Posit numbers/decoding

From Rosetta Code
Revision as of 10:22, 19 September 2023 by Wherrera (talk | contribs) (julia example)
Posit numbers/decoding is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

Posit is a quantization of the real projective line proposed by John Gustafson in 2015. It is claimed to be an improvement over IEEE 754.

The purpose of this task is to write a program capable of decoding a posit number. You will use the example provided by Gustafson in his paper : 0b0000110111011101, representing a 16-bit long real number with three bits for the exponent. Once decoded, you should obtain either the fraction 477/134217728 or the floating point value 3.55393E−6.

Jeff Johnson from Facebook research, described posit numbers as such:

A more efficient representation for tapered floating points is the recent posit format by Gustafson. It has no explicit size field; the exponent is encoded using a Golomb-Rice prefix-free code, with the exponent encoded as a Golomb-Rice quotient and remainder with in unary and in binary (in posit terminology, is the regime). Remainder encoding size is defined by the exponent scale , where is the Golomb-Rice divisor. Any space not used by the exponent encoding is used by the significand, which unlike IEEE 754 always has a leading 1; gradual underflow (and overflow) is handled by tapering. A posit number system is characterized by , where is the word length in bits and is the exponent scale. The minimum and maximum positive finite numbers in are Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_\mathrm{min} = 2^{−(N−2)2^s}} and Failed to parse (syntax error): {\displaystyle f_\mathrm{max} = 2^{(N−2)2^s}} . The number line is represented much as the projective reals, with a single point at bounding Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle −f_\mathrm{max}} and . and 0 have special encodings; there is no NaN. The number system allows any choice of and Failed to parse (syntax error): {\displaystyle 0\le s\le N − 3} .
controls the dynamic range achievable; e.g., 8-bit (8, 5)-posit is larger than in float32. (8, 0) and (8, 1) are more reasonable values to choose for 8-bit floating point representations, with of 64 and 4096 accordingly. Precision is maximized in the range Failed to parse (syntax error): {\displaystyle \pm\left[2^{−(s+1)}, 2^{s+1}\right)} with Failed to parse (syntax error): {\displaystyle N − 3 − s} significand fraction bits, tapering to no fraction bits at .
— Jeff Johnson, Rethinking floating point for deep learning, Facebook research.


Julia

struct PositType3{T<:Integer}
    numbits::UInt16
    es::UInt16
    bits::T
    PositType3(nb, ne, i) = new{typeof(i)}(UInt16(nb), UInt16(ne), i)
end

""" From posithub.org/docs/Posits4.pdf """
function Base.Rational(p::PositType3)
    s = signbit(p.bits)                      # s for S signbit, is 1 if negative
    pabs = p.bits << 1                       # shift off signbit (adds a 0 to F at LSB)
    pabs == 0 && return s ? 1 // 0 : 0 // 1  # if p is 0, return 0 if s = 0, error if s = 1
    expsign = signbit(pabs)                  # exponent sign from 2nd bit now in MSB location
    k = expsign == 1 ? leading_ones(pabs) : leading_zeros(pabs) # regime R bit count
    scaling = 2^p.es * (expsign == 0 ? -1 : 1)
    pabs <<= (k + 1)                         # shift off unwanted R bits
    pabs >>= (k + 2)                         # shift back without the extra LSB bit
    fsize = p.numbits - k - p.es - 2         # check how many F bits are actually explicit
    f = fsize > 0 ? (pabs & (2^fsize - 1)) // 2^fsize : 0 # Get F value. Can be missing -> 0
    e =
        fsize > 0 ? (pabs >> (fsize)) :      # Get E value. Can be up to p.es bits
        pabs * 2^(p.es - p.numbits - k - 2)  # implicit missing bits correction
    pw = (1 - 2s) * (scaling * k + e + s)
    return pw >= 0 ? ((1 - 3s) + f) * 2^pw // 1 : ((1 - 3s) + f) // 2^(-pw)
end

