Pythagorean quadruples

From Rosetta Code
Revision as of 16:20, 12 July 2018 by rosettacode>Cloudius (Scala contribution added.)
Task
Pythagorean quadruples
You are encouraged to solve this task according to the task description, using any language you may know.


One form of   Pythagorean quadruples   is   (for positive integers   a,   b,   c,   and   d):


  a2   +   b2   +   c2     =     d2


An example:

  22   +   32   +   62     =     72
which is:
  4   +   9   +   36     =     49


Task

For positive integers up   2,200   (inclusive),   for all values of   a,   b,   c,   and   d,
find   (and show here)   those values of   d   that   can't   be represented.

Show the values of   d   on one line of output   (optionally with a title).


Related tasks



ALGOL 68

As with the optimised REXX solution, we find the values of d for which there are no a^2 + b^2 = d^2 - c^2. <lang algol68>BEGIN

   # find values of d where d^2 =/= a^2 + b^2 + c^2 for any integers a, b, c #
   # where d in [1..2200], a, b, c =/= 0                                     #
   # max number to check #
   INT max number = 2200;
   INT max square = max number * max number;
   # table of numbers that can be the sum of two squares #
   [ 1 : max square ]BOOL sum of two squares; FOR n TO max square DO sum of two squares[ n ] := FALSE OD;
   FOR a TO max number DO
       INT a2 = a * a;
       FOR b FROM a TO max number WHILE INT sum2 = ( b * b ) + a2;
                                        sum2 <= max square DO
           sum of two squares[ sum2 ] := TRUE
       OD
   OD;
   # now find d such that d^2 - c^2 is in sum of two squares #
   [ 1 : max number ]BOOL solution; FOR n TO max number DO solution[ n ] := FALSE OD;
   FOR d TO max number DO
       INT d2 = d * d;
       FOR c TO d - 1 WHILE NOT solution[ d ] DO
           INT diff2 = d2 - ( c * c );
           IF sum of two squares[ diff2 ] THEN
               solution[ d ] := TRUE
           FI
       OD
   OD;
   # print the numbers whose squares are not the sum of three squares #
   FOR d TO max number DO
       IF NOT solution[ d ] THEN
           print( ( " ", whole( d, 0 ) ) )
       FI
   OD;
   print( ( newline ) )

END</lang>

Output:
 1 2 4 5 8 10 16 20 32 40 64 80 128 160 256 320 512 640 1024 1280 2048

C

Version 1

Five seconds on my Intel Linux box. <lang C>#include <stdio.h>

  1. include <math.h>
  2. include <string.h>
  1. define N 2200

int main(int argc, char **argv){

  int a,b,c,d;
  int r[N+1];
  memset(r,0,sizeof(r));	// zero solution array
  for(a=1; a<=N; a++){
     for(b=a; b<=N; b++){

int aabb; if(a&1 && b&1) continue; // for positive odd a and b, no solution. aabb=a*a + b*b; for(c=b; c<=N; c++){ int aabbcc=aabb + c*c; d=(int)sqrt((float)aabbcc); if(aabbcc == d*d && d<=N) r[d]=1; // solution }

     }
  }
  for(a=1; a<=N; a++)
     if(!r[a]) printf("%d ",a);	// print non solution
  printf("\n");

}</lang>

Output:
$ clang -O3 foo.c -lm
$ ./a.out
1 2 4 5 8 10 16 20 32 40 64 80 128 160 256 320 512 640 1024 1280 2048 

Version 2 (much faster)

Translation of second version of FreeBASIC entry. Runs in about 0.15 seconds. <lang C>#include <stdlib.h>

