Roots of a cubic polynomial: Difference between revisions

From Rosetta Code
Content added Content deleted
(→‎{{header|Phix}}: added translation of raku)
m (→‎{{trans|Wren}}: updated to match)
Line 50: Line 50:
function matrix_determinant(sequence m)
function matrix_determinant(sequence m)
// Returns the determinant of the current instance
// Returns the determinant of the current instance
// provided it's square, using Laplace expansion.
// provieded it's square, using Laplace expansion.
integer l = length(m)
integer l = length(m)
if l=1 then return m[1,1] end if
if l=1 then return m[1,1] end if
Line 74: Line 74:
end for
end for
end for
end for
return res
end function

function eval_poly(sequence coefs, atom x)
atom res = coefs[1]
for i=2 to length(coefs) do res = res*x + coefs[i] end for
return res
return res
end function
end function
Line 85: Line 79:
function diff_poly(sequence coefs)
function diff_poly(sequence coefs)
// Returns the coefficients of a polynomial following differentiation.
// Returns the coefficients of a polynomial following differentiation.
// Polynomials are represented as described in 'eval_poly' above(!).
// Polynomials are represented as described in 'eval_poly' below.
integer c = length(coefs)-1
integer c = length(coefs)-1
if c=0 then return {0} end if
if c=0 then return {0} end if
Line 136: Line 130:
base -= 1
base -= 1
end while
end while
return res
end function

include complex.e

// assumes real coefficients, highest to lowest order
function quadratic(atom a, b, c)
atom d = b*b - 4*a*c
if d=0 then // single real root
atom root = -b/(a*2)
return {root, root}
elsif d>0 then // two real roots
atom sr = sqrt(d)
d = iff(b<0 ? sr - b : -sr - b)
return {d/(2*a), 2*c/d}
end if
// two complex roots
atom den = 1/(2*a)
complex t1 = complex_new(-b*den, 0),
t2 = complex_new(0, sqrt(-d)*den)
return {complex_add(t1,t2), complex_sub(t1,t2)}
end function

// same assumption as quadratic but 'x' can be real or complex.
function eval_poly(sequence coefs, object x)
object res = coefs[1]
for i=2 to length(coefs) do
if complex(x) then
res = complex_add(complex_mul(res,x),coefs[i])
else
res = res*x + coefs[i]
end if
end for
return res
return res
end function
end function
Line 143: Line 170:
string r = ""
string r = ""
for t=length(si) to 1 by -1 do
for t=length(si) to 1 by -1 do
integer sit = si[t]
atom sit = si[t]
if sit!=0 then
if sit!=0 then
if sit=1 and t>1 then
if sit=1 and t>1 then
Line 154: Line 181:
sit = abs(sit)
sit = abs(sit)
end if
end if
r &= sprintf("%d",sit)
r &= sprintf("%g",sit)
end if
end if
r &= iff(t>1?"x"&iff(t>2?sprintf("^%d",t-1):""):"")
r &= iff(t>1?"x"&iff(t>2?sprintf("^%d",t-1):""):"")
Line 169: Line 196:
matrix_trace(cofactors(m)),
matrix_trace(cofactors(m)),
-matrix_determinant(m)},
-matrix_determinant(m)},
roots = repeat(0,3),
roots = {},
errs = repeat(0,3)
errs = {}
// find first root
// find first root
roots[1] = root_poly(cp)
roots &= root_poly(cp)
errs[1] = eval_poly(cp, roots[1])
errs &= eval_poly(cp, roots[1])
// divide out to get quadratic
// divide out to get quadratic
// aside: no idea why reverse helps...
sequence den = {-roots[1],1},
sequence den = {-roots[1],1},
num = poly_div(reverse(cp),den)
qdr = poly_div(reverse(cp),den)
// find second root
// find second and third roots
roots[2] = root_poly(num)
roots &= quadratic(qdr[1],qdr[2],qdr[3])
errs[2] = eval_poly(cp, roots[2])
errs = append(errs,eval_poly(cp, roots[2]))
errs = append(errs,eval_poly(cp, roots[3]))
// divide out to get linear
den = {-roots[2], 1}
num = reverse(poly_div(reverse(num),den))
// find third root
roots[3] = -num[1]
errs[3] = eval_poly(cp, roots[3])
string pm = ppf(m,{pp_Nest,1,pp_Indent,8,pp_IntFmt,"%2d"})
string pm = ppf(m,{pp_Nest,1,pp_Indent,8,pp_IntFmt,"%2d"})
return {pm, poly(reverse(cp)), roots, errs}
return {pm, poly(reverse(cp)), roots, errs}
end function
end function


