Random number generator (device)

From Rosetta Code
Revision as of 02:46, 20 March 2017 by Jaydub (talk | contribs) (Add Common Lisp implementation)
Task
Random number generator (device)
You are encouraged to solve this task according to the task description, using any language you may know.
Task

If your system has a means to generate random numbers involving not only a software algorithm   (like the /dev/urandom devices in Unix),   then:

show how to obtain a random 32-bit number from that mechanism.

Ada

random.adb: <lang Ada>with Ada.Streams.Stream_IO; with Ada.Text_IO; procedure Random is

  Number : Integer;
  Random_File : Ada.Streams.Stream_IO.File_Type;

begin

  Ada.Streams.Stream_IO.Open (File => Random_File,
                              Mode => Ada.Streams.Stream_IO.In_File,
                              Name => "/dev/random");
  Integer'Read (Ada.Streams.Stream_IO.Stream (Random_File), Number);
  Ada.Streams.Stream_IO.Close (Random_File);
  Ada.Text_IO.Put_Line ("Number:" & Integer'Image (Number));

end Random;</lang>

BBC BASIC

Requires Windows XP or later. <lang bbcbasic> SYS "SystemFunction036", ^random%, 4

     PRINT ~random%</lang>

C

It works on systems having /dev/urandom, like GNU/Linux.

<lang c>#include <stdio.h>

  1. include <stdlib.h>
  1. define RANDOM_PATH "/dev/urandom"

int main(void) {

       unsigned char buf[4];
       unsigned long v;
       FILE *fin;
       if ((fin = fopen(RANDOM_PATH, "r")) == NULL) {
               fprintf(stderr, "%s: unable to open file\n", RANDOM_PATH);
               return EXIT_FAILURE;
       }
       if (fread(buf, 1, sizeof buf, fin) != sizeof buf) {
               fprintf(stderr, "%s: not enough bytes (expected %u)\n",
                       RANDOM_PATH, (unsigned) sizeof buf);
               return EXIT_FAILURE;
       }
       fclose(fin);
       v = buf[0] | buf[1] << 8UL | buf[2] << 16UL | buf[3] << 24UL;
       printf("%lu\n", v);
       return 0;

}</lang>

Library: BSD libc

arc4random() appeared in OpenBSD 2.1 and has spread to many BSD systems. This function runs an ARC4 random number generator that takes entropy from a kernel device. (This kernel device is sysctl kern.arandom in OpenBSD, or /dev/urandom in some other systems.)

<lang c>#include <inttypes.h> /* PRIu32 */

  1. include <stdlib.h> /* arc4random */
  2. include <stdio.h> /* printf */

int main() {

 printf("%" PRIu32 "\n", arc4random());
 return 0;

}</lang>

Library: OpenSSL

OpenSSL can generate random numbers. The default generator uses SHA1. For Unix systems, OpenSSL will gather entropy by reading a kernel device like /dev/urandom, or by using EGD, the Entropy Gathering Daemon. For other systems, OpenSSL might use a different source of entropy.

<lang c>#include <inttypes.h>

  1. include <stdio.h>
  1. include <openssl/err.h>
  2. include <openssl/rand.h>

int main() {

 uint32_t v;
 if (RAND_bytes((unsigned char *)&v, sizeof v) == 0) {
   ERR_print_errors_fp(stderr);
   return 1;
 }
 printf("%" PRIu32 "\n", v);
 return 0;

}</lang>

Windows

Works with: MinGW

<lang c>#include <stdio.h> /* printf */

  1. include <windows.h>
  2. include <wincrypt.h> /* CryptAcquireContext, CryptGenRandom */

int main() {

 HCRYPTPROV p;
 ULONG i;
 if (CryptAcquireContext(&p, NULL, NULL,
     PROV_RSA_FULL, CRYPT_VERIFYCONTEXT) == FALSE) {
   fputs("CryptAcquireContext failed.\n", stderr);
   return 1;
 }
 if (CryptGenRandom(p, sizeof i, (BYTE *)&i) == FALSE) {
   fputs("CryptGenRandom failed.\n", stderr);
   return 1;
 }
 printf("%lu\n", i);
 CryptReleaseContext(p, 0);
 return 0;

}</lang>

C++

std::random_device is a uniformly-distributed integer random number generator that produces non-deterministic random numbers.

