QR decomposition

From Rosetta Code
Revision as of 12:07, 23 July 2011 by rosettacode>Dkf (→‎{{header|Tcl}}: Was converted from CL code)
QR decomposition is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

Any rectangular matrix can be decomposed to a product of a orthogonal matrix and a upper (right) triangular matrix , as described in QR decomposition.

Task

Demonstrate the QR decomposition on the example matrix from the Wikipedia article:

and the usage for linear least squares problems on the example from Polynomial_regression. The method of Householder reflections should be used:

Method

Multiplying a given vector , for example the first column of matrix , with the Householder matrix , which is given as

reflects about a plane given by its normal vector . When the normal vector of the plane is given as

then the transformation reflects onto the first standard basis vector

which means that all entries but the first become zero. To avoid numerical cancellation errors, we should take the opposite sign of :

and normalize with respect to the first element:

The equation for thus becomes:

or, in another form

with

Applying on then gives

and applying on the matrix zeroes all subdiagonal elements of the first column:

In the second step, the second column of , we want to zero all elements but the first two, which means that we have to calculate with the first column of the submatrix (denoted *), not on the whole second column of .

To get , we then embed the new into an identity:

This is how we can, column by column, remove all subdiagonal elements of and thus transform it into .

The product of all the Householder matrices , for every column, in reverse order, will then yield the orthogonal matrix .

The QR decomposition should then be used to solve linear least squares (Multiple regression) problems by solving

When is not square, i.e. we have to cut off the zero padded bottom rows.

and the same for the RHS:

Finally, solve the square upper triangular system by back substitution:


C

<lang C>#include <stdio.h>

  1. include <stdlib.h>
  2. include <math.h>

typedef struct { int m, n; double ** v; } mat_t, *mat;

mat matrix_new(int m, int n) { mat x = malloc(sizeof(mat_t)); x->v = malloc(sizeof(double) * m); x->v[0] = calloc(sizeof(double), m * n); for (int i = 0; i < m; i++) x->v[i] = x->v[0] + n * i; x->m = m; x->n = n; return x; }

void matrix_delete(mat m) { free(m->v[0]); free(m->v); free(m); }

void matrix_transpose(mat m) { for (int i = 0; i < m->m; i++) { for (int j = 0; j < i; j++) { double t = m->v[i][j]; m->v[i][j] = m->v[j][i]; m->v[j][i] = t; } } }

mat matrix_copy(void * a, int m, int n) { mat x = matrix_new(m, n); for (int i = 0; i < m; i++) for (int j = 0; j < n; j++) x->v[i][j] = ((double(*)[n])a)[i][j]; return x; }

mat matrix_mul(mat x, mat y) { if (x->n != y->m) return 0; mat r = matrix_new(x->m, y->n); for (int i = 0; i < x->m; i++) for (int j = 0; j < y->n; j++) for (int k = 0; k < x->n; k++) r->v[i][j] += x->v[i][k] * y->v[k][j]; return r; }

mat matrix_minor(mat x, int d) { mat m = matrix_new(x->m, x->n); for (int i = 0; i < d; i++) m->v[i][i] = 1; for (int i = d; i < x->m; i++) for (int j = d; j < x->n; j++) m->v[i][j] = x->v[i][j]; return m; }

/* c = a + b * s */ double *vmadd(double a[], double b[], double s, double c[], int n) { for (int i = 0; i < n; i++) c[i] = a[i] + s * b[i]; return c; }

/* m = I - v v^T */ mat vmul(double v[], int n) { mat x = matrix_new(n, n); for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) x->v[i][j] = -2 * v[i] * v[j]; for (int i = 0; i < n; i++) x->v[i][i] += 1;

return x; }

/* ||x|| */ double vnorm(double x[], int n) { double sum = 0; for (int i = 0; i < n; i++) sum += x[i] * x[i]; return sqrt(sum); }

