Roots of unity: Difference between revisions

From Rosetta Code
Content added Content deleted
m (syntax highlighting fixup automation)
Line 9: Line 9:


=={{header|11l}}==
=={{header|11l}}==
<lang 11l>F polar(r, theta)
<syntaxhighlight lang="11l">F polar(r, theta)
R r * (cos(theta) + sin(theta) * 1i)
R r * (cos(theta) + sin(theta) * 1i)


Line 16: Line 16:


L(nr) 2..10
L(nr) 2..10
print(nr‘ ’croots(nr))</lang>
print(nr‘ ’croots(nr))</syntaxhighlight>


{{out}}
{{out}}
Line 32: Line 32:


=={{header|Ada}}==
=={{header|Ada}}==
<lang ada>with Ada.Text_IO; use Ada.Text_IO;
<syntaxhighlight lang="ada">with Ada.Text_IO; use Ada.Text_IO;
with Ada.Float_Text_IO; use Ada.Float_Text_IO;
with Ada.Float_Text_IO; use Ada.Float_Text_IO;
with Ada.Numerics.Complex_Types; use Ada.Numerics.Complex_Types;
with Ada.Numerics.Complex_Types; use Ada.Numerics.Complex_Types;
Line 65: Line 65:
end loop;
end loop;
end loop;
end loop;
end Roots_Of_Unity;</lang>
end Roots_Of_Unity;</syntaxhighlight>
[[Ada]] provides a direct implementation of polar composition of complex numbers ''x e''<sup>2&pi;''i y''</sup>. The function Compose_From_Polar is used to compose roots. The third argument of the function is the cycle. Instead of the standard cycle 2&pi;, N is used. Sample output:
[[Ada]] provides a direct implementation of polar composition of complex numbers ''x e''<sup>2&pi;''i y''</sup>. The function Compose_From_Polar is used to compose roots. The third argument of the function is the cycle. Instead of the standard cycle 2&pi;, N is used. Sample output:
<pre style="height:25ex;overflow:scroll">
<pre style="height:25ex;overflow:scroll">
Line 137: Line 137:
{{works with|ALGOL 68G|Any - tested with release [http://sourceforge.net/projects/algol68/files/algol68g/algol68g-1.18.0/algol68g-1.18.0-9h.tiny.el5.centos.fc11.i386.rpm/download 1.18.0-9h.tiny]}}
{{works with|ALGOL 68G|Any - tested with release [http://sourceforge.net/projects/algol68/files/algol68g/algol68g-1.18.0/algol68g-1.18.0-9h.tiny.el5.centos.fc11.i386.rpm/download 1.18.0-9h.tiny]}}
{{wont work with|ELLA ALGOL 68|Any (with appropriate job cards) - tested with release [http://sourceforge.net/projects/algol68/files/algol68toc/algol68toc-1.8.8d/algol68toc-1.8-8d.fc9.i386.rpm/download 1.8-8d] - due to extensive use of FORMATted transput}}
{{wont work with|ELLA ALGOL 68|Any (with appropriate job cards) - tested with release [http://sourceforge.net/projects/algol68/files/algol68toc/algol68toc-1.8.8d/algol68toc-1.8-8d.fc9.i386.rpm/download 1.8-8d] - due to extensive use of FORMATted transput}}
<lang algol68>FORMAT complex fmt=$g(-6,4)"⊥"g(-6,4)$;
<syntaxhighlight lang="algol68">FORMAT complex fmt=$g(-6,4)"⊥"g(-6,4)$;
FOR root FROM 2 TO 10 DO
FOR root FROM 2 TO 10 DO
printf(($g(4)$,root));
printf(($g(4)$,root));
Line 144: Line 144:
OD;
OD;
printf($l$)
printf($l$)
OD</lang>
OD</syntaxhighlight>
Output:
Output:
<pre>
<pre>
Line 160: Line 160:
=={{header|Arturo}}==
=={{header|Arturo}}==


<lang rebol>rect: function [r,phi][
<syntaxhighlight lang="rebol">rect: function [r,phi][
to :complex @[ r * cos phi, r * sin phi ]
to :complex @[ r * cos phi, r * sin phi ]
]
]
Line 168: Line 168:


loop 2..10 'nr ->
loop 2..10 'nr ->
print [pad to :string nr 3 "=>" join.with:", " to [:string] .format:".3f" roots nr]</lang>
print [pad to :string nr 3 "=>" join.with:", " to [:string] .format:".3f" roots nr]</syntaxhighlight>


{{out}}
{{out}}
Line 184: Line 184:
=={{header|AutoHotkey}}==
=={{header|AutoHotkey}}==
ahk forum: [http://www.autohotkey.com/forum/post-276712.html#276712 discussion]
ahk forum: [http://www.autohotkey.com/forum/post-276712.html#276712 discussion]
<lang AutoHotkey>n := 8, a := 8*atan(1)/n
<syntaxhighlight lang="autohotkey">n := 8, a := 8*atan(1)/n
Loop %n%
Loop %n%
i := A_Index-1, t .= cos(a*i) ((s:=sin(a*i))<0 ? " - i*" . -s : " + i*" . s) "`n"
i := A_Index-1, t .= cos(a*i) ((s:=sin(a*i))<0 ? " - i*" . -s : " + i*" . s) "`n"
Msgbox % t</lang>
Msgbox % t</syntaxhighlight>


=={{header|AWK}}==
=={{header|AWK}}==
<syntaxhighlight lang="awk">
<lang AWK>
# syntax: GAWK -f ROOTS_OF_UNITY.AWK
# syntax: GAWK -f ROOTS_OF_UNITY.AWK
BEGIN {
BEGIN {
Line 206: Line 206:
exit(0)
exit(0)
}
}
</syntaxhighlight>
</lang>
{{out}}
{{out}}
<pre>
<pre>
Line 219: Line 219:
{{trans|Java}}
{{trans|Java}}
For high n's, this may repeat the root of 1 + 0*i.
For high n's, this may repeat the root of 1 + 0*i.
<lang qbasic> CLS
<syntaxhighlight lang="qbasic"> CLS
PI = 3.1415926#
PI = 3.1415926#
n = 5 'this can be changed for any desired n
n = 5 'this can be changed for any desired n
Line 231: Line 231:
angle = angle + (2 * PI) / n
angle = angle + (2 * PI) / n
'all the way around the circle at even intervals
'all the way around the circle at even intervals
LOOP WHILE angle < 2 * PI</lang>
LOOP WHILE angle < 2 * PI</syntaxhighlight>


=={{header|BBC BASIC}}==
=={{header|BBC BASIC}}==
<lang bbcbasic> @% = &20408
<syntaxhighlight lang="bbcbasic"> @% = &20408
FOR n% = 2 TO 5
FOR n% = 2 TO 5
PRINT STR$(n%) ": " ;
PRINT STR$(n%) ": " ;
Line 244: Line 244:
NEXT
NEXT
PRINT
PRINT
NEXT n%</lang>
NEXT n%</syntaxhighlight>
'''Output:'''
'''Output:'''
<pre>
<pre>
Line 254: Line 254:


=={{header|C}}==
=={{header|C}}==
<lang c>#include <stdio.h>
<syntaxhighlight lang="c">#include <stdio.h>
#include <math.h>
#include <math.h>


Line 277: Line 277:


return 0;
return 0;
}</lang>
}</syntaxhighlight>


=={{header|C sharp|C#}}==
=={{header|C sharp|C#}}==
<lang csharp>using System;
<syntaxhighlight lang="csharp">using System;
using System.Collections.Generic;
using System.Collections.Generic;
using System.Linq;
using System.Linq;
Line 302: Line 302:
}
}
}
}
}</lang>
}</syntaxhighlight>
Output:
Output:
<pre>(1, 0)
<pre>(1, 0)
Line 309: Line 309:


=={{header|C++}}==
=={{header|C++}}==
<lang cpp>#include <complex>
<syntaxhighlight lang="cpp">#include <complex>
#include <cmath>
#include <cmath>
#include <iostream>
#include <iostream>
Line 324: Line 324:
std::cout << std::endl;
std::cout << std::endl;
}
}
}</lang>
}</syntaxhighlight>


=={{header|CoffeeScript}}==
=={{header|CoffeeScript}}==
Most of the effort here is in formatting the results, and the output is still a bit clumsy.
Most of the effort here is in formatting the results, and the output is still a bit clumsy.
<lang coffeescript># Find the n nth-roots of 1
<syntaxhighlight lang="coffeescript"># Find the n nth-roots of 1
nth_roots_of_unity = (n) ->
nth_roots_of_unity = (n) ->
(complex_unit_vector(2*Math.PI*i/n) for i in [1..n])
(complex_unit_vector(2*Math.PI*i/n) for i in [1..n])
Line 355: Line 355:
console.log "---1 to the 1/#{n}"
console.log "---1 to the 1/#{n}"
for root in nth_roots_of_unity n
for root in nth_roots_of_unity n
console.log root.toString()</lang>
console.log root.toString()</syntaxhighlight>
output
output
<pre>
<pre>
Line 380: Line 380:


=={{header|Common Lisp}}==
=={{header|Common Lisp}}==
<lang lisp>(defun roots-of-unity (n)
<syntaxhighlight lang="lisp">(defun roots-of-unity (n)
(loop for i below n
(loop for i below n
collect (cis (* pi (/ (* 2 i) n)))))</lang>
collect (cis (* pi (/ (* 2 i) n)))))</syntaxhighlight>
The expression is slightly more complicated than necessary in order to preserve exact rational arithmetic until multiplying by pi. The author of this example is not a floating point expert and not sure whether this is actually useful; if not, the simpler expression is <tt>(cis (/ (* 2 pi i) n))</tt>.
The expression is slightly more complicated than necessary in order to preserve exact rational arithmetic until multiplying by pi. The author of this example is not a floating point expert and not sure whether this is actually useful; if not, the simpler expression is <tt>(cis (/ (* 2 pi i) n))</tt>.


=={{header|Crystal}}==
=={{header|Crystal}}==
{{trans|Ruby}}
{{trans|Ruby}}
<lang ruby>require "complex"
<syntaxhighlight lang="ruby">require "complex"


def roots_of_unity(n)
def roots_of_unity(n)
Line 394: Line 394:
p roots_of_unity(3)
p roots_of_unity(3)
</syntaxhighlight>
</lang>
Or alternative
Or alternative
<lang ruby>
<syntaxhighlight lang="ruby">
def roots_of_unity(n)
def roots_of_unity(n)
(0...n).map { |k| Complex.new(Math.cos(2 * Math::PI * k / n), Math.sin(2 * Math::PI * k / n)) }
(0...n).map { |k| Complex.new(Math.cos(2 * Math::PI * k / n), Math.sin(2 * Math::PI * k / n)) }
end
end
</syntaxhighlight>
</lang>
{{out}}
{{out}}
<pre>
<pre>
Line 408: Line 408:
=={{header|D}}==
=={{header|D}}==
Using std.complex:
Using std.complex:
<lang d>import std.stdio, std.range, std.algorithm, std.complex;
<syntaxhighlight lang="d">import std.stdio, std.range, std.algorithm, std.complex;
import std.math: PI;
import std.math: PI;


Line 418: Line 418:
foreach (immutable i; 1 .. 6)
foreach (immutable i; 1 .. 6)
writefln("#%d: [%(%5.2f, %)]", i, i.nthRoots);
writefln("#%d: [%(%5.2f, %)]", i, i.nthRoots);
}</lang>
}</syntaxhighlight>
{{out}}
{{out}}
<pre>#1: [ 1.00+ 0.00i]
<pre>#1: [ 1.00+ 0.00i]
Line 428: Line 428:
{{libheader| System.VarCmplx}}
{{libheader| System.VarCmplx}}
{{Trans|C#}}
{{Trans|C#}}
<syntaxhighlight lang="delphi">
<lang Delphi>
program Roots_of_unity;
program Roots_of_unity;


Line 454: Line 454:
Writeln(num);
Writeln(num);
Readln;
Readln;
end.</lang>
end.</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 464: Line 464:
</pre>
</pre>
=={{header|EchoLisp}}==
=={{header|EchoLisp}}==
<lang scheme>
<syntaxhighlight lang="scheme">
(define (roots-1 n)
(define (roots-1 n)
(define theta (// (* 2 PI) n))
(define theta (// (* 2 PI) n))
Line 476: Line 476:
(roots-1 4)
(roots-1 4)
→ (1+0i 0+i -1+0i 0-i)
→ (1+0i 0+i -1+0i 0-i)
</syntaxhighlight>
</lang>


=={{header|ERRE}}==
=={{header|ERRE}}==
<lang>
<syntaxhighlight lang="text">
PROGRAM UNITY_ROOTS
PROGRAM UNITY_ROOTS


Line 500: Line 500:
UNTIL ANGLE>=2*π
UNTIL ANGLE>=2*π
END PROGRAM
END PROGRAM
</syntaxhighlight>
</lang>
Note: Adapted from Qbasic version. π is the predefined constant Greek Pi.
Note: Adapted from Qbasic version. π is the predefined constant Greek Pi.


=={{header|Factor}}==
=={{header|Factor}}==
<lang factor>USING: math.functions prettyprint ;
<syntaxhighlight lang="factor">USING: math.functions prettyprint ;


1 3 roots .</lang>
1 3 roots .</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 518: Line 518:
=={{header|Forth}}==
=={{header|Forth}}==
Complex numbers are not a native type in Forth, so we calculate the roots by hand.
Complex numbers are not a native type in Forth, so we calculate the roots by hand.
<lang forth>: f0. ( f -- )
<syntaxhighlight lang="forth">: f0. ( f -- )
fdup 0e 0.001e f~ if fdrop 0e then f. ;
fdup 0e 0.001e f~ if fdrop 0e then f. ;
: .roots ( n -- )
: .roots ( n -- )
Line 527: Line 527:


3 set-precision
3 set-precision
5 .roots</lang>
5 .roots</syntaxhighlight>
{{libheader|Forth Scientific Library}}
{{libheader|Forth Scientific Library}}
On the other hand, complex numbers are implemented by the FSL.
On the other hand, complex numbers are implemented by the FSL.
{{works with|gforth|0.7.9_20170308}}
{{works with|gforth|0.7.9_20170308}}
{{trans|C++}}
{{trans|C++}}
<lang forth>require fsl-util.fs
<syntaxhighlight lang="forth">require fsl-util.fs
require fsl/complex.fs
require fsl/complex.fs


Line 549: Line 549:
LOOP ;
LOOP ;
3 SET-PRECISION
3 SET-PRECISION
5 .roots</lang>
5 .roots</syntaxhighlight>


=={{header|Fortran}}==
=={{header|Fortran}}==
===Sin/Cos + Scalar Loop===
===Sin/Cos + Scalar Loop===
{{works with|Fortran|ISO Fortran 90 and later}}
{{works with|Fortran|ISO Fortran 90 and later}}
<lang fortran>PROGRAM Roots
<syntaxhighlight lang="fortran">PROGRAM Roots


COMPLEX :: root
COMPLEX :: root
Line 572: Line 572:
END DO
END DO


END PROGRAM Roots</lang>
END PROGRAM Roots</syntaxhighlight>
Output
Output
2: +1.0000+0.0000j -1.0000+0.0000j
2: +1.0000+0.0000j -1.0000+0.0000j
Line 583: Line 583:
===Exp + Array-valued Statement===
===Exp + Array-valued Statement===
{{works with|Fortran|ISO Fortran 90 and later}}
{{works with|Fortran|ISO Fortran 90 and later}}
<lang fortran>program unity
<syntaxhighlight lang="fortran">program unity
real, parameter :: pi = 3.141592653589793
real, parameter :: pi = 3.141592653589793
complex, parameter :: i = (0, 1)
complex, parameter :: i = (0, 1)
Line 597: Line 597:
write(*,*)
write(*,*)
end do
end do
end program unity</lang>
end program unity</syntaxhighlight>


=={{header|FreeBASIC}}==
=={{header|FreeBASIC}}==
<lang freebasic>#define twopi 6.2831853071795864769252867665590057684
<syntaxhighlight lang="freebasic">#define twopi 6.2831853071795864769252867665590057684


dim as uinteger m, n
dim as uinteger m, n
Line 615: Line 615:
print using "#.##### - #.##### i"; real; -imag
print using "#.##### - #.##### i"; real; -imag
end if
end if
next m</lang>
next m</syntaxhighlight>


=={{header|Frink}}==
=={{header|Frink}}==
Calculates the angles in degrees, since Frink will use rational arithmetic (exact)
Calculates the angles in degrees, since Frink will use rational arithmetic (exact)
<syntaxhighlight lang="frink">
<lang Frink>
roots[n] :=
roots[n] :=
{
{
Line 632: Line 632:
a
a
}
}
</syntaxhighlight>
</lang>
{{Out}}
{{Out}}
<pre>
<pre>
Line 643: Line 643:
=={{header|FunL}}==
=={{header|FunL}}==
FunL has built-in support for complex numbers. <code>i</code> is predefined to represent the imaginary unit.
FunL has built-in support for complex numbers. <code>i</code> is predefined to represent the imaginary unit.
<lang funl>import math.{exp, Pi}
<syntaxhighlight lang="funl">import math.{exp, Pi}


def rootsOfUnity( n ) = {exp( 2Pi i k/n ) | k <- 0:n}
def rootsOfUnity( n ) = {exp( 2Pi i k/n ) | k <- 0:n}


println( rootsOfUnity(3) )</lang>
println( rootsOfUnity(3) )</syntaxhighlight>


{{out}}
{{out}}
Line 656: Line 656:


=={{header|FutureBasic}}==
=={{header|FutureBasic}}==
<lang futurebasic>window 1, @"Roots of Unity", (0,0,1050,200)
<syntaxhighlight lang="futurebasic">window 1, @"Roots of Unity", (0,0,1050,200)


long n, root
long n, root
Line 672: Line 672:
next
next


HandleEvents</lang>
HandleEvents</syntaxhighlight>
Output:
Output:
<pre>
<pre>
Line 684: Line 684:


=={{header|GAP}}==
=={{header|GAP}}==
<lang gap>roots := n -> List([0 .. n-1], k -> E(n)^k);
<syntaxhighlight lang="gap">roots := n -> List([0 .. n-1], k -> E(n)^k);


r:=roots(7);
r:=roots(7);
Line 690: Line 690:


List(r, x -> x^7);
List(r, x -> x^7);
# [ 1, 1, 1, 1, 1, 1, 1 ]</lang>
# [ 1, 1, 1, 1, 1, 1, 1 ]</syntaxhighlight>


