hHash)
     2 status = CryptReleaseContext(hProv, 0)
     3 status = CloseHandle(hFile)
   end subroutine

end module

program sha256

   use sha256_mod
   implicit none
   integer :: n, m, i, j
   character(:), allocatable :: name
   integer(DWORD) :: dwStatus
   integer(BYTE) :: hash(SHA256LEN)
   integer(UINT64) :: filesize

   n = command_argument_count()
   do i = 1, n
       call get_command_argument(i, length=m)
       allocate(character(m) :: name)
       call get_command_argument(i, name)
       call sha256hash(name, hash, dwStatus, filesize)
       if (dwStatus == 0) then
           do j = 1, SHA256LEN
               write(*, "(Z2.2)", advance="NO") hash(j)
           end do
           write(*, "(' ',A,' (',G0,' bytes)')") name, filesize
       end if
       deallocate(name)
   end do

end program</lang>

Free Pascal

<lang pascal>program rosettaCodeSHA256;

uses

 SysUtils, DCPsha256;

var

 ros: String;
 sha256 : TDCP_sha256;
 digest : array[0..63] of byte;
 i: Integer;
 output: String;

begin

 ros := 'Rosetta code';
 sha256 := TDCP_sha256.Create(nil);
 sha256.init;
 sha256.UpdateStr(ros);
 sha256.Final(digest);
 output := ;
 for i := 0 to 31 do begin
   output := output + intToHex(digest[i], 2);
 end;
 writeln(lowerCase(output));

end.</lang>

Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

FreeBASIC

<lang freebasic>' version 20-10-2016 ' FIPS PUB 180-4 ' compile with: fbc -s console

Function SHA_256(test_str As String) As String

 #Macro Ch (x, y, z)
   (((x) And (y)) Xor ((Not (x)) And z))
 #EndMacro
 #Macro Maj (x, y, z)
   (((x) And (y)) Xor ((x) And (z)) Xor ((y) And (z)))
 #EndMacro
 #Macro sigma0 (x)
   (((x) Shr 2 Or (x) Shl 30) Xor ((x) Shr 13 Or (x) Shl 19) Xor ((x) Shr 22 Or (x) Shl 10))
 #EndMacro
 #Macro sigma1 (x)
   (((x) Shr 6 Or (x) Shl 26) Xor ((x) Shr 11 Or (x) Shl 21) Xor ((x) Shr 25 Or (x) Shl 7))
 #EndMacro
 #Macro sigma2 (x)
   (((x) Shr 7 Or (x) Shl 25) Xor ((x) Shr 18 Or (x) Shl 14) Xor ((x) Shr 3))
 #EndMacro
 #Macro sigma3 (x)
   (((x) Shr 17 Or (x) Shl 15) Xor ((x) Shr 19 Or (x) Shl 13) Xor ((x) Shr 10))
 #EndMacro
 Dim As String message = test_str   ' strings are passed as ByRef's
 Dim As Long i, j
 Dim As UByte Ptr ww1
 Dim As UInteger<32> Ptr ww4
 Dim As ULongInt l = Len(message)
 ' set the first bit after the message to 1
 message = message + Chr(1 Shl 7)
 ' add one char to the length
 Dim As ULong padding = 64 - ((l +1) Mod (512 \ 8)) ' 512 \ 8 = 64 char.
 ' check if we have enough room for inserting the length
 If padding < 8 Then padding = padding + 64
 message = message + String(padding, Chr(0))   ' adjust length
 Dim As ULong l1 = Len(message)                ' new length
 l = l * 8    ' orignal length in bits
 ' create ubyte ptr to point to l ( = length in bits)
 Dim As UByte Ptr ub_ptr = Cast(UByte Ptr, @l)
 For i = 0 To 7  'copy length of message to the last 8 bytes
   message[l1 -1 - i] = ub_ptr[i]
 Next
 'table of constants
 Dim As UInteger<32> K(0 To ...) = _
 { &H428a2f98, &H71374491, &Hb5c0fbcf, &He9b5dba5, &H3956c25b, &H59f111f1, _
   &H923f82a4, &Hab1c5ed5, &Hd807aa98, &H12835b01, &H243185be, &H550c7dc3, _
   &H72be5d74, &H80deb1fe, &H9bdc06a7, &Hc19bf174, &He49b69c1, &Hefbe4786, _
   &H0fc19dc6, &H240ca1cc, &H2de92c6f, &H4a7484aa, &H5cb0a9dc, &H76f988da, _
   &H983e5152, &Ha831c66d, &Hb00327c8, &Hbf597fc7, &Hc6e00bf3, &Hd5a79147, _
   &H06ca6351, &H14292967, &H27b70a85, &H2e1b2138, &H4d2c6dfc, &H53380d13, _
   &H650a7354, &H766a0abb, &H81c2c92e, &H92722c85, &Ha2bfe8a1, &Ha81a664b, _
   &Hc24b8b70, &Hc76c51a3, &Hd192e819, &Hd6990624, &Hf40e3585, &H106aa070, _
   &H19a4c116, &H1e376c08, &H2748774c, &H34b0bcb5, &H391c0cb3, &H4ed8aa4a, _
   &H5b9cca4f, &H682e6ff3, &H748f82ee, &H78a5636f, &H84c87814, &H8cc70208, _
   &H90befffa, &Ha4506ceb, &Hbef9a3f7, &Hc67178f2 }
 Dim As UInteger<32> h0 = &H6a09e667
 Dim As UInteger<32> h1 = &Hbb67ae85
 Dim As UInteger<32> h2 = &H3c6ef372
 Dim As UInteger<32> h3 = &Ha54ff53a
 Dim As UInteger<32> h4 = &H510e527f
 Dim As UInteger<32> h5 = &H9b05688c
 Dim As UInteger<32> h6 = &H1f83d9ab
 Dim As UInteger<32> h7 = &H5be0cd19
 Dim As UInteger<32> a, b, c, d, e, f, g, h
 Dim As UInteger<32> t1, t2, w(0 To 63)