Note that std::random_device may be implemented in terms of a pseudo-random number engine if a non-deterministic source (e.g. a hardware device) is not available to the implementation.

See the C++ section on Random number generator (included) for the list of pseudo-random number engines available.

Works with: C++11

<lang cpp>#include <iostream>

  1. include <random>

int main() {

   std::random_device rd;
   std::uniform_int_distribution<long> dist; // long is guaranteed to be 32 bits
   
   std::cout << "Random Number: " << dist(rd) << std::endl;

}</lang>

C#

<lang csharp>using System; using System.Security.Cryptography;

private static int GetRandomInt() {

 int result = 0;
 var rng = new RNGCryptoServiceProvider();
 var buffer = new byte[4];
 rng.GetBytes(buffer);
 result = BitConverter.ToInt32(buffer, 0);
 return result;

}</lang>

Park-Miller random number generator <lang csharp> const long m = 2147483647L; const long a = 48271L; const long q = 44488L; const long r = 3399L; static long r_seed = 12345678L;

public static byte gen() {

  long hi = r_seed / q;
  long lo = r_seed - q * hi;
  long t = a * lo - r * hi;
      if (t > 0)
          r_seed = t;
      else
          r_seed = t + m;
      return (byte)r_seed;

}

public static void ParkMiller(byte[] arr) {

  byte[] arr = new byte[10900000];
   for (int i = 0; i < arr.Length; i++)
               {                       
                      arr[i] = gen();
               }

}</lang>

ChucK

<lang c> Math.random2(-(Math.random()),Math.random(); </lang>

Common Lisp

<lang lisp>(defun random-int32 ()

 (with-open-file (s "/dev/random" :element-type '(unsigned-byte 32))
   (read-byte s)))</lang>

EchoLisp

No random device provided by the host (browser). But we can use the system timer to get a physical input. <lang lisp> (random-seed "simon") (random (expt 2 32)) → 2275215386 (random-seed "simon") (random (expt 2 32)) → 2275215386 ;; the same


(random-seed (current-time-milliseconds )) (random (expt 2 32)) → 4061857345 (random-seed (current-time-milliseconds )) (random (expt 2 32)) → 1322611152 </lang>


Forth

<lang forth>variable rnd

randoms ( n -- )
 s" /dev/random" r/o open-file throw
 swap 0 do
   dup rnd 1 cells rot read-file throw drop
   rnd @ .
 loop
 close-file throw ;</lang>

Fortran

Using system /dev/urandom in GNU/Linux.

<lang fortran> !----------------------------------------------------------------------- ! Test Linux urandom in Fortran !----------------------------------------------------------------------- program urandom_test

 use iso_c_binding, only : c_long
 implicit none
 character(len=*), parameter :: RANDOM_PATH = "/dev/urandom"
 integer :: funit, ios
 integer(c_long) :: buf
 open(newunit=funit, file=RANDOM_PATH, access="stream", form="UNFORMATTED", &
      iostat=ios, status="old", action="read")
 if ( ios /= 0 ) stop "Error opening file: "//RANDOM_PATH
 read(funit) buf
 close(funit)
 write(*,'(A,I64)') "Integer:     ", buf
 write(*,'(A,B64)') "Binary:      ", buf
 write(*,'(A,Z64)') "Hexadecimal: ", buf

end program urandom_test </lang>

Here's an example of the use of the latter:

FreeBASIC

FreeBASIC can in theory use any C library to produce pseudo-random numbers including those which are partly device based.