/* y = x / d */ double* vdiv(double x[], double d, double y[], int n) { for (int i = 0; i < n; i++) y[i] = x[i] / d; return y; }

/* take c-th column of m, put in v */ double* mcol(mat m, double *v, int c) { for (int i = 0; i < m->m; i++) v[i] = m->v[i][c]; return v; }

void matrix_show(mat m) { for(int i = 0; i < m->m; i++) { for (int j = 0; j < m->n; j++) { printf(" %5.3f", m->v[i][j]); } printf("\n"); } printf("\n"); }

void householder(mat m, mat *R, mat *Q) { mat q[m->m]; mat z = m, z1; for (int k = 0; k < m->m - 1; k++) { double e[m->m], x[m->m], a; z1 = matrix_minor(z, k); if (z != m) matrix_delete(z); z = z1;

mcol(z, x, k); a = vnorm(x, m->m); if (m->v[k][k] > 0) a = -a;

for (int i = 0; i < m->m; i++) e[i] = (i == k) ? 1 : 0;

vmadd(x, e, a, e, m->m); vdiv(e, vnorm(e, m->m), e, m->m); q[k] = vmul(e, m->m); z1 = matrix_mul(q[k], z); if (z != m) matrix_delete(z); z = z1; } matrix_delete(z); *Q = q[0]; *R = matrix_mul(q[0], m); for (int i = 1; i < m->m - 1; i++) { z1 = matrix_mul(q[i], *Q); if (i > 1) matrix_delete(*Q); *Q = z1; matrix_delete(q[i]); } matrix_delete(q[0]); z = matrix_mul(*Q, m); matrix_delete(*R); *R = z; matrix_transpose(*Q); }

double in[][3] = { { 12, -51, 4 }, { 6, 167, -68 }, { -4, 24, -41 }, };

int main() { mat R, Q; mat x = matrix_copy(in, 3, 3); householder(x, &R, &Q);

printf("Q\n"); matrix_show(Q); printf("R\n"); matrix_show(R);

matrix_delete(x); matrix_delete(R); matrix_delete(Q); return 0; }</lang>Output:<lang>Q

 0.857  -0.394  0.331
 0.429  0.903  -0.034
 -0.286  0.171  0.943

R

 14.000  21.000  -14.000
 0.000  175.000  -70.000
 -0.000  -0.000  -35.000</lang>

Common Lisp

Uses the routines m+, m-, .*, ./ from Element-wise_operations, mmul from Matrix multiplication, mtp from Matrix transposition.

Helper functions: <lang lisp>(defun sign (x)

 (if (zerop x)
     x
     (/ x (abs x))))

(defun norm (x)

 (let ((len (car (array-dimensions x))))
   (sqrt (loop for i from 0 to (1- len) sum (expt (aref x i 0) 2)))))

(defun make-unit-vector (dim)

 (let ((vec (make-array `(,dim ,1) :initial-element 0.0d0)))
   (setf (aref vec 0 0) 1.0d0)
   vec))
Return a nxn identity matrix.

(defun eye (n)

 (let ((I (make-array `(,n ,n) :initial-element 0)))
   (loop for j from 0 to (- n 1) do
         (setf (aref I j j) 1))
   I))

(defun array-range (A ma mb na nb)

 (let* ((mm (1+ (- mb ma)))
        (nn (1+ (- nb na)))
        (B (make-array `(,mm ,nn) :initial-element 0.0d0)))
   (loop for i from 0 to (1- mm) do
        (loop for j from 0 to (1- nn) do
             (setf (aref B i j)
                   (aref A (+ ma i) (+ na j)))))
   B))

(defun rows (A) (car (array-dimensions A))) (defun cols (A) (cadr (array-dimensions A))) (defun mcol (A n) (array-range A 0 (1- (rows A)) n n)) (defun mrow (A n) (array-range A n n 0 (1- (cols A))))

(defun array-embed (A B row col)