 For j = 0 To (l1 -1) \ 64 ' split into block of 64 bytes
   ww1 = Cast(UByte Ptr, @message[j * 64])
   ww4 = Cast(UInteger<32> Ptr, @message[j * 64])
   For i = 0 To 60 Step 4  'little endian -> big endian
     Swap ww1[i   ], ww1[i +3]
     Swap ww1[i +1], ww1[i +2]
   Next
   For i = 0 To 15    ' copy the 16 32bit block into the array
     W(i) = ww4[i]
   Next
   For i = 16 To 63   ' fill the rest of the array
     w(i) = sigma3(W(i -2)) + W(i -7) + sigma2(W(i -15)) + W(i -16)
   Next
   a = h0 : b = h1 : c = h2 : d = h3 : e = h4 : f = h5 : g = h6 : h = h7
   For i = 0 To 63
     t1 = h + sigma1(e) + Ch(e, f, g) + K(i) + W(i)
     t2 = sigma0(a) + Maj(a, b, c)
     h = g : g = f : f = e
     e = d + t1
     d = c : c = b : b = a
     a = t1 + t2
   Next
   h0 += a : h1 += b : h2 += c : h3 += d
   h4 += e : h5 += f : h6 += g : h7 += h
 Next j
 Dim As String answer  = Hex(h0, 8) + Hex(h1, 8) + Hex(h2, 8) + Hex(h3, 8)
               answer += Hex(h4, 8) + Hex(h5, 8) + Hex(h6, 8) + Hex(h7, 8)
 Return LCase(answer)

End Function

' ------=< MAIN >=------

Dim As String test = "Rosetta code" Print test; " => "; SHA_256(test)


' empty keyboard buffer While Inkey <> "" : Wend Print : Print "hit any key to end program" Sleep End</lang>

Output:
Rosetta code => 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Frink

Frink has convenience methods to use any message hashing algorithm provided by your Java Virtual Machine. The result can be returned as a hexadecimal string, an integer, or an array of bytes. <lang frink>println[messageDigest["Rosetta code", "SHA-256"]]</lang>

Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

FunL

A SHA-256 function can be defined using the Java support library.

<lang funl>native java.security.MessageDigest

def sha256Java( message ) = map( a -> format('%02x', a), list(MessageDigest.getInstance('SHA-256').digest(message.getBytes('UTF-8'))) ).mkString()</lang>

Here is a definition implemented as a direct translation of the pseudocode at SHA-256.

<lang funl>def sha256( message ) =

 //Initialize hash values
 h0 = 0x6a09e667
 h1 = 0xbb67ae85
 h2 = 0x3c6ef372
 h3 = 0xa54ff53a
 h4 = 0x510e527f
 h5 = 0x9b05688c
 h6 = 0x1f83d9ab
 h7 = 0x5be0cd19
 // Initialize array of round constants
 k(0..63) = [
   0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
   0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
   0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
   0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
   0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
   0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
   0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
   0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2]
 // Pre-processing
 bits = BitArray( message.getBytes('UTF-8') )
 len = bits.length()
 bits.append( 1 )
 r = bits.length()%512
 bits.appendAll( 0 | _ <- 1..(if r > 448 then 512 - r + 448 else 448 - r) )
 bits.appendInt( 0 )
 bits.appendInt( len )
 words = bits.toIntVector()
 // Process the message in successive 512-bit chunks
 for chunk <- 0:words.length():16
   w(0..15) = words(chunk..chunk+15)
   // Extend the first 16 words into the remaining 48 words w[16..63] of the message schedule array
   for i <- 16..63
     s0 = (w(i-15) rotateright 7) xor (w(i-15) rotateright 18) xor (w(i-15) >>> 3)
     s1 = (w(i-2) rotateright 17) xor (w(i-2) rotateright 19) xor (w(i-2) >>> 10)
     w(i) = w(i-16) + s0 + w(i-7) + s1
   // Initialize working variables to current hash value
   a = h0
   b = h1
   c = h2
   d = h3
   e = h4
   f = h5
   g = h6
   h = h7
   // Compression function main loop
   for i <- 0..63
     S1 = (e rotateright 6) xor (e rotateright 11) xor (e rotateright 25)
     ch = (e and f) xor ((not e) and g)
     temp1 = h + S1 + ch + k(i) + w(i)
     S0 = (a rotateright 2) xor (a rotateright 13) xor (a rotateright 22)
     maj = (a and b) xor (a and c) xor (b and c)
     temp2 = S0 + maj
     h = g
     g = f
     f = e
     e = d + temp1
     d = c
     c = b
     b = a
     a = temp1 + temp2
   // Add the compressed chunk to the current hash value
   h0 = h0 + a
   h1 = h1 + b
   h2 = h2 + c
   h3 = h3 + d
   h4 = h4 + e
   h5 = h5 + f
   h6 = h6 + g
   h7 = h7 + h
 // Produce the final hash value (big-endian)
 map( a -> format('%08x', a.intValue()), [h0, h1, h2, h3, h4, h5, h6, h7] ).mkString()</lang>

Here is a test comparing the two and also verifying the hash values of the empty message string.

<lang funl>message = 'Rosetta code'

println( 'FunL: "' + message + '" ~> ' + sha256(message) ) println( 'Java: "' + message + '" ~> ' + sha256Java(message) )

message =

println( 'FunL: "' + message + '" ~> ' + sha256(message) ) println( 'Java: "' + message + '" ~> ' + sha256Java(message) )</lang>

Output:
FunL: "Rosetta code" ~> 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf
Java: "Rosetta code" ~> 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf
FunL: "" ~> e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855
Java: "" ~> e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855

Genie

<lang genie>[indent=4] /*

  SHA-256 in Genie
  valac SHA-256.gs
  ./SHA-256
  • /

init

   var msg = "Rosetta code"
   var digest = Checksum.compute_for_string(ChecksumType.SHA256, msg, -1)
   print msg
   print digest
   assert(digest == "764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf")</lang>
Output:
prompt$ valac SHA-256.gs
prompt$ ./SHA-256
Rosetta code
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Go

<lang go>package main

import (

   "crypto/sha256"
   "fmt"
   "log"

)

func main() {

   h := sha256.New()
   if _, err := h.Write([]byte("Rosetta code")); err != nil {
       log.Fatal(err)
   }
   fmt.Printf("%x\n", h.Sum(nil))

}</lang>

Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Groovy

<lang groovy>def sha256Hash = { text ->

   java.security.MessageDigest.getInstance("SHA-256").digest(text.bytes)
           .collect { String.format("%02x", it) }.join()

}</lang> Testing <lang groovy>assert sha256Hash('Rosetta code') == '764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf'</lang>