However, in practice, there is little need for this as specifying a second parameter of 5 to FB's Randomize statement produces cryptographically strong pseudo-random numbers using either the Win32 Crypto API or the /dev/urandom device under Linux. <lang freebasic>' FB 1.05.0 Win64

Randomize , 5

'generate 10 cryptographic random integers in the range 1 To 100 For i As Integer = 1 To 10

 Print Int(Rnd * 100) + 1

Next

Sleep</lang>

Go

In the Go library is crypto/rand, a source specified to use dev/urandom on Unix-like systems and the CryptGenRandom API on Windows. Also implemented here is a source using dev/random, if you really want it. On my system it would print a few numbers then hang until I moved the mouse or pressed some keys on the keyboard. <lang go>package main

import (

   "crypto/rand"
   "encoding/binary"
   "fmt"
   "io"
   "os"

)

func main() {

   testRandom("crypto/rand", rand.Reader)
   testRandom("dev/random", newDevRandom())

}

func newDevRandom() (f *os.File) {

   var err error
   if f, err = os.Open("/dev/random"); err != nil {
       panic(err)
   }
   return

}

func testRandom(label string, src io.Reader) {

   fmt.Printf("%s:\n", label)
   var r int32
   for i := 0; i < 10; i++ {
       if err := binary.Read(src, binary.LittleEndian, &r); err != nil {
           panic(err)
       }
       fmt.Print(r, " ")
   }
   fmt.Println()

}</lang>

Groovy

Based, necessarily, on Java solution: <lang groovy>def rng = new java.security.SecureRandom()</lang>

Test: <lang groovy>(0..4).each { println rng.nextInt() }</lang>

Output:
380425053
-1003791794
-1972330603
1152610574
714616658

Icon and Unicon

The following is Unicon-specific but trivially converted into Icon.

<lang unicon>procedure main(A)

   n := integer(A[1])|5
   every !n do write(rand(4))

end

procedure rand(n)

   f := open("/dev/urandom") | stop("Cannot get to urandom!")
   x := 0
   every !n do x := x*256 + ord(reads(f,1))
   close(f)
   return x

end</lang>

Sample runs:

->urand
910795827
1135996175
3545606085
944909079
2464790129
->

J

Untested: <lang j>256#.a.i.1!:11'/dev/urandom';0 4</lang>

Fallback: <lang j>256#.a.i.4{.host'dd if=/dev/urandom bs=4 count=1'</lang>

Note: this assumes that J is running on linux.

Java

<lang java>import java.security.SecureRandom;

public class RandomExample {

 public static void main(String[] args) {
   SecureRandom rng = new SecureRandom();
   /* Prints a random signed 32-bit integer. */
   System.out.println(rng.nextInt());
 }

}</lang>

Julia

Works with: Linux

<lang Julia> const rdev = "/dev/random" rstream = try

   open(rdev, "r")

catch

   false

end

if isa(rstream, IOStream)

   b = readbytes(rstream, 4)
   close(rstream)
   i = reinterpret(Int32, b)[1]
   println("A hardware random number is:  ", i)

else

   println("The hardware random number stream, ", rdev, ", was unavailable.")

end </lang>

Output:
A hardware random number is:  986109744

Haskell

Library: Entropy
Works with: GHC version 7.4.1

<lang haskell>#!/usr/bin/env runhaskell

import System.Entropy import Data.Binary.Get import qualified Data.ByteString.Lazy as B

main = do

 bytes <- getEntropy 4
 print (runGet getWord32be $ B.fromChunks [bytes])</lang>

Kotlin

<lang scala>// version 1.0.6

import java.security.SecureRandom

fun main(args: Array<String>) {

   val rng = SecureRandom()
   val rn1 = rng.nextInt()
   val rn2 = rng.nextInt()
   val newSeed = rn1.toLong() * rn2  
   rng.setSeed(newSeed)    // reseed using the previous 2 random numbers
   println(rng.nextInt())  // get random 32-bit number and print it

} </lang>

Lasso

<lang lasso>file(`/dev/urandom`)->readSomeBytes(4)->export32bits</lang>

Output:
723217350

Mathematica

<lang Mathematica>rand32[] := RandomInteger[{-2^31, 2^31 - 1}]</lang>

Example: create array of 10 rand32 numbers <lang Mathematica>Table[rand32[], {i, 1, 10}]</lang>

Output:
{355587317, -869860319, -91421859, 1605907693, 101463390, 891823090, 
-531713717, -1038608428, 1717313407, 674189312}

NetRexx

Works with: Mac OS X

and probably other UNIX systems that provide /dev/random or /dev/urandom random data source devices.