constant v = 1/sqrt(2)
constant tests = {{{ 1, -1, 0},
constant tests = {{{ 1, -1, 0},
{ 0, 1, 1},
{ 0, 1, 1},
Line 196: Line 218:
{{-2, -4, 2},
{{-2, -4, 2},
{-2, 1, 2},
{-2, 1, 2},
{ 4, 2, 5}}}
{ 4, 2, 5}},
{{ 1, -1, 0},
{ 0, 1, -1},
{ 0, 0, 1}},
{{ 2, 0, 0},
{ 0, -1, 0},
{ 0, 0, -1}},
{{ 2, 0, 0},
{ 0, 3, 4},
{ 0, 4, 9}},
{{ 1, 0, 0},
{ 0, v, -v},
{ 0, v, v}}}
constant fmt = """
constant fmt = """
Matrix: %s
Matrix: %s
Line 224: Line 258:


characteristic polynomial: x^3 - 4x^2 - 27x + 90
characteristic polynomial: x^3 - 4x^2 - 27x + 90
eigenvalues: {3,-5,6}
eigenvalues: {3,6,-5}
errors: {0,0,0}
errors: {0,0,0}

Matrix: {{ 1,-1, 0},
{ 0, 1,-1},
{ 0, 0, 1}}

characteristic polynomial: x^3 - 3x^2 + 3x - 1
eigenvalues: {1,1,1}
errors: {0,0,0}

Matrix: {{ 2, 0, 0},
{ 0,-1, 0},
{ 0, 0,-1}}

characteristic polynomial: x^3 - 3x - 2
eigenvalues: {-1,2,-1}
errors: {0,0,0}

Matrix: {{ 2, 0, 0},
{ 0, 3, 4},
{ 0, 4, 9}}

characteristic polynomial: x^3 - 14x^2 + 35x - 22
eigenvalues: {1,11,2}
errors: {0,0,0}

Matrix: {{ 1, 0, 0},
{ 0,0.7071067812,-0.7071067812},
{ 0,0.7071067812,0.7071067812}}

characteristic polynomial: x^3 - 2.41421x^2 + 2.41421x - 1
eigenvalues: {1.0,{0.7071067812,0.7071067812},{0.7071067812,-0.7071067812}}
errors: {2.22044605e-16,{2.22044605e-16,-2.775557561e-16},{2.22044605e-16,2.775557561e-16}}
</pre>
</pre>



Revision as of 08:28, 28 November 2023

Roots of a cubic polynomial is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

Find all eigenvalues of a real 3x3 matrix and estimate their errors.

See Wikipedia Cubic equation. [1] Example.

a*x**3 + b*x**2 + c*x + d = 0

matrix: [[1,-1,0], [0,1,-1],[0,0,1]]

polynomial: [a,b,c,d] =[1, -3,+3, -1]

roots: [1,1,1]


matrix: [[1,-1,0], [0,1,-1],[0,0,1]]

polynomial: [a,b,c,d] =[1, -3,+3, -1]

roots: [1,1,1]


Phix

Translation of: Wren

Note the seven functions matrix_trace() ... root_poly() are straightforward translations of code from matrix.wren and math.wren, and are not tested beyond matching the output here. There is also some rather suspicious use of reverse() in eigenvalues(), which kinda brute-forces it to work.

with javascript_semantics
function matrix_trace(sequence m)
    atom res = 0
    for i=1 to length(m) do
        res += m[i,i]
    end for
    return res
end function

function matrix_minor(sequence m, integer x, y)
    integer l = length(m)-1
    sequence res = repeat(repeat(0,l),l)
    for i=1 to l do
        integer ri = i+(i>=x)
        for j=1 to l do
            integer rj = j+(j>=y)
            res[i,j] = m[ri,rj]
        end for
    end for
    return res
end function

function matrix_determinant(sequence m)
    // Returns the determinant of the current instance 
    // provieded it's square, using Laplace expansion.
    integer l = length(m)
    if l=1 then return m[1,1] end if
    if l=2 then return m[2,2]*m[1,1]-m[1,2]*m[2,1] end if
    integer sgn = 1
    atom det = 0
    for i=1 to l do
        sequence mm = matrix_minor(m,1,i)
        det += sgn*m[1,i]*matrix_determinant(mm)
        sgn = -sgn
    end for
    return det
end function

function cofactors(sequence m)
    integer l = length(m)
    sequence res = repeat(repeat(0,l),l)
    for i=1 to l do
        for j=1 to l do
            sequence mm = matrix_minor(m,i,j)
            atom d = matrix_determinant(mm)
            res[i,j] = d*power(-1,i+j)
        end for
    end for
    return res
end function