Halon

<lang halon>$var = "Rosetta code"; echo sha2($var, 256);</lang>

Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Haskell

<lang haskell>import Data.Char (ord) import Crypto.Hash.SHA256 (hash) import Data.ByteString (unpack, pack) import Text.Printf (printf)

main = putStrLn $ -- output to terminal

      concatMap (printf "%02x") $    -- to hex string
      unpack $                       -- to array of Word8
      hash $                         -- SHA-256 hash to ByteString
      pack $                         -- to ByteString
      map (fromIntegral.ord)         -- to array of Word8
      "Rosetta code"

</lang>

Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Haxe

<lang haxe>import haxe.crypto.Sha256;

class Main {

 static function main() {	
   var sha256 = Sha256.encode("Rosetta code");
   Sys.println(sha256);
 }

}</lang>

Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

J

Solution: From J8 the ide/qt addon provides bindings to Qt libraries that include support for various hashing algorithms including SHA-256. <lang j>require '~addons/ide/qt/qt.ijs' getsha256=: 'sha256'&gethash_jqtide_</lang> Example Usage: <lang j> getsha256 'Rosetta code' 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf</lang>

Note that the older version Qt4 libraries currently shipped by default on many Linux distributions don't support SHA-256. On Windows and Mac, J8 includes the later Qt5 libraries that include support for SHA-256.

Starting in J8.06, the sha family of hashes have built-in support.

<lang j>sha256=: 3&(128!:6)</lang>

<lang j> sha256 'Rosetta code' 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf</lang>

Java

The solution to this task would be a small modification to MD5 (replacing "MD5" with "SHA-256" as noted here).

JavaScript

<lang javascript> const crypto = require('crypto');

const msg = 'Rosetta code'; const hash = crypto.createHash('sha256').update(msg).digest('hex');

console.log(hash); </lang>

Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Jsish

<lang javascript>/* SHA-256 hash in Jsish */ var str = 'Rosetta code'; puts(Util.hash(str, {type:'sha256'}));

/*

!EXPECTSTART!

764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

!EXPECTEND!

  • /</lang>
Output:
prompt$ jsish sha-256.jsi
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf
prompt$ jsish -u sha-256.jsi
[PASS] sha-256.jsi

Julia

Works with: Julia version 0.6

<lang julia>msg = "Rosetta code"

using Nettle digest = hexdigest("sha256", msg)

  1. native

using SHA digest1 = join(num2hex.(sha256(msg)))

@assert digest == digest1</lang>

Kotlin

<lang scala>// version 1.0.6

import java.security.MessageDigest

fun main(args: Array<String>) {

   val text  = "Rosetta code"
   val bytes = text.toByteArray()
   val md = MessageDigest.getInstance("SHA-256")
   val digest = md.digest(bytes)
   for (byte in digest) print("%02x".format(byte))
   println() 

}</lang>

Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Lasso

Lasso supports the ciphers as supplied by the operating system.

SHA-256 is not supplied by all operating systems by default.

Use the cipher_list method to view these algorithms.

<lang Lasso>// The following will return a list of all the cipher // algorithms supported by the installation of Lasso cipher_list

// With a -digest parameter the method will limit the returned list // to all of the digest algorithms supported by the installation of Lasso cipher_list(-digest)

// return the SHA-256 digest. Dependant on SHA-256 being an available digest method cipher_digest('Rosetta Code', -digest='SHA-256',-hex=true) </lang>

Lua

Works with: Lua 5.1.4
Library: sha2

(luarocks install sha2)

<lang Lua>#!/usr/bin/lua

require "sha2"

print(sha2.sha256hex("Rosetta code"))</lang>

Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Mathematica

<lang>Hash["Rosetta code","SHA256","HexString"]</lang>

Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

min

Works with: min version 0.19.6

<lang min>"Rosetta code" sha256 puts!</lang>

Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

NetRexx

This solution is basically the same as that for MD5, substituting "SHA-256" for "MD5" as the algorithm to use in the MessageDigest instance. <lang NetRexx>/* NetRexx */ options replace format comments java crossref savelog symbols binary

import java.security.MessageDigest

SHA256('Rosetta code', '764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf')

return

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ method SHA256(messageText, verifyCheck) public static

 algorithm   = 'SHA-256'
 digestSum = getDigest(messageText, algorithm)
 say '<Message>'messageText'</Message>'
 say Rexx('<'algorithm'>').right(12) || digestSum'</'algorithm'>'
 say Rexx('<Verify>').right(12) || verifyCheck'</Verify>'
 if digestSum == verifyCheck then say algorithm 'Confirmed'
                             else say algorithm 'Failed'
 return

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ method getDigest(messageText = Rexx, algorithm = Rexx 'MD5', encoding = Rexx 'UTF-8', lowercase = boolean 1) public static returns Rexx

 algorithm = algorithm.upper
 encoding  = encoding.upper
 message      = String(messageText)
 messageBytes = byte[]
 digestBytes  = byte[]
 digestSum    = Rexx 
 do
   messageBytes = message.getBytes(encoding)
   md = MessageDigest.getInstance(algorithm)
   md.update(messageBytes)
   digestBytes = md.digest
   loop b_ = 0 to digestBytes.length - 1
     bb = Rexx(digestBytes[b_]).d2x(2)
     if lowercase then digestSum = digestSum || bb.lower
                  else digestSum = digestSum || bb.upper
     end b_
 catch ex = Exception
   ex.printStackTrace
 end
 
 return digestSum

</lang> Output:

<Message>Rosetta code</Message>
   <SHA-256>764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf</SHA-256>
    <Verify>764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf</Verify>
SHA-256 Confirmed

NewLISP

<lang NewLISP>;; using the crypto module from http://www.newlisp.org/code/modules/crypto.lsp.html

(import native functions from the crypto library, provided by OpenSSL)

(module "crypto.lsp") (crypto:sha256 "Rosetta Code")</lang>

Nim

Library: OpenSSL

Compile with nim -d:ssl c sha256.nim: <lang nim>import strutils

const SHA256Len = 32

proc SHA256(d: cstring, n: culong, md: cstring = nil): cstring {.cdecl, dynlib: "libssl.so", importc.}

proc SHA256(s: string): string =

 result = ""
 let s = SHA256(s.cstring, s.len.culong)
 for i in 0 ..< SHA256Len:
   result.add s[i].BiggestInt.toHex(2).toLower

echo SHA256("Rosetta code")</lang>

Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Oberon-2

Works with: oo2c
Library: crypto

<lang oberon2> MODULE SHA256; IMPORT

 Crypto:SHA256,
 Crypto:Utils,
 Strings,
 Out;