@show Rational(PositType3(16, 3, 0b0000110111011101)) == 477 // 134217728
Output:
 Rational(PositType3(16, 3, 0x0ddd)) == 477 // 134217728 = true


raku

unit role Posit[UInt $N, UInt $es];

has UInt $.UInt;
method sign { self.UInt > 2**($N - 1) ?? -1 !! +1 }

method FatRat {
  return 0   if self.UInt == 0;
  my UInt $mask = 2**($N - 1);
  return Inf if self.UInt == $mask;
  my UInt $n = self.UInt;
  my $sign = $n +& $mask ?? -1 !! +1;
  my $r = $sign;
  $n = ((2**$n - 1) +^ $n) + 1 if self.sign < 0;
  my int $count = 0;
  $mask +>= 1;
  my Bool $first-bit = ?($n +& $mask);
  repeat { $count++; $mask +>= 1;
  } while ?($n +& $mask) == $first-bit && $mask;
  my $m = $count;
  my $k = $first-bit ?? $m - 1 !! -$m;
  $r *= 2**($k*2**$es);
  return $r unless $mask > 1;
  $mask +>= 1;
  $count = 0;
  my UInt $exponent = 0;
  while $mask && $count++ < $es {
    $exponent +<= 1;
    $exponent +|= 1 if $n +& $mask;
    $mask +>= 1;
  }
  $r *= 2**$exponent;
  my $fraction = 1.FatRat;
  while $mask {
    (state $power-of-two = 1) +<= 1;
    $fraction += 1/$power-of-two if $n +& $mask;
    $mask +>= 1;
  }
  $r *= $fraction;

  return $r;
}

CHECK {
  use Test;
  # example from L<http://www.johngustafson.net/pdfs/BeatingFloatingPoint.pdf>
  is Posit[16, 3]
    .new(UInt => 0b0000110111011101)
    .FatRat, 477.FatRat/134217728;
}
Output:
ok 1 -

Wren

Library: Wren-fmt
Library: Wren-big
import "./fmt" for Conv
import "./big" for BigRat

var posit16_decode = Fn.new { |ps, maxExpSize|
    var p = ps.map { |c| c == "0" ? 0 : 1 }.toList

    // Deal with exceptional values.
    if (p[1..-1].all { |i| i == 0 }) {
        return (p[0] == 0) ? 0 : Conv.infinity
    }

    // Convert bits after sign bit to two's complement if negative.
    if (p[0] == 1) {
        for (i in 1..15) p[i] = (p[i] == 0) ? 1 : 0
        for (i in 15..1) {
            if (p[i] == 1) {
                p[i] = 0
            } else {
                p[i] = 1
                break
            }
        }
    }
    var first = p[1]
    var rs = 15  // regime size
    for (i in 2..15) {
        if (p[i] != first) {
            rs = i - 1
            break
        }
    }
    var regime = p[1..rs]
    var es = (rs == 15) ? 0 : maxExpSize.min(14-rs)  // actual exponent size
    var exponent = [0]
    if (es > 0) exponent = p[rs + 2...rs + 2 + es]
    var fs = (es == 0) ? 0 : 14 - rs - es  // function size
    var s = (p[0] == 0) ? 1 : -1  // sign
    var k = regime.all { |i| i == 0 } ? -rs : rs - 1
    var u = 2.pow(2.pow(maxExpSize))
    var e = Conv.atoi(exponent.join(""), 2)
    var f = BigRat.one
    if (fs > 0) {
        var fraction = ps[-fs..-1]
        f = Conv.atoi(fraction.join(""), 2)
        f = BigRat.one + BigRat.new(f, 2.pow(fs))
    }
    return f * BigRat.new(u, 1).pow(k) * s * 2.pow(e)
}

var ps = "0000110111011101"
System.print(posit16_decode.call(ps, 3))
Output:
477/134217728