  1. include <stdio.h>
  2. include <string.h>
  1. define N 2200
  2. define N2 2200 * 2200 * 2

int main(int argc, char **argv) {

   int a, b, c, d, a2, s = 3, s1, s2; 
   int r[N + 1];
   memset(r, 0, sizeof(r));
   int *ab = calloc(N2 + 1, sizeof(int));  // allocate on heap, zero filled
   for (a = 1; a <= N; a++) {
       a2 = a * a;
       for (b = a; b <= N; b++) ab[a2 + b * b] = 1;
   }
   for (c = 1; c <= N; c++) {
       s1 = s;
       s += 2;
       s2 = s;
       for (d = c + 1; d <= N; d++) {
           if (ab[s1]) r[d] = 1;
           s1 += s2;
           s2 += 2;
       }
   }
   for (d = 1; d <= N; d++) {
       if (!r[d]) printf("%d ", d);
   }
   printf("\n");
   free(ab);
   return 0; 

}</lang>

Output:
Same as first version.

D

Translation of: C

<lang D>import std.bitmanip : BitArray; import std.stdio;

enum N = 2_200; enum N2 = 2*N*N;

void main() {

   BitArray found;
   found.length = N+1;
   BitArray aabb;
   aabb.length = N2+1;
   uint s=3;
   for (uint a=1; a<=N; ++a) {
       uint aa = a*a;
       for (uint b=1; b<N; ++b) {
           aabb[aa + b*b] = true;
       }
   }
   for (uint c=1; c<=N; ++c) {
       uint s1 = s;
       s += 2;
       uint s2 = s;
       for (uint d=c+1; d<=N; ++d) {
           if (aabb[s1]) {
               found[d] = true;
           }
           s1 += s2;
           s2 += 2;
       }
   }
   writeln("The values of d <= ", N, " which can't be represented:");
   for (uint d=1; d<=N; ++d) {
       if (!found[d]) {
           write(d, ' ');
       }
   }
   writeln;

}</lang>

Output:
The values of d <= 2200 which can't be represented:
1 2 4 5 8 10 16 20 32 40 64 80 128 160 256 320 512 640 1024 1280 2048

FreeBASIC

From the Wikipedia page

Alternate parametrization, second version both A and B even.Time just less then 0.7 second on a AMD Athlon II X4 645 3.34GHz win7 64bit. Program uses one core. When the limit is set to 576 (abs. minimum for 2200), the time is about 0.85 sec. <lang freebasic>' version 12-08-2017 ' compile with: fbc -s console

  1. Define max 2200

Dim As UInteger l, m, n, l2, l2m2 Dim As UInteger limit = max * 4 \ 15 Dim As UInteger max2 = limit * limit * 2 ReDim As Ubyte list_1(max2), list_2(max2 +1)

' prime sieve, list_2(l) contains a 0 if l = prime For l = 4 To max2 Step 2

   list_1(l) = 1

Next For l = 3 To max2 Step 2

   If list_1(l) = 0 Then
       For m = l * l To max2 Step l * 2
           list_1(m) = 1
       Next
   End If

Next

' we do not need a and b (a and b are even, l = a \ 2, m = b \ 2) ' we only need to find d For l = 1 To limit

   l2 = l * l
   For m = l To limit
       l2m2 = l2 + m * m
       list_2(l2m2 +1) = 1
       ' if l2m2 is a prime, no other factors exits
       If list_1(l2m2) = 0 Then Continue For
       ' find possible factors of l2m2
       ' if l2m2 is odd, we need only to check the odd divisors
       For n = 2 + (l2m2 And 1) To Fix(Sqr(l2m2 -1)) Step 1 + (l2m2 And 1)
           If l2m2 Mod n = 0 Then
               ' set list_2(x) to 1 if solution is found
               list_2(l2m2 \ n + n) = 1
           End If
       Next
   Next

Next

For l = 1 To max

   If list_2(l) = 0 Then Print l; " ";

Next Print

' empty keyboard buffer While InKey <> "" : Wend Print : Print "hit any key to end program" Sleep End</lang>