VAR

 h: SHA256.Hash;
 str: ARRAY 128 OF CHAR;

BEGIN

 h := SHA256.NewHash();
 h.Initialize;
 str := "Rosetta code";
 h.Update(str,0,Strings.Length(str));
 h.GetHash(str,0);
 Out.String("SHA256: ");Utils.PrintHex(str,0,h.size);Out.Ln

END SHA256. </lang>

Output:
SHA256: 
   764FAF5C   61AC315F   1497F9DF   A5427139   65B785E5   CC2F707D
   6468D7D1   124CDFCF

Objeck

<lang Objeck> class ShaHash {

  function : Main(args : String[]) ~ Nil {
     hash:= Encryption.Hash->SHA256("Rosetta code"->ToByteArray());
     str := hash->ToHexString()->ToLower();
     str->PrintLine();
     str->Equals("764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf")->PrintLine();
  }

} </lang>

764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf
true

Objective-C

Build with something like

clang -o rosetta_sha256 rosetta_sha256.m /System/Library/Frameworks/Cocoa.framework/Cocoa

or in XCode. <lang objc>#import <Cocoa/Cocoa.h>

  1. import <CommonCrypto/CommonDigest.h>


int main(int argc, char ** argv) {

   NSString * msg = @"Rosetta code";
   unsigned char buf[CC_SHA256_DIGEST_LENGTH];
   const char * rc = [msg cStringUsingEncoding:NSASCIIStringEncoding];
   if (! CC_SHA256(rc, strlen(rc), buf)) {
       NSLog(@"Failure...");
       return -1;
   }
   NSMutableString * res = [NSMutableString stringWithCapacity:(CC_SHA256_DIGEST_LENGTH * 2)];
   for (int i = 0; i < CC_SHA256_DIGEST_LENGTH; ++i) {
       [res appendFormat:@"%02x", buf[i]];
   }
   NSLog(@"Output: %@", res);
   return 0;

} </lang>

OCaml

Library: caml-sha

<lang ocaml>let () =

 let s = "Rosetta code" in
 let digest = Sha256.string s in
 print_endline (Sha256.to_hex digest)</lang>

Running this script in interpreted mode:

$ ocaml -I +sha sha256.cma sha.ml
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

OS X sha256sum

Apple OS X command line with echo and sha256sum.

<lang sha256sum>echo -n 'Rosetta code' | sha256sum</lang>

Using the -n flag for echo is required as echo normally outputs a newline.

Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf  -

PARI/GP

It works on Linux systems.

<lang parigp>sha256(s)=extern("echo \"Str(`echo -n '"Str(s)"'|sha256sum|cut -d' ' -f1`)\"")</lang>

The code above creates a new function sha256(s) which returns SHA-256 hash of item s.

Output:
sha256("Rosetta code") = "764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf"

Perl

The preferred way to do a task like this is to use an already written module, for example: <lang Perl>#!/usr/bin/perl use strict ; use warnings ; use Digest::SHA qw( sha256_hex ) ;

my $digest = sha256_hex my $phrase = "Rosetta code" ; print "SHA-256('$phrase'): $digest\n" ; </lang>

Output:
SHA-256('Rosetta code'): 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

On the other hand, one of perl's mottos is There Is More Than One Way To Do It, so of course you could write your own implementation if you wanted to. <lang Perl> package Digest::SHA256::PP;

use strict; use warnings;

use constant WORD => 2**32; use constant MASK => WORD - 1;

my @h; my @k;

for my $p ( 2 .. 311 ) { # Horrible primality test, but sufficient for this task. next if ("1" x $p) =~ /^(11+?)\1+$/; # The choice to generate h and k instead of hard coding # them is inspired by the Raku implementation. my $c = $p ** ( 1/3 ); push @k, int( ($c - int $c) * WORD ); next if @h == 8; my $s = $p ** ( 1/2 ); push @h, int( ($s - int $s) * WORD ); }

sub new { my %self = ( state => [@h], str => "", len => 0 ); bless \%self, shift; }

my $rightrotate = sub { my $lo = $_[0] >> $_[1]; my $hi = $_[0] << (32 - $_[1]); ($hi | $lo); };

  1. This is adapted from the wikipedia entry on SHA2.

my $compress = sub { my ($state, $bytes) = @_; my @w = unpack 'N*', $bytes; @w == 16 or die 'internal error'; my ($a, $b, $c, $d, $e, $f, $g, $h) = @$state; until( @w == 64 ) { my $s0 = $w[-15] >> 3; my $s1 = $w[-2] >> 10; $s0 ^= $rightrotate->($w[-15], $_) for 7, 18; $s1 ^= $rightrotate->($w[-2], $_) for 17, 19; push @w, ($w[-16] + $s0 + $w[-7] + $s1) & MASK; } my $i = 0; for my $w (@w) { my $ch = ($e & $f) ^ ((~$e) & $g); my $maj = ($a & $b) ^ ($a & $c) ^ ($b & $c); my ($S0, $S1) = (0, 0); $S1 ^= $rightrotate->( $e, $_ ) for 6, 11, 25; $S0 ^= $rightrotate->( $a, $_ ) for 2, 13, 22; my $temp1 = $h + $S1 + $ch + $k[$i++] + $w; my $temp2 = $S0 + $maj; ($h, $g, $f, $e, $d, $c, $b, $a) = ($g, $f, $e, ($d+$temp1)&MASK, $c, $b, $a, ($temp1+$temp2)&MASK); } my $j = 0; $state->[$j++] += $_ for $a, $b, $c, $d, $e, $f, $g, $h; };

use constant can_Q => eval { length pack 'Q>', 0 };

sub add { my ($self, $bytes) = @_; $self->{len} += 8 * length $bytes; if( !can_Q and $self->{len} >= WORD ) { my $hi = int( $self->{len} / WORD ); $self->{big} += $hi; $self->{len} -= $hi * WORD; } my $len = length $self->{str}; if( ($len + length $bytes) < 64 ) { $self->{str} .= $bytes; return $self; } my $off = 64 - $len; $compress->( $self->{state}, $self->{str} . substr( $bytes, 0, $off ) ); $len = length $_[0]; while( $off+64 <= $len ) { $compress->( $self->{state}, substr( $bytes, $off, 64 ) ); $off += 64; } $self->{str} = substr( $bytes, $off ); $self; }