function diff_poly(sequence coefs)
    // Returns the coefficients of a polynomial following differentiation.
    // Polynomials are represented as described in 'eval_poly' below.
    integer c = length(coefs)-1
    if c=0 then return {0} end if
    sequence deriv = repeat(0,c)
    for i=1 to c do deriv[i] = (c-i+1) * coefs[i] end for
    return deriv
end function

function root_poly(sequence coefs, atom guess=0.001, tol=1e-15, maxIter=100, mult=1)
    integer deg = length(coefs)-1
    if deg=0 then return null end if
    if deg=1 then return -coefs[2]/coefs[1] end if
    if deg=2 and coefs[2]*coefs[2] - 4*coefs[1]*coefs[3] < 0 then return null end if
    if eval_poly(coefs, 0)=0 then return 0 end if
    sequence deriv = diff_poly(coefs)
    atom eps = 0.001,
          x0 = guess
    for iter=1 to maxIter do
        atom den = eval_poly(deriv, x0)
        if den=0 then
            x0 = iff(x0>=0 ? x0 + eps : x0 - eps)
        else
            atom num = eval_poly(coefs, x0),
                  x1 = x0 - num/den * mult
            if abs(x1-x0)<=tol then
                atom r = round(x1)
                if abs(r-x1)<=eps and eval_poly(coefs, r)=0 then return r end if
                return x1
            end if
            x0 = x1
        end if
    end for
    x0 = round(x0)
    if eval_poly(coefs, x0)=0 then return x0 end if
    return null
end function

function poly_div(sequence num,den)
    sequence curr = trim_tail(num,0),
            right = trim_tail(den,0),
              res = {}
    integer base = length(curr)-length(right)
    while base>=0 do
        atom r = curr[-1] / right[-1]
        res &= r
        curr = curr[1..-2]
        for i=1 to length(right)-1 do
            curr[base+i] -= r * right[i]
        end for
        base -= 1
    end while
    return res
end function

include complex.e

// assumes real coefficients, highest to lowest order
function quadratic(atom a, b, c)
    atom d = b*b - 4*a*c
    if d=0 then                 // single real root
        atom root = -b/(a*2)
        return {root, root}
    elsif d>0 then              // two real roots
        atom sr = sqrt(d)
        d = iff(b<0 ? sr - b : -sr - b)
        return {d/(2*a), 2*c/d}
    end if
    // two complex roots
    atom den = 1/(2*a)
    complex t1 = complex_new(-b*den, 0),
            t2 = complex_new(0, sqrt(-d)*den)
    return {complex_add(t1,t2), complex_sub(t1,t2)}
end function

// same assumption as quadratic but 'x' can be real or complex.
function eval_poly(sequence coefs, object x)
    object res = coefs[1]
    for i=2 to length(coefs) do
        if complex(x) then
            res = complex_add(complex_mul(res,x),coefs[i])
        else
            res = res*x + coefs[i]
        end if
    end for
    return res
end function

function poly(sequence si)
    -- display helper
    string r = ""
    for t=length(si) to 1 by -1 do
        atom sit = si[t]
        if sit!=0 then
            if sit=1 and t>1 then
                r &= iff(r=""? "":" + ")
            elsif sit=-1 and t>1 then
                r &= iff(r=""?"-":" - ")
            else
                if r!="" then
                    r &= iff(sit<0?" - ":" + ")
                    sit = abs(sit)
                end if
                r &= sprintf("%g",sit)
            end if
            r &= iff(t>1?"x"&iff(t>2?sprintf("^%d",t-1):""):"")
        end if
    end for
    if r="" then r="0" end if
    return r
end function

function eigenvalues(sequence m)
    // find the characteristic polynomial
    sequence cp = {1,
                  -matrix_trace(m),
                   matrix_trace(cofactors(m)),
                  -matrix_determinant(m)},
          roots = {},
           errs = {}
    // find first root
    roots &= root_poly(cp)
    errs &= eval_poly(cp, roots[1])
    // divide out to get quadratic
    sequence den = {-roots[1],1},
             qdr = poly_div(reverse(cp),den)
    // find second and third roots
    roots &= quadratic(qdr[1],qdr[2],qdr[3])
    errs = append(errs,eval_poly(cp, roots[2]))
    errs = append(errs,eval_poly(cp, roots[3]))
    string pm = ppf(m,{pp_Nest,1,pp_Indent,8,pp_IntFmt,"%2d"})
    return {pm, poly(reverse(cp)), roots, errs}
end function