Output:
1 2 4 5 8 10 16 20 32 40 64 80 128 160 256 320 512 640 1024 1280 2048

Brute force

Based on the second REXX version: A^2 + B^2 = D^2 - C^2. Faster then the first version, about 0.2 second <lang freebasic>' version 14-08-2017 ' compile with: fbc -s console

  1. Define n 2200

Dim As UInteger s = 3, s1, s2, x, x2, y ReDim As Ubyte l(n), l_add(n * n * 2)

For x = 1 To n

   x2 = x * x
   For y = x To n
       l_add(x2 + y * y) = 1
   Next

Next

For x = 1 To n

   s1 = s
   s += 2
   s2 = s
   For y = x +1 To n
       If l_add(s1) = 1 Then l(y) = 1
       s1 += s2
       s2 += 2
   Next

Next

For x = 1 To n

   If l(x) = 0 Then Print Str(x); " ";

Next Print

' empty keyboard buffer While InKey <> "" : Wend Print : Print "hit any key to end program" Sleep End</lang>

Output:
1 2 4 5 8 10 16 20 32 40 64 80 128 160 256 320 512 640 1024 1280 2048

Go

Translation of: FreeBASIC

<lang go>package main

import "fmt"

const (

   N = 2200
   N2 = N * N * 2

)

func main() {

   s  := 3 
   var s1, s2 int    
   var r  [N + 1]bool
   var ab [N2 + 1]bool
   for a := 1; a <= N; a++ {
       a2 := a * a
       for b := a; b <= N; b++ {
           ab[a2 + b * b] = true
       }
   }
   for c := 1; c <= N; c++ {
       s1 = s
       s += 2
       s2 = s
       for d := c + 1; d <= N; d++ {
           if ab[s1] {
               r[d] = true
           }
           s1 += s2
           s2 += 2
       }
   }
   for d := 1; d <= N; d++ {
       if !r[d] {
           fmt.Printf("%d ", d)
       }       
   }
   fmt.Println()

}</lang>

Output:
1 2 4 5 8 10 16 20 32 40 64 80 128 160 256 320 512 640 1024 1280 2048 

Haskell

<lang Haskell>module PythagoreanQuadruple where

powersOfTwo = 1 : map (*2) powersOfTwo

unrepresentable = merge powersOfTwo $ map (*5) powersOfTwo

merge (x:xs) (y:ys) | x < y = x : merge xs (y:ys) merge (x:xs) (y:ys) = y : merge (x:xs) ys

main = do

 putStrLn "The values of d <= 2200 which can't be represented."
 print $ takeWhile (<= 2200) unrepresentable

</lang>

Output:
The values of d <= 2200 which can't be represented.
[1,2,4,5,8,10,16,20,32,40,64,80,128,160,256,320,512,640,1024,1280,2048]

Java

Translation of: Kotlin

<lang java>public class PythagoreanQuadruple {

   static final int MAX = 2200;
   static final int MAX2 = MAX * MAX * 2;
   public static void main(String[] args) {
       boolean[] found = new boolean[MAX + 1];   // all false by default
       boolean[] a2b2  = new boolean[MAX2 + 1];  // ditto
       int s = 3;
       for (int a = 1; a <= MAX; a++) {
           int a2 = a * a;
           for (int b = a; b <= MAX; b++) a2b2[a2 + b * b] = true;
       } 
       for (int c = 1; c <= MAX; c++) {
           int s1 = s;
           s += 2;
           int s2 = s;
           for (int d  = c + 1; d <= MAX; d++) {
               if (a2b2[s1]) found[d] = true;
               s1 += s2;
               s2 += 2;
           }
       }
       System.out.printf("The values of d <= %d which can't be represented:\n", MAX);
       for (int d = 1; d <= MAX; d++) {
           if (!found[d]) System.out.printf("%d  ", d);
       }
       System.out.println();
   }