sub addfile { my ($self, $fh) = @_; my $s = ""; while( read( $fh, $s, 2**13 ) ) { $self->add( $s ); } $self; }


sub digest { my $self = shift; my $final = $self->{str}; $final .= chr 0x80; while( ( 8+length $final ) % 64 ) { $final .= chr 0; } if( can_Q ) { $final .= pack 'Q>', $self->{len}; } else { $self->{big} ||= 0; $final .= pack 'NN', $self->{big}, $self->{len}; } $compress->( $self->{state}, substr $final, 0, 64, "" ) while length $final; if( wantarray ) { map pack('N', $_), @{ $self->{state} }; } else { pack 'N*', @{ $self->{state} }; } }

sub hexdigest { if( wantarray ) { map unpack( 'H*', $_), &digest; } else { unpack 'H*', &digest; } }

unless( caller ) { my @testwith = (@ARGV ? @ARGV : 'Rosetta code'); for my $str (@testwith) { my $digester = __PACKAGE__->new; $digester->add($str); print "'$str':\n"; print join(" ", $digester->hexdigest), "\n"; } }

1; </lang>

Output:
'Rosetta code':
764faf5c 61ac315f 1497f9df a5427139 65b785e5 cc2f707d 6468d7d1 124cdfcf

Phix

<lang Phix>include builtins\sha256.e

function asHex(string s) string res = ""

   for i=1 to length(s) do
       res &= sprintf("%02X",s[i])
   end for
   return res

end function

?asHex(sha256("Rosetta code"))</lang>

Output:
"764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf"

The standard include file sha256.e is now mainly optimised inline assembly, but the following is, I feel, more in the spirit of this site <lang Phix>-- -- demo\rosetta\sha-256.exw -- ======================== -- -- fairly faithful rendition of https://en.wikipedia.org/wiki/SHA-2 -- with slightly improved names (eg s0 -> sigma0) from elsewhere. -- See also sha-256asm.exw for a faster inline asm version, and -- sha-256dll.exw is much shorter as it uses a pre-built dll.

--Initial array of round constants --(first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311): constant k = {

  0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
  0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
  0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
  0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
  0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
  0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
  0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
  0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2}

function pad64(integer v) -- round v up to multiple of 64

   return floor((v+63)/64)*64

end function

constant m4 = allocate(4) -- scratch area, for uint32

function uint32(atom v) -- -- (note: I have experimented to call this as few times as possible. -- It wouldn't hurt to perform this on every maths op, but a -- few leading bits in a few work fields don't matter much.) --

   poke4(m4,v)
   return peek4u(m4)

end function

function sq_uint32(sequence s) -- apply unit32 to all elements of s

   for i=1 to length(s) do
       s[i] = uint32(s[i])
   end for
   return s

end function

function dword(string msg, integer i) -- get dword as big-endian

   return msg[i]*#1000000+msg[i+1]*#10000+msg[i+2]*#100+msg[i+3]

end function

function shr(atom v, integer bits)

   return floor(v/power(2,bits))

end function

function ror(atom v, integer bits)

   return or_bits(shr(v,bits),v*power(2,32-bits))

end function

function sha256(string msg) -- main function atom s0,s1,a,b,c,d,e,f,g,h,ch,temp1,maj,temp2,x sequence w = repeat(0,64) sequence res integer len = length(msg)+1 --Initial hash values --(first 32 bits of the fractional parts of the square roots of the first 8 primes 2..19) atom h0 = 0x6a09e667,

    h1 = 0xbb67ae85,
    h2 = 0x3c6ef372,
    h3 = 0xa54ff53a,
    h4 = 0x510e527f,
    h5 = 0x9b05688c,
    h6 = 0x1f83d9ab,
    h7 = 0x5be0cd19
   -- add the '1' bit and space for size in bits, padded to multiple of 64
   msg &= #80&repeat('\0',pad64(len+8)-len)
   len = (len-1)*8
   for i=length(msg) to 1 by -1 do
       msg[i] = and_bits(len,#FF)
       len = floor(len/#100)
       if len=0 then exit end if
   end for
   -- Process the message in successive 512-bit (64 byte) chunks
   for chunk=1 to length(msg) by 64 do
       for i=1 to 16 do
           w[i] = dword(msg,chunk+(i-1)*4)
       end for
       -- Extend the first 16 words into the remaining 48 words w[17..64] of the message schedule array
       for i=17 to 64 do
           x = w[i-15]; s0 = xor_bits(xor_bits(ror(x, 7),ror(x,18)),shr(x, 3))
           x = w[i-2];  s1 = xor_bits(xor_bits(ror(x,17),ror(x,19)),shr(x,10))
           w[i] = uint32(w[i-16]+s0+w[i-7]+s1)
       end for
       -- Initialize working variables to current hash value
       {a,b,c,d,e,f,g,h} = {h0,h1,h2,h3,h4,h5,h6,h7}
    
       -- Compression function main loop
       for i=1 to 64 do
           s1 = xor_bits(xor_bits(ror(e,6),ror(e,11)),ror(e,25))
           ch = xor_bits(and_bits(e,f),and_bits(not_bits(e),g))
           temp1 = h+s1+ch+k[i]+w[i]
           s0 = xor_bits(xor_bits(ror(a,2),ror(a,13)),ror(a,22))
           maj = xor_bits(xor_bits(and_bits(a,b),and_bits(a,c)),and_bits(b,c))
           temp2 = s0+maj
    
           {h,g,f,e,d,c,b,a} = sq_uint32({g,f,e,d+temp1,c,b,a,temp1+temp2})
       end for
       -- Add the compressed chunk to the current hash value
       {h0,h1,h2,h3,h4,h5,h6,h7} = sq_add({h0,h1,h2,h3,h4,h5,h6,h7},{a,b,c,d,e,f,g,h})
   end for
   -- Produce the final hash value (big-endian)
   res = sq_uint32({h0, h1, h2, h3, h4, h5, h6, h7}) -- (or do sq_unit32 on the sq_add above)
   for i=1 to length(res) do
       res[i] = sprintf("%08x",res[i])
   end for
   return join(res)

end function

?sha256("Rosetta code")</lang>

Output:
"764FAF5C 61AC315F 1497F9DF A5427139 65B785E5 CC2F707D 6468D7D1 124CDFCF"