<lang NetRexx>/* NetRexx */ options replace format comments java crossref savelog symbols binary

import java.math.BigInteger

randomDevNameFile = File randomDevNameList = ['/dev/random', '/dev/urandom'] -- list of random data source devices randomDevIStream = InputStream do

 loop dn = 0 to randomDevNameList.length - 1
   randomDevNameFile = File(randomDevNameList[dn])
   if randomDevNameFile.exists() then leave dn -- We're done! Use this device
   randomDevNameFile = null -- ensure we don't use a non-existant device
   end dn
 if randomDevNameFile == null then signal FileNotFoundException('Cannot locate a random data source device on this system')
 -- read 8 bytes from the random data source device, convert it into a BigInteger then display the result
 randomBytes = byte[8]
 randomDevIStream = BufferedInputStream(FileInputStream(randomDevNameFile))
 randomDevIStream.read(randomBytes, 0, randomBytes.length)
 randomDevIStream.close()
 randomNum = BigInteger(randomBytes)
 say Rexx(randomNum.longValue()).right(24) '0x'Rexx(Long.toHexString(randomNum.longValue())).right(16, 0)

catch ex = IOException

 ex.printStackTrace()

end return

/* To run the program in a loop 10 times from a bash shell prompt use: for ((i=0; i<10; ++i)); do java <program_name>; done # Shell loop to run the command 10 times

  • /

</lang>

Output:
$ for ((i=0; i<10; ++i)); do java RRandomGen; done # Shell loop to run the command 10 times
    -3724652236619320966 0xcc4f60865c70f17a
    -8287324416757903696 0x8cfd8259e0b94eb0
    -2951181559250748016 0xd70b4c02052cfd90
     8171526404483923658 0x716717f863fd3eca
    -4285529734202916706 0xc486bd699676009e
     4783094698411310978 0x4260f74949dc3f82
     6972277496665184225 0x60c28171482d97e1
    -2382194670272317046 0xdef0be919c96f98a
     7952058769071853043 0x6e5b6351938ecdf3
    -1857830580859698636 0xe637a8ee0f000234
$

Nim

<lang nim>var f = open("/dev/urandom") var r: int32 discard f.readBuffer(addr r, 4) close(f) echo r</lang>

OCaml

OCaml's default integers are 31 bits on 32 bits architectures:

<lang ocaml>let input_rand_int ic =

 let i1 = int_of_char (input_char ic)
 and i2 = int_of_char (input_char ic)
 and i3 = int_of_char (input_char ic)
 and i4 = int_of_char (input_char ic) in
 i1 lor (i2 lsl 8) lor (i3 lsl 16) lor (i4 lsl 24)

let () =

 let ic = open_in "/dev/urandom" in
 let ri31 = input_rand_int ic in
 close_in ic;
 Printf.printf "%d\n" ri31;
</lang>

but if we really want 32 bits integers there is a module for this:

<lang ocaml>let input_rand_int32 ic =

 let i1 = Int32.of_int (int_of_char (input_char ic))
 and i2 = Int32.of_int (int_of_char (input_char ic))
 and i3 = Int32.of_int (int_of_char (input_char ic))
 and i4 = Int32.of_int (int_of_char (input_char ic)) in
 let i2 = Int32.shift_left i2 8
 and i3 = Int32.shift_left i3 16
 and i4 = Int32.shift_left i4 24 in
 Int32.logor i1 (Int32.logor i2 (Int32.logor i3 i4))

let () =

 let ic = open_in "/dev/urandom" in
 let ri32 = input_rand_int32 ic in
 close_in ic;
 Printf.printf "%ld\n" ri32;
</lang>

PARI/GP

It works on systems having /dev/urandom and Linux.

<lang parigp>rnd(n=10)=extern("cat /dev/urandom|tr -dc '[:digit:]'|fold -w"n"|head -1")</lang>

The code above creates a new function rnd() which returns cryptographically strong integers with max. 10 random digits from /dev/urandom. rnd(n) returns integer with max. n random digits. No leading zeros.