constant v = 1/sqrt(2)
constant tests = {{{ 1, -1,  0},
                   { 0,  1,  1},
                   { 0,  0,  1}},
                  {{-2, -4,  2},
                   {-2,  1,  2},
                   { 4,  2,  5}},
                  {{ 1, -1,  0},
                   { 0,  1, -1},
                   { 0,  0,  1}},
                  {{ 2,  0,  0},
                   { 0, -1,  0},
                   { 0,  0, -1}},
                  {{ 2,  0,  0},
                   { 0,  3,  4},
                   { 0,  4,  9}},
                  {{ 1,  0,  0},
                   { 0,  v, -v},
                   { 0,  v,  v}}}
constant fmt = """
Matrix: %s
characteristic polynomial: %s
eigenvalues: %v
errors: %v

"""

for m in tests do
    printf(1,fmt,eigenvalues(m))
end for
Output:
Matrix: {{ 1,-1, 0},
         { 0, 1, 1},
         { 0, 0, 1}}

characteristic polynomial: x^3 - 3x^2 + 3x - 1
eigenvalues: {1,1,1}
errors: {0,0,0}

Matrix: {{-2,-4, 2},
         {-2, 1, 2},
         { 4, 2, 5}}

characteristic polynomial: x^3 - 4x^2 - 27x + 90
eigenvalues: {3,6,-5}
errors: {0,0,0}

Matrix: {{ 1,-1, 0},
         { 0, 1,-1},
         { 0, 0, 1}}

characteristic polynomial: x^3 - 3x^2 + 3x - 1
eigenvalues: {1,1,1}
errors: {0,0,0}

Matrix: {{ 2, 0, 0},
         { 0,-1, 0},
         { 0, 0,-1}}

characteristic polynomial: x^3 - 3x - 2
eigenvalues: {-1,2,-1}
errors: {0,0,0}

Matrix: {{ 2, 0, 0},
         { 0, 3, 4},
         { 0, 4, 9}}

characteristic polynomial: x^3 - 14x^2 + 35x - 22
eigenvalues: {1,11,2}
errors: {0,0,0}

Matrix: {{ 1, 0, 0},
         { 0,0.7071067812,-0.7071067812},
         { 0,0.7071067812,0.7071067812}}

characteristic polynomial: x^3 - 2.41421x^2 + 2.41421x - 1
eigenvalues: {1.0,{0.7071067812,0.7071067812},{0.7071067812,-0.7071067812}}
errors: {2.22044605e-16,{2.22044605e-16,-2.775557561e-16},{2.22044605e-16,2.775557561e-16}}

Translation of: Raku

Note the "wrentest" gives eigenvalues of {6,3,-5}...

with javascript_semantics

function polynomial(sequence t)
    atom a = 1,                                 // create characteristic polynomial
         b = -(t[1,1] + t[2,2] + t[3,3]),                   // = -trace
         c = ( t[1,1]*t[2,2] + t[2,2]*t[3,3] + t[3,3]*t[1,1] )
             -(t[2,3]*t[3,2] + t[3,1]*t[1,3] + t[1,2]*t[2,1] ),
         d = - t[1,1] * t[2,2] * t[3,3]
             - t[1,2] * t[2,3] * t[3,1]
             - t[1,3] * t[2,1] * t[3,2]
             + t[1,1] * t[3,2] * t[2,3]
             + t[1,2] * t[2,1] * t[3,3]
             + t[1,3] * t[2,2] * t[3,1];                    // = -determinant
    return {a, b, c, d}
end function

function reduction(sequence poly)
    atom {a, b, c, d} = poly,
         b3 = power(b,3),
         b2 = power(b,2),
         a3 = power(a,3),
         a2 = power(a,2),
         delta = 18*a*b*c*d - 4*b3*d + b2*power(c,2) - 4*a*power(c,3) - 27*a2*power(d,2),
         p = (3*a*c - b2) / (3*a2),
         q = (2*b3 - 9*a*b*c + 27*a2*d) / (27*a3),
         d0 = b2 - 3*a*c,
         d1 = 2*b3 - 9*a*b*c + 27*a2*d;
    return { delta, p, q, d0, d1 }
end function

include complex.e

function horner(object x, atom a, b, c, d ) // cubic polynomial using horner's method
    if complex(x) then
        complexn r = 0
        for f in {a,b,c,d} do
            r = complex_add(complex_mul(r,x),f)
        end for
        return r
    end if
    return ((a*x + b)*x + c)*x + d
end function