PHP

<lang php><?php echo hash('sha256', 'Rosetta code'); </lang>

Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

PicoLisp

Library and implementation. <lang PicoLisp>(setq *Sha256-K

  (mapcar hex 
     '("428A2F98" "71374491" "B5C0FBCF" "E9B5DBA5" "3956C25B" 
       "59F111F1" "923F82A4" "AB1C5ED5" "D807AA98" "12835B01"
       "243185BE" "550C7DC3" "72BE5D74" "80DEB1FE" "9BDC06A7" 
       "C19BF174" "E49B69C1" "EFBE4786" "0FC19DC6" "240CA1CC"
       "2DE92C6F" "4A7484AA" "5CB0A9DC" "76F988DA" "983E5152"
       "A831C66D" "B00327C8" "BF597FC7" "C6E00BF3" "D5A79147"
       "06CA6351" "14292967" "27B70A85" "2E1B2138" "4D2C6DFC" 
       "53380D13" "650A7354" "766A0ABB" "81C2C92E" "92722C85"
       "A2BFE8A1" "A81A664B" "C24B8B70" "C76C51A3" "D192E819"
       "D6990624" "F40E3585" "106AA070" "19A4C116" "1E376C08"
       "2748774C" "34B0BCB5" "391C0CB3" "4ED8AA4A" "5B9CCA4F"
       "682E6FF3" "748F82EE" "78A5636F" "84C87814" "8CC70208"
       "90BEFFFA" "A4506CEB" "BEF9A3F7" "C67178F2") ) )

(de rightRotate (X C)

  (| (mod32 (>> C X)) (mod32 (>> (- C 32) X))) )

(de mod32 (N)

  (& N `(hex "FFFFFFFF")) )
  

(de not32 (N)

  (x| N `(hex "FFFFFFFF")) )   
  

(de add32 @

  (mod32 (pass +)) )   
  

(de sha256 (Str)

  (let Len (length Str)
     (setq Str
        (conc
           (need
              (- 
                 8 
                 (* 64 (/ (+ Len 1 8 63) 64)) )
              (conc (mapcar char (chop Str)) (cons `(hex "80")))
              0 ) 
           (flip 
              (make
                 (setq Len (* 8 Len))
                 (do 8
                    (link (& Len 255))
                    (setq Len (>> 8 Len )) ) ) ) ) ) )
  (let
     (H0 `(hex "6A09E667")
        H1 `(hex "BB67AE85")
        H2 `(hex "3C6EF372")
        H3 `(hex "A54FF53A")
        H4 `(hex "510E527F")
        H5 `(hex "9B05688C")
        H6 `(hex "1F83D9AB")
        H7 `(hex "5BE0CD19") )
     (while Str                  
        (let
           (A H0
              B H1
              C H2
              D H3
              E H4
              F H5
              G H6
              H H7
              W 
              (conc
                (make
                   (do 16
                      (link
                         (apply 
                            |
                            (mapcar >> (-24 -16 -8 0) (cut 4 'Str)) ) ) ) )
                (need 48 0) ) )
              (for (I 17 (>= 64 I) (inc I))
                 (let 
                    (Wi15 (get W (- I 15)) 
                       Wi2 (get W (- I 2))
                       S0
                       (x| 
                          (rightRotate Wi15 7)
                          (rightRotate Wi15 18)
                          (>> 3 Wi15) )
                       S1
                       (x| 
                          (rightRotate Wi2 17)
                          (rightRotate Wi2 19)
                          (>> 10 Wi2) ) )
                    (set (nth W I)
                       (add32
                          (get W (- I 16))
                          S0
                          (get W (- I 7))
                          S1 ) ) ) )
              (use (Tmp1 Tmp2)
                 (for I 64
                    (setq 
                       Tmp1
                       (add32
                          H
                          (x|
                             (rightRotate E 6)
                             (rightRotate E 11)
                             (rightRotate E 25) )
                          (x| (& E F) (& (not32 E) G))
                          (get *Sha256-K I)
                          (get W I) )
                       Tmp2
                       (add32
                          (x|
                             (rightRotate A 2)
                             (rightRotate A 13)
                             (rightRotate A 22) )
                          (x| 
                             (& A B)
                             (& A C)
                             (& B C) ) )
                       H G
                       G F
                       F E
                       E (add32 D Tmp1)
                       D C
                       C B
                       B A
                       A (add32 Tmp1 Tmp2) ) ) )
              (setq
                 H0 (add32 H0 A)
                 H1 (add32 H1 B)
                 H2 (add32 H2 C)
                 H3 (add32 H3 D) 
                 H4 (add32 H4 E) 
                 H5 (add32 H5 F) 
                 H6 (add32 H6 G) 
                 H7 (add32 H7 H) ) ) )
     (mapcan
        '((N)
           (flip
              (make
                 (do 4
                    (link (& 255 N))
                    (setq N (>> 8 N)) ) ) ) )
        (list H0 H1 H2 H3 H4 H5 H6 H7) ) ) )
        

(let Str "Rosetta code"

  (println
     (pack
        (mapcar 
           '((B) (pad 2 (hex B))) 
           (sha256 Str) ) ) )
  (println
     (pack
        (mapcar 
           '((B) (pad 2 (hex B)))
           (native 
              "libcrypto.so"
              "SHA256"
              '(B . 32)
              Str
              (length Str)
              '(NIL (32)) ) ) ) ) )

(bye)</lang>

Pike

<lang Pike> string input = "Rosetta code"; string out = Crypto.SHA256.hash(input); write( String.string2hex(out) +"\n"); </lang>

Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

PowerShell

Works with: PowerShell 5.0

<lang PowerShell> Set-Content -Value "Rosetta code" -Path C:\Colors\blue.txt -NoNewline -Force Get-FileHash -Path C:\Colors\blue.txt -Algorithm SHA256 </lang>

Output:
Algorithm       Hash                                                                   Path
---------       ----                                                                   ----
SHA256          764FAF5C61AC315F1497F9DFA542713965B785E5CC2F707D6468D7D1124CDFCF       C:\Colors\blue.txt