=={{header|Go}}==
=={{header|Go}}==
<lang go>package main
<syntaxhighlight lang="go">package main


import (
import (
Line 716: Line 716:
}
}
return r
return r
}</lang>
}</syntaxhighlight>
Output:
Output:
<pre>2 roots of 1:
<pre>2 roots of 1:
Line 739: Line 739:
=={{header|Groovy}}==
=={{header|Groovy}}==
Because the Groovy language does not provide a built-in facility for complex arithmetic, this example relies on the Complex class defined in the [[Complex_numbers#Groovy|Complex numbers]] example.
Because the Groovy language does not provide a built-in facility for complex arithmetic, this example relies on the Complex class defined in the [[Complex_numbers#Groovy|Complex numbers]] example.
<lang groovy>/** The following closure creates a list of n evenly-spaced points around the unit circle,
<syntaxhighlight lang="groovy">/** The following closure creates a list of n evenly-spaced points around the unit circle,
* useful in FFT calculations, among other things */
* useful in FFT calculations, among other things */
def rootsOfUnity = { n ->
def rootsOfUnity = { n ->
Line 745: Line 745:
Complex.fromPolar(1, 2 * Math.PI * it / n)
Complex.fromPolar(1, 2 * Math.PI * it / n)
}
}
}</lang>
}</syntaxhighlight>
Test program:
Test program:
<lang groovy>def tol = 0.000000001 // tolerance: acceptable "wrongness" to account for rounding error
<syntaxhighlight lang="groovy">def tol = 0.000000001 // tolerance: acceptable "wrongness" to account for rounding error


((1..6) + [16]). each { n ->
((1..6) + [16]). each { n ->
Line 760: Line 760:
assert rou.every { (it.rho - 1) < tol } : 'all roots should have magnitude 1'
assert rou.every { (it.rho - 1) < tol } : 'all roots should have magnitude 1'
println()
println()
}</lang>
}</syntaxhighlight>
Output:
Output:
<pre style="height:25ex;overflow:scroll;">rootsOfUnity(1):
<pre style="height:25ex;overflow:scroll;">rootsOfUnity(1):
Line 814: Line 814:


=={{header|Haskell}}==
=={{header|Haskell}}==
<lang haskell>import Data.Complex (Complex, cis)
<syntaxhighlight lang="haskell">import Data.Complex (Complex, cis)


rootsOfUnity :: (Enum a, Floating a) => a -> [Complex a]
rootsOfUnity :: (Enum a, Floating a) => a -> [Complex a]
Line 822: Line 822:


main :: IO ()
main :: IO ()
main = mapM_ print $ rootsOfUnity 3</lang>
main = mapM_ print $ rootsOfUnity 3</syntaxhighlight>
{{Out}}
{{Out}}
<lang haskell>1.0 :+ 0.0
<syntaxhighlight lang="haskell">1.0 :+ 0.0
(-0.4999999999999998) :+ 0.8660254037844388
(-0.4999999999999998) :+ 0.8660254037844388
(-0.5000000000000004) :+ (-0.8660254037844384)</lang>
(-0.5000000000000004) :+ (-0.8660254037844384)</syntaxhighlight>


=={{header|Icon}} and {{header|Unicon}}==
=={{header|Icon}} and {{header|Unicon}}==
<lang icon>procedure main()
<syntaxhighlight lang="icon">procedure main()
roots(10)
roots(10)
end
end
Line 840: Line 840:
procedure str_rep(k)
procedure str_rep(k)
return " " || cos(k) || "+" || sin(k) || "i"
return " " || cos(k) || "+" || sin(k) || "i"
end</lang>
end</syntaxhighlight>
Notes:
Notes:
* The [[:Category:Icon_Programming_Library|The Icon Programming Library]] implements a complex type but not a polar type
* The [[:Category:Icon_Programming_Library|The Icon Programming Library]] implements a complex type but not a polar type
Line 846: Line 846:
=={{header|IDL}}==
=={{header|IDL}}==
For some example <tt>n</tt>:
For some example <tt>n</tt>:
<lang idl>n = 5
<syntaxhighlight lang="idl">n = 5
print, exp( dcomplex( 0, 2*!dpi/n) ) ^ ( 1 + indgen(n) )</lang>
print, exp( dcomplex( 0, 2*!dpi/n) ) ^ ( 1 + indgen(n) )</syntaxhighlight>
Outputs:
Outputs:
<lang idl>( 0.30901699, 0.95105652)( -0.80901699, 0.58778525)( -0.80901699, -0.58778525)( 0.30901699, -0.95105652)( 1.0000000, -1.1102230e-16)</lang>
<syntaxhighlight lang="idl">( 0.30901699, 0.95105652)( -0.80901699, 0.58778525)( -0.80901699, -0.58778525)( 0.30901699, -0.95105652)( 1.0000000, -1.1102230e-16)</syntaxhighlight>


=={{header|J}}==
=={{header|J}}==
<lang j> rou=: [: ^ 0j2p1 * i. % ]
<syntaxhighlight lang="j"> rou=: [: ^ 0j2p1 * i. % ]


rou 4
rou 4
Line 858: Line 858:


rou 5
rou 5
1 0.309017j0.951057 _0.809017j0.587785 _0.809017j_0.587785 0.309017j_0.951057</lang>
1 0.309017j0.951057 _0.809017j0.587785 _0.809017j_0.587785 0.309017j_0.951057</syntaxhighlight>
The computation can also be written as a loop, shown here for comparison only.
The computation can also be written as a loop, shown here for comparison only.
<lang j>rou1=: 3 : 0
<syntaxhighlight lang="j">rou1=: 3 : 0
z=. 0 $ r=. ^ o. 0j2 % y [ e=. 1
z=. 0 $ r=. ^ o. 0j2 % y [ e=. 1
for. i.y do.
for. i.y do.
Line 867: Line 867:
end.
end.
z
z
)</lang>
)</syntaxhighlight>


=={{header|Java}}==
=={{header|Java}}==
Java doesn't have a nice way of dealing with complex numbers, so the real and imaginary parts are calculated separately based on the angle and printed together. There are also checks in this implementation to get rid of extremely small values (< 1.0E-3 where scientific notation sets in for <tt>Double</tt>s). Instead, they are simply represented as 0. To remove those checks (for very high <tt>n</tt>'s), remove both if statements.
Java doesn't have a nice way of dealing with complex numbers, so the real and imaginary parts are calculated separately based on the angle and printed together. There are also checks in this implementation to get rid of extremely small values (< 1.0E-3 where scientific notation sets in for <tt>Double</tt>s). Instead, they are simply represented as 0. To remove those checks (for very high <tt>n</tt>'s), remove both if statements.
<lang java>import java.util.Locale;
<syntaxhighlight lang="java">import java.util.Locale;


public class Test {
public class Test {
Line 899: Line 899:
}
}
}
}
}</lang>
}</syntaxhighlight>


<pre>2: ( 1.000000, 0.000000) (-1.000000, 0.000000)
<pre>2: ( 1.000000, 0.000000) (-1.000000, 0.000000)
Line 907: Line 907:


=={{header|JavaScript}}==
=={{header|JavaScript}}==
<lang javascript>function Root(angle) {
<syntaxhighlight lang="javascript">function Root(angle) {
with (Math) { this.r = cos(angle); this.i = sin(angle) }
with (Math) { this.r = cos(angle); this.i = sin(angle) }
}
}
Line 926: Line 926:
document.write('<br>')
document.write('<br>')
}
}
</syntaxhighlight>
</lang>
{{Output}}
{{Output}}
<pre>2: 1.00000+0.00000i, -1.00000+0.00000i
<pre>2: 1.00000+0.00000i, -1.00000+0.00000i
Line 937: Line 937:
=={{header|jq}}==
=={{header|jq}}==
Using the same example as in the Julia section, and representing x + i*y as [x,y]:
Using the same example as in the Julia section, and representing x + i*y as [x,y]:
<lang jq>def nthroots(n):
<syntaxhighlight lang="jq">def nthroots(n):
(8 * (1|atan)) as $twopi
(8 * (1|atan)) as $twopi
| range(0;n) | (($twopi * .) / n) as $angle | [ ($angle | cos), ($angle | sin) ];
| range(0;n) | (($twopi * .) / n) as $angle | [ ($angle | cos), ($angle | sin) ];


nthroots(10)</lang><lang jq>$ uname -a
nthroots(10)</syntaxhighlight><syntaxhighlight lang="jq">$ uname -a
Darwin Mac-mini 13.3.0 Darwin Kernel Version 13.3.0: Tue Jun 3 21:27:35 PDT 2014; root:xnu-2422.110.17~1/RELEASE_X86_64 x86_64
Darwin Mac-mini 13.3.0 Darwin Kernel Version 13.3.0: Tue Jun 3 21:27:35 PDT 2014; root:xnu-2422.110.17~1/RELEASE_X86_64 x86_64


Line 959: Line 959:
user 0m0.004s
user 0m0.004s
sys 0m0.004s
sys 0m0.004s
</syntaxhighlight>
</lang>


=={{header|Julia}}==
=={{header|Julia}}==
<lang julia>nthroots(n::Integer) = [ cospi(2k/n)+sinpi(2k/n)im for k = 0:n-1 ]</lang>
<syntaxhighlight lang="julia">nthroots(n::Integer) = [ cospi(2k/n)+sinpi(2k/n)im for k = 0:n-1 ]</syntaxhighlight>
(One could also use complex exponentials or other formulations.) For example, `nthroots(10)` gives:
(One could also use complex exponentials or other formulations.) For example, `nthroots(10)` gives:
<pre>
<pre>
Line 979: Line 979:


=={{header|Kotlin}}==
=={{header|Kotlin}}==
<lang scala>import java.lang.Math.*
<syntaxhighlight lang="scala">import java.lang.Math.*


data class Complex(val r: Double, val i: Double) {
data class Complex(val r: Double, val i: Double) {
Line 999: Line 999:
(1..4).forEach { println(listOf(1) + unity_roots(it)) }
(1..4).forEach { println(listOf(1) + unity_roots(it)) }
println(listOf(1) + unity_roots(5.0))
println(listOf(1) + unity_roots(5.0))
}</lang>
}</syntaxhighlight>
{{out}}
{{out}}
<pre>[1]
<pre>[1]
Line 1,008: Line 1,008:


=={{header|Lambdatalk}}==
=={{header|Lambdatalk}}==
<lang scheme>
<syntaxhighlight lang="scheme">
// cleandisp just to display 0 when n < 10^-10
// cleandisp just to display 0 when n < 10^-10
{def cleandisp
{def cleandisp
Line 1,034: Line 1,034:
i = 10 -> (1 0) (0.8090169943749475 0.5877852522924731) (0.30901699437494745 0.9510565162951535) (-0.30901699437494734 0.9510565162951536) (-0.8090169943749473 0.5877852522924732) (-1 0) (-0.8090169943749475 -0.587785252292473) (-0.30901699437494756 -0.9510565162951535) (0.30901699437494723 -0.9510565162951536) (0.8090169943749473 -0.5877852522924732)
i = 10 -> (1 0) (0.8090169943749475 0.5877852522924731) (0.30901699437494745 0.9510565162951535) (-0.30901699437494734 0.9510565162951536) (-0.8090169943749473 0.5877852522924732) (-1 0) (-0.8090169943749475 -0.587785252292473) (-0.30901699437494756 -0.9510565162951535) (0.30901699437494723 -0.9510565162951536) (0.8090169943749473 -0.5877852522924732)


</syntaxhighlight>
</lang>


=={{header|Liberty BASIC}}==
=={{header|Liberty BASIC}}==
<lang lb>WindowWidth =400
<syntaxhighlight lang="lb">WindowWidth =400
WindowHeight =400
WindowHeight =400


Line 1,090: Line 1,090:
function Radian( theta)
function Radian( theta)
Radian =theta *3.1415926535 /180
Radian =theta *3.1415926535 /180
end function</lang>
end function</syntaxhighlight>


=={{header|Lua}}==
=={{header|Lua}}==
Complex numbers from the Lua implementation on the complex numbers page.
Complex numbers from the Lua implementation on the complex numbers page.
<lang lua>--defines addition, subtraction, negation, multiplication, division, conjugation, norms, and a conversion to strgs.
<syntaxhighlight lang="lua">--defines addition, subtraction, negation, multiplication, division, conjugation, norms, and a conversion to strgs.
complex = setmetatable({
complex = setmetatable({
__add = function(u, v) return complex(u.real + v.real, u.imag + v.imag) end,
__add = function(u, v) return complex(u.real + v.real, u.imag + v.imag) end,
Line 1,122: Line 1,122:
root = root * val
root = root * val
print(root .. "")
print(root .. "")
end</lang>
end</syntaxhighlight>


=={{header|Maple}}==
=={{header|Maple}}==
<lang Maple>RootsOfUnity := proc( n )
<syntaxhighlight lang="maple">RootsOfUnity := proc( n )
solve(z^n = 1, z);
solve(z^n = 1, z);
end proc:</lang>
end proc:</syntaxhighlight>
<lang Maple>for i from 2 to 6 do
<syntaxhighlight lang="maple">for i from 2 to 6 do
printf( "%d: %a\n", i, [ RootsOfUnity(i) ] );
printf( "%d: %a\n", i, [ RootsOfUnity(i) ] );
end do;</lang>
end do;</syntaxhighlight>
Output:
Output:
<lang Maple>2: [1, -1]
<syntaxhighlight lang="maple">2: [1, -1]
3: [1, -1/2-1/2*I*3^(1/2), -1/2+1/2*I*3^(1/2)]
3: [1, -1/2-1/2*I*3^(1/2), -1/2+1/2*I*3^(1/2)]
4: [1, -1, I, -I]
4: [1, -1, I, -I]
5: [1, 1/4*5^(1/2)-1/4+1/4*I*2^(1/2)*(5+5^(1/2))^(1/2), -1/4*5^(1/2)-1/4+1/4*I*2^(1/2)*(5-5^(1/2))^(1/2), -1/4*5^(1/2)-1/4-1/4*I*2^(1/2)*(5-5^(1/2))^(1/2), 1/4*5^(1/2)-1/4-1/4*I*2^(1/2)*(5+5^(1/2))^(1/2)]
5: [1, 1/4*5^(1/2)-1/4+1/4*I*2^(1/2)*(5+5^(1/2))^(1/2), -1/4*5^(1/2)-1/4+1/4*I*2^(1/2)*(5-5^(1/2))^(1/2), -1/4*5^(1/2)-1/4-1/4*I*2^(1/2)*(5-5^(1/2))^(1/2), 1/4*5^(1/2)-1/4-1/4*I*2^(1/2)*(5+5^(1/2))^(1/2)]
6: [1, -1, 1/2*(-2-2*I*3^(1/2))^(1/2), -1/2*(-2-2*I*3^(1/2))^(1/2), 1/2*(-2+2*I*3^(1/2))^(1/2), -1/2*(-2+2*I*3^(1/2))^(1/2)]</lang>
6: [1, -1, 1/2*(-2-2*I*3^(1/2))^(1/2), -1/2*(-2-2*I*3^(1/2))^(1/2), 1/2*(-2+2*I*3^(1/2))^(1/2), -1/2*(-2+2*I*3^(1/2))^(1/2)]</syntaxhighlight>


=={{header|Mathematica}}/{{header|Wolfram Language}}==
=={{header|Mathematica}}/{{header|Wolfram Language}}==
Setting this up in Mathematica is easy, because it already handles complex numbers:
Setting this up in Mathematica is easy, because it already handles complex numbers:
<lang Mathematica>RootsUnity[nthroot_Integer?Positive] := Table[Exp[2 Pi I i/nthroot], {i, 0, nthroot - 1}]</lang>
<syntaxhighlight lang="mathematica">RootsUnity[nthroot_Integer?Positive] := Table[Exp[2 Pi I i/nthroot], {i, 0, nthroot - 1}]</syntaxhighlight>
Note that Mathematica will keep the expression as exact as possible. Simplifications can be made to more known (trigonometric) functions by using the function ExpToTrig. If only a numerical approximation is necessary the function N will transform the exact result to a numerical approximation. Examples (exact not simplified, exact simplified, approximated):
Note that Mathematica will keep the expression as exact as possible. Simplifications can be made to more known (trigonometric) functions by using the function ExpToTrig. If only a numerical approximation is necessary the function N will transform the exact result to a numerical approximation. Examples (exact not simplified, exact simplified, approximated):
<pre>RootsUnity[2]
<pre>RootsUnity[2]
Line 1,188: Line 1,188:


=={{header|MATLAB}}==
=={{header|MATLAB}}==
<lang MATLAB>function z = rootsOfUnity(n)
<syntaxhighlight lang="matlab">function z = rootsOfUnity(n)


assert(n >= 1,'n >= 1');
assert(n >= 1,'n >= 1');
z = roots([1 zeros(1,n-1) -1]);
z = roots([1 zeros(1,n-1) -1]);
end</lang>
end</syntaxhighlight>
Sample Output:
Sample Output:
<lang MATLAB>>> rootsOfUnity(3)
<syntaxhighlight lang="matlab">>> rootsOfUnity(3)


ans =
ans =
Line 1,201: Line 1,201:
-0.500000000000000 + 0.866025403784439i
-0.500000000000000 + 0.866025403784439i
-0.500000000000000 - 0.866025403784439i
-0.500000000000000 - 0.866025403784439i
1.000000000000000 </lang>
1.000000000000000 </syntaxhighlight>


=={{header|Maxima}}==
=={{header|Maxima}}==
<lang maxima>solve(1 = x^n, x)</lang>
<syntaxhighlight lang="maxima">solve(1 = x^n, x)</syntaxhighlight>
Demonstration:
Demonstration:
<lang maxima>for n:1 thru 5 do display(solve(1 = x^n, x));</lang>
<syntaxhighlight lang="maxima">for n:1 thru 5 do display(solve(1 = x^n, x));</syntaxhighlight>
Output:
Output:
<lang maxima>solve(1 = x, x) = [x = 1]
<syntaxhighlight lang="maxima">solve(1 = x, x) = [x = 1]
solve(1 = x^2, x) = [x = -1, x = 1]
solve(1 = x^2, x) = [x = -1, x = 1]
solve(1 = x^3, x) = [x = (sqrt(3)*%i-1)/2, x = -(sqrt(3)*%i+1)/2, x = 1]
solve(1 = x^3, x) = [x = (sqrt(3)*%i-1)/2, x = -(sqrt(3)*%i+1)/2, x = 1]
solve(1 = x^4, x) = [x = %i, x = -1, x = -%i, x = 1]
solve(1 = x^4, x) = [x = %i, x = -1, x = -%i, x = 1]
solve(1 = x^5, x) = [x = %e^((2*%i*%pi)/5), x = %e^((4*%i*%pi)/5), x = %e^(-(4*%i*%pi)/5), x = %e^(-(2*%i*%pi)/5), x = 1]</lang>
solve(1 = x^5, x) = [x = %e^((2*%i*%pi)/5), x = %e^((4*%i*%pi)/5), x = %e^(-(4*%i*%pi)/5), x = %e^(-(2*%i*%pi)/5), x = 1]</syntaxhighlight>


=={{header|MiniScript}}==
=={{header|MiniScript}}==
<syntaxhighlight lang="miniscript">
<lang MiniScript>
complexRoots = function(n)
complexRoots = function(n)
result = []
result = []
Line 1,230: Line 1,230:
for i in range(2,5)
for i in range(2,5)
print i + ": " + complexRoots(i).join(", ")
print i + ": " + complexRoots(i).join(", ")
end for</lang>
end for</syntaxhighlight>