 (let* ((ma (rows A))
        (na (cols A))
        (mb (rows B))
        (nb (cols B))
        (C  (make-array `(,ma ,na) :initial-element 0.0d0)))
   (loop for i from 0 to (1- ma) do
        (loop for j from 0 to (1- na) do
             (setf (aref C i j) (aref A i j))))
   (loop for i from 0 to (1- mb) do
        (loop for j from 0 to (1- nb) do
             (setf (aref C (+ row i) (+ col j))
                   (aref B i j))))
   C))

</lang>

Main routines: <lang lisp> (defun make-householder (a)

 (let* ((m    (car (array-dimensions a)))
        (s    (sign (aref a 0 0)))
        (e    (make-unit-vector m))
        (u    (m+ a (.* (* (norm a) s) e)))
        (v    (./ u (aref u 0 0)))
        (beta (/ 2 (aref (mmul (mtp v) v) 0 0))))
   
   (m- (eye m)
       (.* beta (mmul v (mtp v))))))

(defun qr (A)

 (let* ((m (car  (array-dimensions A)))
        (n (cadr (array-dimensions A)))
        (Q (eye m)))
   ;; Work on n columns of A.
   (loop for i from 0 to (if (= m n) (- n 2) (- n 1)) do
        ;; Select the i-th submatrix. For i=0 this means the original matrix A.
        (let* ((B (array-range A i (1- m) i (1- n)))
               ;; Take the first column of the current submatrix B.
               (x (mcol B 0))
               ;; Create the Householder matrix for the column and embed it into an mxm identity.
               (H (array-embed (eye m) (make-householder x) i i)))
          ;; The product of all H matrices from the right hand side is the orthogonal matrix Q.
          (setf Q (mmul Q H))
          ;; The product of all H matrices with A from the LHS is the upper triangular matrix R.
          (setf A (mmul H A))))
   ;; Return Q and R.
   (values Q A)))

</lang>

Example 1:

<lang lisp>(qr #2A((12 -51 4) (6 167 -68) (-4 24 -41)))

  1. 2A((-0.85 0.39 0.33)
   (-0.42 -0.90 -0.03)
   ( 0.28 -0.17  0.94))
  1. 2A((-14.0 -21.0 14.0)
   (  0.0 -175.0  70.0)
   (  0.0    0.0 -35.0))</lang>

Example 2, Polynomial regression:

<lang lisp>(defun polyfit (x y n)

 (let* ((m (cadr (array-dimensions x)))
        (A (make-array `(,m ,(+ n 1)) :initial-element 0)))
   (loop for i from 0 to (- m 1) do
         (loop for j from 0 to n do
               (setf (aref A i j)
                     (expt (aref x 0 i) j))))
   (lsqr A (mtp y))))
Solve a linear least squares problem by QR decomposition.

(defun lsqr (A b)

 (multiple-value-bind (Q R) (qr A)
   (let* ((n (cadr (array-dimensions R))))
     (solve-upper-triangular (array-range R                0 (- n 1) 0 (- n 1))
                             (array-range (mmul (mtp Q) b) 0 (- n 1) 0 0)))))
Solve an upper triangular system by back substitution.

(defun solve-upper-triangular (R b)

 (let* ((n (cadr (array-dimensions R)))
        (x (make-array `(,n 1) :initial-element 0.0d0)))
   (loop for k from (- n 1) downto 0
      do (setf (aref x k 0)
               (/ (- (aref b k 0)
                     (loop for j from (+ k 1) to (- n 1)
                        sum (* (aref R k j)
                               (aref x j 0))))
                  (aref R k k))))
   x))</lang>

<lang lisp>;; Finally use the data: (let ((x #2A((0 1 2 3 4 5 6 7 8 9 10)))

     (y #2A((1 6 17 34 57 86 121 162 209 262 321))))
   (polyfit x y 2))
  1. 2A((0.999999966345088) (2.000000015144699) (2.99999999879804))</lang>