PureBasic

PB Version 5.40 <lang purebasic>a$="Rosetta code" bit.i= 256

UseSHA2Fingerprint() : b$=StringFingerprint(a$, #PB_Cipher_SHA2, bit)

OpenConsole() Print("[SHA2 "+Str(bit)+" bit] Text: "+a$+" ==> "+b$) Input()</lang>

Output:
[SHA2 256 bit] Text: Rosetta code ==> 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Python

Python has a standard module for this: <lang python>>>> import hashlib >>> hashlib.sha256( "Rosetta code".encode() ).hexdigest() '764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf' >>> </lang>

R

<lang rsplus> library(digest)

input <- "Rosetta code" cat(digest(input, algo = "sha256", serialize = FALSE), "\n") </lang>

Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Racket

<lang racket>

  1. lang racket/base
define a quick SH256 FFI interface, similar to the Racket's default
SHA1 interface

(require ffi/unsafe ffi/unsafe/define openssl/libcrypto

        (only-in openssl/sha1 bytes->hex-string))

(define-ffi-definer defcrypto libcrypto) (defcrypto SHA256_Init (_fun _pointer -> _int)) (defcrypto SHA256_Update (_fun _pointer _pointer _long -> _int)) (defcrypto SHA256_Final (_fun _pointer _pointer -> _int)) (define (sha256 bytes)

 (define ctx (malloc 128))
 (define result (make-bytes 32))
 (SHA256_Init ctx)
 (SHA256_Update ctx bytes (bytes-length bytes))
 (SHA256_Final result ctx)
 (bytes->hex-string result))
use the defined wrapper to solve the task

(displayln (sha256 #"Rosetta code")) </lang>

Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Raku

(formerly Perl 6)

Pure Raku

The following implementation takes all data as input. Ideally, input should be given lazily or something.

<lang perl6>say sha256 "Rosetta code";

sub init(&f) {

   map { my $f = $^p.&f; (($f - $f.Int)*2**32).Int },
   state @ = grep *.is-prime, 2 .. *;

}

sub infix:<m+> { ($^a + $^b) % 2**32 } sub rotr($n, $b) { $n +> $b +| $n +< (32 - $b) }

proto sha256($) returns Blob {*} multi sha256(Str $str where all($str.ords) < 128) {

   sha256 $str.encode: 'ascii'

} multi sha256(Blob $data) {

   constant K = init(* **(1/3))[^64];
   my @b = flat $data.list, 0x80;
   push @b, 0 until (8 * @b - 448) %% 512;
   push @b, slip reverse (8 * $data).polymod(256 xx 7);
   my @word = :256[@b.shift xx 4] xx @b/4;

   my @H = init(&sqrt)[^8];
   my @w;
   loop (my $i = 0; $i < @word; $i += 16) {
       my @h = @H;
       for ^64 -> $j {
           @w[$j] = $j < 16 ?? @word[$j + $i] // 0 !!
           [m+]
           rotr(@w[$j-15], 7) +^ rotr(@w[$j-15], 18) +^ @w[$j-15] +> 3,
           @w[$j-7],
           rotr(@w[$j-2], 17) +^ rotr(@w[$j-2], 19)  +^ @w[$j-2] +> 10,
           @w[$j-16];
           my $ch = @h[4] +& @h[5] +^ +^@h[4] % 2**32 +& @h[6];
           my $maj = @h[0] +& @h[2] +^ @h[0] +& @h[1] +^ @h[1] +& @h[2];
           my $σ0 = [+^] map { rotr @h[0], $_ }, 2, 13, 22;
           my $σ1 = [+^] map { rotr @h[4], $_ }, 6, 11, 25;
           my $t1 = [m+] @h[7], $σ1, $ch, K[$j], @w[$j];
           my $t2 = $σ0 m+ $maj;
           @h = flat $t1 m+ $t2, @h[^3], @h[3] m+ $t1, @h[4..6];
       }
       @H [Z[m+]]= @h;
   }
   return Blob.new: map { |reverse .polymod(256 xx 3) }, @H;

}</lang>

Output:
Buf:0x<76 4f af 5c 61 ac 31 5f 14 97 f9 df a5 42 71 39 65 b7 85 e5 cc 2f 70 7d 64 68 d7 d1 12 4c df cf>

Library implementation

<lang perl6>use Digest::SHA256::Native;

  1. If you want a string

say sha256-hex 'Rosetta code';

  1. If you want a binary Blob

say sha256 'Rosetta code';</lang>

Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf
Blob:0x<76 4F AF 5C 61 AC 31 5F 14 97 F9 DF A5 42 71 39 65 B7 85 E5 CC 2F 70 7D 64 68 D7 D1 12 4C DF CF>

Ring

<lang ring>

  1. Project: SHA-256

load "stdlib.ring" str = "Rosetta code" see "String: " + str + nl see "SHA-256: " see sha256(str) + nl </lang> Output:

String: Rosetta code
SHA-256: 764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Ruby

<lang ruby>require 'digest/sha2' puts Digest::SHA256.hexdigest('Rosetta code')</lang>

Rust

<lang rust>use sha2::{Digest, Sha256};

fn hex_string(input: &[u8]) -> String {

   input.as_ref().iter().map(|b| format!("{:x}", b)).collect()

}

fn main() {

   // create a Sha256 object
   let mut hasher = Sha256::new();
   // write input message
   hasher.update(b"Rosetta code");
   // read hash digest and consume hasher
   let result = hasher.finalize();
   let hex = hex_string(&result);
   assert_eq!(
       hex,
       "764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf"
   );
   
   println!("{}", hex);

} </lang>

Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Scala

Library: Scala

<lang Scala>object RosettaSHA256 extends App {

 def MD5(s: String): String = {
   // Besides "MD5", "SHA-256", and other hashes are available
   val m = java.security.MessageDigest.getInstance("SHA-256").digest(s.getBytes("UTF-8"))
   m.map("%02x".format(_)).mkString
 }
 assert(MD5("Rosetta code") == "764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf")
 println("Successfully completed without errors.")