{{out}}
{{out}}
Line 1,239: Line 1,239:


=={{header|МК-61/52}}==
=={{header|МК-61/52}}==
<lang>П0 0 П1 ИП1 sin ИП1 cos С/П 2 пи
<syntaxhighlight lang="text">П0 0 П1 ИП1 sin ИП1 cos С/П 2 пи
* ИП0 / ИП1 + П1 БП 03</lang>
* ИП0 / ИП1 + П1 БП 03</syntaxhighlight>


=={{header|Nim}}==
=={{header|Nim}}==


<lang nim>import complex, math, sequtils, strformat, strutils
<syntaxhighlight lang="nim">import complex, math, sequtils, strformat, strutils


proc roots(n: Positive): seq[Complex64] =
proc roots(n: Positive): seq[Complex64] =
Line 1,256: Line 1,256:
let result = roots(nr).map(toString).join(", ")
let result = roots(nr).map(toString).join(", ")
echo &"{nr:2}: {result}"
echo &"{nr:2}: {result}"
</syntaxhighlight>
</lang>


{{out}}
{{out}}
Line 1,270: Line 1,270:


=={{header|OCaml}}==
=={{header|OCaml}}==
<lang ocaml>open Complex
<syntaxhighlight lang="ocaml">open Complex


let pi = 4. *. atan 1.
let pi = 4. *. atan 1.
Line 1,282: Line 1,282:
done;
done;
print_newline ()
print_newline ()
done</lang>
done</syntaxhighlight>


=={{header|Octave}}==
=={{header|Octave}}==
<lang octave>for j = 2 : 10
<syntaxhighlight lang="octave">for j = 2 : 10
printf("*** %d\n", j);
printf("*** %d\n", j);
for n = 1 : j
for n = 1 : j
Line 1,291: Line 1,291:
endfor
endfor
disp("");
disp("");
endfor</lang>
endfor</syntaxhighlight>


=={{header|OoRexx}}==
=={{header|OoRexx}}==
{{trans|REXX}}
{{trans|REXX}}
<lang oorexx>/*REXX program computes the K roots of unity (which include complex roots).*/
<syntaxhighlight lang="oorexx">/*REXX program computes the K roots of unity (which include complex roots).*/
parse Version v
parse Version v
Say v
Say v
Line 1,320: Line 1,320:
if abs(x)<near0 then x=0 /*if near zero, then assume zero.*/
if abs(x)<near0 then x=0 /*if near zero, then assume zero.*/
return format(x,,frac)/1 /*fraction digits past dec point.*/
return format(x,,frac)/1 /*fraction digits past dec point.*/
::requires rxMath library</lang>
::requires rxMath library</syntaxhighlight>
{{out}}
{{out}}
<pre>D:\>rexx nrootoo 5
<pre>D:\>rexx nrootoo 5
Line 1,332: Line 1,332:


=={{header|PARI/GP}}==
=={{header|PARI/GP}}==
<lang parigp>vector(n,k,exp(2*Pi*I*k/n))</lang>
<syntaxhighlight lang="parigp">vector(n,k,exp(2*Pi*I*k/n))</syntaxhighlight>


<code>sqrtn()</code> can give the first n'th root, from which the others by multiplying or powering.
<code>sqrtn()</code> can give the first n'th root, from which the others by multiplying or powering.


<lang parigp>nth_roots(n) = my(z);sqrtn(1,n,&z); vector(n,i, z^i);</lang>
<syntaxhighlight lang="parigp">nth_roots(n) = my(z);sqrtn(1,n,&z); vector(n,i, z^i);</syntaxhighlight>


Both the above give floating point complex numbers even when a root could be exact, like <code>-1</code> or fourth root <code>I</code>.
Both the above give floating point complex numbers even when a root could be exact, like <code>-1</code> or fourth root <code>I</code>.
Line 1,342: Line 1,342:
<code>quadgen()</code> can be used for an exact 6th root. (Quads cannot be mixed with ordinary complex numbers, and they always print as <code>w</code>.)
<code>quadgen()</code> can be used for an exact 6th root. (Quads cannot be mixed with ordinary complex numbers, and they always print as <code>w</code>.)


<lang parigp>sixth_root = quadgen(-3); /* 6th root of unity, exact */
<syntaxhighlight lang="parigp">sixth_root = quadgen(-3); /* 6th root of unity, exact */
vector(6,n, sixth_root^n) /* all the 6'th roots */</lang>
vector(6,n, sixth_root^n) /* all the 6'th roots */</syntaxhighlight>


=={{header|Pascal}}==
=={{header|Pascal}}==
{{trans|Fortran}}
{{trans|Fortran}}
<lang pascal>Program Roots;
<syntaxhighlight lang="pascal">Program Roots;


var
var
Line 1,371: Line 1,371:
writeln;
writeln;
end;
end;
end.</lang>
end.</syntaxhighlight>
Output:
Output:
<pre>
<pre>
Line 1,388: Line 1,388:
The <code>root()</code> function returns a list of the N many N'th roots of any complex Z, in this case 1.
The <code>root()</code> function returns a list of the N many N'th roots of any complex Z, in this case 1.


<lang perl>use Math::Complex;
<syntaxhighlight lang="perl">use Math::Complex;
foreach my $n (2 .. 10) {
foreach my $n (2 .. 10) {
Line 1,398: Line 1,398:
}
}
print "\n";
print "\n";
}</lang>
}</syntaxhighlight>
Output:
Output:
<pre>
<pre>
Line 1,414: Line 1,414:
=={{header|Phix}}==
=={{header|Phix}}==
{{trans|AWK}}
{{trans|AWK}}
<!--<lang Phix>(phixonline)-->
<!--<syntaxhighlight lang="phix">(phixonline)-->
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">n</span><span style="color: #0000FF;">=</span><span style="color: #000000;">2</span> <span style="color: #008080;">to</span> <span style="color: #000000;">10</span> <span style="color: #008080;">do</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">n</span><span style="color: #0000FF;">=</span><span style="color: #000000;">2</span> <span style="color: #008080;">to</span> <span style="color: #000000;">10</span> <span style="color: #008080;">do</span>
Line 1,425: Line 1,425:
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"\n"</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"\n"</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<!--</lang>-->
<!--</syntaxhighlight>-->
{{out}}
{{out}}
<pre style="font-size: 10px">
<pre style="font-size: 10px">
Line 1,441: Line 1,441:
=={{header|PicoLisp}}==
=={{header|PicoLisp}}==
{{trans|C}}
{{trans|C}}
<lang PicoLisp>(load "@lib/math.l")
<syntaxhighlight lang="picolisp">(load "@lib/math.l")


(for N (range 2 10)
(for N (range 2 10)
Line 1,455: Line 1,455:
" " ) )
" " ) )
(inc 'Angle (*/ 2 pi N)) )
(inc 'Angle (*/ 2 pi N)) )
(prinl) ) )</lang>
(prinl) ) )</syntaxhighlight>


=={{header|PL/I}}==
=={{header|PL/I}}==
<lang PL/I>complex_roots:
<syntaxhighlight lang="pl/i">complex_roots:
procedure (N);
procedure (N);
declare N fixed binary nonassignable;
declare N fixed binary nonassignable;
Line 1,479: Line 1,479:
-0.30901709-0.95105648I
-0.30901709-0.95105648I
0.30901712-0.95105648I
0.30901712-0.95105648I
0.80901724-0.58778494I </lang>
0.80901724-0.58778494I </syntaxhighlight>


=={{header|Prolog}}==
=={{header|Prolog}}==
Solves the roots of unity symbolically, as complex powers of e.
Solves the roots of unity symbolically, as complex powers of e.
<syntaxhighlight lang="prolog">
<lang Prolog>
roots(N, Rs) :-
roots(N, Rs) :-
succ(Pn, N), numlist(0, Pn, Ks),
succ(Pn, N), numlist(0, Pn, Ks),
Line 1,500: Line 1,500:
cis(1 rdiv Q, exp(i*pi/Q)) :- !.
cis(1 rdiv Q, exp(i*pi/Q)) :- !.
cis(P rdiv Q, exp(P*i*pi/Q)).
cis(P rdiv Q, exp(P*i*pi/Q)).
</syntaxhighlight>
</lang>
{{Out}}
{{Out}}
<pre>
<pre>
Line 1,528: Line 1,528:


=={{header|PureBasic}}==
=={{header|PureBasic}}==
<lang Purebasic>OpenConsole()
<syntaxhighlight lang="purebasic">OpenConsole()
For n = 2 To 10
For n = 2 To 10
angle = 0
angle = 0
Line 1,539: Line 1,539:
Next
Next
Next
Next
Input()</lang>
Input()</syntaxhighlight>


=={{header|Python}}==
=={{header|Python}}==
{{works with|Python|3.7}}
{{works with|Python|3.7}}
<lang python>import cmath
<syntaxhighlight lang="python">import cmath




Line 1,573: Line 1,573:


for nr in range(2, 11):
for nr in range(2, 11):
print(nr, list(croots(nr)))</lang>
print(nr, list(croots(nr)))</syntaxhighlight>
{{Out}}
{{Out}}
<pre>2 [1.00000, -1.00000]
<pre>2 [1.00000, -1.00000]
Line 1,586: Line 1,586:


=={{header|R}}==
=={{header|R}}==
<lang R>for(j in 2:10) {
<syntaxhighlight lang="r">for(j in 2:10) {
r <- sprintf("%d: ", j)
r <- sprintf("%d: ", j)
for(n in 1:j) {
for(n in 1:j) {
Line 1,592: Line 1,592:
}
}
print(r)
print(r)
}</lang>
}</syntaxhighlight>
Output:
Output:
<pre>
<pre>
Line 1,607: Line 1,607:


=={{header|Racket}}==
=={{header|Racket}}==
<lang Racket>#lang racket
<syntaxhighlight lang="racket">#lang racket


(define (roots-of-unity n)
(define (roots-of-unity n)
(for/list ([k n])
(for/list ([k n])
(make-polar 1 (* k (/ (* 2 pi) n)))))</lang>
(make-polar 1 (* k (/ (* 2 pi) n)))))</syntaxhighlight>
Will produce a list of roots, for example:
Will produce a list of roots, for example:
<pre>
<pre>
Line 1,623: Line 1,623:
Raku has a built-in function <tt>cis</tt> which returns a unitary complex number given its phase. Raku also defines the <tt>tau = 2*pi</tt> constant. Thus the k-th n-root of unity can simply be written <tt>cis(k*τ/n)</tt>.
Raku has a built-in function <tt>cis</tt> which returns a unitary complex number given its phase. Raku also defines the <tt>tau = 2*pi</tt> constant. Thus the k-th n-root of unity can simply be written <tt>cis(k*τ/n)</tt>.


<lang perl6>constant n = 10;
<syntaxhighlight lang="raku" line>constant n = 10;
for ^n -> \k {
for ^n -> \k {
say cis(k*τ/n);
say cis(k*τ/n);
}</lang>
}</syntaxhighlight>


{{out}}
{{out}}
Line 1,647: Line 1,647:
Note: &nbsp; this REXX version only &nbsp; ''displays'' &nbsp; '''5''' &nbsp; significant digits past the decimal point, &nbsp; but this can be overridden by specifying the 2<sup>nd</sup> argument when invoking the REXX program. &nbsp;
Note: &nbsp; this REXX version only &nbsp; ''displays'' &nbsp; '''5''' &nbsp; significant digits past the decimal point, &nbsp; but this can be overridden by specifying the 2<sup>nd</sup> argument when invoking the REXX program. &nbsp;
(See the value of the REXX variable &nbsp; '''frac''', &nbsp; 5<sup>th</sup> line).
(See the value of the REXX variable &nbsp; '''frac''', &nbsp; 5<sup>th</sup> line).
<lang rexx>/*REXX program computes the K roots of unity (which usually includes complex roots).*/
<syntaxhighlight lang="rexx">/*REXX program computes the K roots of unity (which usually includes complex roots).*/
numeric digits length( pi() ) - length(.) /*use number of decimal digits in pi. */
numeric digits length( pi() ) - length(.) /*use number of decimal digits in pi. */
parse arg n frac . /*get optional arguments from the C.L. */
parse arg n frac . /*get optional arguments from the C.L. */
Line 1,678: Line 1,678:
sin: procedure; parse arg x; x= r2r(x); numeric fuzz min(5, digits() - 3)
sin: procedure; parse arg x; x= r2r(x); numeric fuzz min(5, digits() - 3)
if abs(x)=pi then return 0; $x= x * x; z= x; _= x
if abs(x)=pi then return 0; $x= x * x; z= x; _= x
do k=2 by 2 until p=z; p=z; _= -_ * $x / (k*(k+1)); z= z + _; end; return z</lang>
do k=2 by 2 until p=z; p=z; _= -_ * $x / (k*(k+1)); z= z + _; end; return z</syntaxhighlight>
{{out|output|text=&nbsp; when using the input of: &nbsp; &nbsp; <tt> 5 </tt>}}
{{out|output|text=&nbsp; when using the input of: &nbsp; &nbsp; <tt> 5 </tt>}}
<pre>
<pre>
Line 1,800: Line 1,800:


=={{header|Ring}}==
=={{header|Ring}}==
<lang ring>
<syntaxhighlight lang="ring">
decimals(4)
decimals(4)
for n = 2 to 5
for n = 2 to 5
Line 1,812: Line 1,812:
see nl
see nl
next
next
</syntaxhighlight>
</lang>


=={{header|RLaB}}==
=={{header|RLaB}}==
Line 1,818: Line 1,818:
:<math>x^n - 1 = 0.</math>
:<math>x^n - 1 = 0.</math>
It uses the solver ''polyroots''. Interested user is recommended to check the rlabplus manual for details on the solver and the parameters that tune the solver performance.
It uses the solver ''polyroots''. Interested user is recommended to check the rlabplus manual for details on the solver and the parameters that tune the solver performance.
<lang RLaB>// specify polynomial
<syntaxhighlight lang="rlab">// specify polynomial
>> n = 10;
>> n = 10;
>> a = zeros(1,n+1); a[1] = 1; a[n+1] = -1;
>> a = zeros(1,n+1); a[1] = 1; a[n+1] = -1;
Line 1,833: Line 1,833:
1 + 0i
1 + 0i
0.809016994 + 0.587785252i
0.809016994 + 0.587785252i
0.309016994 + 0.951056516i</lang>
0.309016994 + 0.951056516i</syntaxhighlight>


=={{header|Ruby}}==
=={{header|Ruby}}==
<lang ruby>def roots_of_unity(n)
<syntaxhighlight lang="ruby">def roots_of_unity(n)
(0...n).map {|k| Complex.polar(1, 2 * Math::PI * k / n)}
(0...n).map {|k| Complex.polar(1, 2 * Math::PI * k / n)}
end
end


p roots_of_unity(3)</lang>
p roots_of_unity(3)</syntaxhighlight>


{{out}}
{{out}}
Line 1,848: Line 1,848:


=={{header|Run BASIC}}==
=={{header|Run BASIC}}==
<lang runbasic>PI = 3.1415926535
<syntaxhighlight lang="runbasic">PI = 3.1415926535
FOR n = 2 TO 5
FOR n = 2 TO 5
PRINT n;":" ;
PRINT n;":" ;
Line 1,859: Line 1,859:
PRINT
PRINT
NEXT
NEXT
</syntaxhighlight>
</lang>
Output:
Output:
<pre>
<pre>
Line 1,869: Line 1,869:
=={{header|Rust}}==
=={{header|Rust}}==
Here we demonstrate initialization from polar complex coordinate, radius 1, e^πi/n, and raising the resulting complex number to the power 2k for k in 0..n-1, which generates approximate roots (see the Mathematica answer for a nice display of exact vs approximate). This code will require adding the num crate to one's rust project, typically in Cargo.toml <i>[dependencies] \n num="0.2.0";</i>
Here we demonstrate initialization from polar complex coordinate, radius 1, e^πi/n, and raising the resulting complex number to the power 2k for k in 0..n-1, which generates approximate roots (see the Mathematica answer for a nice display of exact vs approximate). This code will require adding the num crate to one's rust project, typically in Cargo.toml <i>[dependencies] \n num="0.2.0";</i>
<lang rust>use num::Complex;
<syntaxhighlight lang="rust">use num::Complex;
fn main() {
fn main() {
let n = 8;
let n = 8;
Line 1,876: Line 1,876:
println!("e^{:2}πi/{} ≈ {:>14.3}",2*k,n,z.powf(2.0*k as f64));
println!("e^{:2}πi/{} ≈ {:>14.3}",2*k,n,z.powf(2.0*k as f64));
}
}
}</lang>
}</syntaxhighlight>
<pre>
<pre>
e^ 0πi/8 ≈ 1.000+0.000i
e^ 0πi/8 ≈ 1.000+0.000i
Line 1,890: Line 1,890:
=={{header|Scala}}==
=={{header|Scala}}==
Using [[Arithmetic/Complex#Scala|Complex]] class from task Arithmetic/Complex.
Using [[Arithmetic/Complex#Scala|Complex]] class from task Arithmetic/Complex.
<lang scala>def rootsOfUnity(n:Int)=for(k <- 0 until n) yield Complex.fromPolar(1.0, 2*math.Pi*k/n)</lang>
<syntaxhighlight lang="scala">def rootsOfUnity(n:Int)=for(k <- 0 until n) yield Complex.fromPolar(1.0, 2*math.Pi*k/n)</syntaxhighlight>
Usage:
Usage:
<pre>rootsOfUnity(3) foreach println
<pre>rootsOfUnity(3) foreach println
Line 1,900: Line 1,900:


=={{header|Scheme}}==
=={{header|Scheme}}==
<lang scheme>(define pi (* 4 (atan 1)))
<syntaxhighlight lang="scheme">(define pi (* 4 (atan 1)))


(do ((n 2 (+ n 1)))
(do ((n 2 (+ n 1)))
Line 1,909: Line 1,909:
(display " ")
(display " ")
(display (make-polar 1 (* 2 pi (/ k n)))))
(display (make-polar 1 (* 2 pi (/ k n)))))
(newline))</lang>
(newline))</syntaxhighlight>