function solution(atom a, b, /*c*/, /*d*/, delta, p, q, d0, d1)
    sequence x
    if abs(delta)<1e-12 then        // multiple real roots
        if abs(p)<1e-12 then        // triple equal real roots
            x = {0,0,0}
        else                        // double real root
            atom x23 = -3*q/(2*p)
            x = {3*q/p, x23, x23}
        end if
    elsif delta > 0 then            // three distinct real roots
        x = {}
        for i=1 to 3 do
            x &= 2*sqrt(-p/3) * cos(arccos(sqrt(-3/p)*3*q/(2*p))/3 - 2*PI*(i-1)/3)
        end for
    else // delta < 0               // one real root and two complex conjugate roots
        complexn g
        if d0=0 and d1<0 then
            g = -power(-d1,1/3)
        elsif d0<0 and d1=0 then
            g = -sqrt(-d0)
        else
            complex s = complex_sqrt(power(d1,2) - 4*power(d0,3)),
                   g1 = complex_power(complex_div(complex_add(d1,s),2),1/3),
                   g2 = complex_power(complex_div(complex_sub(d1,s),2),1/3)
            g = iff(g1={0,0} ? g2 : g1)
        end if
        complex z = complex_mul(g,complex_div(complex_add(-1,complex_sqrt(-3)),2)),
                x1 = complex_mul(-1/3,complex_add(g,complex_div(d0,g))),
                x2 = complex_mul(-1/3,complex_add(z,complex_div(d0,z)))
        x = {x1,x2,complex_conjugate(x2)}
        for i=1 to 3 do
            x[i] = complex_sub(x[i],(1/3)*b/a)
        end for
        return x
    end if
    for i=1 to 3 do
        x[i] -= (1/3)*b/a
    end for
    return x
end function

function spectrum(sequence m)
    sequence poly = polynomial(m)
    atom {a, b, c, d} = poly,
         {delta, p, q, d0, d1} = reduction(poly);
    sequence s = solution(a, b, c, d, delta, p, q, d0, d1 ),
             e = apply(true,horner,{s,a,b,c,d})
    return {s, e}
end function

constant r = 1/sqrt(2),
         m = {{"triple",   {{ 1, -1,  0}, { 0,  1, -1}, { 0,  0,  1}}},
              {"wrentest", {{-2, -4,  2}, {-2,  1,  2}, { 4,  2,  5}}},
              {"double",   {{ 2,  0,  0}, { 0, -1,  0}, { 0,  0, -1}}},
              {"distinct", {{ 2,  0,  0}, { 0,  3,  4}, { 0,  4,  9}}},
              {"rotation", {{ 1,  0,  0}, { 0,  r, -r}, { 0,  r,  r}}}}
for i,pair in m do
    {string desc, sequence t} = pair
    printf(1," %d:  %8s matrix: %v\n",{i,desc,t})
    sequence poly = polynomial(t),
           reduct = reduction(poly),
            {s,e} = spectrum(t)
    printf(1,"          polynomial: %v\n",{poly})
    printf(1,"           reduction: %v\n",{reduct})
    printf(1,"         eigenvalues: %v\n",{s})
    printf(1,"              errors: %v\n",{e})
end for
Output:
 1:    triple matrix: {{1,-1,0},{0,1,-1},{0,0,1}}
          polynomial: {1,-3,3,-1}
           reduction: {0,0,0,0,0}
         eigenvalues: {1,1,1}
              errors: {0,0,0}
 2:  wrentest matrix: {{-2,-4,2},{-2,1,2},{4,2,5}}
          polynomial: {1,-4,-27,90}
           reduction: {69696,-32.33333333,49.25925926,97,1330}
         eigenvalues: {6,3.0,-5.0}
              errors: {0,-4.263256414e-14,-1.705302566e-13}
 3:    double matrix: {{2,0,0},{0,-1,0},{0,0,-1}}
          polynomial: {1,0,-3,-2}
           reduction: {0,-3,-2,9,-54}
         eigenvalues: {2,-1,-1}
              errors: {0,0,0}
 4:  distinct matrix: {{2,0,0},{0,3,4},{0,4,9}}
          polynomial: {1,-14,35,-22}
           reduction: {8100,-30.33333333,-61.92592593,91,-1672}
         eigenvalues: {11,2.0,1.0}
              errors: {0,1.065814103e-14,-1.77635684e-14}
 5:  rotation matrix: {{1,0,0},{0,0.7071067812,-0.7071067812},{0,0.7071067812,0.7071067812}}
          polynomial: {1,-2.414213562,2.414213562,-1.0}
           reduction: {-0.686291501,0.4714045208,-0.0994922778,-1.414213562,-2.686291501}
         eigenvalues: {{1.0,0},{0.7071067812,-0.7071067812},{0.7071067812,0.7071067812}}
              errors: {{-2.22044605e-16,0},{-3.330669073e-16,-3.885780587e-16},{-3.330669073e-16,3.885780587e-16}}

Complex results on the last entry are just shown as {real,imag} pairs.