D

Translation of: Common Lisp

Uses the functions copied from Element-wise_operations, Matrix multiplication, and Matrix transposition. <lang d>import std.stdio, std.math, std.algorithm, std.traits,

      std.typecons, std.numeric, std.range, std.conv;

T[][] elementwiseMat(string op, T, U)(in T[][] A, in U B) pure if (is(U == T) || is(U == T[][])) {

   static if (is(U == T[][]))
       assert(A.length == B.length);
   if (!A.length)
       return null;
   auto R = new typeof(return)(A.length, A[0].length);
   foreach (r, row; A)
       static if (is(U == T)) {
           R[r][] = mixin("row[] " ~ op ~ "B");
       } else {
           assert(row.length == B[r].length);
           R[r][] = mixin("row[] " ~ op ~ "B[r][]");
       }
   return R;

}

T[][] msum(T)(in T[][] A, in T[][] B) pure {

   return elementwiseMat!(q{ + }, T, T[][])(A, B);

} T[][] msub(T)(in T[][] A, in T[][] B) pure {

   return elementwiseMat!(q{ - }, T, T[][])(A, B);

} T[][] pmul(T)(in T[][] A, in T x) pure {

   return elementwiseMat!(q{ * }, T, T)(A, x);

} T[][] pdiv(T)(in T[][] A, in T x) pure {

   return elementwiseMat!(q{ / }, T, T)(A, x);

}

bool isRectangular(T)(in T[][] matrix) pure nothrow {

   foreach (row; matrix)
       if (row.length != matrix[0].length)
           return false;
   return true;

}

T[][] matMul(T)(in T[][] a, in T[][] b) pure nothrow in {

   assert(isRectangular(a) && isRectangular(b) &&
          a[0].length == b.length);

} body {

   auto result = new T[][](a.length, b[0].length);
   auto aux = new T[b.length];
   foreach (j; 0 .. b[0].length) {
       foreach (k; 0 .. b.length)
           aux[k] = b[k][j];
       foreach (i; 0 .. a.length)
           result[i][j] = dotProduct(a[i], aux);
   }
   return result;

}

string prettyPrint(T)(in T[][] A) {

   return "[" ~ array(map!text(A)).join(",\n ") ~ "]";

}

Unqual!T[][] transpose(T)(in T[][] m) pure nothrow {

   auto r = new Unqual!T[][](m[0].length, m.length);
   foreach (nr, row; m)
       foreach (nc, c; row)
           r[nc][nr] = c;
   return r;

}

T norm(T)(in T[][] array) {

   return sqrt(reduce!q{ a + b ^^ 2 }(cast(T)0,
                                      transversal(array, 0)));

}

T[][] makeUnitVector(T)(in size_t dim) pure nothrow {

   auto result = new T[][](dim, 1);
   foreach (row; result)
       row[] = 0;
   result[0][0] = 1;
   return result;

}

/// Return a nxn identity matrix. T[][] matId(T)(in size_t n) pure nothrow {

   auto Id = new T[][](n, n);
   foreach (r, row; Id) {
       row[] = 0;
       row[r] = 1;
   }
   return Id;

}

Unqual!T[][] slice2D(T)(in T[][] A,

                       in size_t ma, in size_t mb,
                       in size_t na, in size_t nb) pure nothrow {
   auto B = new Unqual!T[][](mb - ma + 1, nb - na + 1);
   foreach (i, brow; B)
       brow[] = A[ma + i][na .. na + brow.length];
   return B;

}

size_t rows(T)(in T[][] A) pure nothrow { return A.length; } size_t cols(T)(in T[][] A) pure nothrow {

   return A.length ? A[0].length : 0;

}

T[][] mcol(T)(in T[][] A, in size_t n) pure nothrow {

   return slice2D(A, 0, rows(A)-1, n, n);