}</lang>

Output:
The values of d <= 2200 which can't be represented:
1  2  4  5  8  10  16  20  32  40  64  80  128  160  256  320  512  640  1024  1280  2048  

jq

The following is a direct solution but with some obvious optimizations. Its main value may be to illustrate how looping with breaks can be accomplished in jq without `foreach`. Notice also how `first/1` is used in `is_pythagorean_quad/0` to avoid unnecessary computation. <lang jq># Emit a proof that the input is a pythagorean quad, or else false def is_pythagorean_quad:

 . as $d
 | (.*.) as $d2
 | first(
     label $continue_a | range(1; $d) | . as $a | (.*.) as $a2
   |   if 3*$a2 > $d2 then break $continue_a else . end
   | label $continue_b | range($a; $d) | . as $b | (.*.) as $b2
   |   if $a2  + 2 * $b2  > $d2 then break $continue_b else . end
   | (($d2-($a2+$b2)) | sqrt) as $c
   | if ($c | floor) == $c then [$a, $b, $c] else empty end )
 // false;
 
  1. The specific task:

[range(1; 2201) | select( is_pythagorean_quad | not )] | join(" ")</lang>

Invocation and Output

jq -r -n -f program.jq
1 2 4 5 8 10 16 20 32 40 64 80 128 160 256 320 512 640 1024 1280 2048

Julia

Works with: Julia version 0.6
Translation of: C

<lang julia>function quadruples(N::Int=2200)

   r  = falses(N)
   ab = falses(2N ^ 2)
   for a in 1:N, b in a:N
       ab[a ^ 2 + b ^ 2] = true
   end
   s = 3
   for c in 1:N
       s1, s, s2 = s, s + 2, s + 2
       for d in c+1:N
           if ab[s1] r[d] = true end
           s1 += s2
           s2 += 2
       end
   end
   return find(.! r)

end

println("Pythagorean quadruples up to 2200: ", join(quadruples(), ", "))</lang>

Output:
Pythagorean quadruples up to 2200: 1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 256, 320, 512, 640, 1024, 1280, 2048

Kotlin

Version 1

This uses a similar approach to the REXX optimized version. It also takes advantage of a hint in the C entry that there is no solution if both a and b are odd (confirmed by Wikipedia article). Runs in about 7 seconds on my modest laptop which is more than 4 times faster than the brute force version would have been: <lang scala>// version 1.1.3

const val MAX = 2200 const val MAX2 = MAX * MAX - 1

fun main(args: Array<String>) {

   val found = BooleanArray(MAX + 1)       // all false by default
   val p2 = IntArray(MAX + 1) { it * it }  // pre-compute squares
   // compute all possible positive values of d * d - c * c and map them back to d
   val dc = mutableMapOf<Int, MutableList<Int>>()
   for (d in 1..MAX) {
       for (c in 1 until d) {
           val diff = p2[d] - p2[c]              
           val v = dc[diff]
           if (v == null)
               dc.put(diff, mutableListOf(d))
           else if (d !in v)
               v.add(d)
       }
   }
 
   for (a in 1..MAX) {
       for (b in 1..a) {
           if ((a and 1) != 0 && (b and 1) != 0) continue
           val sum = p2[a] + p2[b]
           if (sum > MAX2) continue
           val v = dc[sum]
           if (v != null) v.forEach { found[it] = true }
       }
   }
   println("The values of d <= $MAX which can't be represented:")
   for (i in 1..MAX) if (!found[i]) print("$i ")
   println()

}</lang>

Output:
The values of d <= 2200 which can't be represented:
1 2 4 5 8 10 16 20 32 40 64 80 128 160 256 320 512 640 1024 1280 2048 

Version 2 (much faster)

This is a translation of the second FreeBASIC version and runs in about the same time (0.2 seconds).