Raku

(as recovered from pdf uploads)

my \r = 1/sqrt(2);
my Pair @m = [[
      triple       => [[ 1, -1,  0], [ 0,  1, -1], [ 0,  0,  1] ],
      double       => [[ 2,  0,  0], [ 0, -1,  0], [ 0,  0, -1] ],
      distinct     => [[ 2,  0,  0], [ 0,  3,  4], [ 0,  4,  9] ],
      rotation     => [[ 1,  0,  0], [ 0,  r, -r], [ 0,  r,  r] ],
   ]];
for ^@m {
   my Pair $pair = @m[$_];                  print "\n  {1+$_}:  {$pair.key} ";
   my @t = $pair.value.[];                  say 'matrix: 	  ', @t.raku;
   my @poly = polynomial( @t );             say 'polynomial:  ', @poly.raku;
   my @reduction = reduction( |@poly );     say 'reduction :  ', @reduction.raku;
   my ( $s, $e ) = spectrum( @t );          say 'eigenvalues: ', @$s.raku;
                                            say 'errors: 	  ', @$e.raku;
}
sub horner( \x, \a, \b, \c, \d ) {          # cubic polynomial using horner's method
    ((a * x + b) * x + c) * x + d
}
sub polynomial( @t ) {
    my \a = 1;                                  # create characteristic polynomial
    my \b = -(@t[0;0] + @t[1;1] + @t[2;2]);                     # = -trace
    my \c = ( @t[0;0]*@t[1;1] + @t[1;1]*@t[2;2] + @t[2;2]*@t[0;0] )
            -(@t[1;2]*@t[2;1] + @t[2;0]*@t[0;2] + @t[0;1]*@t[1;0] );
    my \d = - @t[0;0] * @t[1;1] * @t[2;2]
            - @t[0;1] * @t[1;2] * @t[2;0]
            - @t[0;2] * @t[1;0] * @t[2;1]
            + @t[0;0] * @t[2;1] * @t[1;2]
            + @t[0;1] * @t[1;0] * @t[2;2]
            + @t[0;2] * @t[1;1] * @t[2;0];                  # = -determinant
    return [ a, b, c, d]>>.narrow;
}
sub reduction( \a, \b, \c, \d ) {
    my \delta = 18 * a * b * c * d - 4 * b **3 * d + b**2 * c**2 - 4 * a * c**3 - 27 * a**2 * d**2;
    my \p = (3 * a * c - b * b) / (3 * a * a);
    my \q = (2 * b ** 3 - 9 * a * b * c + 27 * a ** 2 * d) / (27 * a ** 3);
    my \d0 = b*b - 3 * a * c;
    my \d1 = 2*b**3 - 9*a*b*c + 27 * a**2 * d;
    return [ delta, p, q, d0, d1 ];
}
sub solution( \a, \b, \c, \d, \delta, \p, \q, \d0, \d1 ) {
    my @x;
    if abs(delta) =~= 0 {           # say " multiple real roots ", p.raku ;
        if abs(p) =~= 0 {           # say " triple equal real roots: ";;
            @x[$_] = 0 for ^3;
        }
        else {                      # say ' double real root:';
            @x[0] = 3 * q / p;
            @x[1] = -3 * q /(2 * p);
            @x[2] = @x[1];
        }
    }
    elsif delta > 0 {               # say " three distinct real roots:";
        @x[$_] = 2*sqrt(-p/3) * cos( acos( sqrt( -3 / p ) * 3 * q /( 2 * p ) )/3 - 2*pi * $_/ 3 ) for ^3;
    }
    else {      # delta < 0;        say " one real root and two complex conjugate roots:";
        my $g = do {
            if d0 == 0 and d1 < 0 {
                -(-d1)**;
            }
            elsif d0 < 0 and d1 == 0 {
                -sqrt(-d0);
            }
            else {
                my \s = Complex( d1**2 - 4 * d0**3 ).sqrt;
                my \g1 = (( d1 + s )/2)**;
                my \g2 = (( d1 - s )/2)**;
                g1 == 0 ?? g2 !! g1
            }
        }
        my Complex $z = $g * ( -1 + Complex(-3).sqrt )/2;
        @x[0] = - * ( $g + d0 / $g );
        @x[1] = - * ( $z + d0 / $z );
        @x[2] = @x[1].conj;
    }
    @x[$_] -=  * b / a for ^3;
    return @x;
}
sub spectrum( @mat ) {
    my ( \a, \b, \c, \d )         = polynomial( @mat );
    my (\delta, \p, \q, \d0, \d1) = reduction( a, b, c, d );
    my @s = solution( a, b, c, d, delta, p, q, d0, d1 )>>.narrow;
    my @e = @s.map( { horner( $_, a, b, c, d ) })>>.narrow;
    return ( @s, @e );
}
Output:
 1:  triple matrix: [[1, -1, 0], [0, 1, -1], [0, 0, 1]]
polynomial:  [1, -3, 3, -1]
reduction :  [0, 0.0, 0.0, 0, 0]
eigenvalues: [1, 1, 1]
errors:      [0, 0, 0]