=={{header|Seed7}}==
=={{header|Seed7}}==
<lang seed7>$ include "seed7_05.s7i";
<syntaxhighlight lang="seed7">$ include "seed7_05.s7i";
include "float.s7i";
include "float.s7i";
include "complex.s7i";
include "complex.s7i";
Line 1,928: Line 1,928:
writeln;
writeln;
end for;
end for;
end func;</lang>
end func;</syntaxhighlight>
Output:
Output:
<lang seed7>2: 1.0000+0.0000i -1.0000+0.0000i
<syntaxhighlight lang="seed7">2: 1.0000+0.0000i -1.0000+0.0000i
3: 1.0000+0.0000i -0.5000+0.8660i -0.5000-0.8660i
3: 1.0000+0.0000i -0.5000+0.8660i -0.5000-0.8660i
4: 1.0000+0.0000i 0.0000+1.0000i -1.0000+0.0000i 0.0000-1.0000i
4: 1.0000+0.0000i 0.0000+1.0000i -1.0000+0.0000i 0.0000-1.0000i
Line 1,938: Line 1,938:
8: 1.0000+0.0000i 0.7071+0.7071i 0.0000+1.0000i -0.7071+0.7071i -1.0000+0.0000i -0.7071-0.7071i 0.0000-1.0000i 0.7071-0.7071i
8: 1.0000+0.0000i 0.7071+0.7071i 0.0000+1.0000i -0.7071+0.7071i -1.0000+0.0000i -0.7071-0.7071i 0.0000-1.0000i 0.7071-0.7071i
9: 1.0000+0.0000i 0.7660+0.6428i 0.1736+0.9848i -0.5000+0.8660i -0.9397+0.3420i -0.9397-0.3420i -0.5000-0.8660i 0.1736-0.9848i 0.7660-0.6428i
9: 1.0000+0.0000i 0.7660+0.6428i 0.1736+0.9848i -0.5000+0.8660i -0.9397+0.3420i -0.9397-0.3420i -0.5000-0.8660i 0.1736-0.9848i 0.7660-0.6428i
10: 1.0000+0.0000i 0.8090+0.5878i 0.3090+0.9511i -0.3090+0.9511i -0.8090+0.5878i -1.0000+0.0000i -0.8090-0.5878i -0.3090-0.9511i 0.3090-0.9511i 0.8090-0.5878i</lang>
10: 1.0000+0.0000i 0.8090+0.5878i 0.3090+0.9511i -0.3090+0.9511i -0.8090+0.5878i -1.0000+0.0000i -0.8090-0.5878i -0.3090-0.9511i 0.3090-0.9511i 0.8090-0.5878i</syntaxhighlight>


=={{header|Sidef}}==
=={{header|Sidef}}==
{{trans|Raku}}
{{trans|Raku}}
<lang ruby>func roots_of_unity(n) {
<syntaxhighlight lang="ruby">func roots_of_unity(n) {
n.of { |j|
n.of { |j|
exp(2i * Num.pi / n * j)
exp(2i * Num.pi / n * j)
Line 1,950: Line 1,950:
roots_of_unity(5).each { |c|
roots_of_unity(5).each { |c|
printf("%+.5f%+.5fi\n", c.reals)
printf("%+.5f%+.5fi\n", c.reals)
}</lang>
}</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>
Line 1,961: Line 1,961:


=={{header|Sparkling}}==
=={{header|Sparkling}}==
<lang sparkling>function unity_roots(n) {
<syntaxhighlight lang="sparkling">function unity_roots(n) {
// nth-root(1) = cos(2 * k * pi / n) + i * sin(2 * k * pi / n)
// nth-root(1) = cos(2 * k * pi / n) + i * sin(2 * k * pi / n)
return map(range(n), function(idx, k) {
return map(range(n), function(idx, k) {
Line 1,974: Line 1,974:
foreach(unity_roots(6), function(k, v) {
foreach(unity_roots(6), function(k, v) {
printf("%.3f%+.3fi\n", v.re, v.im);
printf("%.3f%+.3fi\n", v.re, v.im);
});</lang>
});</syntaxhighlight>


=={{header|Stata}}==
=={{header|Stata}}==


<lang stata>n=7
<syntaxhighlight lang="stata">n=7
exp(2i*pi()/n*(0::n-1))
exp(2i*pi()/n*(0::n-1))
1
1
Line 1,989: Line 1,989:
6 | -.222520934 - .974927912i |
6 | -.222520934 - .974927912i |
7 | .623489802 - .781831482i |
7 | .623489802 - .781831482i |
+-----------------------------+</lang>
+-----------------------------+</syntaxhighlight>


=={{header|Tcl}}==
=={{header|Tcl}}==
<lang Tcl>package require Tcl 8.5
<syntaxhighlight lang="tcl">package require Tcl 8.5
namespace import tcl::mathfunc::*
namespace import tcl::mathfunc::*


Line 2,004: Line 2,004:
}
}
puts $row
puts $row
}</lang>
}</syntaxhighlight>


=={{header|TI-89 BASIC}}==
=={{header|TI-89 BASIC}}==
<lang ti89b>cZeros(x^n - 1, x)</lang>
<syntaxhighlight lang="ti89b">cZeros(x^n - 1, x)</syntaxhighlight>
For n=3 in exact mode, the results are
For n=3 in exact mode, the results are
<lang ti89b>{-1/2+√(3)/2*i, -1/2-√(3)/2*i, 1}</lang>
<syntaxhighlight lang="ti89b">{-1/2+√(3)/2*i, -1/2-√(3)/2*i, 1}</syntaxhighlight>


=={{header|Ursala}}==
=={{header|Ursala}}==
The roots function takes a number n to the nth root of -1, squares it, and iteratively makes a list of its first n powers (oblivious to roundoff error). Complex functions cpow and mul are used, which are called from the host system's standard C library.
The roots function takes a number n to the nth root of -1, squares it, and iteratively makes a list of its first n powers (oblivious to roundoff error). Complex functions cpow and mul are used, which are called from the host system's standard C library.
<lang Ursala>#import std
<syntaxhighlight lang="ursala">#import std
#import nat
#import nat
#import flo
#import flo
Line 2,021: Line 2,021:
#cast %jLL
#cast %jLL


tests = roots* <1,2,3,4,5,6></lang>
tests = roots* <1,2,3,4,5,6></syntaxhighlight>
The output is a list of lists of complex numbers.
The output is a list of lists of complex numbers.
<pre>
<pre>
Line 2,053: Line 2,053:


=={{header|VBA}}==
=={{header|VBA}}==
<lang vb>Public Sub roots_of_unity()
<syntaxhighlight lang="vb">Public Sub roots_of_unity()
For n = 2 To 9
For n = 2 To 9
Debug.Print n; "th roots of 1:"
Debug.Print n; "th roots of 1:"
Line 2,062: Line 2,062:
Debug.Print
Debug.Print
Next n
Next n
End Sub</lang>{{out}}
End Sub</syntaxhighlight>{{out}}
<pre> 2 th roots of 1:
<pre> 2 th roots of 1:
Root 0: 1
Root 0: 1
Line 2,127: Line 2,127:
{{libheader|Wren-complex}}
{{libheader|Wren-complex}}
{{libheader|Wren-fmt}}
{{libheader|Wren-fmt}}
<lang ecmascript>import "/complex" for Complex
<syntaxhighlight lang="ecmascript">import "/complex" for Complex
import "/fmt" for Fmt
import "/fmt" for Fmt


Line 2,139: Line 2,139:
Fmt.print("$d roots of 1:", n)
Fmt.print("$d roots of 1:", n)
for (r in roots.call(n)) Fmt.print(" $17.14z", r)
for (r in roots.call(n)) Fmt.print(" $17.14z", r)
}</lang>
}</syntaxhighlight>


{{out}}
{{out}}
Line 2,165: Line 2,165:
=={{header|zkl}}==
=={{header|zkl}}==
{{trans|C}}
{{trans|C}}
<lang zkl>PI2:=(0.0).pi*2;
<syntaxhighlight lang="zkl">PI2:=(0.0).pi*2;
foreach n,i in ([1..9],n){
foreach n,i in ([1..9],n){
c:=s:=0;
c:=s:=0;
Line 2,177: Line 2,177:
print( (s==1 and "i") or (s==-1 and "-i" or (s and "%+.2gi" or"")).fmt(s));
print( (s==1 and "i") or (s==-1 and "-i" or (s and "%+.2gi" or"")).fmt(s));
print( (i==n-1) and "\n" or ", ");
print( (i==n-1) and "\n" or ", ");
}</lang>
}</syntaxhighlight>
{{out}}
{{out}}
<pre>
<pre>

Revision as of 12:57, 28 August 2022

Task
Roots of unity
You are encouraged to solve this task according to the task description, using any language you may know.

The purpose of this task is to explore working with   complex numbers.


Task

Given   n,   find the   nth   roots of unity.

11l

F polar(r, theta)
   R r * (cos(theta) + sin(theta) * 1i)

F croots(n)
   R (0 .< n).map(k -> polar(1, 2 * k * math:pi / @n))

L(nr) 2..10
   print(nr‘ ’croots(nr))
Output:
2 [1, -1]
3 [1, -0.5+0.866025404i, -0.5-0.866025404i]
4 [1, 1i, -1, -1i]
5 [1, 0.309016994+0.951056516i, -0.809016994+0.587785252i, -0.809016994-0.587785252i, 0.309016994-0.951056516i]
6 [1, 0.5+0.866025404i, -0.5+0.866025404i, -1, -0.5-0.866025404i, 0.5-0.866025404i]
7 [1, 0.623489802+0.781831482i, -0.222520934+0.974927912i, -0.900968868+0.433883739i, -0.900968868-0.433883739i, -0.222520934-0.974927912i, 0.623489802-0.781831482i]
8 [1, 0.707106781+0.707106781i, 1i, -0.707106781+0.707106781i, -1, -0.707106781-0.707106781i, -1i, 0.707106781-0.707106781i]
9 [1, 0.766044443+0.64278761i, 0.173648178+0.984807753i, -0.5+0.866025404i, -0.939692621+0.342020143i, -0.939692621-0.342020143i, -0.5-0.866025404i, 0.173648178-0.984807753i, 0.766044443-0.64278761i]
10 [1, 0.809016994+0.587785252i, 0.309016994+0.951056516i, -0.309016994+0.951056516i, -0.809016994+0.587785252i, -1, -0.809016994-0.587785252i, -0.309016994-0.951056516i, 0.309016994-0.951056516i, 0.809016994-0.587785252i]

Ada

with Ada.Text_IO;                 use Ada.Text_IO;
with Ada.Float_Text_IO;           use Ada.Float_Text_IO;
with Ada.Numerics.Complex_Types;  use Ada.Numerics.Complex_Types;

procedure Roots_Of_Unity is
   Root : Complex;
begin
   for N in 2..10 loop
      Put_Line ("N =" & Integer'Image (N));
      for K in 0..N - 1 loop
         Root :=
             Compose_From_Polar
             (  Modulus  => 1.0,
                Argument => Float (K),
                Cycle    => Float (N)
             );
            -- Output
         Put ("   k =" & Integer'Image (K) & ", ");
         if Re (Root) < 0.0 then
            Put ("-");
         else
            Put ("+");
         end if;
         Put (abs Re (Root), Fore => 1, Exp => 0);
         if Im (Root) < 0.0 then
            Put ("-");
         else
            Put ("+");
         end if;
         Put (abs Im (Root), Fore => 1, Exp => 0);
         Put_Line ("i");
      end loop;
   end loop;
end Roots_Of_Unity;

Ada provides a direct implementation of polar composition of complex numbers x ei y. The function Compose_From_Polar is used to compose roots. The third argument of the function is the cycle. Instead of the standard cycle 2π, N is used. Sample output:

N = 2
   k = 0, +1.00000+0.00000i
   k = 1, -1.00000+0.00000i
N = 3
   k = 0, +1.00000+0.00000i
   k = 1, -0.50000+0.86603i
   k = 2, -0.50000-0.86603i
N = 4
   k = 0, +1.00000+0.00000i
   k = 1, +0.00000+1.00000i
   k = 2, -1.00000+0.00000i
   k = 3, +0.00000-1.00000i
N = 5
   k = 0, +1.00000+0.00000i
   k = 1, +0.30902+0.95106i
   k = 2, -0.80902+0.58779i
   k = 3, -0.80902-0.58779i
   k = 4, +0.30902-0.95106i
N = 6
   k = 0, +1.00000+0.00000i
   k = 1, +0.50000+0.86603i
   k = 2, -0.50000+0.86603i
   k = 3, -1.00000+0.00000i
   k = 4, -0.50000-0.86603i
   k = 5, +0.50000-0.86603i
N = 7
   k = 0, +1.00000+0.00000i
   k = 1, +0.62349+0.78183i
   k = 2, -0.22252+0.97493i
   k = 3, -0.90097+0.43388i
   k = 4, -0.90097-0.43388i
   k = 5, -0.22252-0.97493i
   k = 6, +0.62349-0.78183i
N = 8
   k = 0, +1.00000+0.00000i
   k = 1, +0.70711+0.70711i
   k = 2, +0.00000+1.00000i
   k = 3, -0.70711+0.70711i
   k = 4, -1.00000+0.00000i
   k = 5, -0.70711-0.70711i
   k = 6, +0.00000-1.00000i
   k = 7, +0.70711-0.70711i
N = 9
   k = 0, +1.00000+0.00000i
   k = 1, +0.76604+0.64279i
   k = 2, +0.17365+0.98481i
   k = 3, -0.50000+0.86603i
   k = 4, -0.93969+0.34202i
   k = 5, -0.93969-0.34202i
   k = 6, -0.50000-0.86603i
   k = 7, +0.17365-0.98481i
   k = 8, +0.76604-0.64279i
N = 10
   k = 0, +1.00000+0.00000i
   k = 1, +0.80902+0.58779i
   k = 2, +0.30902+0.95106i
   k = 3, -0.30902+0.95106i
   k = 4, -0.80902+0.58779i
   k = 5, -1.00000+0.00000i
   k = 6, -0.80902-0.58779i
   k = 7, -0.30902-0.95106i
   k = 8, +0.30902-0.95106i
   k = 9, +0.80902-0.58779i

ALGOL 68

Works with: ALGOL 68 version Revision 1 - no extensions to language used
Works with: ALGOL 68G version Any - tested with release 1.18.0-9h.tiny
FORMAT complex fmt=$g(-6,4)"⊥"g(-6,4)$;
FOR root FROM 2 TO 10 DO
  printf(($g(4)$,root));
  FOR n FROM 0 TO root-1 DO
    printf(($xf(complex fmt)$,complex exp( 0 I 2*pi*n/root)))
  OD;
  printf($l$)
OD

Output:

  +2 1.0000⊥0.0000 -1.000⊥0.0000
  +3 1.0000⊥0.0000 -.5000⊥0.8660 -.5000⊥-.8660
  +4 1.0000⊥0.0000 0.0000⊥1.0000 -1.000⊥0.0000 -.0000⊥-1.000
  +5 1.0000⊥0.0000 0.3090⊥0.9511 -.8090⊥0.5878 -.8090⊥-.5878 0.3090⊥-.9511
  +6 1.0000⊥0.0000 0.5000⊥0.8660 -.5000⊥0.8660 -1.000⊥0.0000 -.5000⊥-.8660 0.5000⊥-.8660
  +7 1.0000⊥0.0000 0.6235⊥0.7818 -.2225⊥0.9749 -.9010⊥0.4339 -.9010⊥-.4339 -.2225⊥-.9749 0.6235⊥-.7818
  +8 1.0000⊥0.0000 0.7071⊥0.7071 0.0000⊥1.0000 -.7071⊥0.7071 -1.000⊥0.0000 -.7071⊥-.7071 -.0000⊥-1.000 0.7071⊥-.7071
  +9 1.0000⊥0.0000 0.7660⊥0.6428 0.1736⊥0.9848 -.5000⊥0.8660 -.9397⊥0.3420 -.9397⊥-.3420 -.5000⊥-.8660 0.1736⊥-.9848 0.7660⊥-.6428
 +10 1.0000⊥0.0000 0.8090⊥0.5878 0.3090⊥0.9511 -.3090⊥0.9511 -.8090⊥0.5878 -1.000⊥0.0000 -.8090⊥-.5878 -.3090⊥-.9511 0.3090⊥-.9511 0.8090⊥-.5878

Arturo

rect: function [r,phi][
    to :complex @[ r * cos phi, r * sin phi ]
]
roots: function [n][
    map 0..dec n 'k -> rect 1.0 2 * k * pi / n
]

loop 2..10 'nr ->
    print [pad to :string nr 3 "=>" join.with:", " to [:string] .format:".3f" roots nr]
Output:
  2 => 1.000+0.000i, -1.000+0.000i 
  3 => 1.000+0.000i, -0.500+0.866i, -0.500-0.866i 
  4 => 1.000+0.000i, 0.000+1.000i, -1.000+0.000i, -0.000-1.000i 
  5 => 1.000+0.000i, 0.309+0.951i, -0.809+0.588i, -0.809-0.588i, 0.309-0.951i 
  6 => 1.000+0.000i, 0.500+0.866i, -0.500+0.866i, -1.000+0.000i, -0.500-0.866i, 0.500-0.866i 
  7 => 1.000+0.000i, 0.623+0.782i, -0.223+0.975i, -0.901+0.434i, -0.901-0.434i, -0.223-0.975i, 0.623-0.782i 
  8 => 1.000+0.000i, 0.707+0.707i, 0.000+1.000i, -0.707+0.707i, -1.000+0.000i, -0.707-0.707i, -0.000-1.000i, 0.707-0.707i 
  9 => 1.000+0.000i, 0.766+0.643i, 0.174+0.985i, -0.500+0.866i, -0.940+0.342i, -0.940-0.342i, -0.500-0.866i, 0.174-0.985i, 0.766-0.643i 
 10 => 1.000+0.000i, 0.809+0.588i, 0.309+0.951i, -0.309+0.951i, -0.809+0.588i, -1.000+0.000i, -0.809-0.588i, -0.309-0.951i, 0.309-0.951i, 0.809-0.588i

AutoHotkey

ahk forum: discussion

n := 8, a := 8*atan(1)/n
Loop %n%
   i := A_Index-1, t .= cos(a*i) ((s:=sin(a*i))<0 ? " - i*" . -s : " + i*" . s) "`n"
Msgbox % t

AWK

# syntax: GAWK -f ROOTS_OF_UNITY.AWK
BEGIN {
    pi = 3.1415926
    for (n=2; n<=5; n++) {
      printf("%d: ",n)
      for (root=0; root<=n-1; root++) {
        real = cos(2 * pi * root / n)
        imag = sin(2 * pi * root / n)
        printf("%8.5f %8.5fi",real,imag)
        if (root != n-1) { printf(", ") }
      }
      printf("\n")
    }
    exit(0)
}
Output:
2:  1.00000  0.00000i, -1.00000  0.00000i
3:  1.00000  0.00000i, -0.50000  0.86603i, -0.50000 -0.86603i
4:  1.00000  0.00000i,  0.00000  1.00000i, -1.00000  0.00000i, -0.00000 -1.00000i
5:  1.00000  0.00000i,  0.30902  0.95106i, -0.80902  0.58779i, -0.80902 -0.58779i,  0.30902 -0.95106i

BASIC

Works with: QuickBasic version 4.5
Translation of: Java

For high n's, this may repeat the root of 1 + 0*i.