}</lang>

Seed7

<lang seed7>$ include "seed7_05.s7i";

 include "msgdigest.s7i";

const proc: main is func

 begin
   writeln(hex(sha256("Rosetta code")));
 end func;</lang>
Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Sidef

<lang ruby>var sha = frequire('Digest::SHA'); say sha.sha256_hex('Rosetta code');</lang>

Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Smalltalk

Use the Cryptography library:

<lang smalltalk> (SHA256 new hashStream: 'Rosetta code' readStream) hex. </lang>

Tcl

<lang tcl>package require sha256

puts [sha2::sha256 -hex "Rosetta code"]</lang>

Output:
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf

Wren

Library: Wren-fmt

This is based on the pseudo-code in the Wikipedia article. <lang ecmascript>import "/fmt" for Fmt

var k = [

  0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
  0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
  0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
  0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
  0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
  0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
  0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
  0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2

]

var rightRotate = Fn.new { |x, c| (x >> c) | (x << (32 - c)) }

var toBytesBE = Fn.new { |val|

   var bytes = List.filled(4, 0)
   bytes[3] = val         & 255
   bytes[2] = (val >> 8)  & 255
   bytes[1] = (val >> 16) & 255
   bytes[0] = (val >> 24) & 255
   return bytes

}

var toIntBE = Fn.new { |bytes| bytes[0] << 24 | bytes[1] << 16 | bytes[2] << 8 | bytes[3] }

var sha256 = Fn.new { |initMsg|

   var h0 = 0x6a09e667
   var h1 = 0xbb67ae85
   var h2 = 0x3c6ef372
   var h3 = 0xa54ff53a
   var h4 = 0x510e527f
   var h5 = 0x9b05688c
   var h6 = 0x1f83d9ab
   var h7 = 0x5be0cd19
   var initBytes = initMsg.bytes
   var initLen = initBytes.count
   var newLen = initLen + 1
   while (newLen % 64 != 56) newLen = newLen + 1
   var msg = List.filled(newLen + 8, 0)
   for (i in 0...initLen) msg[i] = initBytes[i]
   msg[initLen] = 0x80 // remaining bytes already 0
   var initBits = initLen * 8
   var p = 2.pow(32)
   var u = (initBits/p).floor
   var l = initBits % p
   var bytesU = toBytesBE.call(u)
   var bytesL = toBytesBE.call(l)
   for (i in 0..3) msg[newLen +i] = bytesU[i]
   for (i in 0..3) msg[newLen+i+4] = bytesL[i]
   var offset = 0
   var w = List.filled(64, 0)
   var mask = 0xffffffff
   while (offset < newLen) {
       for (i in 0..15) w[i] = toIntBE.call(msg[offset+i*4...offset + i*4 + 4])
       for (i in 16..63) {
           var s0 = rightRotate.call(w[i-15],  7) ^ rightRotate.call(w[i-15], 18) ^ (w[i-15] >>  3)
           var s1 = rightRotate.call(w[i- 2], 17) ^ rightRotate.call(w[i- 2], 19) ^ (w[i- 2] >> 10)
           w[i] = w[i-16] + s0 + w[i-7] + s1
       }
       var a = h0
       var b = h1
       var c = h2
       var d = h3
       var e = h4
       var f = h5
       var g = h6
       var h = h7
       for (i in 0..63) {
           var s1 = rightRotate.call(e, 6) ^ rightRotate.call(e, 11) ^ rightRotate.call(e, 25)
           var ch = (e & f) ^ ((~e) & g)
           var temp1 = h + s1 + ch + k[i] + w[i]
           var s0 = rightRotate.call(a, 2) ^ rightRotate.call(a, 13) ^ rightRotate.call(a, 22)
           var maj = (a & b) ^ (a & c) ^ (b & c)
           var temp2 = s0 + maj
           h = g
           g = f
           f = e
           e = d + temp1
           d = c 
           c = b
           b = a
           a = temp1 + temp2
       }
       h0 = (h0 + a) & mask
       h1 = (h1 + b) & mask
       h2 = (h2 + c) & mask
       h3 = (h3 + d) & mask
       h4 = (h4 + e) & mask
       h5 = (h5 + f) & mask
       h6 = (h6 + g) & mask
       h7 = (h7 + h) & mask
       offset = offset + 64
   }
   h0 = Fmt.swrite("$08x", h0)
   h1 = Fmt.swrite("$08x", h1)
   h2 = Fmt.swrite("$08x", h2)
   h3 = Fmt.swrite("$08x", h3)
   h4 = Fmt.swrite("$08x", h4)
   h5 = Fmt.swrite("$08x", h5)
   h6 = Fmt.swrite("$08x", h6)
   h7 = Fmt.swrite("$08x", h7)
   return h0 + h1 + h2 + h3 + h4 + h5 + h6 + h7

}

var strings = [

   "",
   "a",
   "abc",
   "message digest",
   "abcdefghijklmnopqrstuvwxyz",
   "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
   "12345678901234567890123456789012345678901234567890123456789012345678901234567890",
   "The quick brown fox jumps over the lazy dog",
   "The quick brown fox jumps over the lazy cog",
   "Rosetta code"

]

for (s in strings) {

   var hash = sha256.call(s)
   Fmt.print("$s <== '$0s'", hash, s)

}</lang>

Output:
e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855 <== ''
ca978112ca1bbdcafac231b39a23dc4da786eff8147c4e72b9807785afee48bb <== 'a'
ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad <== 'abc'
f7846f55cf23e14eebeab5b4e1550cad5b509e3348fbc4efa3a1413d393cb650 <== 'message digest'
71c480df93d6ae2f1efad1447c66c9525e316218cf51fc8d9ed832f2daf18b73 <== 'abcdefghijklmnopqrstuvwxyz'
db4bfcbd4da0cd85a60c3c37d3fbd8805c77f15fc6b1fdfe614ee0a7c8fdb4c0 <== 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789'
f371bc4a311f2b009eef952dd83ca80e2b60026c8e935592d0f9c308453c813e <== '12345678901234567890123456789012345678901234567890123456789012345678901234567890'
d7a8fbb307d7809469ca9abcb0082e4f8d5651e46d3cdb762d02d0bf37c9e592 <== 'The quick brown fox jumps over the lazy dog'
e4c4d8f3bf76b692de791a173e05321150f7a345b46484fe427f6acc7ecc81be <== 'The quick brown fox jumps over the lazy cog'
764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf <== 'Rosetta code'

zkl

Uses shared library zklMsgHash.so <lang zkl>var MsgHash=Import("zklMsgHash"); MsgHash.SHA256("Rosetta code")=="764faf5c61ac315f1497f9dfa542713965b785e5cc2f707d6468d7d1124cdfcf"</lang>

Output:
True