  2:  double matrix: [[2, 0, 0], [0, -1, 0], [0, 0, -1]]
polynomial:  [1, 0, -3, -2]
reduction :  [0, -3.0, -2.0, 9, -54]
eigenvalues: [2, -1, -1]
errors:      [0, 0, 0]

  3:  distinct matrix: [[2, 0, 0], [0, 3, 4], [0, 4, 9]]
polynomial:  [1, -14, 35, -22]
reduction :  [8100, <-91/3>, <-1672/27>, 91, -1672]
eigenvalues: [11, 2, 0.9999999999999991e0]
errors:      [0, 0, -1.0658141036401503e-14]

  4: rotation matrix: [[1, 0, 0], [0, 0.7071067811865475e0, -0.7071067811865475e0], [0, 0.7071067811865475e0, 0.7071067811865475e0]]
polynomial:  [1, -2.414213562373095e0, 2.414213562373095e0, -0.9999999999999998e0]
reduction :  [-0.6862915010152442e0, 0.4714045207910316e0, -0.0994922778153789e0, -1.414213562373095e0, -2.68629150101523e0]
eigenvalues: [0.9999999999999992e0, <0.7071067811865478-0.7071067811865472i>, <0.7071067811865478+0.7071067811865472i>]
errors:      [0, <-3.3306690738754696e-16-3.885780586188048e-16i>, <-3.3306690738754696e-16+3.885780586188048e-16i>]

RPL

Works with: HP version 49
« JORDAN 4 ROLL DROP NIP
» 'TASK' STO
[[1 -1 0][0 1 -1][0 0 1]] TASK
Output:
2: 'X^3-3*X^2+3*X-1'
1: [1 1 1]

If the characteristic polynomial is not needed, the EGVL function directly returns the eigenvalues as a vector.

Wren

Library: Wren-matrix
Library: Wren-math
Library: Wren-complex
Library: Wren-fmt

The eigenvalues of a 3 x 3 matrix will be the roots of its characteristic polynomial.

We borrow code from the Polynomial_long_division#Wren task to divide out this cubic polynomial after the first root is found and then code from the Roots_of_a_quadratic_function#Wren task to solve the resulting quadratic polynomial which may have complex roots. Note that the former code assumes that polynomials are presented starting from the lowest order term and all other functions used here from the highest order term. It is therefore necessary to reverse the order of terms when switching between the two.

import "./matrix" for Matrix
import "./math" for Math
import "./complex" for Complex
import "./fmt" for Fmt

class Polynom {
    // assumes factors start from lowest order term
    construct new(factors) {
        _factors = factors.toList
    }

    factors { _factors.toList }

    /(divisor) {
        var curr = canonical().factors
        var right = divisor.canonical().factors
        var result = []
        var base = curr.count - right.count
        while (base >= 0) {
            var res = curr[-1] / right[-1]
            result.add(res)
            curr = curr[0...-1]
            for (i in 0...right.count-1) {
                curr[base + i] = curr[base + i] - res * right[i]
            }
            base = base - 1
        }
        var quot = Polynom.new(result[-1..0])
        var rem = Polynom.new(curr).canonical()
        return [quot, rem]
    }

    canonical() {
        if (_factors[-1] != 0) return this
        var newLen = factors.count
        while (newLen > 0) {
            if (_factors[newLen-1] != 0) return Polynom.new(_factors[0...newLen])
            newLen = newLen - 1
        }
        return Polynom.new(_factors[0..0])
    }
}

// assumes real coefficients, highest to lowest order
var quadratic = Fn.new { |a, b, c|
    var d = b*b - 4*a*c
    if (d == 0) {
        // single real root
        var root = -b/(a*2)
        return [root, root]
    }
    if (d > 0) {
        // two real roots
        var sr = d.sqrt
        d = (b < 0) ? sr - b : -sr - b
        return [d/(2*a), 2*c/d]
    }
    // two complex roots
    var den = 1 / (2*a)
    var t1 = Complex.new(-b*den, 0)
    var t2 = Complex.new(0, (-d).sqrt * den)
    return [t1+t2, t1-t2]
}