 CLS
 PI = 3.1415926#
 n = 5 'this can be changed for any desired n
 angle = 0 'start at angle 0
 DO
 	real = COS(angle) 'real axis is the x axis
 	IF (ABS(real) < 10 ^ -5) THEN real = 0 'get rid of annoying sci notation
 	imag = SIN(angle) 'imaginary axis is the y axis
 	IF (ABS(imag) < 10 ^ -5) THEN imag = 0 'get rid of annoying sci notation
 	PRINT real; "+"; imag; "i" 'answer on every line
 	angle = angle + (2 * PI) / n
 'all the way around the circle at even intervals
 LOOP WHILE angle < 2 * PI

BBC BASIC

      @% = &20408
      FOR n% = 2 TO 5
        PRINT STR$(n%) ": " ;
        FOR root% = 0 TO n%-1
          real = COS(2*PI * root% / n%)
          imag = SIN(2*PI * root% / n%)
          PRINT real imag "i" ;
          IF root% <> n%-1 PRINT "," ;
        NEXT
        PRINT
      NEXT n%

Output:

2:   1.0000  0.0000i, -1.0000  0.0000i
3:   1.0000  0.0000i, -0.5000  0.8660i, -0.5000 -0.8660i
4:   1.0000  0.0000i,  0.0000  1.0000i, -1.0000  0.0000i, -0.0000 -1.0000i
5:   1.0000  0.0000i,  0.3090  0.9511i, -0.8090  0.5878i, -0.8090 -0.5878i,  0.3090 -0.9511i

C

#include <stdio.h>
#include <math.h>

int main()
{
	double a, c, s, PI2 = atan2(1, 1) * 8;
	int n, i;

	for (n = 1; n < 10; n++) for (i = 0; i < n; i++) {
		c = s = 0;
		if (!i )		c =  1;
		else if(n == 4 * i)	s =  1;
		else if(n == 2 * i)	c = -1;
		else if(3 * n == 4 * i)	s = -1;
		else
			a = i * PI2 / n, c = cos(a), s = sin(a);

		if (c) printf("%.2g", c);
		printf(s == 1 ? "i" : s == -1 ? "-i" : s ? "%+.2gi" : "", s);
		printf(i == n - 1 ?"\n":",  ");
	}

	return 0;
}

C#

using System;
using System.Collections.Generic;
using System.Linq;
using System.Numerics;

class Program
{
    static IEnumerable<Complex> RootsOfUnity(int degree)
    {
        return Enumerable
            .Range(0, degree)
            .Select(element => Complex.FromPolarCoordinates(1, 2 * Math.PI * element / degree));
    }

    static void Main()
    {
        var degree = 3;
        foreach (var root in RootsOfUnity(degree))
        {
            Console.WriteLine(root);
        }
    }
}

Output:

(1, 0)
(-0,5, 0,866025403784439)
(-0,5, -0,866025403784438)

C++

#include <complex>
#include <cmath>
#include <iostream>

double const pi = 4 * std::atan(1);

int main()
{
  for (int n = 2; n <= 10; ++n)
  {
    std::cout << n << ": ";
    for (int k = 0; k < n; ++k)
      std::cout << std::polar(1, 2*pi*k/n) << " ";
    std::cout << std::endl;
  }
}

CoffeeScript

Most of the effort here is in formatting the results, and the output is still a bit clumsy.

# Find the n nth-roots of 1
nth_roots_of_unity = (n) ->
  (complex_unit_vector(2*Math.PI*i/n) for i in [1..n])

complex_unit_vector = (rad) ->
  new Complex(Math.cos(rad), Math.sin(rad))
  
class Complex
  constructor: (@real, @imag) ->
  toString: ->
    round_z = (n) ->
      if Math.abs(n) < 0.00005 then 0 else n
    fmt = (n) -> n.toFixed(3)
    real = round_z @real
    imag = round_z @imag
    s = ''
    if real and imag
      "#{fmt real}+#{fmt imag}i"
    else if real or !imag
      "#{fmt real}"
    else
      "#{fmt imag}i"
      
do ->
  for n in [2..5]
    console.log "---1 to the 1/#{n}"
    for root in nth_roots_of_unity n
      console.log root.toString()

output

> coffee nth_roots.coffee 
---1 to the 1/2
-1.000
1.000
---1 to the 1/3
-0.500+0.866i
-0.500+-0.866i
1.000
---1 to the 1/4
1.000i
-1.000
-1.000i
1.000
---1 to the 1/5
0.309+0.951i
-0.809+0.588i
-0.809+-0.588i
0.309+-0.951i
1.000

Common Lisp

(defun roots-of-unity (n)
 (loop for i below n
       collect (cis (* pi (/ (* 2 i) n)))))

The expression is slightly more complicated than necessary in order to preserve exact rational arithmetic until multiplying by pi. The author of this example is not a floating point expert and not sure whether this is actually useful; if not, the simpler expression is (cis (/ (* 2 pi i) n)).

Crystal

Translation of: Ruby
require "complex"

def roots_of_unity(n)
  (0...n).map { |k| Math.exp((2 * Math::PI * k / n).i) }
end
 
p roots_of_unity(3)

Or alternative

def roots_of_unity(n)
  (0...n).map { |k| Complex.new(Math.cos(2 * Math::PI * k / n), Math.sin(2 * Math::PI * k / n)) }
end
Output:
[(1+0.0i), (-0.4999999999999998+0.8660254037844387i), (-0.5000000000000004-0.8660254037844384i)]

D

Using std.complex:

import std.stdio, std.range, std.algorithm, std.complex;
import std.math: PI;

auto nthRoots(in int n) pure nothrow {
    return n.iota.map!(k => expi(PI * 2 * (k + 1) / n));
}

void main() {
    foreach (immutable i; 1 .. 6)
        writefln("#%d: [%(%5.2f, %)]", i, i.nthRoots);
}
Output:
#1: [ 1.00+ 0.00i]
#2: [-1.00+-0.00i,  1.00+ 0.00i]
#3: [-0.50+ 0.87i, -0.50+-0.87i,  1.00+ 0.00i]
#4: [-0.00+ 1.00i, -1.00+-0.00i,  0.00+-1.00i,  1.00+ 0.00i]
#5: [ 0.31+ 0.95i, -0.81+ 0.59i, -0.81+-0.59i,  0.31+-0.95i,  1.00+ 0.00i]

Delphi

Translation of: C#
program Roots_of_unity;

{$APPTYPE CONSOLE}

uses
  System.VarCmplx;

function RootOfUnity(degree: integer): Tarray<Variant>;
var
  k: Integer;
begin
  SetLength(result, degree);
  for k := 0 to degree - 1 do
    Result[k] := VarComplexFromPolar(1, 2 * pi * k / degree);
end;

const
  n = 3;
var
  num: Variant;
begin
  Writeln('Root of unity from ', n, ':'#10);
  for num in RootOfUnity(n) do
    Writeln(num);
  Readln;
end.
Output:
Root of unity from 3:

1 + 0i
-0,5 + 0,866025403784438i
-0,5 - 0,866025403784439i

EchoLisp

(define (roots-1 n)
   (define theta (// (* 2 PI) n))
   (for/list ((i n))
      (polar 1. (* theta i))))

(roots-1 2)
     (1+0i -1+0i)
(roots-1 3)
     (1+0i -0.4999999999999998+0.8660254037844388i -0.5000000000000004-0.8660254037844384i)
(roots-1 4)
     (1+0i 0+i -1+0i 0-i)

ERRE

PROGRAM UNITY_ROOTS

!
! for rosettacode.org
!

BEGIN
   PRINT(CHR$(12);) !CLS
   N=5                                       ! this can be changed for any desired n
   ANGLE=0                                   ! start at ANGLE 0
   REPEAT
     REAL=COS(ANGLE)                         ! real axis is the x axis
     IF (ABS(REAL)<10^-5) THEN REAL=0 END IF ! get rid of annoying sci notation
     IMAG=SIN(ANGLE)                         ! imaginary axis is the y axis
     IF (ABS(IMAG)<10^-5) THEN IMAG=0 END IF ! get rid of annoying sci notation
     PRINT(REAL;"+";IMAG;"i")                ! answer on every line
     ANGLE+=(2*π)/N
                                             ! all the way around the circle at even intervals
   UNTIL ANGLE>=2*π
END PROGRAM

Note: Adapted from Qbasic version. π is the predefined constant Greek Pi.

Factor

USING: math.functions prettyprint ;

1 3 roots .
Output:
{
    1.0
    C{ -0.4999999999999998 0.8660254037844387 }
    C{ -0.5000000000000003 -0.8660254037844384 }
}

Forth

Complex numbers are not a native type in Forth, so we calculate the roots by hand.

: f0. ( f -- )
  fdup 0e 0.001e f~ if fdrop 0e then f. ;
: .roots ( n -- )
  dup 1 do
    pi i 2* 0 d>f f* dup 0 d>f f/          ( F: radians )
    fsincos cr ." real " f0. ." imag " f0.
  loop drop ;

3 set-precision
5 .roots

On the other hand, complex numbers are implemented by the FSL.

Works with: gforth version 0.7.9_20170308
Translation of: C++
require fsl-util.fs
require fsl/complex.fs

: abs= 1E-12 F~ ;
: clamp-to-0 FDUP 0E0 abs= IF FDROP 0E0 THEN ;
: zclamp-to-0
  clamp-to-0 FSWAP
  clamp-to-0 FSWAP ;
: .roots
  1+ 2 DO
    I . ." : "
    I 0 DO
      1E0 2E0 PI F* I S>F F* J S>F F/ polar> zclamp-to-0 z. SPACE
    LOOP
    CR
  LOOP ;
3 SET-PRECISION
5 .roots

Fortran

Sin/Cos + Scalar Loop

Works with: Fortran version ISO Fortran 90 and later
PROGRAM Roots

  COMPLEX :: root 
  INTEGER :: i, n
  REAL :: angle, pi

  pi = 4.0 * ATAN(1.0)
  DO n = 2, 7
    angle = 0.0
    WRITE(*,"(I1,A)", ADVANCE="NO") n,": "
    DO i = 1, n
      root = CMPLX(COS(angle), SIN(angle))
      WRITE(*,"(SP,2F7.4,A)", ADVANCE="NO") root, "j  "
      angle = angle + (2.0*pi / REAL(n))
    END DO
    WRITE(*,*)
  END DO

END PROGRAM Roots

Output

2: +1.0000+0.0000j  -1.0000+0.0000j   
3: +1.0000+0.0000j  -0.5000+0.8660j  -0.5000-0.8660j   
4: +1.0000+0.0000j  +0.0000+1.0000j  -1.0000+0.0000j  +0.0000-1.0000j   
5: +1.0000+0.0000j  +0.3090+0.9511j  -0.8090+0.5878j  -0.8090-0.5878j  +0.3090-0.9511j   
6: +1.0000+0.0000j  +0.5000+0.8660j  -0.5000+0.8660j  -1.0000+0.0000j  -0.5000-0.8660j  +0.5000-0.8660j 
7: +1.0000+0.0000j  +0.6235+0.7818j  -0.2225+0.9749j  -0.9010+0.4339j  -0.9010-0.4339j  -0.2225-0.9749j  +0.6235-0.7818j

Exp + Array-valued Statement

Works with: Fortran version ISO Fortran 90 and later
program unity
     real, parameter :: pi = 3.141592653589793
     complex, parameter :: i = (0, 1)
     complex, dimension(0:7-1) :: unit_circle
     integer :: n, j
     
     do n = 2, 7
          !!!! KEY STEP, does all the calculations in one statement !!!!
        unit_circle(0:n-1) = exp(2*i*pi/n * (/ (j, j=0, n-1) /) )

        write(*,"(i1,a)", advance="no") n, ": "
        write(*,"(sp,2f7.4,a)", advance="no") (unit_circle(j), "j  ", j = 0, n-1)
        write(*,*)
     end do
 end program unity

FreeBASIC

#define twopi 6.2831853071795864769252867665590057684

dim as uinteger m, n
dim as double real, imag, theta
input "n? ", n

for m = 0 to n-1
    theta = m*twopi/n
    real = cos(theta)
    imag = sin(theta)
    if imag >= 0 then
        print using "#.##### + #.##### i"; real; imag
    else
        print using "#.##### - #.##### i"; real; -imag
    end if
next m

Frink

Calculates the angles in degrees, since Frink will use rational arithmetic (exact)

roots[n] :=
{
    a = makeArray[[n], 0]
    alpha = 360/n degrees
    theta = 0 degrees
    for k = 0 to length[a] - 1
    {
        a@k = cos[theta] + i sin[theta]
        theta = theta + alpha
    }
    a
}
Output:
setPrecision[8]

roots[3]
[1.0, ( -0.5 + 0.86602540498103642 i ), ( -0.5 - 0.86602540139124295 i )]

FunL

FunL has built-in support for complex numbers. i is predefined to represent the imaginary unit.

import math.{exp, Pi}

def rootsOfUnity( n ) = {exp( 2Pi i k/n ) | k <- 0:n}

println( rootsOfUnity(3) )
Output:
{1.0, -0.4999999999999998+0.8660254037844387i, -0.5000000000000004-0.8660254037844385i}

FutureBasic

window 1, @"Roots of Unity", (0,0,1050,200)

long n, root
double real, imag

for n = 2 to 7
  print n;":" ;
  for root = 0 to n-1
    real = cos( 2 * pi * root / n)
    imag = sin( 2 * pi * root / n)
    print using "-##.#####"; real;using "-##.#####"; imag; "i";
    if root != n-1 then print ",";
  next
  print
next

HandleEvents

Output:

 2:  1.00000  0.00000i, -1.00000  0.00000i
 3:  1.00000  0.00000i, -0.50000  0.86603i, -0.50000 -0.86603i
 4:  1.00000  0.00000i,  0.00000  1.00000i, -1.00000  0.00000i, -0.00000 -1.00000i
 5:  1.00000  0.00000i,  0.30902  0.95106i, -0.80902  0.58779i, -0.80902 -0.58779i,  0.30902 -0.95106i
 6:  1.00000  0.00000i,  0.50000  0.86603i, -0.50000  0.86603i, -1.00000  0.00000i, -0.50000 -0.86603i,  0.50000 -0.86603i
 7:  1.00000  0.00000i,  0.62349  0.78183i, -0.22252  0.97493i, -0.90097  0.43388i, -0.90097 -0.43388i, -0.22252 -0.97493i,  0.62349 -0.78183i

GAP

roots := n -> List([0 .. n-1], k -> E(n)^k);

r:=roots(7);
# [ 1, E(7), E(7)^2, E(7)^3, E(7)^4, E(7)^5, E(7)^6 ]

List(r, x -> x^7);
# [ 1, 1, 1, 1, 1, 1, 1 ]

Go

package main

import (
    "fmt"
    "math"
    "math/cmplx"
)

func main() {
    for n := 2; n <= 5; n++ {
        fmt.Printf("%d roots of 1:\n", n)
        for _, r := range roots(n) {
            fmt.Printf("  %18.15f\n", r)
        }
    }
}

func roots(n int) []complex128 {
    r := make([]complex128, n)
    for i := 0; i < n; i++ {
        r[i] = cmplx.Rect(1, 2*math.Pi*float64(i)/float64(n))
    }
    return r
}

Output:

2 roots of 1:
  ( 1.000000000000000+0.000000000000000i)
  (-1.000000000000000+0.000000000000000i)
3 roots of 1:
  ( 1.000000000000000+0.000000000000000i)
  (-0.500000000000000+0.866025403784439i)
  (-0.500000000000000-0.866025403784438i)
4 roots of 1:
  ( 1.000000000000000+0.000000000000000i)
  ( 0.000000000000000+1.000000000000000i)
  (-1.000000000000000+0.000000000000000i)
  (-0.000000000000000-1.000000000000000i)
5 roots of 1:
  ( 1.000000000000000+0.000000000000000i)
  ( 0.309016994374948+0.951056516295154i)
  (-0.809016994374947+0.587785252292473i)
  (-0.809016994374947-0.587785252292473i)
  ( 0.309016994374947-0.951056516295154i)

Groovy

Because the Groovy language does not provide a built-in facility for complex arithmetic, this example relies on the Complex class defined in the Complex numbers example.

/** The following closure creates a list of n evenly-spaced points around the unit circle,
  * useful in FFT calculations, among other things */
def rootsOfUnity = { n ->
    (0..<n).collect {
        Complex.fromPolar(1, 2 * Math.PI * it / n)
    }
}

Test program:

def tol = 0.000000001  // tolerance: acceptable "wrongness" to account for rounding error

((1..6) + [16]). each { n ->
    println "rootsOfUnity(${n}):"
    def rou = rootsOfUnity(n)
    rou.each { println it }
    assert rou[0] == 1
    def actual = n > 1 ? rou[Math.floor(n/2) as int] : rou[0]
    def expected = n > 1 ? (n%2 == 0) ? -1 : ~rou[Math.ceil(n/2) as int] : rou[0]
    def message = n > 1 ? (n%2 == 0) ? 'middle-most root should be -1' : 'two middle-most roots should be conjugates' : ''
    assert (actual - expected).abs() < tol : message
    assert rou.every { (it.rho - 1) < tol } : 'all roots should have magnitude 1'
    println()
}

Output:

rootsOfUnity(1):
1.0

rootsOfUnity(2):
1.0
-1.0 + 1.2246467991473532E-16i

rootsOfUnity(3):
1.0
-0.4999999998186198 + 0.8660254038891585i
-0.5000000003627604 - 0.8660254035749988i

rootsOfUnity(4):
1.0
6.123233995736766E-17 + i
-1.0 + 1.2246467991473532E-16i
-1.8369701987210297E-16 - i

rootsOfUnity(5):
1.0
0.30901699437494745 + 0.9510565162951535i
-0.8090169943749473 + 0.5877852522924732i
-0.8090169943749475 - 0.587785252292473i
0.30901699437494723 - 0.9510565162951536i

rootsOfUnity(6):
1.0
0.4999999998186201 + 0.8660254038891584i
-0.5000000003627598 + 0.8660254035749991i
-1.0 - 6.283181638240517E-10i
-0.4999999992744804 - 0.8660254042033175i
0.5000000009068993 - 0.8660254032608401i

rootsOfUnity(16):
1.0
0.9238795325112867 + 0.3826834323650898i
0.7071067811865476 + 0.7071067811865475i
0.38268343236508984 + 0.9238795325112867i
6.123233995736766E-17 + i
-0.3826834323650897 + 0.9238795325112867i
-0.7071067811865475 + 0.7071067811865476i
-0.9238795325112867 + 0.3826834323650899i
-1.0 + 1.2246467991473532E-16i
-0.9238795325112868 - 0.38268343236508967i
-0.7071067811865477 - 0.7071067811865475i
-0.38268343236509034 - 0.9238795325112865i
-1.8369701987210297E-16 - i
0.38268343236509 - 0.9238795325112866i
0.7071067811865474 - 0.7071067811865477i
0.9238795325112865 - 0.3826834323650904i