}

T[][] matEmbed(T)(in T[][] A, in T[][] B,

                 in size_t row, in size_t col) pure nothrow {
   auto C = new T[][](rows(A), cols(A));
   foreach (i, arow; A)
       C[i][] = arow[]; // some wasted copies
   foreach (i, brow; B)
       C[row + i][col .. col + brow.length] = brow[];
   return C;

}

// Main routines ---------------

T[][] makeHouseholder(T)(T[][] a) {

   const size_t m = rows(a);
   const T s = sgn(a[0][0]);
   T[][] e = makeUnitVector!T(m);
   T[][] u = msum(a, pmul(e, norm(a) * s));
   T[][] v = pdiv(u, u[0][0]);
   T beta = 2.0 / matMul(transpose(v), v)[0][0];
   return msub(matId!T(m), pmul(matMul(v, transpose(v)), beta));

}

Tuple!(T[][],"Q", T[][],"R") QRdecomposition(T)(T[][] A) {

   const m = rows(A);
   const n = cols(A);
   T[][] Q = matId!T(m);
   // Work on n columns of A.
   foreach (i; 0 .. (m == n ? n-1 : n)) {
       // Select the i-th submatrix. For i=0 this means the original
       // matrix A.
       T[][] B = slice2D(A, i, m-1, i, n-1);
       // Take the first column of the current submatrix B.
       T[][] x = mcol(B, 0);
       // Create the Householder matrix for the column and embed it
       // into an mxm identity.
       T[][] H = matEmbed(matId!T(m), makeHouseholder(x), i, i);
       // The product of all H matrices from the right hand side is
       // the orthogonal matrix Q.
       Q = matMul(Q, H);
       // The product of all H matrices with A from the LHS is the
       // upper triangular matrix R.
       A  = matMul(H, A);
   }
   // Return Q and R.
   return typeof(return)(Q, A);

}

// Polynomial regression ---------------

/// Solve an upper triangular system by back substitution. T[][] solveUpperTriangular(T)(in T[][] R, in T[][] b) pure nothrow {

   const size_t n = cols(R);
   auto x = new T[][](n, 1);
   foreach_reverse (k; 0 .. n) {
       T tot = 0;
       foreach (j; k + 1 .. n)
           tot += R[k][j] * x[j][0];
       x[k][0] = (b[k][0] - tot) / R[k][k];
   }
   return x;

}

/// Solve a linear least squares problem by QR decomposition. T[][] lsqr(T)(T[][] A, T[][] b) {

   const qr = QRdecomposition(A);
   const size_t n = cols(qr.R);
   return solveUpperTriangular(
       slice2D(qr.R, 0, n-1, 0, n-1),
       slice2D(matMul(transpose(qr.Q), b), 0, n-1, 0, 0));

}

Unqual!T[][] polyFit(T)(in T[][] x, in T[][] y, in size_t n) {

   const size_t m = cols(x);
   auto A = new Unqual!T[][](m, n+1);
   foreach (i, row; A)
       foreach (j, ref item; row)
           item = x[0][i] ^^ j;
   return lsqr(A, transpose(y));

}

void main() {

   const qr = QRdecomposition([[12.0, -51,   4],
                               [ 6.0, 167, -68],
                               [-4.0,  24, -41]]);
   writeln(prettyPrint(qr.Q));
   writeln(prettyPrint(qr.R), "\n");
   const x = 0.0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10;
   const y = 1.0, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321;
   writeln(polyFit(x, y, 2));

}</lang>

Output:

[[-0.857143, 0.394286, 0.331429],
 [-0.428571, -0.902857, -0.0342857],
 [0.285714, -0.171429, 0.942857]]
[[-14, -21, 14],
 [2.26656e-16, -175, 70],
 [4.72101e-16, -7.42462e-16, -35]]

[[1], [2], [3]]

J

From j:Essays/QR Decomposition

<lang j>mp=: +/ . * NB. matrix product h =: +@|: NB. conjugate transpose

QR=: 3 : 0

n=.{:$A=.y
if. 1>:n do.
 A ((% {.@,) ; ]) %:(h A) mp A
else.
 m =.>.n%2
 A0=.m{."1 A
 A1=.m}."1 A
 'Q0 R0'=.QR A0
 'Q1 R1'=.QR A1 - Q0 mp T=.(h Q0) mp A1
 (Q0,.Q1);(R0,.T),(-n){."1 R1
end.