Output:
rnd() = 3055652197
rnd(20) = 75735303746547944580
... 

Pascal

This works with FreePascal on "unixoids": <lang pascal>program RandomNumberDevice; var

 byteFile: file of byte;
 randomByte: byte;

begin

 assign(byteFile, '/dev/urandom');
 reset (byteFile);
 read  (byteFile, randomByte);
 close (byteFile);
 writeln('The random byte is: ', randomByte);

end. </lang>

Output:
>: ./RandomNumberDevice
The random byte is: 9
>: ./RandomNumberDevice
The random byte is: 237

Perl

Typically one would use a module as they will work on UNIX, Win32, and other O/S's. Crypt::Random::Seed, for instance, will use Win32 sources, EGD/PRNGD, /dev/u?random, or if none of those exist for some reason, a userspace entropy method. <lang Perl>use Crypt::Random::Seed; my $source = Crypt::Random::Seed->new( NonBlocking => 1 ); # Allow non-blocking sources like /dev/urandom print "$_\n" for $source->random_values(10); # A method returning an array of 32-bit values</lang> or (similar but many more dependencies): <lang Perl>use Crypt::Random::Source qw/get_weak/; # Alternately get_strong print unpack('L*',get_weak(4)), "\n" for 1..10;</lang>

Or we can read values from /dev/urandom ourselves: <lang Perl>sub read_random {

       my $device = '/dev/urandom';
       open my $in, "<:raw", $device   # :raw because it's not unicode string
               or die "Can't open $device: $!";
       sysread $in, my $rand, 4 * shift;
       unpack('L*', $rand);

}

print "$_\n" for read_random(10);</lang> Whether /dev/urandom is good enough for cryptographic work is debated, though on most UNIX systems it is at least as good as the Win32 Crypto API.

Perl 6

Works with: rakudo version 2016-11

A lazy list of random numbers:

<lang perl6>use experimental :pack; my $UR = open("/dev/urandom", :bin) or die "Can't open /dev/urandom: $!"; my @random-spigot = $UR.read(1024).unpack("L*") ... *;

.say for @random-spigot[^10];</lang>

Output:
1431009271
1702240522
670020272
588612037
1864913839
2155430433
1690056587
385405103
2366495746
692037942

PicoLisp

<lang PicoLisp>: (in "/dev/urandom" (rd 4)) -> 2917110327</lang>

PowerShell

<lang PowerShell> function Get-RandomInteger {

   Param
   (
       [Parameter(Mandatory=$false,
                  ValueFromPipeline=$true,
                  ValueFromPipelineByPropertyName=$true, 
                  Position=0)]
       [ValidateScript({$_ -ge 4})]
       [int[]]
       $InputObject = 64
   )
   Begin
   {
       $rng = New-Object -TypeName System.Security.Cryptography.RNGCryptoServiceProvider
   }
   Process
   {
       foreach($count in $InputObject)
       {
           $bytes = New-Object -TypeName Byte[] -Argument $count
           $rng.GetBytes($bytes)
           [System.BitConverter]::ToInt32($bytes,0)
       }
   }
   End 
   {
       Remove-Variable -Name rng -Scope Local
   }

} </lang> <lang PowerShell> 4,8,16,32,64,128 | Get-RandomInteger | Format-Wide {$_} -Column 6 -Force </lang>

Output:
1402572656             432337086              413089699             1404567509            -82797202             -261009960

As hexadecimal: <lang PowerShell> 4,8,16,32,64,128 | Get-RandomInteger | Format-Wide {"0x{0:X}" -f $_} -Column 6 -Force </lang>

Output:
0x24305255             0x916002DD             0x9587046             0x5F236274            0xC0BAF6F0            0xC0B93118

ProDOS

Uses math module: <lang ProDOS>printline -random- </lang>

PureBasic

PureBasic has the source for the random data is the "/dev/urandom" device on Linux or Mac OSX and the "Microsoft Cryptography API" on Windows. <lang PureBasic>If OpenCryptRandom()