Haskell

import Data.Complex (Complex, cis)

rootsOfUnity :: (Enum a, Floating a) => a -> [Complex a]
rootsOfUnity n =
  [ cis (2 * pi * k / n)
  | k <- [0 .. n - 1] ]

main :: IO ()
main = mapM_ print $ rootsOfUnity 3
Output:
1.0 :+ 0.0
(-0.4999999999999998) :+ 0.8660254037844388
(-0.5000000000000004) :+ (-0.8660254037844384)

Icon and Unicon

procedure main()
   roots(10)
end

procedure roots(n)
   every n := 2 to 10 do
       every writes(n | (str_rep((0 to (n-1)) * 2 * &pi / n)) | "\n")
end

procedure str_rep(k)
  return " " || cos(k) || "+" || sin(k) || "i"
end

Notes:

IDL

For some example n:

n = 5
print,  exp( dcomplex( 0, 2*!dpi/n) ) ^ ( 1 + indgen(n) )

Outputs:

( 0.30901699, 0.95105652)( -0.80901699, 0.58778525)( -0.80901699, -0.58778525)( 0.30901699, -0.95105652)( 1.0000000, -1.1102230e-16)

J

   rou=: [: ^ 0j2p1 * i. % ]

   rou 4
1 0j1 _1 0j_1

   rou 5
1 0.309017j0.951057 _0.809017j0.587785 _0.809017j_0.587785 0.309017j_0.951057

The computation can also be written as a loop, shown here for comparison only.

rou1=: 3 : 0
 z=. 0 $ r=. ^ o. 0j2 % y [ e=. 1
 for. i.y do.
  z=. z,e
  e=. e*r
 end.
 z
)

Java

Java doesn't have a nice way of dealing with complex numbers, so the real and imaginary parts are calculated separately based on the angle and printed together. There are also checks in this implementation to get rid of extremely small values (< 1.0E-3 where scientific notation sets in for Doubles). Instead, they are simply represented as 0. To remove those checks (for very high n's), remove both if statements.

import java.util.Locale;

public class Test {

    public static void main(String[] a) {
        for (int n = 2; n < 6; n++)
            unity(n);
    }

    public static void unity(int n) {
        System.out.printf("%n%d: ", n);

        //all the way around the circle at even intervals
        for (double angle = 0; angle < 2 * Math.PI; angle += (2 * Math.PI) / n) {

            double real = Math.cos(angle); //real axis is the x axis

            if (Math.abs(real) < 1.0E-3)
                real = 0.0; //get rid of annoying sci notation

            double imag = Math.sin(angle); //imaginary axis is the y axis

            if (Math.abs(imag) < 1.0E-3)
                imag = 0.0;

            System.out.printf(Locale.US, "(%9f,%9f) ", real, imag);
        }
    }
}
2: ( 1.000000, 0.000000) (-1.000000, 0.000000) 
3: ( 1.000000, 0.000000) (-0.500000, 0.866025) (-0.500000,-0.866025) 
4: ( 1.000000, 0.000000) ( 0.000000, 1.000000) (-1.000000, 0.000000) ( 0.000000,-1.000000) 
5: ( 1.000000, 0.000000) ( 0.309017, 0.951057) (-0.809017, 0.587785) (-0.809017,-0.587785) ( 0.309017,-0.951057)

JavaScript

function Root(angle) {
	with (Math) { this.r = cos(angle); this.i = sin(angle) }
}

Root.prototype.toFixed = function(p) {
	return this.r.toFixed(p) + (this.i >= 0 ? '+' : '') + this.i.toFixed(p) + 'i'
}

function roots(n) {
	var rs = [], teta = 2*Math.PI/n
	for (var angle=0, i=0; i<n; angle+=teta, i+=1) rs.push( new Root(angle) )
	return rs
}

for (var n=2; n<8; n+=1) {
	document.write(n, ': ')
	var rs=roots(n); for (var i=0; i<rs.length; i+=1) document.write( i ? ', ' : '', rs[i].toFixed(5) )
	document.write('<br>')
}
Output:
2: 1.00000+0.00000i, -1.00000+0.00000i
3: 1.00000+0.00000i, -0.50000+0.86603i, -0.50000-0.86603i
4: 1.00000+0.00000i, 0.00000+1.00000i, -1.00000+0.00000i, -0.00000-1.00000i
5: 1.00000+0.00000i, 0.30902+0.95106i, -0.80902+0.58779i, -0.80902-0.58779i, 0.30902-0.95106i
6: 1.00000+0.00000i, 0.50000+0.86603i, -0.50000+0.86603i, -1.00000+0.00000i, -0.50000-0.86603i, 0.50000-0.86603i
7: 1.00000+0.00000i, 0.62349+0.78183i, -0.22252+0.97493i, -0.90097+0.43388i, -0.90097-0.43388i, -0.22252-0.97493i, 0.62349-0.78183i

jq

Using the same example as in the Julia section, and representing x + i*y as [x,y]:

def nthroots(n):
  (8 * (1|atan)) as $twopi
  | range(0;n) | (($twopi * .) / n) as $angle | [ ($angle | cos), ($angle | sin) ];

nthroots(10)
$ uname -a
Darwin Mac-mini 13.3.0 Darwin Kernel Version 13.3.0: Tue Jun  3 21:27:35 PDT 2014; root:xnu-2422.110.17~1/RELEASE_X86_64 x86_64

$ time jq -c -n -f Roots_of_unity.jq
[1,0]
[0.8090169943749475,0.5877852522924731]
[0.30901699437494745,0.9510565162951535]
[-0.30901699437494734,0.9510565162951536]
[-0.8090169943749473,0.5877852522924732]
[-1,1.2246467991473532e-16]
[-0.8090169943749475,-0.587785252292473]
[-0.30901699437494756,-0.9510565162951535]
[0.30901699437494723,-0.9510565162951536]
[0.8090169943749473,-0.5877852522924732]

real	0m0.015s
user	0m0.004s
sys	0m0.004s

Julia

nthroots(n::Integer) = [ cospi(2k/n)+sinpi(2k/n)im for k = 0:n-1 ]

(One could also use complex exponentials or other formulations.) For example, `nthroots(10)` gives:

10-element Array{Complex{Float64},1}:
            1.0+0.0im
  0.809017+0.587785im
  0.309017+0.951057im
 -0.309017+0.951057im
 -0.809017+0.587785im
           -1.0+0.0im
 -0.809017-0.587785im
 -0.309017-0.951057im
  0.309017-0.951057im
  0.809017-0.587785im

Kotlin

import java.lang.Math.*

data class Complex(val r: Double, val i: Double) {
    override fun toString() = when {
        i == 0.0 -> r.toString()
        r == 0.0 -> i.toString() + 'i'
        else -> "$r + ${i}i"
    }
}

fun unity_roots(n: Number) = (1..n.toInt() - 1).map {
    val a = it * 2 * PI / n.toDouble()
    var r = cos(a); if (abs(r) < 1e-6) r = 0.0
    var i = sin(a); if (abs(i) < 1e-6) i = 0.0
    Complex(r, i)
}

fun main(args: Array<String>) {
    (1..4).forEach { println(listOf(1) + unity_roots(it)) }
    println(listOf(1) + unity_roots(5.0))
}
Output:
[1]
[1, -1.0]
[1, -0.4999999999999998 + 0.8660254037844387i, -0.5000000000000004 + -0.8660254037844385i]
[1, 1.0i, -1.0, -1.0i]
[1, 0.30901699437494745 + 0.9510565162951535i, -0.8090169943749473 + 0.5877852522924732i, -0.8090169943749475 + -0.587785252292473i, 0.30901699437494723 + -0.9510565162951536i]

Lambdatalk

// cleandisp just to display 0 when n < 10^-10 
{def cleandisp
 {lambda {:n}
  {if {<= {abs :n} 1.e-10} then 0 else :n}}}
-> cleandisp

{def uroots
 {lambda {:n}
  {S.map {{lambda {:n :i}
                  {let { {:theta {/ {* 2 {PI} :i} :n}}  
                       } {cons {cleandisp {cos :theta}} 
                               {cleandisp {sin :theta}}}}} :n}
         {S.serie 0 {- :n 1}}} }}
-> uroots

{S.map {lambda {:i} {hr}i = :i -> {uroots :i}} {S.serie 2 10}}
-> i = 2 -> (1 0) (-1 0) i = 3 -> (1 0) (-0.4999999999999998 0.8660254037844388) (-0.5000000000000004 -0.8660254037844384) 
i = 4 -> (1 0) (0 1) (-1 0) (0 -1) 
i = 5 -> (1 0) (0.30901699437494745 0.9510565162951535) (-0.8090169943749473 0.5877852522924732) (-0.8090169943749475 -0.587785252292473) (0.30901699437494723 -0.9510565162951536) 
i = 6 -> (1 0) (0.5000000000000001 0.8660254037844386) (-0.4999999999999998 0.8660254037844388) (-1 0) (-0.5000000000000004 -0.8660254037844384) (0.5 -0.8660254037844386) 
i = 7 -> (1 0) (0.6234898018587336 0.7818314824680297) (-0.22252093395631434 0.9749279121818236) (-0.900968867902419 0.43388373911755823) (-0.9009688679024191 -0.433883739117558) (-0.2225209339563146 -0.9749279121818235) (0.6234898018587334 -0.7818314824680299) 
i = 8 -> (1 0) (0.7071067811865476 0.7071067811865475) (0 1) (-0.7071067811865475 0.7071067811865476) (-1 0) (-0.7071067811865477 -0.7071067811865475) (0 -1) (0.7071067811865475 -0.7071067811865477) 
i = 9 -> (1 0) (0.7660444431189781 0.6427876096865393) (0.17364817766693041 0.984807753012208) (-0.4999999999999998 0.8660254037844388) (-0.9396926207859083 0.3420201433256689) (-0.9396926207859084 -0.34202014332566866) (-0.5000000000000004 -0.8660254037844384) (0.17364817766692997 -0.9848077530122081) (0.7660444431189779 -0.6427876096865396) 
i = 10 -> (1 0) (0.8090169943749475 0.5877852522924731) (0.30901699437494745 0.9510565162951535) (-0.30901699437494734 0.9510565162951536) (-0.8090169943749473 0.5877852522924732) (-1 0) (-0.8090169943749475 -0.587785252292473) (-0.30901699437494756 -0.9510565162951535) (0.30901699437494723 -0.9510565162951536) (0.8090169943749473 -0.5877852522924732)

Liberty BASIC

WindowWidth  =400
WindowHeight =400

'nomainwin

open "N'th Roots of One" for graphics_nsb_nf as #w

#w "trapclose [quit]"

for n =1 To 10
    angle =0
    #w "font arial 16 bold"
    print n; "th roots."
    #w "cls"
    #w "size 1 ; goto 200 200 ; down ; color lightgray ; circle 150 ; size 10 ; set 200 200 ; size 2"
    #w "up ; goto 200 0 ; down ; goto 200 400 ; up ; goto 0 200 ; down ; goto 400 200"
    #w "up ; goto 40 20 ; down ; color black"
    #w "font arial 6"
    #w "\"; n; " roots of 1."

    for i = 1 To n
        x = cos( Radian( angle))
        y = sin( Radian( angle))

        print using( "##", i); ":  ( " + using( "##.######", x);_
          " +i *" +using( "##.######", y); ")      or     e^( i *"; i -1; " *2 *Pi/ "; n; ")"

        #w "color "; 255 *i /n; " 0 "; 256 -255 *i /n
        #w "up ; goto 200 200"
        #w "down ; goto "; 200 +150 *x; " "; 200 -150 *y
        #w "up   ; goto "; 200 +165 *x; " "; 200 -165 *y
        #w "\"; str$( i)
        #w "up"

        angle =angle +360 /n

    next i

    timer 500, [on]
    wait
  [on]
    timer 0
next n

wait

[quit]
    close #w

    end

function Radian( theta)
    Radian =theta *3.1415926535 /180
end function

Lua

Complex numbers from the Lua implementation on the complex numbers page.

--defines addition, subtraction, negation, multiplication, division, conjugation, norms, and a conversion to strgs.
complex = setmetatable({
__add = function(u, v) return complex(u.real + v.real, u.imag + v.imag) end,
__sub = function(u, v) return complex(u.real - v.real, u.imag - v.imag) end,
__mul = function(u, v) return complex(u.real * v.real - u.imag * v.imag, u.real * v.imag + u.imag * v.real) end,
__div = function(u, v) return u * complex(v.real / v.norm, -v.imag / v.norm) end,
__unm = function(u) return complex(-u.real, -u.imag) end,
__concat = function(u, v)
    if type(u) == "table" then return u.real .. " + " .. u.imag .. "i" .. v
	elseif type(u) == "string" or type(u) == "number" then return u .. v.real .. " + " .. v.imag .. "i"
	end end,
__index = function(u, index)
  local operations = {
    norm = function(u) return u.real ^ 2 + u.imag ^ 2 end,
    conj = function(u) return complex(u.real, -u.imag) end,
  }
  return operations[index] and operations[index](u)
end,
__newindex = function() error() end
}, {
__call = function(z, realpart, imagpart) return setmetatable({real = realpart, imag = imagpart}, complex) end
} )
n = io.read() + 0
val = complex(math.cos(2*math.pi / n), math.sin(2*math.pi / n))
root = complex(1, 0)
for i = 1, n do
  root = root * val
  print(root .. "")
end

Maple

RootsOfUnity := proc( n )
    solve(z^n = 1, z);
end proc:
for i from 2 to 6 do
    printf( "%d: %a\n", i, [ RootsOfUnity(i) ] );
end do;

Output:

2: [1, -1]
3: [1, -1/2-1/2*I*3^(1/2), -1/2+1/2*I*3^(1/2)]
4: [1, -1, I, -I]
5: [1, 1/4*5^(1/2)-1/4+1/4*I*2^(1/2)*(5+5^(1/2))^(1/2), -1/4*5^(1/2)-1/4+1/4*I*2^(1/2)*(5-5^(1/2))^(1/2), -1/4*5^(1/2)-1/4-1/4*I*2^(1/2)*(5-5^(1/2))^(1/2), 1/4*5^(1/2)-1/4-1/4*I*2^(1/2)*(5+5^(1/2))^(1/2)]
6: [1, -1, 1/2*(-2-2*I*3^(1/2))^(1/2), -1/2*(-2-2*I*3^(1/2))^(1/2), 1/2*(-2+2*I*3^(1/2))^(1/2), -1/2*(-2+2*I*3^(1/2))^(1/2)]

Mathematica/Wolfram Language

Setting this up in Mathematica is easy, because it already handles complex numbers:

RootsUnity[nthroot_Integer?Positive] := Table[Exp[2 Pi I i/nthroot], {i, 0, nthroot - 1}]

Note that Mathematica will keep the expression as exact as possible. Simplifications can be made to more known (trigonometric) functions by using the function ExpToTrig. If only a numerical approximation is necessary the function N will transform the exact result to a numerical approximation. Examples (exact not simplified, exact simplified, approximated):

RootsUnity[2]
RootsUnity[3]
RootsUnity[4]
RootsUnity[5]

RootsUnity[2]//ExpToTrig
RootsUnity[3]//ExpToTrig
RootsUnity[4]//ExpToTrig
RootsUnity[5]//ExpToTrig

RootsUnity[2]//N
RootsUnity[3]//N
RootsUnity[4]//N
RootsUnity[5]//N

gives back:



MATLAB

function z = rootsOfUnity(n)

    assert(n >= 1,'n >= 1');
    z = roots([1 zeros(1,n-1) -1]);
    
end

Sample Output:

>> rootsOfUnity(3)

ans =

 -0.500000000000000 + 0.866025403784439i
 -0.500000000000000 - 0.866025403784439i
  1.000000000000000

Maxima

solve(1 = x^n, x)

Demonstration:

for n:1 thru 5 do display(solve(1 = x^n, x));

Output:

solve(1 = x, x) = [x = 1]
solve(1 = x^2, x) = [x = -1, x = 1]
solve(1 = x^3, x) = [x = (sqrt(3)*%i-1)/2, x = -(sqrt(3)*%i+1)/2, x = 1]
solve(1 = x^4, x) = [x = %i, x = -1, x = -%i, x = 1]
solve(1 = x^5, x) = [x = %e^((2*%i*%pi)/5), x = %e^((4*%i*%pi)/5), x = %e^(-(4*%i*%pi)/5), x = %e^(-(2*%i*%pi)/5), x = 1]

MiniScript

complexRoots = function(n)
    result = []
    for i in range(0, n-1)
        real = cos(2*pi * i/n)
        if abs(real) < 1e-6 then real = 0
        imag = sin(2*pi * i/n)
        if abs(imag) < 1e-6 then imag = 0
        result.push real + " " + "+" * (imag>=0) + imag + "i"
    end for
    return result
end function

for i in range(2,5)
    print i + ": " + complexRoots(i).join(", ")
end for
Output:
2: 1 +0i, -1 +0i
3: 1 +0i, -0.5 +0.866025i, -0.5 -0.866025i
4: 1 +0i, 0 +1i, -1 +0i, 0 -1i
5: 1 +0i, 0.309017 +0.951057i, -0.809017 +0.587785i, -0.809017 -0.587785i, 0.309017 -0.951057i

МК-61/52

П0	0	П1	ИП1	sin	ИП1	cos	С/П	2	пи
*	ИП0	/	ИП1	+	П1	БП	03

Nim

import complex, math, sequtils, strformat, strutils

proc roots(n: Positive): seq[Complex64] =
  for k in 0..<n:
    result.add rect(1.0, 2 * k.float * Pi / n.float)

proc toString(z: Complex64): string =
  &"{z.re:.3f} + {z.im:.3f}i"

for nr in 2..10:
  let result = roots(nr).map(toString).join(", ")
  echo &"{nr:2}: {result}"
Output:
 2: 1.000 + 0.000i, -1.000 + 0.000i
 3: 1.000 + 0.000i, -0.500 + 0.866i, -0.500 + -0.866i
 4: 1.000 + 0.000i, 0.000 + 1.000i, -1.000 + 0.000i, -0.000 + -1.000i
 5: 1.000 + 0.000i, 0.309 + 0.951i, -0.809 + 0.588i, -0.809 + -0.588i, 0.309 + -0.951i
 6: 1.000 + 0.000i, 0.500 + 0.866i, -0.500 + 0.866i, -1.000 + 0.000i, -0.500 + -0.866i, 0.500 + -0.866i
 7: 1.000 + 0.000i, 0.623 + 0.782i, -0.223 + 0.975i, -0.901 + 0.434i, -0.901 + -0.434i, -0.223 + -0.975i, 0.623 + -0.782i
 8: 1.000 + 0.000i, 0.707 + 0.707i, 0.000 + 1.000i, -0.707 + 0.707i, -1.000 + 0.000i, -0.707 + -0.707i, -0.000 + -1.000i, 0.707 + -0.707i
 9: 1.000 + 0.000i, 0.766 + 0.643i, 0.174 + 0.985i, -0.500 + 0.866i, -0.940 + 0.342i, -0.940 + -0.342i, -0.500 + -0.866i, 0.174 + -0.985i, 0.766 + -0.643i
10: 1.000 + 0.000i, 0.809 + 0.588i, 0.309 + 0.951i, -0.309 + 0.951i, -0.809 + 0.588i, -1.000 + 0.000i, -0.809 + -0.588i, -0.309 + -0.951i, 0.309 + -0.951i, 0.809 + -0.588i