One thing I've noticed about the resulting sequence is that it appears to be an interleaving of the two series 2 ^ n and 5 * (2 ^ n) for n >= 0 though whether it's possible to prove this mathematically I don't know. <lang scala>// version 1.1.3

const val MAX = 2200 const val MAX2 = MAX * MAX * 2

fun main(args: Array<String>) {

   val found = BooleanArray(MAX + 1)   // all false by default
   val a2b2  = BooleanArray(MAX2 + 1)  // ditto
   var s = 3
   for (a in 1..MAX) {
       val a2 = a * a
       for (b in a..MAX) a2b2[a2 + b * b] = true   
   }

   for (c in 1..MAX) {
       var s1 = s
       s += 2
       var s2 = s
       for (d in (c + 1)..MAX) {
           if (a2b2[s1]) found[d] = true
           s1 += s2
           s2 += 2
       }
   }
   println("The values of d <= $MAX which can't be represented:")
   for (d in 1..MAX) if (!found[d]) print("$d ")
   println()    

}</lang>

Output:
Same as Version 1.

Perl 6

Works with: Rakudo version 2017.08

<lang perl6>my \N = 2200; my @sq = (0 .. N)»²; my @not = False xx N; @not[0] = True;

for 1 .. N -> $d {

   my $last = 0;
   for $d ... ($d/3).ceiling -> $a {
       for 1 .. ($a/2).ceiling -> $b {
           last if (my $ab = @sq[$a] + @sq[$b]) > @sq[$d];
           if (@sq[$d] - $ab).sqrt.narrow ~~ Int {
               @not[$d] = True;
               $last = 1;
               last
           }
       }
       last if $last;
   }

}

say @not.grep( *.not, :k );</lang>

Output:
(1 2 4 5 8 10 16 20 32 40 64 80 128 160 256 320 512 640 1024 1280 2048)

PicoLisp

Translation of: C

<lang PicoLisp>(de quadruples (N)

  (let (AB NIL  S 3  R)
     (for A N
        (for (B A (>= N B) (inc B))
           (idx
              'AB
              (+ (* A A) (* B B))
              T ) ) )
     (for C N
        (let (S1 S  S2)
           (inc 'S 2)
           (setq S2 S)
           (for (D (+ C 1) (>= N D) (inc D))
              (and (idx 'AB S1) (idx 'R D T))
              (inc 'S1 S2)
              (inc 'S2 2) ) ) )
     (make
        (for A N
           (or (idx 'R A) (link A)) ) ) ) )

(println (quadruples 2200))</lang>

Output:
(1 2 4 5 8 10 16 20 32 40 64 80 128 160 256 320 512 640 1024 1280 2048)

Python

Translation of: Julia

<lang Python>def quad(top=2200):

   r = [False] * top
   ab = [False] * (top * 2)**2
   for a in range(1, top):
       for b in range(a, top):
           ab[a * a + b * b] = True
   s = 3
   for c in range(1, top):
       s1, s, s2 = s, s + 2, s + 2
       for d in range(c + 1, top):
           if ab[s1]:
               r[d] = True
           s1 += s2
           s2 += 2
   return [i for i, val in enumerate(r) if not val and i]
   

if __name__ == '__main__':

   n = 2200
   print(f"Those values of d in 1..{n} that can't be represented: {quad(n)}")</lang>
Output:
Those values of d in 1..2200 that can't be represented: [1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 256, 320, 512, 640, 1024, 1280, 2048]

Racket

Translation of: Python

<lang racket>#lang racket

(require data/bit-vector)

(define (quadruples top)

 (define top+1 (add1 top))
 (define 1..top (in-range 1 top+1))
 (define r (make-bit-vector top+1))
 (define ab (make-bit-vector (add1 (sqr (* top 2)))))
 (for* ((a 1..top) (b (in-range a top+1))) (bit-vector-set! ab (+ (sqr a) (sqr b)) #t))
 (for/fold ((s 3))
           ((c 1..top))
   (for/fold ((s1 s) (s2 (+ s 2)))
             ((d (in-range (add1 c) top+1)))
     (when (bit-vector-ref ab s1)
       (bit-vector-set! r d #t))
     (values (+ s1 s2) (+ s2 2)))
   (+ 2 s))
 (for/list ((i (in-naturals 1)) (v (in-bit-vector r 1)) #:unless v) i))