)</lang>

Example use:

<lang j> QR x:12 _51 4,6 167 _68,:_4 24 _41 ┌────────────────────┬──────────┐ │ 6r7 _69r175 _58r175│14 21 _14│ │ 3r7 158r175 6r175│ 0 175 _70│ │_2r7 6r35 _33r35│ 0 0 35│ └────────────────────┴──────────┘</lang>

Polynomial fitting using QR reduction:

<lang j> X=:i.# Y=:1 6 17 34 57 86 121 162 209 262 321

  'Q R'=: QR X ^/ i.3
  R %.~(|:Q)+/ .* Y

1 2 3</lang>

Tcl

Assuming the presence of the Tcl solutions to these tasks: Element-wise operations, Matrix multiplication, Matrix transposition

Translation of: Common Lisp

<lang tcl>package require Tcl 8.5 namespace path {::tcl::mathfunc ::tcl::mathop} proc sign x {expr {$x == 0 ? 0 : $x < 0 ? -1 : 1}} proc norm vec {

   set s 0
   foreach x $vec {set s [expr {$s + $x**2}]}
   return [sqrt $s]

} proc unitvec n {

   set v [lrepeat $n 0.0]
   lset v 0 1.0
   return $v

} proc I n {

   set m [lrepeat $n [lrepeat $n 0.0]]
   for {set i 0} {$i < $n} {incr i} {lset m $i $i 1.0}
   return $m

}

proc arrayEmbed {A B row col} {

   # $A will be copied automatically
   lassign [size $B] mb nb
   for {set i 0} {$i < $mb} {incr i} {

for {set j 0} {$j < $nb} {incr j} { lset A [expr {$row + $i}] [expr {$col + $j}] [lindex $B $i $j] }

   }
   return $A

}

proc subcolumn {A size column} {

   for {set i $column} {$i < $size} {incr i} {lappend x [lindex $A $i $column]}
   return $x

}

proc householder A {

   lassign [size $A] m
   set U [m+ $A [.* [unitvec $m] [expr {[norm $A] * [sign [lindex $A 0 0]]}]]]
   set V [./ $U [lindex $U 0 0]]
   set beta [expr {2.0 / [lindex [matrix_multiply [transpose $V] $V] 0 0]}]
   return [m- [I $m] [.* [matrix_multiply $V [transpose $V]] $beta]]

}

proc qrDecompose A {

   lassign [size $A] m n
   set Q [I $m]
   for {set i 0} {$i < ($m==$n ? $n-1 : $n)} {incr i} {

# Construct the Householder matrix set H [arrayEmbed [I $m] [householder [subcolumn $A $n $i]] $i $i] # Apply to build the decomposition set Q [matrix_multiply $Q $H] set A [matrix_multiply $H $A]

   }
   return [list $Q $A]

}</lang> Demonstrating: <lang tcl>set demo [qrDecompose {{12 -51 4} {6 167 -68} {-4 24 -41}}] puts "==Q==" print_matrix [lindex $demo 0] "%f" puts "==R==" print_matrix [lindex $demo 1] "%.1f"</lang> Output:

==Q==
-0.857143  0.394286  0.331429 
-0.428571 -0.902857 -0.034286 
 0.285714 -0.171429  0.942857 
==R==
-14.0  -21.0  14.0 
  0.0 -175.0  70.0 
  0.0    0.0 -35.0