OCaml

open Complex

let pi = 4. *. atan 1.

let () =
  for n = 1 to 10 do
    Printf.printf "%2d " n;
    for k = 1 to n do
      let ret = polar 1. (2. *. pi *. float_of_int k /. float_of_int n) in
        Printf.printf "(%f + %f i)" ret.re ret.im
    done;
    print_newline ()
  done

Octave

for j = 2 : 10
  printf("*** %d\n", j);
  for n = 1 : j
    disp(exp(2i*pi*n/j));
  endfor
  disp("");
endfor

OoRexx

Translation of: REXX
/*REXX program computes the  K  roots of unity  (which include complex roots).*/
parse Version v
Say v
parse arg n frac .                     /*get optional arguments from the C.L. */
if n==''    then n=1                   /*Not specified?  Then use the default.*/
if frac=''  then frac=5                /* "      "         "   "   "     "    */
start=abs(n)                           /*assume only one  K  is wanted.       */
if n<0      then start=1               /*Negative?  Then use a range of  K's. */
                                       /*display unity roots for a range,  or */
  do k=start  to abs(n)                /*                   just for one  K.  */
  say right(k 'roots of unity',40,"-") /*display a pretty separator with title*/
     do angle=0  by 360/k  for k       /*compute the angle for each root.     */
     rp=adjust(rxCalcCos(angle,,'D'))  /*compute real part via  COS  function.*/
     if left(rp,1)\=='-' then rp=" "rp /*not negative?  Then pad with a blank.*/
     ip=adjust(rxCalcSin(angle,,'D'))  /*compute imaginary part via SIN funct.*/
     if left(ip,1)\=='-' then ip="+"ip /*Not negative?  Then pad with  + char.*/
     if ip=0  then say rp              /*Only real part? Ignore imaginary part*/
              else say left(rp,frac+4)ip'i'   /*show the real & imaginary part*/
     end  /*angle*/
  end      /*k*/
exit                                   /*stick a fork in it,  we're all done. */
/*----------------------------------------------------------------------------*/
adjust: parse arg x; near0='1e-' || (digits()-digits()%10)   /*compute small #*/
        if abs(x)<near0  then x=0            /*if near zero, then assume zero.*/
        return format(x,,frac)/1             /*fraction digits past dec point.*/
::requires rxMath library
Output:
D:\>rexx nrootoo 5
REXX-ooRexx_4.2.0(MT)_64-bit 6.04 22 Feb 2014
------------------------5 roots of unity
 1
 0.30902 +0.95106i
-0.80902 +0.58779i
-0.80902 -0.58779i
 0.30902 -0.95106i

PARI/GP

vector(n,k,exp(2*Pi*I*k/n))

sqrtn() can give the first n'th root, from which the others by multiplying or powering.

nth_roots(n) = my(z);sqrtn(1,n,&z); vector(n,i, z^i);

Both the above give floating point complex numbers even when a root could be exact, like -1 or fourth root I.

quadgen() can be used for an exact 6th root. (Quads cannot be mixed with ordinary complex numbers, and they always print as w.)

sixth_root = quadgen(-3);   /* 6th root of unity, exact */
vector(6,n, sixth_root^n)   /* all the 6'th roots */

Pascal

Translation of: Fortran
Program Roots;

var
  root: record  // poor man's complex type.
    r: real;
    i: real;
  end;
  i, n:  integer;
  angle: real;

begin
  for n := 2 to 7 do
  begin
    angle := 0.0;
    write(n, ': ');
    for i := 1 to n do
    begin
      root.r := cos(angle);
      root.i := sin(angle);
      write(root.r:8:5, root.i:8:5, 'i ');
      angle := angle + (2.0 * pi / n);
    end;
    writeln;
  end;
end.

Output:

2:  1.00000 0.00000i -1.00000 0.00000i 
3:  1.00000 0.00000i -0.50000 0.86603i -0.50000-0.86603i 
4:  1.00000 0.00000i  0.00000 1.00000i -1.00000 0.00000i -0.00000-1.00000i 
5:  1.00000 0.00000i  0.30902 0.95106i -0.80902 0.58779i -0.80902-0.58779i  0.30902-0.95106i 
6:  1.00000 0.00000i  0.50000 0.86603i -0.50000 0.86603i -1.00000-0.00000i -0.50000-0.86603i  0.50000-0.86603i 
7:  1.00000 0.00000i  0.62349 0.78183i -0.22252 0.97493i -0.90097 0.43388i -0.90097-0.43388i -0.22252-0.97493i  0.62349-0.78183i 

Perl

Works with: Perl version 5.6.0

The root() function returns a list of the N many N'th roots of any complex Z, in this case 1.

use Math::Complex;
 
foreach my $n (2 .. 10) {
  printf "%2d", $n;
  my @roots = root(1,$n);
  foreach my $root (@roots) {
    $root->display_format(style => 'cartesian', format => '%.3f');
    print " $root";
  }
  print "\n";
}

Output:

 2 1.000 -1.000+0.000i
 3 1.000 -0.500+0.866i -0.500-0.866i
 4 1.000 0.000+1.000i -1.000+0.000i -0.000-1.000i
 5 1.000 0.309+0.951i -0.809+0.588i -0.809-0.588i 0.309-0.951i
 6 1.000 0.500+0.866i -0.500+0.866i -1.000+0.000i -0.500-0.866i 0.500-0.866i
 7 1.000 0.623+0.782i -0.223+0.975i -0.901+0.434i -0.901-0.434i -0.223-0.975i 0.623-0.782i
 8 1.000 0.707+0.707i 0.000+1.000i -0.707+0.707i -1.000+0.000i -0.707-0.707i -0.000-1.000i 0.707-0.707i
 9 1.000 0.766+0.643i 0.174+0.985i -0.500+0.866i -0.940+0.342i -0.940-0.342i -0.500-0.866i 0.174-0.985i 0.766-0.643i
10 1.000 0.809+0.588i 0.309+0.951i -0.309+0.951i -0.809+0.588i -1.000+0.000i -0.809-0.588i -0.309-0.951i 0.309-0.951i 0.809-0.588i

Phix

Translation of: AWK
with javascript_semantics
for n=2 to 10 do
    printf(1,"%2d:",n)
    for root=0 to n-1 do
        atom real = cos(2*PI*root/n)
        atom imag = sin(2*PI*root/n)
        printf(1,"%s %6.3f %6.3fi",{iff(root?",":""),real,imag})
    end for
    printf(1,"\n")
end for
Output:
 2:  1.000  0.000i, -1.000  0.000i
 3:  1.000  0.000i, -0.500  0.866i, -0.500 -0.866i
 4:  1.000  0.000i,  0.000  1.000i, -1.000  0.000i, -0.000 -1.000i
 5:  1.000  0.000i,  0.309  0.951i, -0.809  0.588i, -0.809 -0.588i,  0.309 -0.951i
 6:  1.000  0.000i,  0.500  0.866i, -0.500  0.866i, -1.000  0.000i, -0.500 -0.866i,  0.500 -0.866i
 7:  1.000  0.000i,  0.623  0.782i, -0.223  0.975i, -0.901  0.434i, -0.901 -0.434i, -0.223 -0.975i,  0.623 -0.782i
 8:  1.000  0.000i,  0.707  0.707i,  0.000  1.000i, -0.707  0.707i, -1.000  0.000i, -0.707 -0.707i, -0.000 -1.000i,  0.707 -0.707i
 9:  1.000  0.000i,  0.766  0.643i,  0.174  0.985i, -0.500  0.866i, -0.940  0.342i, -0.940 -0.342i, -0.500 -0.866i,  0.174 -0.985i,  0.766 -0.643i
10:  1.000  0.000i,  0.809  0.588i,  0.309  0.951i, -0.309  0.951i, -0.809  0.588i, -1.000  0.000i, -0.809 -0.588i, -0.309 -0.951i,  0.309 -0.951i,  0.809 -0.588i

PicoLisp

Translation of: C
(load "@lib/math.l")

(for N (range 2 10)
   (let Angle 0.0
      (prin N ": ")
      (for I N
         (let Ipart (sin Angle)
            (prin
               (round (cos Angle) 4)
               (if (lt0 Ipart) "-" "+")
               "j"
               (round (abs Ipart) 4)
               "  " ) )
         (inc 'Angle (*/ 2 pi N)) )
      (prinl) ) )

PL/I

complex_roots:
   procedure (N);
   declare N fixed binary nonassignable;
   declare x float, c fixed decimal (10,8) complex;
   declare twopi float initial ((4*asin(1.0)));

   do x = 0 to twopi by twopi/N;
      c = complex(cos(x), sin(x));
      put skip list (c);
   end;
end complex_roots;

   1.00000000+0.00000000I   
   0.80901700+0.58778524I   
   0.30901697+0.95105654I   
  -0.30901703+0.95105648I   
  -0.80901706+0.58778518I   
  -1.00000000-0.00000008I   
  -0.80901694-0.58778536I   
  -0.30901709-0.95105648I   
   0.30901712-0.95105648I   
   0.80901724-0.58778494I

Prolog

Solves the roots of unity symbolically, as complex powers of e.

roots(N, Rs) :-
    succ(Pn, N), numlist(0, Pn, Ks),
    maplist(root(N), Ks, Rs).

root(N, M, R2) :-
    R0 is (2*M) rdiv N,  % multiple of PI
    (R0 > 1 -> R1 is R0 - 2; R1 = R0),  % adjust for principal values
    cis(R1, R2).

cis(0, 1) :- !.
cis(1, -1) :- !.
cis(1 rdiv 2, i) :- !.
cis(-1 rdiv 2, -i) :- !.
cis(-1 rdiv Q, exp(-i*pi/Q)) :- !.
cis(1 rdiv Q, exp(i*pi/Q)) :- !.
cis(P rdiv Q, exp(P*i*pi/Q)).
Output:
?- roots(2,X).
X = [1, -1].

?- roots(3,X).
X = [1, exp(2*i*pi/3), exp(-2*i*pi/3)].

?- roots(4,X).
X = [1, i, -1, -i].

?- roots(5,X).
X = [1, exp(2*i*pi/5), exp(4*i*pi/5), exp(-4*i*pi/5), exp(-2*i*pi/5)].

?- roots(8,X), forall(member(A,X), format("~w~n", A)).
1
exp(i*pi/4)
i
exp(3*i*pi/4)
-1
exp(-3*i*pi/4)
-i
exp(-i*pi/4)
X = [1, exp(i*pi/4), i, exp(3*i*pi/4), -1, exp(... * ... * pi/4), -i, exp(... / ...)].

PureBasic

OpenConsole()
For n = 2 To 10
  angle = 0
  PrintN(Str(n))
  For i = 1 To n
    x.f = Cos(Radian(angle))    
    y.f = Sin(Radian(angle)) 
    PrintN( Str(i) + ":  " + StrF(x, 6) +  " / " + StrF(y, 6))
    angle = angle + (360 / n) 
  Next
Next
Input()

Python

Works with: Python version 3.7
import cmath


class Complex(complex):
    def __repr__(self):
        rp = '%7.5f' % self.real if not self.pureImag() else ''
        ip = '%7.5fj' % self.imag if not self.pureReal() else ''
        conj = '' if (
            self.pureImag() or self.pureReal() or self.imag < 0.0
        ) else '+'
        return '0.0' if (
            self.pureImag() and self.pureReal()
        ) else rp + conj + ip

    def pureImag(self):
        return abs(self.real) < 0.000005

    def pureReal(self):
        return abs(self.imag) < 0.000005


def croots(n):
    if n <= 0:
        return None
    return (Complex(cmath.rect(1, 2 * k * cmath.pi / n)) for k in range(n))
    # in pre-Python 2.6:
    #   return (Complex(cmath.exp(2j*k*cmath.pi/n)) for k in range(n))


for nr in range(2, 11):
    print(nr, list(croots(nr)))
Output:
2 [1.00000, -1.00000]
3 [1.00000, -0.50000+0.86603j, -0.50000-0.86603j]
4 [1.00000, 1.00000j, -1.00000, -1.00000j]
5 [1.00000, 0.30902+0.95106j, -0.80902+0.58779j, -0.80902-0.58779j, 0.30902-0.95106j]
6 [1.00000, 0.50000+0.86603j, -0.50000+0.86603j, -1.00000, -0.50000-0.86603j, 0.50000-0.86603j]
7 [1.00000, 0.62349+0.78183j, -0.22252+0.97493j, -0.90097+0.43388j, -0.90097-0.43388j, -0.22252-0.97493j, 0.62349-0.78183j]
8 [1.00000, 0.70711+0.70711j, 1.00000j, -0.70711+0.70711j, -1.00000, -0.70711-0.70711j, -1.00000j, 0.70711-0.70711j]
9 [1.00000, 0.76604+0.64279j, 0.17365+0.98481j, -0.50000+0.86603j, -0.93969+0.34202j, -0.93969-0.34202j, -0.50000-0.86603j, 0.17365-0.98481j, 0.76604-0.64279j]
10 [1.00000, 0.80902+0.58779j, 0.30902+0.95106j, -0.30902+0.95106j, -0.80902+0.58779j, -1.00000, -0.80902-0.58779j, -0.30902-0.95106j, 0.30902-0.95106j, 0.80902-0.58779j]

R

for(j in 2:10) {
  r <- sprintf("%d: ", j)
  for(n in 1:j) {
    r <- paste(r, format(exp(2i*pi*n/j), digits=4), ifelse(n<j, ",", ""))
  }
  print(r)
}

Output:

[1] "2:  -1+0i , 1-0i "
[1] "3:  -0.5+0.866i , -0.5-0.866i , 1-0i "
[1] "4:  0+1i , -1+0i , 0-1i , 1-0i "
[1] "5:  0.309+0.9511i , -0.809+0.5878i , -0.809-0.5878i , 0.309-0.9511i , 1-0i "
[1] "6:  0.5+0.866i , -0.5+0.866i , -1+0i , -0.5-0.866i , 0.5-0.866i , 1-0i "
[1] "7:  0.6235+0.7818i , -0.2225+0.9749i , -0.901+0.4339i , -0.901-0.4339i , -0.2225-0.9749i , 0.6235-0.7818i , 1-0i "
[1] "8:  0.7071+0.7071i , 0+1i , -0.7071+0.7071i , -1+0i , -0.7071-0.7071i , 0-1i , 0.7071-0.7071i , 1-0i "
[1] "9:  0.766+0.6428i , 0.1736+0.9848i , -0.5+0.866i , -0.9397+0.342i , -0.9397-0.342i , -0.5-0.866i , 0.1736-0.9848i , 0.766-0.6428i , 1-0i "
[1] "10:  0.809+0.5878i , 0.309+0.9511i , -0.309+0.9511i , -0.809+0.5878i , -1+0i , -0.809-0.5878i , -0.309-0.9511i , 0.309-0.9511i , 0.809-0.5878i , 1-0i "

Racket

#lang racket

(define (roots-of-unity n)
  (for/list ([k n])
    (make-polar 1 (* k (/ (* 2 pi) n)))))

Will produce a list of roots, for example:

> (for ([r (roots-of-unity 3)]) (displayln r))
1
-0.4999999999999998+0.8660254037844388i
-0.5000000000000004-0.8660254037844384i

Raku

(formerly Perl 6) Raku has a built-in function cis which returns a unitary complex number given its phase. Raku also defines the tau = 2*pi constant. Thus the k-th n-root of unity can simply be written cis(k*τ/n).

constant n = 10;
for ^n -> \k {
    say cis(k*τ/n);
}
Output:
1+0i
0.809016994374947+0.587785252292473i
0.309016994374947+0.951056516295154i
-0.309016994374947+0.951056516295154i
-0.809016994374947+0.587785252292473i
-1+1.22464679914735e-16i
-0.809016994374948-0.587785252292473i
-0.309016994374948-0.951056516295154i
0.309016994374947-0.951056516295154i
0.809016994374947-0.587785252292473i

REXX

REXX doesn't have complex arithmetic, so the (real) values of   cos   and   sin   of multiples of   2 pi   radians (divided by K) are used.

Also, REXX doesn't have the   pi   constant defined, nor a   sin   or   cos   function, so they are included below within the REXX program.

Note:   this REXX version only   displays   5   significant digits past the decimal point,   but this can be overridden by specifying the 2nd argument when invoking the REXX program.   (See the value of the REXX variable   frac,   5th line).

/*REXX program computes the  K  roots of  unity  (which usually includes complex roots).*/
numeric digits length( pi() )  -  length(.)      /*use number of decimal digits in  pi. */
parse arg n frac .                               /*get optional arguments from the C.L. */
if   n=='' |    n==","  then     n= 1            /*Not specified?  Then use the default.*/
if frac='' | frac==","  then  frac= 5            /* "      "         "   "   "     "    */
                             start= abs(n)       /*assume only one  K  is wanted.       */
if n<0                  then start= 1            /*Negative?  Then use a range of  K's. */
      do #=start  to abs(n)                      /*show unity roots  (for a range or 1).*/
      say right(# 'roots of unity', 40, "─") ' (showing' frac "fractional decimal digits)"
         do angle=0  by pi*2/#  for #            /*compute the angle for each root.     */
         Rp= adj( cos(angle) )                   /*the    real   part via COS  function.*/
         Ip= adj( sin(angle) )                   /* "  imaginary   "   "  SIN      "    */
         if Rp>=0  then Rp= ' 'Rp                /*Not neg?  Then pad with a blank char.*/
         if Ip>=0  then Ip= '+'Ip                /* "   "      "   "    "  "  plus   "  */
         if Ip =0  then say Rp                   /*Only real part? Ignore imaginary part*/
                   else say left(Rp,frac+4)Ip'i' /*display the real and imaginary part. */
         end  /*angle*/
      end     /*#*/
exit 0                                           /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
adj: parse arg x; if abs(x) < ('1e-')(digits()*9%10)  then x= 0;  return format(x,,frac)/1
pi:  pi=3.141592653589793238462643383279502884197169399375105820974944592307816; return pi
r2r: pi2= pi() + pi;     return arg(1)  //  pi2  /*reduce #radians: -2pi ─► +2pi radians*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
cos: procedure; parse arg x;   x= r2r(x);   a= abs(x);   numeric fuzz min(9, digits() - 9)
     pi1_3=pi/3;      if a=pi1_3  then return .5;        if a=pi*.5 | a=pi2  then return 0
     if a=pi  then return -1;  if a=pi1_3*2  then return -.5;   z= 1;  _= 1;     $x= x * x
       do k=2  by 2  until p=z;  p=z;  _= -_ * $x / (k*(k-1));  z= z + _;  end;  return z
/*──────────────────────────────────────────────────────────────────────────────────────*/
sin: procedure; parse arg x;   x= r2r(x);                numeric fuzz min(5, digits() - 3)
     if abs(x)=pi  then return 0;              $x= x * x;       z= x;  _= x
       do k=2  by 2  until p=z;  p=z;  _= -_ * $x / (k*(k+1));  z= z + _;  end;   return z
output   when using the input of:     5
────────────────────────5 roots of unity  (showing 5 fractional decimal digits)
 1
 0.30902 +0.95106i
-0.80902 +0.58779i
-0.80902 -0.58779i
 0.30902 -0.95106i
output   when using the input of:     10   36
───────────────────────10 roots of unity  (showing 36 fractional decimal digits)
 1
 0.809016994374947424102293417182819059 +0.587785252292473129168705954639072769i
 0.309016994374947424102293417182819059 +0.951056516295153572116439333379382143i
-0.309016994374947424102293417182819059 +0.951056516295153572116439333379382143i
-0.809016994374947424102293417182819059 +0.587785252292473129168705954639072769i
-1
-0.809016994374947424102293417182819059 -0.587785252292473129168705954639072769i
-0.309016994374947424102293417182819059 -0.951056516295153572116439333379382143i
 0.309016994374947424102293417182819059 -0.951056516295153572116439333379382143i
 0.809016994374947424102293417182819059 -0.587785252292473129168705954639072769i
output   when using the input of:     -12

(Shown at five-sixths size.)