(define (report n)

 (printf "Those values of d in 1..~a that can't be represented: ~a~%" n (quadruples n)))

(report 2200)</lang>

Output:
Those values of d in 1..2200 that can't be represented: (1 2 4 5 8 10 16 20 32 40 64 80 128 160 256 320 512 640 1024 1280 2048)

REXX

brute force

This version is a brute force algorithm, with some optimization (to save compute time)
which pre-computes some of the squares of the positive integers used in the search.
Integers too large for the precomputed values use an optimized integer square root. <lang rexx>/*REXX pgm computes/shows (integers), D that aren't possible for: a² + b² + c² = d² */ parse arg hi . /*obtain optional argument from the CL.*/ if hi== | hi=="," then hi=2200; high=2*hi**2 /*Not specified? Then use the default.*/ @.=. /*array of integers to be squared. */ !.=. /* " " " squared. */

      do j=1  for high                          /*precompute possible squares (to max).*/
      jj=j*j;   !.jj=j;   if j<=hi  then @.j=jj /*define a square; D  value; squared # */
      end   /*j*/

d.=. /*array of possible solutions (D) */

      do       a=1  for hi-2                    /*go hunting for solutions to equation.*/
         do    b=a   to hi-1;   ab = @.a + @.b  /*calculate sum of  2  (A,B)   squares.*/
            do c=b   to hi;     abc= ab  + @.c  /*    "      "   "  3  (A,B,C)    "    */
            if abc<=high  then if !.abc==.  then iterate   /*Not a square? Then skip it*/
                          else do;   t=abc;   r=0;   q=1;       do while q<=t;   q=q*4
                                                                end   /*while q<=t*/
                                                           /*R:  will be the iSqrt(t). */
                                 do while q>1;  q=q%4;  _=t-r-q;  r=r%2
                                 if _>=0  then do;  t=_;  r=r+q;  end
                                 end   /*while q>1*/
                               if r*r\=abc  then iterate   /*(DO iterator C)*/
                               end
            s=!.abc;    d.s=                    /*define this D solution as being found*/
            end   /*c*/
         end      /*b*/
      end         /*a*/

say say 'Not possible positive integers for d ≤' hi " using equation: a² + b² + c² = d²" say $= /* [↓] find all the "not possibles". */

      do p=1  for hi;   if d.p==.  then $=$ p   /*Not possible? Then add it to the list*/
      end   /*p*/                               /* [↓]  display list of not-possibles. */

say substr($, 2) /*stick a fork in it, we're all done. */</lang>

output   when using the default input:
Not possible positive integers for   d ≤ 2200   using equation:  a² + b² + c²  =  d²

1 2 4 5 8 10 16 20 32 40 64 80 128 160 256 320 512 640 1024 1280 2048

optimized

This REXX version is an optimized version, it solves the formula:

  a2   +   b2     =     d2   -   c2

This REXX version is over thirty times faster then the previous version. <lang rexx>/*REXX pgm computes/shows (integers), D that aren't possible for: a² + b² + c² = d² */ parse arg hi . /*obtain optional argument from the CL.*/ if hi== | hi=="," then hi=2200 /*Not specified? Then use the default.*/ high=hi * 3 /*D can be three times the HI (max).*/ @.=. /*array of integers (≤ hi) squared.*/ dbs.= /* " " differences between squares.*/