 MyRandom = CryptRandom(#MAXLONG)
 CloseCryptRandom()

EndIf</lang>

Python

<lang Python>import random rand = random.SystemRandom() rand.randint(1,10)</lang>

Racket

<lang Racket>

  1. lang racket
Assuming a device to provide random bits

(call-with-input-file* "/dev/random"

 (λ(i) (integer-bytes->integer (read-bytes 4 i) #f)))

</lang>

REXX

version 1

The   32-bit   random number is unsigned and constructed from two smaller 16-bit   numbers,   and it's expressed in decimal.

Note:   the REXX   random   BIF has a maximum range of   100,000. <lang rexx>/*REXX program generates and displays a random 32-bit number using the RANDOM BIF.*/ numeric digits 10 /*ensure REXX has enough decimal digits*/ _=2**16 /*a handy─dandy constant to have around*/ r#= random(0, _-1) * _ + random(0, _-1) /*generate an unsigned 32-bit random #.*/ say r# /*stick a fork in it, we're all done. */</lang>

Output:
4294967296

version 2

This program generates a random 4 byte character string in the range '00000000'x to 'ffffffff'x <lang rexx>left=0 rite=0 lo=hex(left)hex(rite) Say 'low ' c2x(lo) left=random(0,2**16-1) rite=random(0,2**16-1) rand=hex(left)hex(rite) Say 'random' c2x(rand) left=2**16-1 rite=2**16-1 hi=hex(left)hex(rite) Say 'high ' c2x(hi) Exit hex: Return d2c(arg(1),2)</lang>

Output:
low    00000000
random 3E4C3CDE
high   FFFFFFFF

Ring

<lang ring> nr = 10 for i = 1 to nr

   see random(i) + nl

next </lang>

Ruby

Ruby 1.8.7 introduces the 'securerandom' library. For MRI users, this library tries to get random numbers by loading OpenSSL, or opening /dev/urandom, or calling CryptGenRandom.

Works with: Ruby version 1.8.7

<lang Ruby>require 'securerandom' SecureRandom.random_number(1 << 32)</lang>

Rust

'rand' used to be part of Rust standard library but it was extracted as a 'crate' (https://crates.io/crates/rand)

<lang rust> extern crate rand;

use rand::{Rng, OsRng};

fn main() {

   let mut rng = match OsRng::new() {
       Ok(v) => v,
       Err(e) => panic!("Failed to obtain OS RNG: {}", e)
   };
   let rand_num:u32 = rng.next_u32();
   println!("{}",rand_num);

} </lang>

Sidef

<lang ruby>func urandom() {

   const device = %f'/dev/urandom';
   device.open('<:raw', \var fh, \var err) ->
       || die "Can't open `#{device}': #{err}";
   fh.sysread(\var noise, 4);
   'L'.unpack(noise);

}

say urandom(); # sample: 3517432564</lang>

Tcl

<lang tcl>package require Tcl 8.5

  1. Allow override of device name

proc systemRandomInteger Template:Device "/dev/random" {

   set f [open $device "rb"]
   binary scan [read $f 4] "I" x
   close $f
   return $x

}</lang> Usage: <lang tcl>% puts [systemRandomInteger] 636131349</lang>

UNIX Shell

<lang UNIX Shell>od -An -N 4 -t u4 /dev/urandom</lang>

XPL0

The random number generator is seeded with the 32-bit system timer each time a program starts. From then on, a linear congruential algorithm is used (that passes the Diehard test suite). Since the Ran intrinsic routine returns a signed positive integer (modulo the argument), the value is limited to 31 bits.

<lang XPL0>code Ran=1; int R; R:= Ran($7FFF_FFFF)</lang>

zkl

Translation of: C

Linux: <lang zkl>const RANDOM_PATH="/dev/urandom";

fin,buf:=File(RANDOM_PATH,"r"), fin.read(4); fin.close(); // GC would also close the file println(buf.toBigEndian(0,4)); // 4 bytes @ offset 0</lang>

Output:
2152746403