────────────────────────1 roots of unity  (showing 5 fractional decimal digits)
 1
────────────────────────2 roots of unity  (showing 5 fractional decimal digits)
 1
-1
────────────────────────3 roots of unity  (showing 5 fractional decimal digits)
 1
-0.5     +0.86603i
-0.5     -0.86603i
────────────────────────4 roots of unity  (showing 5 fractional decimal digits)
 1
 0       +1i
-1
 0       -1i
────────────────────────5 roots of unity  (showing 5 fractional decimal digits)
 1
 0.30902 +0.95106i
-0.80902 +0.58779i
-0.80902 -0.58779i
 0.30902 -0.95106i
────────────────────────6 roots of unity  (showing 5 fractional decimal digits)
 1
 0.5     +0.86603i
-0.5     +0.86603i
-1
-0.5     -0.86603i
 0.5     -0.86603i
────────────────────────7 roots of unity  (showing 5 fractional decimal digits)
 1
 0.62349 +0.78183i
-0.22252 +0.97493i
-0.90097 +0.43388i
-0.90097 -0.43388i
-0.22252 -0.97493i
 0.62349 -0.78183i
────────────────────────8 roots of unity  (showing 5 fractional decimal digits)
 1
 0.70711 +0.70711i
 0       +1i
-0.70711 +0.70711i
-1
-0.70711 -0.70711i
 0       -1i
 0.70711 -0.70711i
────────────────────────9 roots of unity  (showing 5 fractional decimal digits)
 1
 0.76604 +0.64279i
 0.17365 +0.98481i
-0.5     +0.86603i
-0.93969 +0.34202i
-0.93969 -0.34202i
-0.5     -0.86603i
 0.17365 -0.98481i
 0.76604 -0.64279i
───────────────────────10 roots of unity  (showing 5 fractional decimal digits)
 1
 0.80902 +0.58779i
 0.30902 +0.95106i
-0.30902 +0.95106i
-0.80902 +0.58779i
-1
-0.80902 -0.58779i
-0.30902 -0.95106i
 0.30902 -0.95106i
 0.80902 -0.58779i
───────────────────────11 roots of unity  (showing 5 fractional decimal digits)
 1
 0.84125 +0.54064i
 0.41542 +0.90963i
-0.14231 +0.98982i
-0.65486 +0.75575i
-0.95949 +0.28173i
-0.95949 -0.28173i
-0.65486 -0.75575i
-0.14231 -0.98982i
 0.41542 -0.90963i
 0.84125 -0.54064i
───────────────────────12 roots of unity  (showing 5 fractional decimal digits)
 1
 0.86603 +0.5i
 0.5     +0.86603i
 0       +1i
-0.5     +0.86603i
-0.86603 +0.5i
-1
-0.86603 -0.5i
-0.5     -0.86603i
 0       -1i
 0.5     -0.86603i
 0.86603 -0.5i

Ring

decimals(4)
for n = 2 to 5
    see string(n) + " : " 
    for root = 0 to n-1
        real = cos(2*3.14 * root / n)
        imag = sin(2*3.14 * root / n)
        see "" + real + " " + imag + "i"
        if root != n-1 see ", " ok
    next
    see nl
next

RLaB

RLaB can find the n-roots of unity by solving the polynomial equation

It uses the solver polyroots. Interested user is recommended to check the rlabplus manual for details on the solver and the parameters that tune the solver performance.

// specify polynomial
>> n = 10;
>> a = zeros(1,n+1); a[1] = 1; a[n+1] = -1;
>> polyroots(a)
   radius               roots           success
>> polyroots(a).roots
   -0.309016994 + 0.951056516i
   -0.809016994 + 0.587785252i
          -1 + 5.95570041e-23i
   -0.809016994 - 0.587785252i
   -0.309016994 - 0.951056516i
    0.309016994 - 0.951056516i
    0.809016994 - 0.587785252i
                        1 + 0i
    0.809016994 + 0.587785252i
    0.309016994 + 0.951056516i

Ruby

def roots_of_unity(n)
  (0...n).map {|k| Complex.polar(1, 2 * Math::PI * k / n)}
end

p roots_of_unity(3)
Output:
 [(1+0.0i), (-0.4999999999999998+0.8660254037844387i), (-0.5000000000000004-0.8660254037844384i)]

Run BASIC

PI = 3.1415926535
FOR n = 2 TO 5
  PRINT n;":" ;
   FOR root = 0 TO n-1
     real = COS(2*PI * root / n)
     imag = SIN(2*PI * root / n)
     PRINT using("-##.#####",real);using("-##.#####",imag);"i";
     IF root <> n-1 then PRINT "," ;
  NEXT
  PRINT
NEXT

Output:

2:   1.00000   0.00000i, -1.00000   0.00000i
3:   1.00000   0.00000i, -0.50000   0.86603i, -0.50000  -0.86603i
4:   1.00000   0.00000i,  0.00000   1.00000i, -1.00000   0.00000i,  0.00000  -1.00000i
5:   1.00000   0.00000i,  0.30902   0.95106i, -0.80902   0.58779i, -0.80902  -0.58779i,  0.30902  -0.95106i

Rust

Here we demonstrate initialization from polar complex coordinate, radius 1, e^πi/n, and raising the resulting complex number to the power 2k for k in 0..n-1, which generates approximate roots (see the Mathematica answer for a nice display of exact vs approximate). This code will require adding the num crate to one's rust project, typically in Cargo.toml [dependencies] \n num="0.2.0";

use num::Complex;
fn main() {
    let n = 8;
    let z = Complex::from_polar(&1.0,&(1.0*std::f64::consts::PI/n as f64));
    for k in 0..=n-1 {
        println!("e^{:2}πi/{} ≈ {:>14.3}",2*k,n,z.powf(2.0*k as f64));
    }
}
e^ 0πi/8 ≈   1.000+0.000i
e^ 2πi/8 ≈   0.707+0.707i
e^ 4πi/8 ≈   0.000+1.000i
e^ 6πi/8 ≈  -0.707+0.707i
e^ 8πi/8 ≈  -1.000+0.000i
e^10πi/8 ≈  -0.707-0.707i
e^12πi/8 ≈  -0.000-1.000i
e^14πi/8 ≈   0.707-0.707i

Scala

Using Complex class from task Arithmetic/Complex.

def rootsOfUnity(n:Int)=for(k <- 0 until n) yield Complex.fromPolar(1.0, 2*math.Pi*k/n)

Usage:

rootsOfUnity(3) foreach println

1.0+0.0i
-0.4999999999999998+0.8660254037844387i
-0.5000000000000004-0.8660254037844385i

Scheme

(define pi (* 4 (atan 1)))

(do ((n 2 (+ n 1)))
    ((> n 10))
    (display n)
    (do ((k 0 (+ k 1)))
        ((>= k n))
        (display " ")
        (display (make-polar 1 (* 2 pi (/ k n)))))
    (newline))

Seed7

$ include "seed7_05.s7i";
  include "float.s7i";
  include "complex.s7i";

const proc: main is func
  local
    var integer: n is 0;
    var integer: k is 0;
  begin
    for n range 2 to 10 do
      write(n lpad 2 <& ": ");
      for k range 0 to pred(n) do
        write(polar(1.0, 2.0 * PI * flt(k) / flt(n)) digits 4 lpad 15 <& " ");
      end for;
      writeln;
    end for;
  end func;

Output:

2:  1.0000+0.0000i -1.0000+0.0000i
 3:  1.0000+0.0000i -0.5000+0.8660i -0.5000-0.8660i
 4:  1.0000+0.0000i  0.0000+1.0000i -1.0000+0.0000i  0.0000-1.0000i
 5:  1.0000+0.0000i  0.3090+0.9511i -0.8090+0.5878i -0.8090-0.5878i  0.3090-0.9511i
 6:  1.0000+0.0000i  0.5000+0.8660i -0.5000+0.8660i -1.0000+0.0000i -0.5000-0.8660i  0.5000-0.8660i
 7:  1.0000+0.0000i  0.6235+0.7818i -0.2225+0.9749i -0.9010+0.4339i -0.9010-0.4339i -0.2225-0.9749i  0.6235-0.7818i
 8:  1.0000+0.0000i  0.7071+0.7071i  0.0000+1.0000i -0.7071+0.7071i -1.0000+0.0000i -0.7071-0.7071i  0.0000-1.0000i  0.7071-0.7071i
 9:  1.0000+0.0000i  0.7660+0.6428i  0.1736+0.9848i -0.5000+0.8660i -0.9397+0.3420i -0.9397-0.3420i -0.5000-0.8660i  0.1736-0.9848i  0.7660-0.6428i
10:  1.0000+0.0000i  0.8090+0.5878i  0.3090+0.9511i -0.3090+0.9511i -0.8090+0.5878i -1.0000+0.0000i -0.8090-0.5878i -0.3090-0.9511i  0.3090-0.9511i  0.8090-0.5878i

Sidef

Translation of: Raku
func roots_of_unity(n) {
    n.of { |j|
        exp(2i * Num.pi / n * j)
    }
}

roots_of_unity(5).each { |c|
    printf("%+.5f%+.5fi\n", c.reals)
}
Output:
+1.00000+0.00000i
+0.30902+0.95106i
-0.80902+0.58779i
-0.80902-0.58779i
+0.30902-0.95106i

Sparkling

function unity_roots(n) {
	// nth-root(1) = cos(2 * k * pi / n) + i * sin(2 * k * pi / n)
	return map(range(n), function(idx, k) {
		return {
			"re": cos(2 * k * M_PI / n),
			"im": sin(2 * k * M_PI / n)
		};
	});
}

// pirnt 6th roots of unity
foreach(unity_roots(6), function(k, v) {
	printf("%.3f%+.3fi\n", v.re, v.im);
});

Stata

n=7
exp(2i*pi()/n*(0::n-1))
                               1
    +-----------------------------+
  1 |                          1  |
  2 |   .623489802 + .781831482i  |
  3 |  -.222520934 + .974927912i  |
  4 |  -.900968868 + .433883739i  |
  5 |  -.900968868 - .433883739i  |
  6 |  -.222520934 - .974927912i  |
  7 |   .623489802 - .781831482i  |
    +-----------------------------+

Tcl

package require Tcl 8.5
namespace import tcl::mathfunc::*

set pi 3.14159265
for {set n 2} {$n <= 10} {incr n} {
    set angle 0.0
    set row $n:
    for {set i 1} {$i <= $n} {incr i} {
        lappend row [format %5.4f%+5.4fi [cos $angle] [sin $angle]]
        set angle [expr {$angle + 2*$pi/$n}]
    }
    puts $row
}

TI-89 BASIC

cZeros(x^n - 1, x)

For n=3 in exact mode, the results are

{-1/2+√(3)/2*i, -1/2-√(3)/2*i, 1}

Ursala

The roots function takes a number n to the nth root of -1, squares it, and iteratively makes a list of its first n powers (oblivious to roundoff error). Complex functions cpow and mul are used, which are called from the host system's standard C library.

#import std
#import nat
#import flo

roots = ~&htxPC+ c..mul:-0^*DlSiiDlStK9\iota c..mul@iiX+ c..cpow/-1.+ div/1.+ float

#cast %jLL

tests = roots* <1,2,3,4,5,6>

The output is a list of lists of complex numbers.

<
   <1.000e+00-2.449e-16j>,
   <
      1.000e+00-2.449e-16j,
      -1.000e+00+1.225e-16j>,
   <
      1.000e+00-8.327e-16j,
      -5.000e-01+8.660e-01j,
      -5.000e-01-8.660e-01j>,
   <
      1.000e+00-8.882e-16j,
      2.220e-16+1.000e+00j,
      -1.000e+00+4.441e-16j,
      -6.661e-16-1.000e+00j>,
   <
      1.000e+00-5.551e-17j,
      3.090e-01+9.511e-01j,
      -8.090e-01+5.878e-01j,
      -8.090e-01-5.878e-01j,
      3.090e-01-9.511e-01j>,
   <
      1.000e+00-1.221e-15j,
      5.000e-01+8.660e-01j,
      -5.000e-01+8.660e-01j,
      -1.000e+00+6.106e-16j,
      -5.000e-01-8.660e-01j,
      5.000e-01-8.660e-01j>>

VBA

Public Sub roots_of_unity()
    For n = 2 To 9
        Debug.Print n; "th roots of 1:"
        For r00t = 0 To n - 1
            Debug.Print "   Root "; r00t & ": "; WorksheetFunction.Complex(Cos(2 * WorksheetFunction.Pi() * r00t / n), _
                Sin(2 * WorksheetFunction.Pi() * r00t / n))
        Next r00t
        Debug.Print
    Next n
End Sub
Output:
 2 th roots of 1:
   Root 0: 1
   Root 1: -1+1.22460635382238E-16i

 3 th roots of 1:
   Root 0: 1
   Root 1: -0.5+0.866025403784439i
   Root 2: -0.5-0.866025403784438i

 4 th roots of 1:
   Root 0: 1
   Root 1: 6.12303176911189E-17+i
   Root 2: -1+1.22460635382238E-16i
   Root 3: -1.83690953073357E-16-i

 5 th roots of 1:
   Root 0: 1
   Root 1: 0.309016994374947+0.951056516295154i
   Root 2: -0.809016994374947+0.587785252292473i
   Root 3: -0.809016994374948-0.587785252292473i
   Root 4: 0.309016994374947-0.951056516295154i

 6 th roots of 1:
   Root 0: 1
   Root 1: 0.5+0.866025403784439i
   Root 2: -0.5+0.866025403784439i
   Root 3: -1+1.22460635382238E-16i
   Root 4: -0.5-0.866025403784438i
   Root 5: 0.5-0.866025403784439i

 7 th roots of 1:
   Root 0: 1
   Root 1: 0.623489801858734+0.78183148246803i
   Root 2: -0.222520933956314+0.974927912181824i
   Root 3: -0.900968867902419+0.433883739117558i
   Root 4: -0.900968867902419-0.433883739117558i
   Root 5: -0.222520933956315-0.974927912181824i
   Root 6: 0.623489801858733-0.78183148246803i

 8 th roots of 1:
   Root 0: 1
   Root 1: 0.707106781186548+0.707106781186547i
   Root 2: 6.12303176911189E-17+i
   Root 3: -0.707106781186547+0.707106781186548i
   Root 4: -1+1.22460635382238E-16i
   Root 5: -0.707106781186548-0.707106781186547i
   Root 6: -1.83690953073357E-16-i
   Root 7: 0.707106781186547-0.707106781186548i

 9 th roots of 1:
   Root 0: 1
   Root 1: 0.766044443118978+0.642787609686539i
   Root 2: 0.17364817766693+0.984807753012208i
   Root 3: -0.5+0.866025403784439i
   Root 4: -0.939692620785908+0.342020143325669i
   Root 5: -0.939692620785908-0.342020143325669i
   Root 6: -0.5-0.866025403784438i
   Root 7: 0.17364817766693-0.984807753012208i
   Root 8: 0.766044443118978-0.64278760968654i

Wren

Translation of: Go
Library: Wren-complex
Library: Wren-fmt
import "/complex" for Complex
import "/fmt" for Fmt

var roots = Fn.new { |n|
    var r = List.filled(n, null)
    for (i in 0...n) r[i] = Complex.fromPolar(1, 2 * Num.pi * i / n)
    return r
}

for (n in 2..5) {
    Fmt.print("$d roots of 1:", n)
    for (r in roots.call(n)) Fmt.print("  $17.14z", r)
}
Output:
2 roots of 1:
   1.00000000000000 +  0.00000000000000i
  -1.00000000000000 +  0.00000000000000i
3 roots of 1:
   1.00000000000000 +  0.00000000000000i
  -0.50000000000000 +  0.86602540378444i
  -0.50000000000000 -  0.86602540378444i
4 roots of 1:
   1.00000000000000 +  0.00000000000000i
   0.00000000000000 +  1.00000000000000i
  -1.00000000000000 +  0.00000000000000i
  -0.00000000000000 -  1.00000000000000i
5 roots of 1:
   1.00000000000000 +  0.00000000000000i
   0.30901699437495 +  0.95105651629515i
  -0.80901699437495 +  0.58778525229247i
  -0.80901699437495 -  0.58778525229247i
   0.30901699437495 -  0.95105651629515i

zkl

Translation of: C
PI2:=(0.0).pi*2;
foreach n,i in ([1..9],n){
   c:=s:=0;
   if(not i)         c =  1;
   else if(n==4*i)   s =  1;
   else if(n==2*i)   c = -1;
   else if(3*n==4*i) s = -1;
   else a,c,s:=PI2*i/n,a.cos(),a.sin();
 
   if(c) print("%.2g".fmt(c));
   print( (s==1 and "i") or (s==-1 and "-i" or (s and "%+.2gi" or"")).fmt(s));
   print( (i==n-1) and "\n" or ",  ");
}
Output:
1
1,  -1
1,  -0.5+0.87i,  -0.5-0.87i
1,  i,  -1,  -i
1,  0.31+0.95i,  -0.81+0.59i,  -0.81-0.59i,  0.31-0.95i
1,  0.5+0.87i,  -0.5+0.87i,  -1,  -0.5-0.87i,  0.5-0.87i
1,  0.62+0.78i,  -0.22+0.97i,  -0.9+0.43i,  -0.9-0.43i,  -0.22-0.97i,  0.62-0.78i
1,  0.71+0.71i,  i,  -0.71+0.71i,  -1,  -0.71-0.71i,  -i,  0.71-0.71i
1,  0.77+0.64i,  0.17+0.98i,  -0.5+0.87i,  -0.94+0.34i,  -0.94-0.34i,  -0.5-0.87i,  0.17-0.98i,  0.77-0.64i