     do s=1  for high;  ss=s*s;  r.ss=s; @.s=ss /*precompute squares and square roots. */
     end  /*s*/
     do    c=1   for high;       cc=@.c         /*precompute possible differences.     */
        do d=c+1  to high;       dif=@.d - cc   /*process  D  squared; calc differences*/
        if wordpos(cc, dbs.dif)==0  then dbs.dif=dbs.dif cc     /*Not in list?  Add it.*/
        end   /*d*/
     end      /*c*/

d.=. /*array of possible solutions (D) */

     do     a=1  for hi-2                       /*go hunting for solutions to equation.*/
        do  b=a   to hi-1;         ab=@.a + @.b /*calculate sum of  2  (A,B)   squares.*/
        if dbs.ab==  then iterate             /*Not a difference?   Then ignore it.  */
           do n=1  for words(dbs.ab)            /*handle all ints that satisfy equation*/
           x=word(dbs.ab, n)                    /*get a C integer from the DBS.AB list.*/
           abc=ab + x                           /*add the  C²  integer  to  A²  +  B²  */
           _=r.abc                              /*retrieve the square root  of  C²     */
           d._=                                 /*mark the  D  integer as being found. */
           end   /*n*/
        end      /*b*/
     end         /*a*/

say say 'Not possible positive integers for d ≤' hi " using equation: a² + b² + c² = d²" say $= /* [↓] find all the "not possibles". */

      do p=1  for hi;   if d.p==.  then $=$ p   /*Not possible? Then add it to the list*/
      end   /*p*/                               /* [↓]  display list of not-possibles. */

say substr($, 2) /*stick a fork in it, we're all done. */</lang>

output   is the same as the 1st REXX version.



Ring

<lang ring># Project : Pythagorean quadruples

  1. Date  : 2017/12/17
  2. Author : Gal Zsolt (~ CalmoSoft ~)
  3. Email  : <calmosoft@gmail.com>

limit = 2200 pq = list(limit) for n = 1 to limit

     for m = 1 to limit
          for p = 1 to limit
                for x = 1 to limit
                      if pow(x,2) = pow(n,2) + pow(m,2) + pow(p,2)
                         pq[x] = 1
                      ok
                next
          next
     next

next pqstr = "" for d = 1 to limit

     if pq[d] = 0
        pqstr = pqstr + d + " "
     ok

next see pqstr + nl </lang>

Output:
1 2 4 5 8 10 16 20 32 40 64 80 128 160 256 320 512 640 1024 1280 2048

Scala

Output:

Best seen running in your browser either by ScalaFiddle (ES aka JavaScript, non JVM) or Scastie (remote JVM).

<lang Scala>object PythagoreanQuadruple extends App {

 val MAX = 2200
 val MAX2: Int = MAX * MAX * 2
 val found = Array.ofDim[Boolean](MAX + 1)
 val a2b2 = Array.ofDim[Boolean](MAX2 + 1)
 var s = 3
 for (a <- 1 to MAX) {
   val a2 = a * a
   for (b <- a to MAX) a2b2(a2 + b * b) = true
 }
 for (c <- 1 to MAX) {
   var s1 = s
   s += 2
   var s2 = s
   for (d <- (c + 1) to MAX) {
     if (a2b2(s1)) found(d) = true
     s1 += s2
     s2 += 2
   }
 }
 println(f"The values of d <= ${MAX}%d which can't be represented:")
 val notRepresented = (1 to MAX).filterNot(d =>  found(d) )
 println(notRepresented.mkString(" "))

}</lang>

Sidef

<lang ruby>require('ntheory')

