Print debugging statement

From Rosetta Code
Revision as of 15:49, 27 August 2019 by PureFox (talk | contribs) (Added Go)
Print debugging statement is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

From Wikipedia:

Print debugging (or tracing) is the act of watching (live or recorded) trace statements, or print statements, that indicate the flow of execution of a process. This is sometimes called printf debugging, due to the use of the printf function in C.

Task
  • Show the print debugging statements in the language.
  • Demonstrate their ability to track provenance by displaying information about source code (e.g., code fragment, line and column number).

C

C doesn't have a built-in print debugging statement. However, it can be defined by users as a macro.

<lang C>#include <stdio.h>

  1. define DEBUG_INT(x) printf( #x " at line %d\nresult: %d\n\n", __LINE__, x)

int add(int x, int y) {

 int result = x + y;
 DEBUG_INT(x);
 DEBUG_INT(y);
 DEBUG_INT(result);
 DEBUG_INT(result+1);
 return result;

}

int main() {

 add(2, 7);
 return 0;

}</lang>

Output:
x at line 7
result: 2

y at line 8
result: 7

result at line 9
result: 9

result+1 at line 10
result: 10

Go

Go doesn't have a built-in print debugging statement as such. Nor does it have macros.

However, as the following example shows, it is easy enough to mimic a C-like approach by writing a short 'debug' function which can show the value of an expression and its type at the appropriate line number in the program's source code.

Note that a label for the expression (whether it's a simple variable or not) must be passed to the 'debug' function as there is no way to deduce it otherwise. <lang go>package main

import (

   "fmt"
   "runtime"

)

type point struct {

   x, y float64

}

func add(x, y int) int {

   result := x + y
   debug("x", x)
   debug("y", y)
   debug("result", result)
   debug("result+1", result+1)
   return result

}

func debug(s string, x interface{}) {

   _, _, lineNo, _ := runtime.Caller(1)
   fmt.Printf("%q at line %d type '%T'\nvalue: %#v\n\n", s, lineNo, x, x)

}

func main() {

   add(2, 7)
   b := true
   debug("b", b)
   s := "Hello"
   debug("s", s)
   p := point{2, 3}
   debug("p", p)
   q := &p
   debug("q", q)

}</lang>

Output:
"x" at line 14 type 'int'
value: 2

"y" at line 15 type 'int'
value: 7

"result" at line 16 type 'int'
value: 9

"result+1" at line 17 type 'int'
value: 10

"b" at line 29 type 'bool'
value: true

"s" at line 31 type 'string'
value: "Hello"

"p" at line 33 type 'main.point'
value: main.point{x:2, y:3}

"q" at line 35 type '*main.point'
value: &main.point{x:2, y:3}

Pyret

Pyret has the spy expression. The expression can print the value of an identifier, using the identifier itself as a label if it's not already given. It could also print the value of an arbitrary expression, but it needs an explicit label in this case.

<lang pyret>fun add(x, y):

 result = x + y
 spy "in add": 
   x,
   y,
   result,
   result-plus-one: result + 1
 end
 result

end

add(2, 7)</lang>

Output:
Spying "in add" (at file:///spies.arr:3:2-8:5)
  x: 2
  y: 7
  result: 9
  result-plus-one: 10

9

Racket

Racket doesn't have a built-in print debugging statement. However, it can be defined by users as a macro.

<lang racket>#lang racket

(require syntax/parse/define)

(define (debug:core line col code val #:label [label #f])

 ;; if label exists, use it instead of the code fragment
 (printf "~a at line ~a column ~a\n" (or label code) line col)
 (printf "result: ~a\n\n" val)
 ;; return the value itself, so that we can wrap macro around an expression 
 ;; without restructuring any code
 val)

(define-simple-macro (debug <x> option ...)

 #:with line (datum->syntax this-syntax (syntax-line #'<x>))
 #:with col (datum->syntax this-syntax (syntax-column #'<x>))
 (debug:core line col (quote <x>) <x> option ...))

(define (add x y)

 (define result (+ x y))
 (debug x)
 (debug y)
 (debug (if #t (+ x y) (error 'impossible)))
 (debug (add1 result) #:label "result plus one")
 (debug result))

(add 2 7)</lang>

Output:
x at line 20 column 9
result: 2

y at line 21 column 9
result: 7

(if #t (+ x y) (error 'impossible)) at line 22 column 9
result: 9

result plus one at line 23 column 9
result: 10

result at line 24 column 9
result: 9

9