// same assumption as quadratic but 'x' can be real or complex.
var evalPoly = Fn.new { |coefs, x|
    var c = coefs.count
    if (c == 1) return coefs[0]
    var sum = coefs[0]
    for (i in 1...c) sum = x * sum + coefs[i]
    return sum
}

var eigenvalues = Fn.new { |m|
    var roots = []
    var errs  = []
    // find the characteristic polynomial
    var cp = List.filled(4, 0)
    cp[0] = 1
    cp[1] = -m.trace
    cp[2] = m.cofactors.trace
    cp[3] = -m.det
    // find first root
    roots.add(Math.rootPoly(cp))
    errs.add(evalPoly.call(cp, roots[0]))
    // divide out to get quadratic
    var num = Polynom.new(cp[-1..0])
    var den = Polynom.new([-roots[0], 1])
    var qdr = (num/den)[0]
    // find second and third roots
    var coefs = qdr.factors[-1..0]
    roots = roots + quadratic.call(coefs[0], coefs[1], coefs[2])
    errs.add(evalPoly.call(cp, roots[1]))
    errs.add(evalPoly.call(cp, roots[2]))
    return [cp, roots, errs]
}

var v = 0.70710678118655
var arrs = [
    [
        [ 1, -1,  0],
        [ 0,  1,  1],
        [ 0,  0,  1]
    ],
    [
        [-2, -4,  2],
        [-2,  1,  2],
        [ 4,  2,  5]
    ],
    [
        [ 1, -1,  0],
        [ 0,  1, -1],
        [ 0,  0,  1]
    ],
    [
        [ 2,  0,  0],
        [ 0, -1,  0],
        [ 0,  0, -1]
    ],
    [
        [ 2,  0,  0],
        [ 0,  3,  4],
        [ 0,  4,  9]
    ],
    [
        [ 1,  0,  0],
        [ 0,  v, -v],
        [ 0,  v,  v]
    ]
]

for (i in 0...arrs.count) {
    var m = Matrix.new(arrs[i])
    System.print("For matrix:")
    if (i < arrs.count-1) Fmt.mprint(m, 2, 0) else Fmt.mprint(m, 17, 14)
    var eigs = eigenvalues.call(m)
    Fmt.print("\nwhose characteristic polynomial is:")
    Fmt.pprint("$n", eigs[0], "", "x")
    Fmt.print("\nIts eigenvalues are: $n", eigs[1])
    Fmt.print("and the corresponding errors are: $n\n", eigs[2])
}
Output:
For matrix:
| 1 -1  0|
| 0  1  1|
| 0  0  1|

whose characteristic polynomial is:
x³ - 3x² + 3x - 1

Its eigenvalues are: [1, 1, 1]
and the corresponding errors are: [0, 0, 0]

For matrix:
|-2 -4  2|
|-2  1  2|
| 4  2  5|

whose characteristic polynomial is:
x³ - 4x² - 27x + 90

Its eigenvalues are: [3, 6, -5]
and the corresponding errors are: [0, 0, 0]

For matrix:
| 1 -1  0|
| 0  1 -1|
| 0  0  1|

whose characteristic polynomial is:
x³ - 3x² + 3x - 1

Its eigenvalues are: [1, 1, 1]
and the corresponding errors are: [0, 0, 0]

For matrix:
| 2  0  0|
| 0 -1  0|
| 0  0 -1|

whose characteristic polynomial is:
x³ - 3x - 2

Its eigenvalues are: [-1, 2, -1]
and the corresponding errors are: [0, 0, 0]

For matrix:
| 2  0  0|
| 0  3  4|
| 0  4  9|

whose characteristic polynomial is:
x³ - 14x² + 35x - 22

Its eigenvalues are: [1, 11, 2]
and the corresponding errors are: [0, 0, 0]

For matrix:
| 1.00000000000000  0.00000000000000  0.00000000000000|
| 0.00000000000000  0.70710678118655 -0.70710678118655|
| 0.00000000000000  0.70710678118655  0.70710678118655|

whose characteristic polynomial is:
x³ - 2.4142135623731x² + 2.4142135623731x - 1

Its eigenvalues are: [1, 0.70710678118655 + 0.70710678118655i, 0.70710678118655 - 0.70710678118655i]
and the corresponding errors are: [0, 0 + 0i, 0 + 0i]