  1. Finds all solutions (a,b) such that: a^2 + b^2 = n^2

func sum_of_two_squares(n) is cached {

   n == 0 && return 0, 0
   var prod1 = 1
   var prod2 = 1
   var prime_powers = []
   for p,e in (n.factor_exp) {
       if (p % 4 == 3) {                  # p = 3 (mod 4)
           e.is_even || return []         # power must be even
           prod2 *= p**(e >> 1)
       }
       elsif (p == 2) {                   # p = 2
           if (e.is_even) {               # power is even
               prod2 *= p**(e >> 1)
           }
           else {                         # power is odd
               prod1 *= p
               prod2 *= p**((e - 1) >> 1)
               prime_powers.append([p, 1])
           }
       }
       else {                             # p = 1 (mod 4)
           prod1 *= p**e
           prime_powers.append([p, e])
       }
   }
   prod1 == 1 && return prod2, 0
   prod1 == 2 && return prod2, prod2
   # All the solutions to the congruence: x^2 = -1 (mod prod1)
   var square_roots = gather {
       gather {
           for p,e in (prime_powers) {
               var pp = p**e
               var r = %S<ntheory>.sqrtmod("#{pp - 1}", "#{pp}")
               take([[r, pp], [pp - r, pp]])
           }
       }.cartesian { |*a|
           take(Math.chinese(a...))
       }
   }
   var solutions = []
   for r in (square_roots) {
       var s = r
       var q = prod1
       while (s*s > prod1) {
           (s, q) = (q % s, s)
       }
       solutions.append([prod2 * s, prod2 * (q % s)])
   }
   for p,e in (prime_powers) {
       for (var i = e%2; i < e; i += 2) {
           var sq = p**((e - i) >> 1)
           var pp = p**(e - i)
           solutions += (
               __FUNC__(prod1 / pp).map { |pair|
                   pair.map {|r| sq * prod2 * r }
               }
           )
       }
   }
   solutions.map     {|pair| pair.sort } \
            .uniq_by {|pair| pair[0]   } \
            .sort_by {|pair| pair[0]   }

}

  1. Finds all solutions (a,b,c) such that: a^2 + b^2 + c^2 = n^2

func sum_of_three_squares(n) {

   gather {
       for k in (1 .. n//3) {
           var t = sum_of_two_squares(n**2 - k**2) || next
           take(t.map { [k, _...] }...)
       }
   }

}

say gather {

   for n in (1..2200) {
       sum_of_three_squares(n) || take(n)
   }

}</lang>

Output:
[1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 256, 320, 512, 640, 1024, 1280, 2048]

Numbers d that cannot be expressed as a^2 + b^2 + c^2 = d^2, are numbers of the form 2^n or 5*2^n: <lang ruby>say gather {

   for n in (1..2200) {
       if ((n & (n-1) == 0) || (n%%5 && ((n/5) & (n/5 - 1) == 0))) {
           take(n)
       }
   }

}</lang>

Output:
[1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 256, 320, 512, 640, 1024, 1280, 2048]

zkl

Translation of: ALGOL 68

<lang zkl># find values of d where d^2 =/= a^2 + b^2 + c^2 for any integers a, b, c #

  1. where d in [1..2200], a, b, c =/= 0 #
  2. max number to check #

const max_number = 2200; const max_square = max_number * max_number;

  1. table of numbers that can be the sum of two squares #

sum_of_two_squares:=Data(max_square+1,Int).fill(0); # 4 meg byte array foreach a in ([1..max_number]){

  a2 := a * a;
  foreach b in ([a..max_number]){
     sum2 := ( b * b ) + a2;
     if(sum2 <= max_square) sum_of_two_squares[ sum2 ] = True;  # True-->1
  }

}

  1. now find d such that d^2 - c^2 is in sum of two squares #

solution:=Data(max_number+1,Int).fill(0); # another byte array foreach d in ([1..max_number]){

  d2 := d * d;
  foreach c in ([1..d-1]){
     diff2 := d2 - ( c * c );
     if(sum_of_two_squares[ diff2 ]){ solution[ d ] = True; break; }
  }

}

  1. print the numbers whose squares are not the sum of three squares #

foreach d in ([1..max_number]){

  if(not solution[ d ]) print(d, " ");

} println();</lang>

Output:
1 2 4 5 8 10 16 20 32 40 64 80 128 160 256 320 512 640 1024 1280 2048